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Abstract 25 

Primary aldosteronism is a common cause of endocrine hypertension. It results from the excess production 26 

of aldosterone by the adrenal cortex and is related to increased morbidity and mortality. Most cases of PA 27 

are sporadic but inherited patterns of the disease have been reported in the literature. Four forms of 28 

familial hyperaldosteronism (FH-I- FH-IV) are currently recognized, and the genetic basis has been 29 

clarified in recent years. In FH-I patients, aldosterone excess is produced by a CYP11B1/CYP11B2 fusion 30 

gene and it is suppressed by glucocorticoid treatment. FH-II is caused by mutations in the inwardly 31 

rectifying chloride channel CLCN2. FH-III is caused by mutations in KCNJ5, a gene coding for an inward 32 

rectifier K+ channel and mutations in the T-type calcium channel subunit CACNA1H cause FH-IV. In this 33 

review we summarize the knowledge on inherited forms of primary aldosteronism, the genetic alterations 34 

that cause them and the implications it may have for the classification. Based on current evidence, we 35 

propose the term “familial hyperaldosteronism” to refer only to inherited forms of primary aldosteronism 36 

with a known genetic basis. 37 

 38 

 39 

Primary aldosteronism (PA) is the clinical manifestation of a heterogeneous group of adrenal disorders 40 

that are characterized by an excessive production of aldosterone, which becomes relatively independent of 41 

the angiotensin-renin system regulation. Over time, sustained levels of aldosterone lead to increased blood 42 

pressure and elevated potassium excretion, therefore patients with PA are hypertensive, in many cases 43 

hypokalemic, and at higher risk of stroke, renal complications, metabolic and cardiovascular mortality 44 

than patients with essential hypertension. Once classified as a rare disease, PA is now considered the most 45 

common cause of endocrine hypertension, with an estimated prevalence of about 4-6% in the general 46 

population with hypertension and up to 10-20% in the subset of patients with resistant hypertension [1–3]. 47 

Most diagnosed cases of PA are sporadic and are mainly caused by aldosterone overproduction by both 48 

adrenal glands (bilateral adrenal hyperplasia) or by unilateral aldosterone-producing adenomas (APA). 49 

Other causes include unilateral hyperplasia and very rarely, adrenocortical carcinomas. In some cases, PA 50 

affects several members of the same family in the inherited or familial forms of hyperaldosteronism (FH). 51 

Current guidelines recognize three well established types of FH, namely FH-I to FH-III [4], however data 52 

from genetic analyses reveal a more complex situation, with at least 4 different inheritable forms of PA 53 

and possibly still more yet to be discovered. 54 

 55 
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Genes associated with inherited forms of PA 56 

The genetics of PA has remained obscure for a long time. Although infrequent, the early onset and the 57 

heritability favored the study of familial PA as an approach to understand the pathophysiology of the more 58 

common sporadic forms. The identification of the first genetic alteration causative for a particular subtype 59 

of PA by linkage analysis on affected relatives, the chimera CYP11B1/CYP11B2 [5],  was an outstanding 60 

discovery but subsequent investigation quickly revealed that it was not present in sporadic forms [6,7]. 61 

The failure to find new causative genes and the introduction of next generation sequencing techniques 62 

turned the focus to sporadic patients.  63 

Now that hundreds of APAs have been sequenced, it is well known that KCNJ5, CACNA1D, ATP1A1 and 64 

ATP2B3 genes are mutated in about 50% of adenomas (reviewed in [8] and [9]) and that ion channels and 65 

pumps exert an important role on aldosterone signaling through the control of Ca2+ influx [10]. Following 66 

the trend of next generation sequencing of sporadic cases, the study of patients with early-onset PA has 67 

uncovered that some of those genes also exert an important role in inherited forms. Thus, KCNJ5 germline 68 

mutations cause FH-III and CACNA1H mutations have been found in families with FH-IV and de novo 69 

germline mutations in CACNA1D have been reported in patients with early onset of PA, seizures and 70 

neurologic abnormalities (PASNA). In addition, two recent studies in patients with early-onset PA have 71 

shown mutations in CLCN2 associated with FH-II. Table 1 summarizes the genes associated with PA and 72 

the main clinical features and Figure 1 depicts the molecular mechanisms.  73 

 74 

CYP11B1/CYP11B2 chimera: Familial Hyperaldosteronism Type I (FH-I) 75 

FH-1 was first reported in 1966 by Sutherland and colleagues [11].  They reported two hypertensive 76 

relatives, a father and a son, with a condition that mimicked the symptoms of sporadic PA (increased 77 

aldosterone, low renin activity and hypokalemia) but with the particularity of suppression of aldosterone 78 

production by a 2 mg/day dexamethasone treatment. Thus FH-I is often referred to as glucocorticoid-79 

remediable aldosteronism (GRA). The basis of the glucocorticoid suppression was discovered in 1992, 80 

after linkage analysis identified the genetic cause as a chimeric fusion on chromosome 8 containing an 81 

unequal recombination between the highly homologous genes CYP11B1 (11-β-hydroxylase) and 82 

CYP11B2 (aldosterone synthase) [5]. The exact point of cross-over can be different in each reported 83 

family but always contains the promoter and the first exons of CYP11B1 and most of the coding region of 84 

CYP11B2, resulting in an enzyme with aldosterone synthase activity with expression under the control of 85 

the adrenocorticotropic hormone (ACTH) instead of angiotensin II and potassium. As a consequence, 86 

aldosterone synthase is expressed in the zona fasciculata rather than in the zona glomerulosa, resulting in 87 



 4 

the ectopic production of aldosterone and the production of the hybrid steroids 18-oxocortisol and 18-88 

hydroxycortisol [5,12].  89 

FH-I is considered as a rare subgroup of PA that represents less than 1% of all cases, increasing to 3% in 90 

children with hypertension [13–15]. It is characterized by the development of bilateral adrenal 91 

hyperplasia, occasionally adrenal nodules, with variable clinical and biochemical features [14,16]. FH-I 92 

follows an autosomal dominant inheritance pattern and is generally associated with early onset severe 93 

hypertension and an increased risk of stroke; however, different degrees of severity have been reported, 94 

including cases of mild hypertension and normotensive individuals [16–18].  95 

The Endocrine Society guideline recommends testing for FH-I in patients with an early onset of PA (<20 96 

years old) and in those with a familial occurrence of PA or stroke at a young age (<40 years old) [4]. The 97 

correct diagnosis is clinically relevant because aldosterone excess can be controlled successfully through 98 

glucocorticoid therapy [19]. Prior to the existence of targeted molecular tests, the diagnosis was made 99 

through clinical and biochemical evaluation. Dexamethasone suppression of aldosterone and levels of 100 

hybrid steroids were used to establish a diagnosis of FH-I [20,21] until the introduction of techniques to 101 

specifically detect the presence of the CYP11B1/CYP11B2 chimeric gene either by Southern blotting or by 102 

the recommended technique employing a long-chain PCR amplification [4, 21,22].  103 

In patients with FH-I aldosterone production is abrogated under glucocorticoid treatment, and partial 104 

suppression of ACTH is enough to correct the hypertension associated with FH-I. Accordingly, low doses 105 

of dexamethasone are recommended to achieve normotension whilst preventing undesired cushingoid 106 

features [19]. Mineralocorticoid receptor antagonists (spironolactone or eplerenone) can be used as a 107 

second line of therapy to block possible non-genomic effects of aldosterone on target organs, or in 108 

children to avoid possible side effects of dexamethasone treatment [24].  109 

 110 

CLCN2: Familial Hyperaldosteronism Type II (FH-II) 111 

FH-II was first described by Gordon et al. in 1991, a year before the genetic cause of FH-I was published. 112 

They described 6 relatives from 3 independent affected families who presented with PA caused by either 113 

APA or BAH and a lack of suppression of aldosterone production by fludrocortisone or 114 

dexamethasone[25]. Several families were reported by the same group shortly thereafter [26,27].  115 

Until very recently, the genetic cause of FH-II remained elusive. Early targeted genetic studies showed a 116 

lack of mutations on genes related to steroidogenic production or tumorigenesis, such as CYP11B2, the 117 

angiotensin receptor AT1R or TP53. Later on, genetic linkage analysis of non-related families highlighted 118 
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a locus at chromosome 7p22 that segregates with the disease in some families, but not in all cohorts [28–119 

30]. However both targeted sequencing of different genes in that region as well as next-generation 120 

sequencing of the complete locus have failed to find mutations [29,31–33]. Scholl and colleagues 121 

analyzed the genomic DNA by exome sequencing of three members from one of the FH-II families 122 

described by Stowasser et al. in 1992 [27]. The authors identified a germline mutation in the gene CLCN2 123 

that segregated with the disease. This variant, p.Arg172Gln, was confirmed subsequently in five additional 124 

family members, four of them with aldosterone-to-renin ratio suggestive of PA [34]. Because the 125 

discovery family was one of the first families diagnosed with FH-II, Scholl et al. proposed the use of that 126 

term only for inherited PA due to CLCN2 mutations [34]. The authors also reported the same mutation in 127 

three additional unrelated individuals, as well as rare germline CLCN2 variants (p.Met22Lys, p.Tyr26Asn, 128 

p.Lys362del and Ser865Arg, with allele frequencies below 10−5) in four additional unrelated patients [34]. 129 

Simultaneously, Fernandes-Rosa and colleagues identified another germline CLCN2 mutation in a 9-130 

years-old patient by exome-sequencing sequencing of genomic DNA from 12 patients with young-onset 131 

hypertension and PA. In that case, p.Gly24Asp was a de novo mutation. Two additional variants were 132 

found in two cases from a cohort of 100 patients with idiopathic bilateral adrenal hyperplasia (p.Arg66Gln 133 

and p.Pro48Arg, with minor allele frequencies of 3x10-5 and 1.7 x 10-4, respectively) [35]. Both studies 134 

showed that CLCN2 mutations were related to PA diagnosed at early age and absent in patients with 135 

essential hypertension [34,35].  136 

CLCN2 gene is located in chromosome 3q27 and encodes the inwardly rectifying chloride channel ClC2, a 137 

member of the CLC voltage-gated Cl- channels family. ClC2 is broadly expressed in mammalian cells, 138 

especially in brain, gut, kidney, heart and liver [36]. Mutations inactivating CLCN2 cause leukodystrophy, 139 

in some cases with azoospermia, and Clcn2 knockout mice also develop early postnatal retinal 140 

degeneration [37–39]. Scholl et al. and Fernandes-Rosa et al. have shown that ClC2 is also expressed in 141 

the adrenal gland. Furthermore, germline mutations that associate with PA result in gain of function of the 142 

Cl- channel, causing an efflux of Cl- ions that leads to the depolarization of the plasma membrane, the 143 

consequent opening of voltage-gated Ca2+ channels, the accumulation of cytosolic Ca2+ and the activation 144 

of CYP11B2 transcription [34,35].  145 

Before the recent discovery of CLCN2 mutations, screening for FH-II was based on the diagnosis of PA in 146 

at least two first-degree members of the same family and the absence of known germline mutations. Thus, 147 

this familial form was thought to be the most prevalent, representing about 3-6% of all PA cases [11,54]. 148 

Nevertheless, Korah and Scholl pointed out that this estimation may be misleading: considering the 149 

prevalence of hypertension in the general population (about 30%) and the PA prevalence in the general 150 

population with hypertension (about 5%), the probability for an index case to have at least a first-degree 151 

relative with PA just by chance is ~5.9% [40]. Accordingly, it is likely that some of the described FH-II 152 
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families were in fact coincidental cases of sporadic idiopathic PA. This observation may explain, at least 153 

partially, the apparent heterogeneity reported in previous studies. To avoid confusion, and to base the 154 

classification on a simple and transparent genetic basis, similar to other genetic diseases, we propose to 155 

use the term “familial hyperaldosteronism” only when an inherited genetic cause is established.  156 

Following this reasoning, the number of true FH-II families is probably much lower than previously 157 

reported. In their studies, Scholl et al. and Fernandes-Rosa et al. identified CLCN2 mutations in about 158 

10% of cases with young-onset PA without known germline mutations and 2% with bilateral adrenal 159 

hyperplasia [34,35] suggesting a lower frequency than previous estimates. Further efforts are needed to 160 

determine the actual prevalence of FH-II. 161 

  162 

KCNJ5: Familial Hyperaldosteronism Type III (FH-III) 163 

FH-III was described by Geller et al. in three family members, a father and his two young daughters, who 164 

developed hyperaldosteronism with hypokalemia and severe hypertension at very early age, together with 165 

marked bilateral adrenal enlargement. High levels of the hybrid steroids 18-oxocortisol and 18-166 

hydroxycortisol were detected in urine samples but the disorder was distinguishable from FH-I by the 167 

glucocorticoid resistance of the hyperaldosteronism and the lack of suppression of aldosterone production 168 

on dexamethasone suppression testing. Hypertension and hypokalemia were refractory to medical therapy 169 

and disease control was achieved only after bilateral adrenalectomy [41]. Careful examination of the 170 

adrenals revealed disorganized zonation, a reduction in the thickness of the zona glomerulosa, an enlarged 171 

zona fasciculata and the presence of cells that co-express enzymes which are usually expressed in distinct 172 

zones, such as CYP11B1 and CYP11B2 and also CYP17 and CYP11B2. The co-expression of CYP17 and 173 

CYP11B2 is the likely basis for the production of hybrid steroids [12,41,42].  174 

It was not until 2011 that the genetic etiology of FH-III was clarified. By means of exome sequencing, 175 

Choi et al. identified a heterozygous germline mutation located on chromosome 11q24 in the patients 176 

reported by Geller and colleagues, as well as in sporadic cases of PA [43]. The affected gene was KCNJ5, 177 

which codes for the G-protein-activated inward rectifier K+ channel 4 (Kir3.4). This protein forms homo- 178 

and heterotetramers with other Kir family members to constitute the functional G-protein-activated 179 

inwardly rectifying potassium channel, which contributes to the control of membrane polarity in the zona 180 

glomerulosa [44]. The mutation identified in Geller’s cases (p.Thr158Ala) was associated with a loss in 181 

K+ selectivity and an increased influx of Na+ into the cytoplasm, leading to membrane depolarization and 182 

the elevation of intracellular Ca2+ levels, which ultimately triggers aldosterone production through the 183 

activation of Ca2+-related signaling pathways [45].  184 
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Since the link between inherited PA and KCNJ5, several familial cases with different mutations in that 185 

gene have been published, mostly in or next to the selectivity filter [46–51], and the term FH-III is used 186 

for familial cases with PA due to germline KCNJ5 mutations, regardless of the phenotype. Indeed, the 187 

clinical features of the affected cases vary all along the PA spectrum, from mild and treatment-responding 188 

forms to severe PA with progressive disease, including symptoms mimicking diabetes insipidus and a 189 

recent report showing development of Cushing´s syndrome in one patient with FH-III [50]. This 190 

variability seems to be dependent on the type of the grounding KCNJ5 mutations, among other 191 

factors[46]. Thus, p.Gly151Glu mutations seem to associate with a milder phenotype and stable disease 192 

[46,49], while  p.Gly151Arg, p.Thr158Ala, p.Ile157Ser and p.Tyr152Cys mutations relate to a more 193 

severe hyperaldosteronism [52]. Other infrequent germline alterations of KCNJ5 (some of them de novo) 194 

and a rare non-synonymous SNP (rs7102584) have been described. The mutation p.Glu145Gln affects a 195 

salt bridge close to the selectivity filter, while mutations p.Arg52His, p.Glu246Lys, p.Gly247Arg and the 196 

SNP Glu282Gln were located elsewhere in the protein [53,54]. Except of the p.Gly247Arg, those variants 197 

altered channel functionality and increased aldosterone production compared with the wild-type protein. 198 

The prevalence of FH-III has not been established systematically but it is estimated to be present in <1% 199 

of all PA cases [47]. The Endocrine Society guideline recommends testing for FH-III by sequencing 200 

peripheral blood for mutations in KCNJ5 in those patients with a very early onset of PA [4]. Because of 201 

the variety of presentations, treatment for FH-III depends on the severity of the disease. Milder cases can 202 

be well controlled with spironolactone, while adrenalectomy is currently the best option to treat resistant 203 

forms successfully [52]. 204 

 205 

CACNA1H: Familial Hyperaldosteronism Type IV (FH-IV) 206 

FH-IV was reported by Scholl and coworkers in a cohort of 40 patients diagnosed with PA in early 207 

childhood (at age 10 years or below) and without mutations in any common known PA genes. By whole 208 

exome sequencing analysis, a recurrent mutation in the gene CACNA1H was identified in five unrelated 209 

patients, four males and one female [55]. Shortly thereafter Daniil et al. reported the presence of different 210 

mutations in the same gene in two unrelated individuals who were diagnosed originally with FH-II, as 211 

well as an adult male case with a de novo mutation and an adult female patient with an APA and a 212 

germline mutation in the same gene [56]. Patients showed no apparent signs of seizures, cardiac 213 

arrhythmia or muscular or neurological alterations that have been commonly linked to other disorders 214 

caused by CACNA1H germline mutations or by another Ca2+ channel subunit, CACNA1D [57], although 215 

one of the patients was diagnosed with minor mental retardation and multiplex developmental disorder 216 

[56]. So far, eight families with FH-IV have been described. 217 
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The gene CACNA1H is located on chromosome 16 and encodes the T-type (low voltage activated) 218 

calcium channel subunit Cav3.2. This protein is expressed in the zona glomerulosa [55,57] and, as other 219 

Cav3 family members, is activated by small depolarizing changes in the membrane potential [58]. 220 

Germline CACNA1H mutations have been associated with several diseases including epilepsy, autism and 221 

amyotrophic lateral sclerosis [59–61]. In their studies, Scholl et al. and Daniil et al. reported six index 222 

cases with germline mutations affecting the residue Met1549, four cases with an inherited p.Met1549Val 223 

substitution, one with a de novo p.Met1549Val and one with a de novo p.Met1549Ile [55,56]. This residue 224 

is located in the transmembrane segment S6 of the repeat domain III of Cav3.2, forming a conserved 225 

methionine-phenylalanine-valine (MFV) tripeptide motif that controls channel inactivation [62]. 226 

Functional experiments have demonstrated that mutations in Met1549 result in a decrease in the 227 

inactivation of Cav3.2 compared with the wild-type protein. As a consequence, the channel remains open 228 

longer with an increase in Ca2+ influx, which activates the expression of CYP11B2 and other steroidogenic 229 

genes [55,56,63]. Noteworthy, treatment with a T-type calcium channel blocker abrogated the aberrant 230 

CYP11B2 activation and aldosterone production in HAC15 cells overexpressing Cav3.2 p.Met1549Val 231 

mutant channels, which indicates that drugs of this class could be useful in the treatment of patients with 232 

FH-IV [63].  233 

In their study, Daniil et al. reported 3 additional variants: p.Ser196Leu, located in the voltage sensor 234 

region on the transmembrane segment S4 of the repeat domain I of Cav3.2, in a male patient and his sister; 235 

p.Pro2083Leu, located in the C-terminal cytoplasmic domain, in another index case and his brother; and a 236 

de novo p.Val1951Glu, also located in the C-terminal domain, in a patient with an APA (no familial 237 

history available). All mutations altered Cav3.2 function and enhanced aldosterone production to a greater 238 

or a lesser degree [56].  239 

Although further studies are needed, available data suggests FH-IV may be a rare form of FH. It follows 240 

an autosomal dominant pattern of heritability but with reduced penetrance, particularly in adults. Indeed, 241 

some family members with mutations in p.Met1549 were affected with resistant hypertension and PA and 242 

others displayed milder or even normotensive phenotype, suggesting that other factors, such as genetic 243 

modifiers, somatic mosaicism or the age of the patient, could restrain the gene defect [55]. The type and 244 

location of the mutation may also play a role in the pathophysiology of FH-IV, resembling what has been 245 

described for KCNJ5 [46]. This fact could also explain the differences on disease presentation among the 246 

index cases: some of them were florid cases of PA at their early childhood but without evidence of adrenal 247 

hyperplasia; while other patients were diagnosed in their adulthood, nodularity was detected bilaterally in 248 

one patient and an APA was diagnosed in another case [55,56].  249 

 250 
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Other germline mutations described in patients with PA  251 

Although not considered established causes of FH, it is worth mentioning that germline mutations in 252 

CACNA1D and ARMC5 have been reported in patients with PA.  253 

CACNA1D codes for Cav1.3, an L-type (high-voltage activated) Ca2+ channel subunit and is recurrently 254 

mutated in about 10% of sporadic APAs. Most sporadic alterations cause gain of function and lead to an 255 

increase of Ca2+ influx and the consequent overproduction of aldosterone [57]. Recently, Scholl and 256 

coworkers identified two de novo mutations in two unrelated cases diagnosed with PASNA (PA 257 

associated with seizures and neurological abnormalities) [57]. Although the severe comorbidities of 258 

affected individuals make the heritability of PASNA very unlikely, it is tempting to speculate that other 259 

CACNA1D mutations that cause a milder phenotype could be involved in a still not described familial 260 

form of PA, in the same way that has been proposed for KCNJ5 in FH-III. 261 

ARMC5 encodes an apoptosis regulator that belongs to the armadillo/β-catenin-like repeat superfamily. 262 

Inactivating mutations in ARMC5 have been reported in both sporadic and inherited primary bilateral 263 

macronodular hyperplasia, an adrenocortical disease associated with cortisol excess [64–66]. Mutated 264 

ARMC5 promotes cell survival and cortisol production in vitro [64,65]. Interestingly, germline ARMC5 265 

variants have been identified in patients with apparent sporadic cases of PA [67,68], suggesting a possible 266 

inherited predisposition for nodule formation prior to the hormonal-producing phenotype. Nevertheless, 267 

the deleterious effect of those mutations is still quite unclear, as most variants are predicted to be unlikely 268 

pathogenic [69]. Thus, further studies must confirm or refuse the possible role of ARMC5 germline 269 

mutations in the etiology of PA.  270 

 271 

New genes, new phenotypes - We need a new classification! 272 

In the recent years, our knowledge on inherited forms of PA has progressed substantially [8,70]. FH 273 

classification has evolved from two clinically distinct forms (FH-I and FH-II) described in the previous 274 

Endocrine Society guideline [71] to at least four genetically defined types in which patients are grouped 275 

based on the presence of causative mutations (FH-I/CYP11B1/B2 chimera, FH-II/CLCN2, FH-III/KCNJ5 276 

and FH-IV/CACNA1H). Despite substantial scientific advances, some questions remain unanswered. 277 

Firstly, the clinical heterogeneity within groups of FH related to variable disease presentation and 278 

incomplete penetrance suggest a possible modulation of genetic causes by non-genetic factors. This 279 

hypothesis could explain why relatives with germline mutations are apparently asymptomatic. Secondly, 280 

the prevalence of FH-II and FH-IV families is still uncertain. Evidence suggests that the frequency of 281 

CLCN2 and CACNA1H mutations is low. Thus, extensive studies are needed to determine the actual 282 
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prevalence and the clinical relevance of these subtypes. Lastly, it must be elucidated whether apparent 283 

familial cases without known mutations truly follow inherited patterns of PA. Further next-generation 284 

sequencing studies will gain insight into the molecular causes of PA and probably to contribute to the 285 

establishment of new FH types. Misclassification of sporadic PA cases as FH should be avoided. For that 286 

reason, we discourage the use of non-genetic criteria for the screening and classification of FH and 287 

propose the term “familial hyperaldosteronism” only to be used when known germline mutations are 288 

detected. 289 
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Figure 1. Genetic causes of familial hyperaldosteronism. Summary of the known molecular 302 

mechanisms that lead to familial hyperaldosteronism types I to IV. FH-I is produced by an asymmetrical 303 

recombination between CYP11B1 and CYP11B2, resulting in the expression of a chimeric enzyme under 304 

the control of ACTH stimulation. FH-II is caused by germline mutations in the chloride channel CLCN2 305 

that decrease intracellular Cl-. FH-III is produced by germline mutations in KCNJ5 that affect the 306 

selectivity of the channel, allowing Na+ conductance. Both reduction of intracellular Cl- and increase in 307 

Na+ cause plasma membrane depolarization and open voltage-gated Ca2+ channels, elevating cytosolic 308 

Ca2+. FH-IV is caused by germline mutations in CACNA1H that facilitate Ca2+ entry. In all cases, increase 309 

of intracellular Ca2+ triggers CYP11B2 transcription and aldosterone synthesis. 310 

 311 

  312 



 12 

References 313 

1 Rossi GP, Bernini G, Caliumi C, et al. A prospective study of the prevalence of primary 314 

aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol 2006; 48: 2293–2300 315 

2 Mosso L, Carvajal C, González A, et al. Primary aldosteronism and hypertensive disease. 316 

Hypertension 2003; 42: 161–165 317 

3 Monticone S, Burrello J, Tizzani D, et al. Prevalence and Clinical Manifestations of Primary 318 

Aldosteronism Encountered in Primary Care Practice. J Am Coll Cardiol 2017; 69: 1811–1820 319 

4 Funder JW, Carey RM, Mantero F, et al. The Management of Primary Aldosteronism: Case 320 

Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline. J Clin 321 

Endocrinol Metab 2016; 101: 1889–1916 322 

5 Lifton RP, Dluhy RG, Powers M, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase 323 

gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992; 355: 324 

262–265 325 

6 Pallauf A, Schirpenbach C, Zwermann O, et al. The prevalence of familial hyperaldosteronism in 326 

apparently sporadic primary aldosteronism in Germany: A single center experience. Horm Metab 327 

Res 2012; 44: 215–220 328 

7 Carroll J, Dluhy R, Fallo F, et al. Aldosterone-producing adenomas do not contain glucocorticoid-329 

remediable aldosteronism chimeric gene duplications. J Clin Endocrinol Metab 1996; 81: 4310–330 

4312 331 

8 Prada ETA, Burrello J, Reincke M, et al. Old and New Concepts in the Molecular Pathogenesis of 332 

Primary Aldosteronism. Hypertens (Dallas, Tex  1979) 2017; 70: 875–881 333 

9 Zennaro MC, Boulkroun S, Fernandes-Rosa FL. An update on novel mechanisms of primary 334 

aldosteronism. J Endocrinol 2015; 224: R63-77 335 

10 Gomez-Sanchez CE. Channels and pumps in aldosterone-producing adenomas. J Clin Endocrinol 336 

Metab 2014; 99: 1152–1156 337 

11 Sutherland DJA, Ruse JL, Laidlaw JC. Hypertension, increased aldosterone secretion and low 338 

plasma renin activity relieved by dexamethasone. Can Med Assoc J 1966; 95: 1109–1119 339 

12 Lenders JWM, Williams TA, Reincke M, et al. 18-Oxocortisol and 18-hydroxycortisol: Is there 340 

clinical utility of these steroids? Eur J Endocrinol 2018; 178: R1–R9 341 



 13 

13 Mulatero P, Tizzani D, Viola A, et al. Prevalence and characteristics of familial 342 

hyperaldosteronism: the PATOGEN study (Primary Aldosteronism in TOrino-GENetic forms). 343 

Hypertension 2011; 58: 797–803 344 

14 Aglony M, Martínez-Aguayo A, Carvajal CA, et al. Frequency of familial hyperaldosteronism type 345 

1 in a hypertensive pediatric population: clinical and biochemical presentation. Hypertens (Dallas, 346 

Tex  1979) 2011; 57: 1117–1121 347 

15 Pizzolo F, Trabetti E, Guarini P, et al. Glucocorticoid remediable aldosteronism (GRA) screening 348 

in hypertensive patients from a primary care setting. J Hum Hypertens 2005; 19: 325–327 349 

16 Fallo F, Pilon C, Williams TA, et al. Coexistence of different phenotypes in a family with 350 

glucocorticoid-remediable aldosteronism. J Hum Hypertens 2004; 18: 47–51 351 

17 Mulatero P, Cella SM Di, Williams TA, et al. Glucocorticoid remediable aldosteronism: Low 352 

morbidity and mortality in a four-generation Italian pedigree. J Clin Endocrinol Metab 2002; 87: 353 

3187–3191 354 

18 Stowasser M, Huggard PR, Rossetti TR, et al. Biochemical evidence of aldosterone overproduction 355 

and abnormal regulation in normotensive individuals with familial hyperaldosteronism type I. J 356 

Clin Endocrinol Metab 1999; 84: 4031–4036 357 

19 Stowasser M, Bachmann AW, Huggard PR, et al. Treatment of familial hyperaldosteronism type I: 358 

Only partial suppression of adrenocorticotropin required to correct hypertension. J Clin Endocrinol 359 

Metab 2000; 85: 3313–3318 360 

20 Rich GM, Ulick S, Cook S, et al. Glucocorticoid-remediable aldosteronism in a large kindred: 361 

clinical spectrum and diagnosis using a characteristic biochemical phenotype. Ann Intern Med 362 

1992; 116: 813–820 363 

21 Litchfield WR, New MI, Coolidge C, et al. Evaluation of the dexamethasone suppression test for 364 

the diagnosis of glucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab 1997; 82: 365 

3570–3573 366 

22 Jonsson JR, Klemm SA, Tunny TJ, et al. A new genetic test for familial hyperaldosteronism type I 367 

aids in the detection of curable hypertension. Biochem Biophys Res Commun 1995; 207: 565–571 368 

23 Mulatero P, Veglio F, Pilon C, et al. Diagnosis of glucocorticoid-remediable aldosteronism in 369 

primary aldosteronism: aldosterone response to dexamethasone and long polymerase chain reaction 370 

for chimeric gene. J Clin Endocrinol Metab 1998; 83: 2573–2575 371 



 14 

24 Quack I, Vonend O, Rump LC. Familial hyperaldosteronism IIII. Horm Metab Res 2010; 42: 424–372 

428 373 

25 Gordon RD, Stowasser M, Tunny TJ, et al. Clinical and pathological diversity of primary 374 

aldosteronism, including a new familial variety. Clin Exp Pharmacol Physiol 1991; 18: 283–286 375 

26 Stowasser M, Gordon RD, Tunny TJ, et al. Primary aldosteronism: implications of a new familial 376 

variety. J Hypertens Suppl 1991; 9: S264-5 377 

27 Stowasser M, Gordon RD, Tunny TJ, et al. Familial Hyperaldosteronism Type II: Five Families 378 

With a New Variety of Primary Aldosteronism. Clin Exp Pharmacol Physiol 1992; 19: 319–322 379 

28 So A, Duffy DL, Gordon RD, et al. Familial hyperaldosteronism type II is linked to the 380 

chromosome 7p22 region but also shows predicted heterogeneity. J Hypertens 2005; 23: 1477–381 

1484 382 

29 Carss KJ, Stowasser M, Gordon RD, et al. Further study of chromosome 7p22 to identify the 383 

molecular basis of familial hyperaldosteronism type II. J Hum Hypertens 2011; 25: 560–564 384 

30 Fallo F, Pilon C, Barzon L, et al. Retention of heterozygosity at chromosome 7p22 and 11q13 in 385 

aldosterone-producing tumours of patients with familial hyperaldosteronism not remediable by 386 

glucocorticoids. J Hum Hypertens 2004; 18: 829–830 387 

31 Jeske YWA, So A, Kelemen L, et al. Examination of chromosome 7p22 candidate genes RBaK, 388 

PMS2 and GNA12 in familial hyperaldosteronism type II. Clin Exp Pharmacol Physiol 2008; 35: 389 

380–385 390 

32 Elphinstone MS, Gordon RD, So A, et al. Genomic structure of the human gene for protein kinase 391 

A regulatory subunit R1-beta (PRKAR1B) on 7p22: no evidence for mutations in familial 392 

hyperaldosteronism type II in a large affected kindred. Clin Endocrinol (Oxf) 2004; 61: 716–723 393 

33 Stowasser M, Gordon RD. Primary Aldosteronism: Changing Definitions and New Concepts of 394 

Physiology and Pathophysiology Both Inside and Outside the Kidney. Physiol Rev 2016; 96: 395 

1327–1384 396 

34 Scholl UI, Stölting G, Schewe J, et al. CLCN2 chloride channel mutations in familial 397 

hyperaldosteronism type II. Nat Genet 2018; 50: 349–354 398 

35 Fernandes-Rosa FL, Daniil G, Orozco IJ, et al. A gain-of-function mutation in the CLCN2 chloride 399 

channel gene causes primary aldosteronism. Nat Genet 2018; 1–7 400 



 15 

36 Thiemann A, Gründer S, Pusch M, et al. A chloride channel widely expressed in epithelial and 401 

non-epithelial cells. Nature 1992; 356: 57–60 402 

37 Di Bella D, Pareyson D, Savoiardo M, et al. Subclinical leukodystrophy and infertility in a man 403 

with a novel homozygous CLCN2 mutation. Neurology 2014; 83: 1217–1218 404 

38 Depienne C, Bugiani M, Dupuits C, et al. Brain white matter oedema due to ClC-2 chloride 405 

channel deficiency: an observational analytical study. Lancet Neurol 2013; 12: 659–668 406 

39 Bösl MR, Stein V, Hübner C, et al. Male germ cells and photoreceptors, both dependent on close 407 

cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption. EMBO J 2001; 20: 1289–408 

1299 409 

40 Korah HE, Scholl UI. An Update on Familial Hyperaldosteronism. Horm Metab Res 2015; 47: 410 

941–946 411 

41 Geller DS, Zhang J, Wisgerhof M V., et al. A novel form of human mendelian hypertension 412 

featuring nonglucocorticoid- remediable aldosteronism. J Clin Endocrinol Metab 2008; 93: 3117–413 

3123 414 

42 Gomez-Sanchez CE, Qi X, Gomez-Sanchez EP, et al. Disordered zonal and cellular CYP11B2 415 

enzyme expression in familial hyperaldosteronism type 3. Mol Cell Endocrinol 2017; 439: 74–80 416 

43 Choi M, Scholl UI, Yue P, et al. K+ channel mutations in adrenal aldosterone-producing adenomas 417 

and hereditary hypertension. Science 2011; 331: 768–772 418 

44 Velarde-Miranda C, Gomez-Sanchez EP, Gomez-Sanchez CE. Regulation of aldosterone 419 

biosynthesis by the Kir3.4 (KCNJ5) potassium channel. Clin Exp Pharmacol Physiol 2013; 40: 420 

895–901 421 

45 Oki K, Plonczynski MW, Lam ML, et al. Potassium channel mutant KCNJ5 T158A expression in 422 

HAC-15 cells increases aldosterone synthesis. Endocrinology 2012; 153: 1774–1782 423 

46 Scholl UI, Nelson-Williams C, Yue P, et al. Hypertension with or without adrenal hyperplasia due 424 

to different inherited mutations in the potassium channel KCNJ5. Proc Natl Acad Sci U S A 2012; 425 

109: 2533–2538 426 

47 Mulatero P, Tauber P, Zennaro MC, et al. KCNJ5 mutations in European families with 427 

nonglucocorticoid remediable familial hyperaldosteronism. Hypertension 2012; 59: 235–240 428 

48 Monticone S, Hattangady NG, Penton D, et al. A novel Y152C KCNJ5 mutation responsible for 429 



 16 

familial hyperaldosteronism type III. J Clin Endocrinol Metab 2013; 98: 1861–1865 430 

49 Adachi M, Muroya K, Asakura Y, et al. Discordant genotype-phenotype correlation in familial 431 

hyperaldosteronism type III with KCNJ5 gene mutation: A patient report and review of the 432 

literature. Horm Res Paediatr 2014; 82: 138–142 433 

50 Tong A, Liu G, Wang F, et al. A novel phenotype of familial hyperaldosteronism type III: 434 

Concurrence of aldosteronism and cushing’s syndrome. J Clin Endocrinol Metab 2016; 101: 4290–435 

4297 436 

51 Mussa A, Camilla R, Monticone S, et al. Polyuric-polydipsic syndrome in a pediatric case of non-437 

glucocorticoid remediable familial hyperaldosteronism. Endocr J 2012; 59: 497–502 438 

52 Monticone S, Tetti M, Burrello J, et al. Familial hyperaldosteronism type III. J Hum Hypertens 439 

2017; 31: 776–781 440 

53 Monticone S, Bandulik S, Stindl J, et al. A case of severe hyperaldosteronism caused by a de novo 441 

mutation affecting a critical salt bridge Kir3.4 residue. J Clin Endocrinol Metab 2015; 100: E114–442 

E118 443 

54 Murthy M, Xu S, Massimo G, et al. Role for germline mutations and a rare coding single 444 

nucleotide polymorphism within the KCNJ5 potassium channel in a large cohort of sporadic cases 445 

of primary aldosteronism. Hypertension 2014; 63: 783–789 446 

55 Scholl UI, Stölting G, Nelson-Williams C, et al. Recurrent gain of function mutation in calcium 447 

channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 2015; 4: 448 

e06315 449 

56 Daniil G, Fernandes-Rosa FL, Chemin J, et al. CACNA1H Mutations Are Associated With 450 

Different Forms of Primary Aldosteronism. EBioMedicine 2016; 13: 225–236 451 

57 Scholl UI, Goh G, Stölting G, et al. Somatic and germline CACNA1D calcium channel mutations 452 

in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2013; 45: 1050–1054 453 

58 Talavera K, Nilius B. Biophysics and structure-function relationship of T-type Ca2+ channels. Cell 454 

Calcium 2006; 40: 97–114 455 

59 Steinberg KM, Yu B, Koboldt DC, et al. Exome sequencing of case-unaffected-parents trios 456 

reveals recessive and de novo genetic variants in sporadic ALS. Sci Rep 2015; 5: 1–8 457 

60 Splawski I, Yoo DS, Stotz SC, et al. CACNA1H mutations in autism spectrum disorders. J Biol 458 



 17 

Chem 2006; 281: 22085–22091 459 

61 Chen Y, Lu J, Pan H, et al. Association between genetic variation of CACNA1H and childhood 460 

absence epilepsy. Ann Neurol 2003; 54: 239–243 461 

62 Marksteiner R, Schurr P, Berjukow S, et al. Inactivation determinants in segment IIIS6 of 462 

Ca(v)3.1. J Physiol 2001; 537: 27–34 463 

63 Reimer EN, Walenda G, Seidel E, et al. CACNA1HM1549V mutant calcium channel causes 464 

autonomous aldosterone production in HAC15 cells and is inhibited by mibefradil. Endocrinology 465 

2016; 157: 3016–3022 466 

64 Assié G, Libé R, Espiard S, et al. ARMC5 mutations in macronodular adrenal hyperplasia with 467 

Cushing’s syndrome. N Engl J Med 2013; 369: 2105–2114 468 

65 Espiard S, Drougat L, Libé R, et al. ARMC5 Mutations in a Large Cohort of Primary 469 

Macronodular Adrenal Hyperplasia: Clinical and Functional Consequences. J Clin Endocrinol 470 

Metab 2015; 100: E926-35 471 

66 Gagliardi L, Schreiber AW, Hahn CN, et al. ARMC5 mutations are common in familial bilateral 472 

macronodular adrenal hyperplasia. J Clin Endocrinol Metab 2014; 99: E1784–E1792 473 

67 Rhayem Y, Pérez-Rivas LG, Dietz A, et al. PRKACA Somatic Mutations Are Rare Findings in 474 

Aldosterone-Producing Adenomas. J Clin Endocrinol Metab 2016; 101: 3010–3017 475 

68 Zilbermint M, Xekouki P, Faucz FR, et al. Primary aldosteronism and ARMC5 variants. J Clin 476 

Endocrinol Metab 2015; 100: E900–E909 477 

69 Mulatero P, Schiavi F, Williams TA, et al. ARMC5 mutation analysis in patients with primary 478 

aldosteronism and bilateral adrenal lesions. J Hum Hypertens 2016; 30: 374–378 479 

70 Asbach E, Williams TA, Reincke M. Recent Developments in Primary Aldosteronism. Exp Clin 480 

Endocrinol Diabetes 2016; 124: 335–341 481 

71 Funder JW, Carey RM, Fardella C, et al. Case detection, diagnosis, and treatment of patients with 482 

primary aldosteronism: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 483 

2008; 93: 3266–3281 484 

 485 


