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Dyadic similarity effect hypotheses state that the (dis)similarity between dyad members (e.g.,
the similarity on a personality dimension) is related to a dyadic outcome variable (e.g., the re-
lationship satisfaction of both partners). Typically, these hypotheses have been investigated by
using difference scores or other profile similarity indices as predictors of the outcome variables.
These approaches, however, have been vigorously criticized for their conceptual and statistical
shortcomings. Here, we introduce a statistical method that is based on polynomial regression
and addresses most of these shortcomings: Dyadic response surface analysis (DRSA). This
model is tailored for similarity effect hypotheses and fully accounts for the dyadic nature of
relationship data. Furthermore, we provide a tutorial with an illustrative example and repro-
ducible R and Mplus scripts that should assist substantive researchers in precisely formulating,
testing, and interpreting their dyadic similarity effect hypotheses.

Keywords: congruence, similarity, dyadic data, response surface analysis, polynomial
regression

A number of interesting psychological research questions
in dyadic contexts refer to the effects of the dyad members’
similarity on some outcome. For example, how is the sim-
ilarity between the husband’s and wife’s personality associ-
ated with other variables such as the relationship satisfaction
of each of them (e.g., Dyrenforth, Kashy, Donnellan, & Lu-

Felix D. Schönbrodt, Department of Psychology, Ludwig-
Maximilians-Universität München, Germany. Sarah Humberg,
Westfälische Wilhelms-University Münster. Steffen Nestler, Insti-
tute of Psychology, University of Leipzig, Germany. We embrace
the values of openness and transparency in science (http://www.
researchtransparency.org/). We therefore publish all data necessary
to reproduce the reported results and provide reproducible scripts
for all data analyses reported in this paper (https://osf.io/ftsrd/).

Acknowledgements. We want to thank Caroline Zygar for help-
ful comments. Correspondence concerning this article should be
addressed to Felix Schönbrodt, Leopoldstr. 13, 80802 München,
Germany. Email: felix@nicebread.de. Phone: +49 89 2180 5050.

cas, 2010)? Similarly, what is the correspondence between a
supervisor’s and a subordinate’s personality and is this cor-
respondence related to more positive performance outcomes
(e.g., Strauss, Barrick, & Connerley, 2001)?

We will refer to hypotheses of this kind as dyadic simi-
larity effect hypotheses; they state that the similarity (or con-
gruence, or discrepancy) between two predictor variables are
related to two outcome variables stemming from the same
dyad members. Hence, we do not focus on the question
whether or how similar dyad members are in absolute terms,
but rather on the effect of different levels of similarity (on
a continuous scale) on a third variable (see also the distinc-
tion between “indexing levels of correspondence” and “cor-
relates of correspondence” in Rogers, Wood, & Furr, 2018,
p. 114). To test such dyadic similarity effect hypotheses,
researchers need to assess dyadic data that is interdependent.
For the relationship satisfaction example, such data could in-
clude the husband’s and the wife’s personality assessments
for each couple, as well as each of their relationship satisfac-
tion scores, which will most likely be highly related.
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Most previous research on dyadic similarity effects com-
puted discrepancy scores or profile similarity indices to mea-
sure the correspondence between the scores provided by two
dyad members. The resulting similarity scores were then
used as predictor variables in statistical models such as mul-
tiple regression, analysis of variance, or multilevel model-
ing. However, the usage of the similarity scores is statis-
tically highly problematic due to untested constraints (e.g.,
Edwards, 2001). We therefore introduce dyadic response
surface analysis (DRSA) as an alternative mean to examine
dyadic similarity effects (see Nestler, Grimm, & Schönbrodt,
2015 for briefly mentioning this method, and Weidmann,
Schönbrodt, Ledermann, & Grob, 2017, for an existing ap-
plication of DRSA).

DRSA offers a number of advantages compared to
similarity-score based approaches. First and foremost, as
described below, DRSA circumvents most of the problems
associated with the analysis of similarity indices. Second,
DRSA allows a researcher to test whether the similarity ef-
fects are the same for both partners. This is less straight-
forward when a researcher uses a similarity-score based ap-
proach. Finally, DRSA can be employed when the outcome
variables were measured on a continuous or on a categorical
(e.g., binary) scale.

This article is organized as follows: We will first briefly
discuss some previous approaches that have been used to ex-
amine dyadic similarity effects and point out their problems
and limitations. We will then shortly introduce classical RSA
as well as the Actor-Partner-Interdependence Model (APIM;
Kenny, Kashy, & Cook, 2006), and then integrate these two
methods to introduce DRSA. Finally, we will use an empiri-
cal example to illustrate the suggested method and give prac-
tical advice and code examples on how to compute the model
in the R environment for statistical computing (R Core Team,
2014).

Throughout this article, we focus on the case of distin-
guishable dyads. That is, we consider dyads in which the
dyad members can be differentiated from one another on the
basis of a theoretically meaningful variable. We use the effect
of couple personality similarity between male and female ro-
mantic partners on relationship outcomes as our exemplary
research question. Gender thus serves as the distinguish-
ing variable. This example can be easily transferred to all
other kinds of distinguishable dyads, such as non-identical
twins, mother-child dyads, or mentors and mentees. DRSA
is also applicable for interchangeable dyads (i.e., no distin-
guishing variable exist) such as identical twins or homosex-
ual dyads. We give instructions, references, and R code ex-
amples that demonstrate how to adapt the model to indistin-
guishable dyads.

Previous Approaches to Investigate Effects of Couple
Similarity

Researchers used a variety of methods to examine the in-
fluence of couple similarity on third variables (see Kenny et
al., 2006, for an overview). The bottom line of most of these
approaches is to (1) compute a similarity score for each dyad
and (2) relate the resulting similarity scores to the two inter-
dependent outcome variables. A number of different indices
have been used in the literature to quantify the correspon-
dence between the dyad members’ values, most of which can
be divided into two types: discrepancy scores and profile cor-
relation indices (see also Dyrenforth et al., 2010).

Discrepancy scores represent the difference between the
two dyad members’ values. A discrepancy score for a
dyad is typically calculated by computing the absolute or
squared difference between both members’ scores on the re-
spective variable (e.g., the difference of their agreeableness
scores). Such discrepancy scores provide an index of how
dissimilar the dyad members are, with smaller values of the
score reflecting more similarity between the two dyad mem-
bers. Although these discrepancy scores have a strong in-
tuitive meaning, they are problematic when ones use them
in subsequent statistical models (Blanton, Jaccard, Gonza-
les, & Christie, 2006; Edwards, 2001; Johns, 1981; Peter,
Churchill, & Brown, 1993). The most serious problem is that
they impose implicit constraints on the data which are typi-
cally not tested. For example, usage of discrepancy scores
presumes that (dis)similarity on a higher level (e.g., 9 - 8 =

1) is psychologically equivalent to (dis)similarity on a lower
level (e.g., 2 - 1 = 1) and that these discrepancy scores re-
sult in the same psychological consequences. In the worst
case, such untested constraints may lead researchers to ac-
cept their similarity hypothesis although there are in fact no
similarity effects present in the data. This is equally true for
related approaches that predicted the outcome variables from
discrepancy scores, while statistically controlling for linear
main effects of the predictor variables, for dyad averages of
the predictors, or for interaction effects of dyad averages and
the discrepancy scores. Such approaches loosen some, but
not all implicit constraints, and are therefore still biased to-
wards falsely accepting the similarity hypothesis (see also
Edwards, 2001).

The second type of similarity measures, profile similarity
indices, focus on the correspondence in the rank-ordering of
different assessed variables across dyad members (e.g., the
couples’ similarity in their Big Five profiles). This simi-
larity is determined by computing (a) the Pearson product-
moment correlation or (b) the intraclass-correlation between
the scores of the two dyad members. By capturing the simi-
larity in the dyads members’ idiosyncratic ordering of mea-
sures relative to each other, higher values in profile similar-
ity indices indicate greater correspondence. Although fre-
quently used, application of profile correlations in this con-
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text is seen as problematic for several reasons. First, the psy-
chological meaning of profile correlation coefficients is less
clear than the interpretation of discrepancy scores, because
profile correlations do not only capture profile similarity but,
for example, also level effects (see Kenny et al., 2006). Fur-
thermore, when both dyad members tend to respond in a
standard or normative fashion, the amount of similarity is
over-estimated (Cronbach, 1955; Cronbach & Gleser, 1953;
Kenny & Acitelli, 1994). Finally, and unrelated to whether
one controls for level effects or not, profile similarity in-
dices also impose equality constraints when one uses them
in subsequent statistical models as they also involve sums of
squared differences (Edwards & Parry, 1993).

Researchers usually combined one of the above described
approaches with some strategy to take the nested structure
of couple data into account, for example by accounting for
within-dyad dependencies in separate predictions of female
and male outcome variables, or by applying a multilevel
framework. While such strategies are surely necessary when
working with dyadic data, they cannot prevent from the lim-
itations that are inherent in every approach that relates dis-
crepancy or profile similarity scores to outcome variables.
Implicit, untested constraints occur in these models, inde-
pendent of whether and how one accounts for the dyadic data
structure.

To summarize, typical previous approaches contained
untested constraints that can lead researchers to falsely ac-
cepting a similarity hypothesis, or to missing important ef-
fects which cannot be detected due to the constraints. Before
closing we would like to note that the amount of nonindepen-
dence in a dyadic sample is sometimes interpreted as the dis-
similarity (or conversely the similarity) of the scores from the
dyads (see Kenny et al., 2006). Here, we are not interested in
this type of similarity but rather in whether the within-dyad
correspondence has an effect on an outcome variable. We are
thus interested in similarity effects (sometimes called dyadic
index effects, see Kenny et al., 2006) and which mathemati-
cal model should ideally be used for their investigation.

Dyadic RSA: A Marriage of RSA and APIM

Dyadic response surface analysis is based on a combi-
nation of response surface analysis (RSA) and the Actor-
Partner-Interdependence Model (APIM). In the following,
we first describe RSA and then go on with the APIM. There-
after, the DRSA is introduced.

Response Surface Analysis

Similarity effect hypotheses have not only been posited
for dyadic outcomes (e.g., the effect of couples’ similarity in
agreeableness on both partners’ relationship satisfaction) but
also for individual or between-dyad outcomes. Such a simi-
larity effect hypothesis could be “the more similar a woman’s
openness X is to her husband’s openness Y , the higher is a

couple’s amount of time Z they spend together”. RSA is the
appropriate statistical tool to investigate such similarity ef-
fects on a single outcome (e.g., see Edwards, 2002; Edwards
& Shipp, 2007; Humberg, Nestler, & Back, in press; Schön-
brodt, 2016).

The basic element of an RSA is the estimation of a second-
order polynomial regression model:

Z = b0 + b1X + b2Y + b3X2 + b4XY + b5Y2 + e (1)

where the outcome variable Z is regressed on the predic-
tors X and Y , their respective squared terms X2 and Y2, and
their interaction XY .

The key idea behind RSA is a visualization of the esti-
mated regression equation (1) in a three-dimensional plot. A
prototypical response surface for a similarity effect is shown
in Figure 1: The two predictor variables X and Y are lo-
cated on the two axes that span the bottom of the coordi-
nate cube. For each combination of X and Y , the respective
model-predicted Z value is reflected on the vertical axis, thus
indicated by the height of the surface. For example, given the
(X,Y) coordinate (0,−1) (e.g., a dyad in which the female has
an openness score of 0 and the male has an openness score of
-1), which is depicted as a circle on the bottom of the cube,
the surface in Figure 1 predicts the outcome value Z = 3.75,
which is symbolized as a star on the regression surface.

RSA provides tools for a graphical and statistical inter-
pretation of the regression surface, for example with regard
to the (non-)existence of similarity effects.

The line of congruence. For similarity effect hypothe-
ses, an important feature of response surface plots is the line
of congruence (LOC, Edwards & Shipp, 2007). Perfect con-
gruence of two variables is not reflected in a single combina-
tion of matching X and Y values, but in all combinations for
which X equals Y . Hence, partners can be similar on a low
level (e.g., both are low on openness), on a mid level, or on a
high level (both are very open). All possible combinations of
perfect similarity are located on the line of congruence on the
bottom of the coordinate cube (see Figure 1), which diago-
nally connects the front corner (the congruent low/low com-
bination) to the back corner (the congruent high/high combi-
nation) of the cube.

The surface above the LOC is depicted as a respective
black line on the surface, which reflects how the predicted
outcome behaves for varying values of X = Y . Statisti-
cally, the surface above the LOC is described by the formula
Z = a1X + a2X2 (omitting the intercept). The newly intro-
duced parameters a1 and a2 are derived from the estimated
regression coefficients of equation (1), where a1 = b1 + b2,
and a2 = b3 + b4 + b5 (Shanock, Baran, Gentry, Pattison, &
Heggestad, 2010). The parameter a2 thus indicates whether
the LOC is of a linear (if a2 = 0) or of a curvilinear shape
(if a2 , 0), and a1 describes the slope of the LOC above the
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Figure 1. A prototypical similarity effect: Response surface
of the estimated regression equation Z = 4 + 0X + 0Y −
0.25X2 + 0.5XY − 0.25Y2. The circle on the cube’s bottom is
the position of a dyad’s predictor variables (female:0, male:
-1), the star is the corresponding predicted variable of the
outcome variable on the response surface. Figure available
at https://osf.io/ftsrd/, under a CC-BY4.0 license.

point (0, 0). In Figures 1, 2A, and 2B, a2 equals zero, mean-
ing that the LOC is a straight line. In this case, a1 is simply
the slope of the linear line. Because a1 = 0 in Figure 1, the
predicted outcome value above the LOC is constant. For an
example with a linear and non-constant predicted outcome
over the LOC, see Figure 2A, which depicts a rising ridge
surface: The outcome is higher when X is identical to Y .
Additionally to this basic similarity pattern there is an effect
of the level of similarity: Congruent combinations on a high
predictor level lead to higher outcome values than congruent
combinations on a low predictor level. Figures 2D, 2E, and
2F, by contrast, depict surfaces with a curvilinear LOC. In
Figure 2D, for example, the outcome is highest for specific
combination of female and male openness (namely X = 0
and Y = 0), and it is lower for all other combinations of the
two predictors.

The line of incongruence. Equally important for sim-
ilarity hypotheses is the line of incongruence (LOIC, Ed-
wards & Shipp, 2007), which is perpendicular to the LOC
and specifically meaningful with regard to similarity effects.
It consists of all combinations of the predictors for which
Y = −X holds. In Figure 1, this line is depicted as a black
line on the bottom of the cube and on the surface, respec-
tively, which connects the left corner and the right corner of

the cube. It runs from one incongruent extreme (low X/high
Y) to the other (high X/low Y). Analogously to the LOC, the
LOIC is mathematically determined by a quadratic equation
Z = a3X + a4X2 (omitting the intercept), where a3 = b1 − b2
and a4 = b3 − b4 + b5. Again, the coefficient of the quadratic
term, a4, indicates whether the LOIC on the surface is lin-
ear or curvilinear. In the case of Figure 1, a4 is negative
(a4 = −1), indicating that the LOIC has an inverted U-shape:
It has a highest point and symmetrically bends downwards at
both sides of this point. In such a setting (i.e., when a4 , 0)
the coefficient a3 reflects the position of the highest or low-
est point of the LOIC. Here, a3 = 0, which means that the
highest point of the LOIC is positioned exactly above (0, 0):
The LOIC is highest for X = Y = 0 and bends downwards
for values of X and Y that more and more deviate from one
another, either in the direction of X > Y (towards the right
corner of the cube) or in the direction of X < Y (towards the
left corner). Figure 2B depicts an exemplary surface with an
inverted U-shape on the LOIC (i.e., a4 < 0) for which the
ridge is shifted away from the LOC (a3 , 0): Here the out-
come is maximal when Y is larger than X by a certain amount
(“optimal margin model”, e.g. Baumeister, 1989).

Commensurability and measurement invariance.
The LOC refers to the numerical congruence of the predictor
scales, and moving along the LOIC corresponds to increasing
numerical differences in the one or the other direction. This
numerical comparison only makes sense if both variables
have been measured on the same scale. Just as it is a
meaningless question whether 10 kilogram are larger than 8
meter, it does not make sense to do numerical comparisons
on psychological constructs which have not been measured
on the same scale.

When two measures are on the same scale they are com-
mensurable (Edwards & Shipp, 2007). Commensurabil-
ity consist of two aspects, namely (a) nominal equivalence,
which requires that both scales measure the same latent con-
struct, and (b) scale equivalence, which requires that both
scales have the same metric. These aspects are typically
addressed by using the same measurement scales for both
partners. This, however, is only a necessary but not a suffi-
cient condition for commensurability. Even if the same oper-
ationalizations are used in subgroups (such as males and fe-
males), the relevant latent construct is not necessarily equiv-
alent. For example, subgroups might have a different un-
derstanding of the items, as has been extensively discussed
in the literature on measurement invariance and differential
item functioning (for an overview, see Meredith & Teresi,
2006). Meaningful numerical group comparisons require
strict measurement invariance, which is established by an
invariance of factor structure, factor loadings, item means,
and residual variances. Only under these conditions com-
parative statement such as ‘larger’, ‘smaller’, or ‘equal’ are
meaningful. Consequently, for the investigation of similarity

https://osf.io/ftsrd/
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a1 > 0 , a4 < 0
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(C) Interaction:
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a2 < 0 , a4 < 0
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(E) Bowl:

a2 > 0 , a4 > 0
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(F) Saddle:

a2 > 0 , a4 < 0 (or vice versa)

X
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Figure 2. Multiple examples of RSA configurations. Figure available at https://osf.io/ftsrd/, under a CC-BY4.0 license.

hypotheses in dyads, researchers ideally ensure strict mea-
surement equivalence across genders. Comparisons of in-
commensurable measures require special treatment and have
to be interpreted with extreme caution (Schönbrodt, 2016).

A prototypical similarity pattern. In sum, the example
surface in Figure 1 reflects a prototypical similarity effect of
a female and male personality dimension on a single outcome
variable. A couple’s amount of time spent together is highest
when the predictor combinations of the partners are identical.
Furthermore, all levels of similarity are equally beneficial,
and increasing dissimilarity leads to decreasing time spent
together. Both directions of dissimilarity are equally detri-
mental. The statistical counterparts of this verbal description
are a2 = 0 (the surface is not curved above the LOC), a1 = 0
(the predicted outcome above the LOC is constant, i.e., the
ridge is flat; all levels of congruence are equally beneficial),
a4 < 0 (surface above the LOIC is curvilinear with an in-

verted U-shape), and a3 = 0 (highest point of LOIC is above
the LOC).

Finally, a similarity effect requires that the ridge line of
the surface is positioned exactly on the LOC, as in Fig-
ure 1. This property is reflected in an additional condition
a5 = b3−b5 = 0 (ridge line equals the LOC; see Appendix A
for details on this condition). The R package RS A (Schön-
brodt & Humberg, 2018), which we will use later in the tu-
torial section, provides point estimates, confidence intervals,
and significance tests for all surface parameters.

Note that Figure 1 provides only one possible shape of a
regression surface. Figure 2 shows some further surfaces,
corresponding to different estimates of the coefficients in
Equation 1. Response surfaces can have some typical shapes,
and these shapes also can correspond to a substantive psy-
chological meaning. For example, the surface in Figure 2A
is linear above the LOC (a2 = 0), but it differs from Figure 1

https://osf.io/ftsrd/
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in that the surface rises above the LOC. This is indicated by
a positive parameter a1 > 0. One of the many advantages
of RSA is that it enables to detect such rising ridge effects.
A possible hypothesis related to a rising ridge pattern would
be: “Couples which are congruent on extraversion are more
satisfied; in addition congruent couples on a high extraver-
sion level are more satisfied than couples on a low extraver-
sion level.”. Figure 2B shows an optimal margin model (e.g.,
Baumeister, 1989), where the ridge is shifted away from the
LOC. Such a pattern would predict that couples are most sat-
isfied when one partner has a predictor value that is a fixed
amount lower than the other partner’s value (regardless of the
level). For example, couples might be most satisfied when
men do 2 hours more household chores per week than their
wifes.

Figure 2C is a typical cross-over interaction that can be
modeled with a moderated regression. Note that only in-
cluding the main effects and a multiplicative interaction term
in a regression is not sufficient to model a similarity effect
(see Edwards, 2001, p. 269), although such a model fre-
quently has been used in the literature to test for similarity
effects. Figure 1 depicts a prototypical similarity effect as
theory would predict it. If a moderated regression is fit to
such a data pattern, the best possible fit that can be obtained
is the surface displayed in Figure 2C: Although the corners
of the surface match the surface of a similarity effect (i.e., the
high/high, low/low, low/high, and high/low combinations of
the predictor variables), there is a pronounced drop of the
surface in the middle region. Hence, by using a moderated
regression a researcher (implicitly) assumes that congruence
at the low or at the high ends of the predictor scales is better
than congruence in an average region.

Figures 2D and E show a bowl, respectively a dome, sur-
face. Such models predict that there is exactly one opti-
mal combination of male and female predictor values, and
any deviation from that optimum leads to, for example, de-
creasing satisfaction (dome), or increasing conflict (bowl).
Finally, Figure 2F shows a combination of squared effects
which lead to a saddle surface. Such a surface is technically
possible, but is probably hard to relate to a substantive theory.

Similarity effect hypotheses are at their core non-linear,
and, as Aiken and West (1991) put it, to “examine these re-
lationships specific higher order terms must deliberately be
built into the regression equation. If these higher order terms
are omitted, nonlinearity will not be detected even when it
does exist.” (p. 62). Hence, testing a similarity effect hypoth-
esis with a moderated regression would be a misspecification
of the model, and results in both increased false positive re-
sults and in a decreased power to detect an actual similarity
pattern.

In sum, RSA is an appropriate tool to test hypotheses
which posit that the similarity of two predictor variables
should explain variance in a single outcome variable. RSA

is gaining momentum as a tool in the personality litera-
ture. For example, recent publications investigated the ef-
fects of personality similarity on romantic attraction at zero
acquaintance (Olderbak, Malter, Wolf, Jones, & Figueredo,
2017), relationship intensity in a network analysis (Ilmari-
nen, Vainikainen, Verkasalo, & Lönnqvist, 2017), effects
of parent–offspring personality similarity on externalizing
problems (Franken, Laceulle, Van Aken, & Ormel, 2017), or
person–group dissimilarity in personality on peer victimiza-
tion (Boele, Sijtsema, Klimstra, Denissen, & Meeus, 2017)
and self-esteem (Bleidorn et al., 2016). Detailed overviews
of further potential applications of RSA can be found in Ta-
ble 1 in Barranti, Carlson, and Côté (2017) and in Table 1 in
Humberg et al. (in press).

However, in the dyadic setting, we aim at predicting two
interdependent outcome variables (e.g., female and male re-
lationship satisfaction) from dyad similarity. We therefore
need to extend RSA to the dyadic case. The core idea which
we will use to achieve such an extension comes from the
Actor-Partner-Interdependence Model (APIM). The APIM
allows to model linear main effects of two predictors on two
interdependent outcome variables. After a short introduction
to the APIM, we will combine its reasoning with RSA, re-
sulting in a tool to model similarity effects on the two dyadic
outcome variables.

The Actor-Partner-Interdependence Model

Early treatments of dyadic data sometimes circumvented
the interdependence of dyadic data by computing separate
models for the dyad members (e.g., for women and for men).
However, a more suitable approach is to simultaneously es-
timate the two models in a joint model, as it allows, for ex-
ample, to directly test for gender differences (Kenny et al.,
2006). The model contains two dyad members (e.g., women
and men) and two variables (e.g., a personality trait such as
agreeableness and an outcome such as relationship satisfac-
tion). By convention, the focal person is called ‘actor’ and
the other person in the dyad is called ‘partner’. The basic
idea of the APIM is that an actor’s dependent variable is not
only a function of his or her own characteristics, but also a
function of the characteristics of the partner. In that way the
APIM captures one key aspect of social relationships: the
interdependency of partners.

From a statistical perspective, the APIM is a multivari-
ate regression model (cf. Kenny et al., 2006; Nestler et al.,
2015) in which the outcome variable of the actors and of the
partners (e.g., relationship satisfaction of women and men)
is regressed on the predictor variable of both partners (e.g.,
women’s and men’s personality traits):
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Z f = b0 f + b1 f X + b2 f Y + e f

Zm = b0m + b1mX + b2mY + em

e f ∼∼ em

(2)

where Z f and Zm denote the outcome variable of women
(‘f’) and men (‘m’), X refers to the female predictor, and Y to
the male predictor.1 The coefficients b1 f and b2m are called
actor effects: They describe the influence of a dyad mem-
ber’s predictor (e.g., agreeableness) on her or his own out-
come variable (e.g., relationship satisfaction). Actor effects
thus indicate intrapersonal effects. The coefficients b2 f and
b1m are the partner effects. They measure the influence that
the dyad member’s predictor has on the other member’s out-
come. They thus reflect interpersonal effects. In the exam-
ple, the partner effect describes the effect of the man’s (or the
woman’s) agreeableness on the woman’s (or the man’s) rela-
tionship satisfaction. Finally, the residual scores of the two
outcome variables are allowed to be correlated (e f ∼∼ em)
to account for dependence in the dyadic data that is not ex-
plained by the modeled predictor variables.

The goal of employing the APIM is to estimate the mag-
nitude of the actor and partner effects. In case of distinguish-
able dyads, researchers can use structural equation modeling
(SEM) software for this purpose (Kenny et al., 2006), as the
standard APIM is mathematically equivalent to a cross-lag
path model with two time-points (Nestler et al., 2015). Al-
ternatively, the APIM for distinguishable dyads can also be
estimated using a double-intercept multilevel model (Kenny
et al., 2006). In the case of indistinguishable dyads, again
both multilevel modeling software or SEM software can be
used (see Kenny et al., 2006; Olsen & Kenny, 2006). One im-
portant advantage of the SEM approach is that such software
allows defining constraints on the model parameters. Such
constraints can be used to examine APIM patterns, such as
the actor-only pattern (see below). This is important insofar
as each APIM pattern suggests a very different process oc-
curring in the dyadic relationship (see Kenny & Ledermann,
2010). Therefore, we focus on the SEM framework to esti-
mate the dyadic RSA model which we propose below.

Dyadic Response Surface Analysis

We shortly reflected on two statistical approaches here:
RSA enables to test similarity effects of two predictors on a
single outcome variable. APIM allows to test simple main
effects of two predictors on two interdependent (dyadic) out-
come variables. It is now straightforward to combine these
two approaches to obtain a method to test similarity effects
on two interdependent outcomes (Nestler et al., 2015).

Formally, the DRSA is defined by two polynomial regres-
sions, where the same pair of predictor variables (and their
higher terms) predict the male and the female outcome vari-
able. To be consistent with previous literature on RSA, we

use X, Y , and Z as variable names. X denotes the female
predictor variable, Y the male predictor variable, Z f and Zm

the female and male outcome variables, respectively. The
error terms e f and em are correlated to account for the non-
independence of the dyadic data structure:

Z f = b0 f + b1 f X + b2 f Y + b3 f X2 + b4 f XY + b5 f Y2 + e f

Zm = b0m + b1mX + b2mY + b3mX2 + b4mXY + b5mY2 + em

e f ∼∼ em

(3)

Within this model, one distinguishes actor effects and
partner effects, depending on whether a regression path con-
nects a predictor and an outcome variable belonging to one
person (actor effects) or whether it connects a predictor of
one person to the outcome variable of the other persons (part-
ner effects; see also Figure 3). Hence, b1 f , b3 f , b2m, and
b5m are actor effects, and b2 f , b5 f , b1m, and b3m are partner
effects. Furthermore, the terms b4 f and b4m are statistical
actor-partner-interactions, as they combine information both
from the actor and from the partner2.

As two outcome variables are modeled, also two different
response surfaces can be plotted, using b0 f to b5 f for the fe-
male surface and b0m to b5m for the male surface. Likewise,
the surface parameters for LOC and LOIC can be computed
both for the female and the male surface. The female surface
parameters are defined as:

a1 f = b1 f + b2 f

a2 f = b3 f + b4 f + b5 f

a3 f = b1 f − b2 f

a4 f = b3 f − b4 f + b5 f

a5 f = b3 f − b5 f

(4)

The male surface parameters are similarly defined, only
using the coefficients with the ‘m’ subscript.

Centering. When higher terms are present in a regres-
sion model, such as the interaction term or the squared terms
in a polynomial regression, it is advisable to center the pre-
dictor variables such that they obtain a meaningful zero
point. This enhances the interpretability of the linear main
effects (b1 f , b1m, b2 f , and b2m) and of the surface parameters
that reflect the slope of the LOC or the LOIC above (0, 0)
(a1 f , a1m, a3 f , and a3m).

1Here we deviate from the typical APIM notation that uses Y f

and Ym for the dependent variables and X f and Xm for the predic-
tor variables. We changed the notation to achieve continuity to the
dyadic RSA extension explained below.

2Note that the multiplicative interaction is only one of several
possible operationalizations of actor-partner-interactions (Kenny &
Cook, 1999).
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Figure 3. The dyadic RSA path model. Black solid paths are actor effects, dashed paths are partner effects, and the dotted
paths are statistical partner interactions. Intercepts are not displayed. Figure available at https://osf.io/ftsrd/, under a CC-BY4.0
license.

In DRSA, it is furthermore essential to center both part-
ners’ predictor variables so that they have a common zero
point (Kenny & Cook, 1999; Kenny et al., 2006). This can
for example be achieved by subtracting the midpoint of the
response scale (e.g., 4 on a 1–7 scale ranging from Strongly
Disagree [1] – Undecided [4] – Strongly Agree [7]) from X
and Y . This is often appropriate when the midpoint of the
scale is semantically meaningful. If the response scale has
no meaningful midpoint, it is also possible to center X and

Y to the mean of the variables computed across both genders
(grand mean). If one wants to additionally standardize the
two predictor variables, this should be also done by use of
the grand standard deviation across both genders.

Both types of centering result in mathematically equiv-
alent models, and differ mainly in the interpretation of the
intercept, which is the predicted value at a (0|0) predictor
combination.3 In the case of scale-mean centering this is the

3Re-centering also changes the interpretation of the main effects

https://osf.io/ftsrd/
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predicted value for a dyad where both partners are located
at the scale midpoint; in the case of grand mean centering
this is the predicted value where both partners are located
at the average predictor value. It should be ensured that the
zero point is well within the range of the raw data. If, for
example, the scale midpoint is at the extreme or even outside
of the predictor data range, it is preferable to use grand mean
centering.

Centering to a common across genders (by either using
the scale mean or the grand mean) is necessary for two rea-
sons. First, commensurability would be lost when females
and males were centered or standardized within their groups.
With incommensurable scales, the LOC and the LOIC are
no longer interpretable, and similarity effects can no longer
be properly tested. Second, a common scale is necessary
to make comparisons of the effect sizes between genders.
Note that, although it might seem like a valid alternative at
first sight, one cannot center X and Y within dyads, because
this would force a couple’s predictors onto the same absolute
value and make them perfectly collinear.

Constraining the Model. In a full DRSA model, 10
directed path coefficients are estimated (along with the
(co)variances), which can be quite a large number depend-
ing on the sample size. Both for parsimony and for testing
substantive theoretical predictions, constraints can be applied
that simplify the full model.

Constraining path coefficients. Path coefficients within
a surface can be constrained based on multiple principles.
From a dyadic data analysis point of view, one can test
whether some path coefficients do (not) differ from zero, and
whether some path coefficients are equal for both genders.
Kenny and Cook (1999) distinguish several patterns of actor
effects and partner effects which reflect meaningful psycho-
logical phenomena:

actor-oriented: actor effects , 0, partner effects = 0, no
actor-partner-interaction

partner-oriented: actor effects = 0, partner effects , 0, no
actor-partner-interaction

couple-oriented: actor effects = partner effects

social comparison: actor effects = −partner effects

Actor-oriented patterns assume that a person is only af-
fected by his or her own predictor score, but not by the part-
ner’s predictor score. Partner-oriented patterns assume that
a person’s outcome is only affected by the partner’s score,
but not by his or her own score. A couple-oriented pattern
implies that the sum (or the average) of the dyad’s predictors
determines the outcome. This means, that the own and the
partner’s standing are equally important for the outcome, and
that own sufficiencies can be compensated by the partner. A

social comparison pattern, in contrast, implies that the out-
come increases when the difference between the own and the
partner’s score increases.

While classical APIM constraints only refer to the linear
main effects. In the extended polynomial regressions of the
DRSA, further constraints have to be defined for the higher
order terms. For example, for a pure actor-oriented pat-
tern, additionally all partner effects and the interaction terms
should be zero, whereas the higher order actor effects could
be unequal to zero. Figure 4 displays exemplary response
surfaces for each of the four APIM models and the neces-
sary constraints. Note that all of these patterns contradict a
similarity effect pattern.

Note that these four APIM patterns are applied within the
male, respectively the female, surface, and do not equate pa-
rameters between the male and the female surface. Hence,
it is technically possible that the female surface follows, for
example, an actor-oriented pattern (i.e., b1 f or b3 f , 0, b2 f =

b4 f = b5 f = 0) while the male surface follows a partner-
oriented pattern (i.e., b1m or b3m , 0, b2m = b4m = b5m = 0),
or any other combination of patterns. Additional between-
gender constraints can be added to test whether the mod-
els within both genders allow for the same constraints (e.g.,
whether a couple-oriented pattern with the same parameters
occurs for female and for male partners).

Alternatively to the APIM constraints, one can also apply
constraints typically used in RSA. For example, the prototyp-
ical similarity effects surface displayed in Figure 1 implies
several constraints on the regression coefficients, as it as-
sumes that the surface has an inverted U-shape with the ridge
being flat and lying exactly above the LOC (i.e., the outcome
is maximized at perfect congruence and the level of congru-
ence is irrelevant). In the non-dyadic case, these assumptions
about the surface are achieved with the following constraints:
(1) b1 = 0, (2) b2 = 0, (3) b3 = b5, and (4) b4 = −2b5. This
model is also called ‘squared difference model’, as a sim-
ple squared difference as predictor implies these constraints
(Edwards, 2002; Schönbrodt, 2016). If theory implies that
the outcome for both genders in a DRSA should follow a
squared difference model, analogous constraints have to be
applied: (1) b1 f = b1m = 0, (2) b2 f = b2m = 0, (3) b3 f = b5 f ,
(4) b3m = b5m, (5) b4 f = −2b5 f , and (6) b4m = −2b5m. If one
furthermore assumes that the response surface is the same
for both genders, the free coefficients have to be equated
between genders: (1) b1 f = b2 f = b1m = b2m = 0, (2)
b3 f = b5 f = b3m = b5m, and (3) b4 f = b4m = −2b5 f . Ad-
ditional theoretically meaningful models, such as the rising
ridge model, can be tested by applying respective other con-
straints to the regression coefficients (Schönbrodt, 2016).

Nested and non-nested model comparison. By constrain-

in the presence of higher terms. As we recommend not to interpret
single coefficients of a polynomial regression in isolation, we do not
discuss this further.
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Constraints for female surface:
b1f and/or b3f ≠ 0
b2f = b4f = b5f = 0

Constraints for male surface:
b2m and/or b5m ≠ 0
b1m = b3m = b4m = 0

Constraints for female surface:
b2f and/or b5f ≠ 0
b1f = b3f = b4f = 0

Constraints for male surface:
b1m and/or b3m ≠ 0
b2m = b4m = b5m = 0

Constraints for female surface:
b1f = b2f ≠ 0
b3f = b4f = b5f = 0

Constraints for male surface:
b1m = b2m ≠ 0
b3m = b4m = b5m = 0

Constraints for female surface:
b1f = – b2f ≠ 0
b3f = b4f = b5f = 0

Constraints for male surface:
b1m = – b2m ≠ 0
b3m = b4m = b5m = 0

Figure 4. Examples for APIM patterns displayed as response surfaces. Figure available at https://osf.io/ftsrd/, under a CC-
BY4.0 license.

ing parameters, model complexity can be reduced compared
to estimating every single coefficient in the model. A simpler
model is said to be nested under a more complex model if
the simpler model can be obtained from the complex model
by adding parameter constraints. For example, the actor-
oriented pattern is nested within the unconstrained APIM,
as it can be defined by constraining all partner effects to be
zero.

More complex models always yield a better fit to the data
in terms of the amount of variance they can explain, but they
contain the risk of overfitting to the data at hand. Complex
models therefore threaten the goals of parsimony and gen-
eralizability to other data. Nested models can be compared
via χ2 likelihood ratio (LR) tests. If a simpler model is not
significantly worse, indicated by a non-significant p-value in
the LR test, the simpler model can be retained.

Not all models, however, are nested. For example, the
partner-oriented pattern is not nested under the actor-oriented
pattern (or vice versa) – there is no way to add constraints to
the actor-oriented pattern to get to the partner-oriented pat-
tern (in contrast, one would have to release a constraint to
allow non-zero partner effects). Consequently, the perfor-
mance of actor-oriented and partner-oriented patterns cannot
directly be compared to each other via LR tests. For the com-
parison of non-nested models, one can instead use informa-
tion criteria. One of the most commonly used is the Akaike
Information Criterion (AIC; for an overview see Burnham &
Anderson, 2002). Models with a relatively lower AIC value
show a better fit to the data (the absolute value of AIC is
irrelevant), and ∆AIC values ≥ 7 typically are seen as an in-
dicator to prefer the model with the lower AIC. ∆AICs val-

ues ≤ 2, in contrast, indicate that both models are essentially
equally good and the data at hand does not contain enough
evidence to decide between both models (Burnham, Ander-
son, & Huyvaert, 2011; Symonds & Moussalli, 2011). ∆AIC
values between 2 and 7 can be seen as some support for
the better model, that is not decisive, however. Other infor-
mation criteria beyond AIC are also available, such as BIC
(Burnham & Anderson, 2004), or variations of the AIC (e.g.,
AICc or CAIC; for an overview and comparison, see Dziak,
Coffman, Lanza, & Li, 2012, Garamszegi, 2011).

Why apply constraints? There are several reasons for test-
ing constraints on the full model. First, in an exploratory
analysis, the patterns of APIM constraints and of the RSA
constraints can be used to give post-hoc descriptions to the
results of an analysis (e.g., “The data follows a partner-
oriented pattern”). Second, constrained models can be un-
derstood as confirmatory hypotheses. To test such a hy-
pothesis, one would test the theoretically predicted model
with constraints against an unconstrained model. If the con-
strained model is not significantly worse than the uncon-
strained model, it is retained as a more parsimonious model
and the theory is corroborated. Finally, as a pragmatic rea-
son to apply constraints, they also increase power. If men’s
and women’s effects are not significantly different from each
other, the respective paths can be set equal. These constraints
effectively increase the sample size and the power to de-
tect smaller effects. However, as always is the case with
a non-rejected null hypothesis, a non-significant difference
of paths on its own is no direct evidence of ‘no difference’
(e.g., Goodman, 2008), but should rather be interpreted as
‘not enough power to detect a potential difference’, depend-

https://osf.io/ftsrd/
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ing on the sample size and the smallest effect size of interest.

Dyadic RSA for indistinguishable dyads. So far we
focused only on noninterchangeable dyads, but the procedure
can also be adapted to dyads that are naturally interchange-
able, following the approach of Olsen and Kenny (2006).
Furthermore, even if dyads have a potentially distinguishing
variable, such as gender, their means, variances, and covari-
ances could be statistically indistinguishable. The omnibus
SEM test for distinguishability tests for these equalities (see
Gonzalez & Griffin, 1999, and Kenny et al., 2006, pp. 129–
131). If dyads are naturally interchangeable, several con-
straints must be applied to the SEM (Olsen & Kenny, 2006):
Equal (linear and squared) actor effects, equal (linear and
squared) partner effects, equal predictor means, equal predic-
tor variances, equal outcome intercepts, and equal residual
variances. The accompanying R code contains an example
how to set up such a model. In the remainder of the paper,
however, we focus on distinguishable dyads.

Power analysis / Sample size planning. Planning for
appropriate sample sizes is a necessary step to draw strong
inferences from a data set. Doing a power analysis for
models with multiple predictors and correlated outcomes,
however, is not trivial, as it requires to define a priori sev-
eral (co)variance components and multiple effect sizes which
themselves depend on the reliability of the measured vari-
ables and their higher order terms, many of which might be
hard to estimate.4 An in-depth treatment of this topic is be-
yond the scope of this paper, but we want to outline some
rules of thumb. A general recommendation for higher order
terms provided by Aiken and West (1991) is to assess 2-3
times as many participants as one would need to detect lin-
ear effects of the predictors. Another possibility for reduc-
ing complexity would be to collapse multiple parameter es-
timates into a single index of effect size, namely the increase
in explained variance ∆R2. This could relate, for example,
to the increase in explained variance that a congruence effect
explains beyond the two main effects. For example, to detect
a ∆R2 of 5% with a statistical power of 90% (α = 5%) in a
non-dyadic RSA, around 200 participants are needed if a sin-
gle parameter, such as a4 in a squared difference model, ex-
plains the additional variance when all other parameters are
held constant. The impact of the dyadic nature of the data de-
pends on the intra-class-correlation of the outcome variable,
where the effective sample size is somewhere between the
number of individuals and the number of dyads. If actor and
partner effects can be constrained to be equal across genders,
this effectively increases the sample size. Beyond these sim-
ple approximations, we suggest that the ideal way to deter-
mine a reasonable sample size is a simulation study (Nestler
et al., 2015) which incorporates as much prior knowledge
about plausible effect sizes as possible. We provide an ex-
ample of such a power simulation in the code examples, but
note that this requires to fully specify an assumed population

Table 1
The First Rows of a Demo Data Set in Wide Format.

pairID X Y Z_f Z_m

1 8 8 7 2
2 7 8 5 4
3 6 7 5 2
4 5 2 5 5
5 5 8 5 6
6 5 4 8 6

Note. X = female predictor variable,
Y = male predictor variable, Z_f = fe-
male outcome variable, Z_m = male
outcome variable.

model with all (co)variances and path coefficients.

Example and R Code Walkthrough

In the following sections, we will consider practical ques-
tions on how to conduct a DRSA in R and demonstrate the
usage with a concrete example. For a clearer demonstration,
we will use simulated data. In the tradition of Raymond Cat-
tell, we decided to give an artificial name to our hypothetical
personality scale ("bavaria"), in order not to confuse readers
about the purported implications of this simulated data set.
The full code for reproducing the results and the figures can
be downloaded from https://osf.io/ftsrd/.

Data Preparation

Before computing the model, several steps of data prepa-
ration should be done.

Data format. The SEM framework requires data to be
stored in the wide format, so that each row contains data from
one dyad and each measured variable has a separate column
for each dyad member. This data format clarifies that the unit
of analysis is the dyad, and that degrees of freedom usually
refer to the number of dyads. Table 1 shows an example of
the required data structure.

Missing values. Missing values are a potential source
for bias and distorted standard errors. In the case of RSA, a
single missing value in, X, for example, propagates further
to missing values in X2 and in XY . An in depth treatment
of missing values is beyond the scope of this paper, but we
mention that the ‘default’ option of listwise deletion usually
is not recommended. An often recommended technique is to
use a maximum likelihood estimation based on all available
data ("full information maximum likelihood", FIML). This
estimation assumes that missing values are at least missing at

4See https://robert-a-ackerman.shinyapps.io/APIMPowerRdis/
for an online app that assists in doing power analyses for APIMs
(Ackerman & Kenny, 2016).

https://osf.io/ftsrd/
https://robert-a-ackerman.shinyapps.io/APIMPowerRdis/
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random ("MAR"; Schafer & Graham, 2002), which means
that the probabilities of missingness do not depend on the
missing data. The question whether missing values are MAR
or not, can typically not be tested but has to be assumed.
However, Collins, Schafer, and Kam (2001) demonstrated
that violations of the MAR assumption often only have mi-
nor impact on the estimation and standard errors. The lavaan
package which we recommend here is capable of a FIML es-
timation and we will apply this treatment of missing values
in our example below.

Amount of predictor discrepancy. A potential chal-
lenge with couple data is that partner correlations of pre-
dictor variables are often high, leading to a bivariate range
restriction where the incongruent quadrants are much less
populated than the congruent quadrants. This leads both to a
diminished power to detect discrepancy effects (McClelland
& Judd, 1993), but also to a heightened susceptibility to ex-
treme values, as few discrepant values can drive an apparent
discrepancy effect. Shanock et al. (2010) suggest to compute
a standardized discrepancy score of the predictor variables to
determine the percentage of couples that can be considered
discrepant. For this purpose, predictor scores are standard-
ized across genders, and any absolute difference larger than
0.5 z-points between male and female scores is considered a
“discrepant couple”. The RSA function from the RSA pack-
age automatically reports the percentage of discrepant units
according to these criteria. If only very few couples are dis-
crepant, it might be futile to assess the impact of dissimilarity
on an outcome.

Outliers. Regression results can be spurious if they are
driven by a small number of outliers, and the squared terms
of the polynomial regression even exaggerate the impact of
outliers. Therefore, we recommend to screen the data set for
multivariate outliers. Typical outlier detection is based on in-
dices such as Cook’s distance or leverage points (e.g., Bollen
& Jackman, 1985). The RSA function from the RSA pack-
age automatically checks for multivariate outliers according
to these criteria (see also the example R script, where the
data set is screened for outliers). A sensitivity analysis that
explores the effect of excluding some of the most discrepant
outliers can show whether an apparent similarity effect is ro-
bust, or whether it is only driven by a small number of ex-
treme values.

Higher terms computation. As a final step, the higher
terms for the polynomial regression have to be added to the
data set. For that purpose, the centered predictors (referred
to as X.c and Y.c) have to be squared (referred to as X.c2 and
Y.c2) and their multiplicative interaction has to be computed
(referred to as XY)

Computing the Model in an SEM Framework

We compute the DRSA models with a path modeling ap-
proach using the lavaan package (Rosseel, 2012) for the R

statistical environment (R Core Team, 2014). Note that the
same model can also be estimated in a multilevel model,
when the classical APIM model for distinguishable dyads
(Kenny et al., 2006) is extended by the multiplicative actor-
partner interaction and the squared terms for the actor and
the partner effect.5

In the lavaan syntax, the model is defined as follows:

dRSA.full.model <- "
Z_f ~ b1f*X.c + b2f*Y.c + b3f*X.c2 + b4f*XY

+ b5f*Y.c2
Z_m ~ b1m*X.c + b2m*Y.c + b3m*X.c2 + b4m*XY

+ b5m*Y.c2
Z_m ~~ Z_f
"

The ‘∼’ operator defines regression paths, the ‘∼∼’ op-
erator defines residual correlations. This model can be es-
timated using the sem function. The standard maximum
likelihood estimator of SEM packages assumes a multivari-
ate normal distribution of the endogenous variables. As the
estimation of the standard errors and p-values can be bi-
ased when this assumption is violated, we recommend to
use a robust estimator (estimator="MLR") for the model
development stages, which yields less biased standard errors
(se="robust") with non-normal data. Furthermore, we re-
quest a FIML treatment of missing data:

s.full <- sem(dRSA.full.model, data=df,
meanstructure=TRUE, estimator="MLR",
se="robust", missing="fiml")

For the final model, we recommend to compute boot-
strapped standard errors and p-values, with at least 5000
replications. This requires switching to the ML estimator:

s.full.boot <- sem(dRSA.full.model,
data=df, meanstructure=TRUE,
estimator="ML", missing="fiml",
se="boot", bootstrap=10000)

With the summary(s.full.boot) command the param-
eter estimates can be printed (see Table 2). The uncon-
strained DRSA model is a saturated model with zero degrees
of freedom. Hence, no tests of model fit are possible.

Plotting the Model

The joint impact from the multitude of model parameters
in Table 2 on both partners’ outcome variables can be diffi-
cult to interpret. Furthermore, we caution against the attempt
to interpret single coefficients in isolation. For a more in-
tuitive interpretation of the joint impact of all predictors we

5In the associated OSF project (https://osf.io/ftsrd/), we also
provide Mplus scripts that do the same job. Furthermore, we pro-
vide example code how the same model can be estimated in a mul-
tilevel modeling framework.

https://osf.io/ftsrd/
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Table 2
Regression Coefficients b1 to b5 and Derived Model Parameters for the DRSA Model, With Bootstrapped Standard Errors and
p-Values

Estimate 95% CI Standard error p value
b1 f 0.298 [0.21; 0.39] 0.047 0.000
b2 f −0.078 [-0.17; 0.00] 0.043 0.074
b3 f −0.044 [-0.08; -0.01] 0.018 0.016
b4 f 0.162 [0.11; 0.21] 0.026 0.000
b5 f −0.088 [-0.11; -0.06] 0.015 0.000
b1m −0.321 [-0.50; -0.14] 0.092 0.000
b2m 0.481 [0.30; 0.64] 0.088 0.000
b3m 0.020 [-0.05; 0.10] 0.036 0.573
b4m 0.042 [-0.05; 0.14] 0.050 0.395
b5m −0.006 [-0.06; 0.06] 0.032 0.841
a1 f 0.221 [0.09; 0.34] 0.063 0.000
a2 f 0.029 [-0.03; 0.10] 0.033 0.380
a3 f 0.376 [0.26; 0.51] 0.065 0.000
a4 f −0.295 [-0.37; -0.23] 0.037 0.000
a5 f 0.044 [-0.00; 0.09] 0.023 0.051
a1m 0.160 [-0.10; 0.40] 0.129 0.214
a2m 0.056 [-0.07; 0.21] 0.071 0.430
a3m −0.802 [-1.03; -0.55] 0.126 0.000
a4m −0.028 [-0.16; 0.10] 0.068 0.676
a5m 0.027 [-0.07; 0.12] 0.047 0.569

recommend to visualize the final models using the RSA pack-
age (Schönbrodt & Humberg, 2018; see the online material
for the code for the plots).6 Figure 3 shows a side-by-side
comparison of the female and the male surface. Raw data
points are plotted at their predicted value (i.e., they are pro-
jected onto the response surface). The visualization of both
partners’ response surfaces illustrates that the (dis)similarity
between partners can have different effects on the female and
the male outcome.

In the current hypothetical example, females show an op-
timal margin pattern, where the highest female relationship
satisfaction is expected when the female bavaria is some-
what higher than the male bavaria. This general pattern,
however, includes a rising ridge, which means that optimal
predictor combinations on a higher level are better than op-
timal combinations on lower levels. The male predicted re-
lationship satisfaction, by contrast, is highest when the male
partner is high in bavaria while the female is low, medium
when both are on similar levels, and lowest in the incongru-
ent corner of high female/low male bavaria.

Generally, extreme caution is necessary when the regres-
sion surface is extrapolated to regions without actual data
points. As this extrapolation rests on very unlikely assump-
tions (Montgomery, Peck, & Vining, 2012), only regions of
the surface within the range of the original data should be
interpreted. To facilitate a valid interpretation, we strongly
recommend to show the raw data imposed on the surface plot
(see also Wilkinson & Task Force on Statistical Inference,

1999; Tufte, 2001). In Figure 3, a bagplot around the raw
data points is shown to give a visual aid for the ‘interpretable
region’. The bagplot is a bivariate extension of a boxplot
(Rousseeuw, Ruts, & Tukey, 1999), which describes the po-
sition of the inner 50% of points (within the inner polygon,
called bag) and the outer 50% of points (within the outer
polygon, called fence).7

Applying Constraints

Furthermore, we wanted to check whether the model can
be constrained in a way that allows to use an identical surface
as an adequate model for both genders’ outcomes. Therefore
we applied the following constraints:

# actor effect equality constraints
b1f == b2m
b3f == b5m

# partner effect equality constraints
b2f == b1m
b5f == b3m

6Surface plots can be also created (with limited graphical
options and limited visual refinement) using Excel sheets, see
for example http://www.springer.com/cda/content/document/cda_
downloaddocument/Excel+spreadsheet+for+response+surface+

analysis.xls?SGWID=0-0-45-940137-p35536793.
7In the gray scale plots the inner bag is hard to detect; the dark

polygon is the fence that marks the bivariate range of the data.

http://www.springer.com/cda/content/document/cda_downloaddocument/Excel+spreadsheet+for+response+surface+analysis.xls?SGWID=0-0-45-940137-p35536793
http://www.springer.com/cda/content/document/cda_downloaddocument/Excel+spreadsheet+for+response+surface+analysis.xls?SGWID=0-0-45-940137-p35536793
http://www.springer.com/cda/content/document/cda_downloaddocument/Excel+spreadsheet+for+response+surface+analysis.xls?SGWID=0-0-45-940137-p35536793
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# interaction effect equality constraint
b4f == b4m

Note that these between-gender constraints do not imply
a couple-oriented model – this would require to equate actor
and partner effects within the male and the female models.
These constraints force the surface to be identical in shape for
both genders, except for a different elevation (i.e., the inter-
cept is free to vary between genders). A LR model compar-
ison shows that the constrained model is significantly worse
than the full model, χ2(5) = 34.2, p < .001. The same conclu-
sion can be drawn from an AIC difference of 24, also favoring
the full model. Hence, we reject the constrained model and
conclude that the joint impact of the personality predictors is
different for each gender.

Discussion

This paper presents a general framework for testing and
interpreting similarity effect hypotheses in dyads. Based on
previous work on polynomial regression and response sur-
face analysis, we extended the model to dyadic designs. The
DRSA model allows a direct test of similarity effect hypothe-
ses and avoids the pitfalls of previous approaches. A partic-
ular strength of the approach is the fact that new classes of
hypotheses beyond basic similarity effect hypotheses can be
tested which would be hard or impossible to test with conven-
tional methods. For example, previous approaches using dif-
ference scores implicitly assume (and cannot test) that a cou-
ple’s outcome value(s) depend only on the partners’ degree
of similarity and is unrelated to their predictor levels. For
many domains of research questions, however, it is reason-
able to assume that a high/high combination of the predictors
is more beneficial than a low/low combination. Rising ridge
models outlined here and covered in detail elsewhere (Schön-
brodt, 2016) are in particular suitable to model and test these
interesting hypotheses. DRSA is also able to model binary
outcome variables in a generalized linear model. In this case,
a probit link function is used to model the probability for a
positive outcome (see the code in the online material for an
example on modeling and plotting binary outcomes).

Many extensions of the basic DRSA model are imagin-
able. For example, one could use a different set of predictors
for male and female partners. In the areas of interpersonal
perception and relationship research, for example, a typical
research question is about the effect of assumed similarity
on relationship outcomes (Back & Vazire, 2015). In this
case, the model would not only have one personality pre-
dictor from each dyad partner (i.e., self-reported personal-
ity), but in addition the perceived personality (i.e., how the
female partner perceives the male partner’s personality and
vice versa). The impact of assumed similarity on the two
partners’ (correlated) relationship satisfaction scores could

be investigated by using the female self-report and the fe-
male perception of the male partner’s personality (and their
squares and interactions) to predict the female relationship
satisfaction, and the male self-report and the male perception
of the female partner’s personality (and their squares and in-
teractions) to predict the male relationship satisfaction. Of
course additional partner effects could be modeled using this
extended set of predictor variables, such as the moderating
impact of the female partner’s personality self-report on the
assumed similarity effect of the male response surface. Given
the large number of parameters and the complexity of such
models, we generally encourage to use simplified (i.e., con-
strained) models and to test theoretically derived predictions
in a confirmatory way, rather than estimating all parameters
and all possible interactions freely in an unconstrained ex-
ploratory model.

Other possible extensions of DRSA include longitudinal
models (see also Nestler et al., 2015), where the change in an
outcome is modeled. For that purpose, one could use the five
predictors from the RSA to predict the intercept or slope of
the outcome variable in a latent growth curve model, where
dyadic outcomes are correlated. However, more method-
ological research is needed to investigate the applicability of
such models.

The DRSA approach has many advantages compared to
previous approaches, but users should be aware of some lim-
itations. First, a large number of model parameters is es-
timated. From a hypothesis testing point of view, this also
involves a multitude of significance tests. Depending on the
type of hypothesis tested, corrections such as the Bonferroni
correction (Bonferroni, 1935) or more powerful alternatives,
such as the Benjamini-Hochberg correction (Benjamini &
Hochberg, 1995), might be necessary to ensure the nominal
error rate. This also emphasizes the necessity of ensuring an
adequate power when planning a study. Second, the mani-
fest path models assume that variables have been measured
without error. Latent models of all variables are possible;
however, there are currently several ways and no general con-
sensus on how to model and estimate latent interactions (e.g.,
Harring, Weiss, & Hsu, 2012). Finally, the approach that was
introduced here can be used to investigate how the similarity
on a single dimension relates to an outcome; it does not cover
similarity across multiple predictor dimensions.8

To conclude, we hope that the conceptual DRSA frame-
work and the provided R scripts assist substantive researchers
in precisely formulating, testing, and interpreting similarity

8See Edwards (1994) for a generalization of profile similarity
indices to polynomial regression. This approach, however, requires
to expand the linear model with a second-order polynomial for each
predictor dimension. For example, reformulating a sum-of-squares
profile discrepancy score of the Big-5 personality traits as an un-
constrained model requires 5*5 = 25 terms instead of a single dis-
crepancy score.
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effect hypotheses in their dyadic research.
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Appendix A

To determine whether a response surface reflects a simi-
larity effect, one needs to test the four conditions on a1 to
a4 (i.e., a1 = a2 = a3 = 0 and a4 < 0), and in addition,
one needs to find out whether the ridge line ("first principal
axis", in mathematical terms) of the surface is positioned at
the LOC. The position of the ridge line can in general be
determined by considering its projection onto the X-Y plane
(e.g., the dotted line on the bottom of the coordinate cube in
Figure 2B). When one understands the X-Y plane as a co-
ordinate system in itself, one can express the position of the
ridge as a linear equation that relates Y to X. Its formula is
(see Edwards, 2007)

Y = p10 + p11X, (5)

where its coefficients p10 and p11 can be computed from
the regression estimates b1 to b5 via the formulas

p11 =
(b5 − b3) +

√
(b3 − b5)2 + b2

4

b4

p10 =

b1b4 − 2b2b3

4b3b5 − b2
4

 − p11

b2b4 − 2b1b5

4b3b5 − b2
4

 .

Because the LOC is described by the formula Y = X =

0+1∗X, one can determine whether the ridge line equals the
LOC by testing whether p10 equals zero and p11 equals one.
However, in case that the conditions on a1 to a4 for a simi-
larity effect are already satisfied (i.e., when a1 = a2 = a3 = 0
and a4 < 0), there is a much easier way to test whether the
ridge equals the LOC: In this case, it suffices to test whether
a5 = b3 − b5 = 0, because this implies p10 = 0 and p11 = 1
in such a situation. We will now provide the mathematical
proof that this is indeed the case.

Consider a situation in which the above introduced condi-
tions on a1 to a4 hold, and in which the additional condition
a5 = b3 − b5 = 0 holds. In particular, a3 = b1 − b2 = 0
implies that b1 = b2, and a5 = b3 − b5 = 0 implies b3 = b5.
We can use these observations to compute the coefficients of
the ridge line:

p11 =
(b5 − b3) +

√
(b3 − b5)2 + b2

4

b4

=
0 +

√
02 + b2

4

b4
= 1,

and

p10 =

b1b4 − 2b2b3

4b3b5 − b2
4

 − 1 ∗
b2b4 − 2b1b5

4b3b5 − b2
4


=

b1b4 − 2b1b3

4b3b3 − b2
4

−
b1b4 − 2b1b3

4b3b3 − b2
4

= 0.

That is, the position of the ridge line is Y = p10 + p11X =

0 + 1X = X, which equals the position of the LOC.

https://dx.doi.org/10.1007/s00265-010-1037-6
https://dx.doi.org/10.1016/j.jrp.2017.04.003
https://dx.doi.org/10.1016/j.jrp.2017.04.003
https://dx.doi.org/10.1037/0003-066X.54.8.594
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