
21

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

How to cite this article:

Norki, F. A., Mohamad, R., & Ibrahim, N. (2020). Context ontology in mobile applications.
Journal of Information and Communication Technology, 19(1), 21-44.

CONTEXT ONTOLOGY IN MOBILE APPLICATIONS

Farhanah Atiqah Norki, Radziah Mohamad & Noraini Ibrahim
School of Computing, Universiti Teknologi Malaysia, Malaysia

farhanahatiqah@ymail.com; radziahm@utm.my; noraini_ib@utm.my

ABSTRACT

Mobile applications are expected to receive context input
such as location, speech, and network from different context
providers. Since context can be considered as knowledge, a
formal method is needed to capture this knowledge. There is
less work on ontology model that could be reused to model a
new context ontology for Android mobile application. Therefore,
this study proposed an ontology specifically for Android mobile
application, COCCC, to formalize context knowledge present
within it. METHONTOLOGY method was used to create
COCCC ontology as it offers intermediate representation in the
form of concepts. The concepts from the context ontology were
extracted from various resources, sorted and categorized based
on types and functions for standardization purposes. Survey was
given to five domain experts for evaluation of COCCC ontology
in terms of its usability. Data from these experts were analyzed
and the results have confirmed that the proposed context ontology
is usable to Android mobile application developers.

Keywords: Context ontology, knowledge representation, mobile application,
ontology.

INTRODUCTION

Understanding and catching up on the latest mobile application technology
are exhausting to some mobile application developers. The complexity

Received: 10/09/2018 Revised: 11/2/2019 Accepted: 26/03/2019 Published: 23/12/2019

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

22

of context-aware mobile application has led researchers to design several
ontologies to capture the knowledge, as well as organize information within
the mobile application and its users. The development of context-aware mobile
application needs to be supported by sufficient context modeling and reasoning
techniques. The context involved in mobile application development can be
further categorized in order to better assist mobile application developers
during the development phase.

Ontology can be referred as ideas abstraction that represents concepts
inside some body of knowledge (Mohd-Hamka & Mohamad, 2014). The
categorization of context in a specific body of knowledge provides a formal
model of conceptualization (Gruber, 1993). A formal ontology consists of a
specific vocabulary expressed in a representation language (Sulaiman, Nordin,
& Jamil, 2017). Ontology is made up of hierarchical definitions of principal
concepts in a domain (Zeshan & Mohamad, 2012). The relationships between
these different hierarchies are depicted as is-a, part-of, and so on, depending
on the taxonomy (Subhashini & Akilandeswari, 2011). The structure of
knowledge in a particular domain can be shared, reused, and merged with
other ontology models in different domains (Lee, Lee, & Kwan, 2017).

One of the famous mobile application ontologies is mIO! Ontology
Network. mIO! Ontology has managed to cover many subdomains in mobile
applications; device, environment, interface, location, network, provider,
service, time, and user (Poveda Villalon et al., 2010). However, mIO! Ontology
cannot be reused to fit Android mobile applications at the source code level as
the ontology lacks the application program interface (API) present in Android
mobile apps.

RELATED WORK

Context ontology allows representation of multiple context knowledge and
also provides a formal language and logic to context knowledge, which assist
in integration and sharing of information between contexts.

There is a variety of context ontologies with different subdomains such
as location, environment, device, network provider, role, service, source, and
user. Table 1 shows a comparison of different existing context ontologies with
regard to different context subdomains.

COBRA-ONT describes the regular relationships related to people
and activities which enable the sharing of knowledge and ontology reasoning
within the CoBra (Context Broker Architecture) infrastructure (Chen, Finin,
& Joshi, 2003). To solve some challenges in Ambient Intelligent computing
infrastructures, the CoDAMos ontology provides intelligent services to the

23

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

user which includes application adaptation, automatic code generation and
code mobility, and user interfaces (Preuveneers et al., 2004). The ontology
consists of four fundamental entities: user, service, environment, and platform.

Table 1

Comparison of Existing Context Ontologies

Ontology

C
O

B
R

A
-O

N
T

C
oD

A
M

oS

C
O

N
O

N

SO
U

PA

D
elivery C

ontext
O

ntology

m
IO

! O
ntology

Subdomain

Environment √ √ √ √ √
Location √ √ √ √ √ √
Device √ √ √ √
Network √ √
Role √ √ √
Service √ √
User √ √ √ √ √

CONtext ONtology (CONON) provides an extensible context modeling

for pervasive computing environments (Wang et al., 2004). CONON presents
common concepts such as location, user, activity, and computational entity
in order to capture information on executing situations. These entities can
be extended hierarchically by adding domain specific concepts. The context
model is divided into two; upper ontology (high-level ontology) and
specific ontology. The upper ontology expresses common characteristics
of fundamental contexts whereas the specific ontology describes details of
common concepts and their characteristics in their subdomains. Standard
Ontology for Ubiquitous and Pervasive Applications (SOUPA) addresses
general issues via upper ontologies method (Chen et al., 2004). SOUPA is
divided into two main blocks; SOUPA Core and SOUPA Extensions. SOUPA
Core consists of concept vocabularies that associate with person, agent, belief-
desire-intention (BDI), action, policy, time, space, and event, while SOUPA
Extensions supports specific concepts in certain domains, for example,
management (Chen et al., 2004). The limitation of SOUPA ontology is the
small number of features that describes a mobile device in mobile computing
environments.

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

24

 Delivery context ontology gives a formal model of environment
characteristics in which different devices communicate with physical
services (Fonseca & Lewis, 2009). The ontology includes the attributes of
the device, the software for accessing the service, and the network which
provides the connection (Fonseca & Lewis, 2009). Principal entities present
in this ontology are environment, hardware, software, location, and measure.
The most prominent work in the ontology mobile computing environment
is mIO! Ontology, which incorporates nine sets of contextual subdomains
(Poveda Villalon et al., 2010). The contextual information in mIO! Ontology
is categorized into 11 different ontologies: device, environment, interface,
location, network provider, role, service, source, time, and user. The goal of
mIO! Ontology is to represent the user’s contextual knowledge which may
later influence his or her interactions with mobile devices. The user will be
able to interact with services provided by companies through his or her mobile
device. mIO! Ontology reuses knowledge from other context ontologies such
as CODAMOS, SOUPA, and Delivery context ontology.

Based on the existing context ontologies, there is no specific model that
can be reused for modeling a new context ontology that caters specifically for
Android mobile applications. Speech context, which is widely popular due
to its speech recognition ability to guide users, has not been covered in these
existing ontologies. The proposed context ontology however, focuses more
on the environment surrounding mobile devices especially on location and
speech. The new ontology specifies how hardware like sensor is connected to
specific activities such as gravity detection, and more.

CONTEXT ONTOLOGY MODELING

Modeling context ontology is possible since context can be considered as a
specific kind of knowledge (Poveda Villalon et al., 2010). Concepts in ontology
construction can be modeled as classes or sub-classes, depending on the
hierarchy. Since ontology describes the sharing of comprehension of specific
domains, it can be used as a basic structure to solve problems in knowledge
sharing (Uschold & Gruninger, 1996). Besides, ontology also helps in improving
communication between humans or computers. METHONTOLOGY helps
in developing ontology from scratch (Fernández-López, Gómez-Pérez, &
Juristo, 1997). For an inexperienced ontology builder, METHONTOLOGY
offers intermediate representation which is easy to understand (Pinto &
Martins, 2004). Furthermore, METHONTOLOGY provides guidance in
creating ontology through specification, conceptualization, formalization,

25

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

implementation, and maintenance (Corcho et al., 2005). Figure 1 shows five
development activities in METHONTOLOGY.

Figure 1. Activities in ontology development proposed by METHONTOLOGY
(Corcho et al., 2005).

These activities can be further described as follows:
•	 Specification - During this stage, we had to specify the reason why the

ontology is being built, the use of the ontology, and its target user.
•	 Conceptualization - In this stage, we tried to organize the domain col-

lected by tabulating them in a way that can be easily understood by
ontology experts and developers. At the end of this stage, we came up
with a list of ontology concepts that are involved in context.

•	 Formalization - During this activity, we transformed the conceptual
model from conceptualization into a more formal model.

•	 Implementation - We represented the knowledge involved in context,
grouped them together, and established a relationship between them by
using Web Ontology Language (OWL).

•	 Maintenance - Any adjustment, update, or correction on the proposed
ontology was made during maintenance activity.

The evolving nature of mobile computing complicates the formalization
of all context information in its entirety. However, this research has found
that the concepts in mobile environments can be categorized into five classes:

Figure 1. Activities in the ontology development proposed by METHONTOLOGY (Corcho et al., 2005)

Figure 2. COCCC Ontology

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

26

mobile device, context, application manifest, application, and activity. Apart
from application manifest and mobile device, all information for the other
three classes are specifically grouped together, to show the link between each
class to promote understanding of mobile applications to developers. These
five classes are the most basic concepts in mobile environments. They form
the backbone of mobile environments, constituting upper-level entities which
contribute versatile extensibility that enables the addition of more concepts
later. Table 2 defines main classes and their corresponding descriptions.

Table 2

Main Classes

Main Classes
Android
Application

An android application can be interpreted as an application that is
run on mobile devices with Android operating system.

Activity Activity here is referred as detection and recognition performed
by the application which manipulates input from context.

Mobile Device A mobile device refers to a portable computing device such as a
smartphone or tablet computer.

Context Context refers to any information that can be used to characterize
the situation of an entity which includes lighting, level of noise,
network connectivity, location, speech, bandwidth, et cetera.

Application
Manifest

Provides necessary information of the application to the Android
system, which must be possessed by the system before it can run
any of the application’s codes.

Figure 2 shows the relationship design between Android application,
application manifest, context, mobile applications, and mobile device. The
Application Manifest comes from the Android Manifest.

To build a functional context-aware application, a platform, which is
the mobile device itself, is needed. Sub-categories from the mobile device
include hardware, software, and battery. The hardware can be called into use
by declaring them inside the application manifest. The declaration from the
application manifest enables the application to use hardware such as sensors.
Depending on which hardware is activated, the Activity class will start to detect
or recognize any potential Context available within the user’s surroundings.
Later, the class sends back the information on context to the running Android
application.

27

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

Figure 2. COCCC Ontology.

Concepts

METHONTOLOGY suggests the conceptualization of ontologies with a set
of tabular and graphical Intermediate Representation (IR). These IRs enable
the modeling of the components explained in this section. Concept can be
perceived differently depending on the main classes. For example, concepts
in mobile environments include activity, light detection, sensor, etc. These
concepts are generally organized in taxonomies where inheritance is usually
involved. Specific types of annotations and metadata are added later to
the document. Before developing ontology, all concepts related to mobile
environments need to be identified. The identification of concepts prevents
redundancy in the ontology, as well as gives a clear idea on which class the
concept belongs to. Table 3 lists all the concepts involved during context
ontology development and Table 4 lists the glossary of lower level concepts
and their corresponding descriptions.

Figure 1. Activities in the ontology development proposed by METHONTOLOGY (Corcho et al., 2005)

Figure 2. COCCC Ontology

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

28

Table 3

Ontology Concepts

Ontology Concepts
Activity Context Mobile Device Detection
Recognition Environment Foundation User
Battery Hardware Tools Sensors Gravity detection
Humidity detection Light detection Location detection Location detection

(without GPS)
Motion detection Nearby object

detection
Noise detection Temperature detection

Touch detection Image recognition Speech recognition Location
Surroundings Gravity Humidity Light
Motion Nearby object Noise Temperature
Touch Vision Connectivity Memory
Power Input Social Environment Interface
Speech Sound Image Video
GPS SD Card Touchscreen Accelerometer Sensor
Ambient Temperature
Sensor

Gyroscope Sensor Light Sensor Magnetic Field Sensor

Pressure Sensor Proximity Sensor Relative Humidity
Sensor

Android Application
Project

Manifest File application instrumentation Permission
supports-gl-texture supports-screen uses-configuration uses-feature
uses-permission uses-sdk activity Provider
receiver service uses-library Android Application
Notifications Widgets Broadcast Receivers Intents
Content Providers Services Activities Wi-Fi
USB Telephony NFC Microphone
Camera Bluetooth

The concepts for the ontology are obtained from Android Developer
website (Android Developer, 2009) and various existing ontologies as
discussed earlier. As COCCC is a developing ontology, new concepts can be
added from time to time, forming a more detailed knowledge tree.

After the extraction of entities, the next step is the formation of
taxonomy. All concepts are arranged in a taxonomic hierarchy. Forming
taxonomy helps people understand the ontology better and serves as reference
for integration and reuse of other ontologies. Some of the concepts from Table

29

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

3 are represented as classes or subclasses and the relationship between them
are represented as is-a. For example, in Figure 3, Social Environment is a
child of the User context.

Table 4

Glossary of Concepts

Glossary of Concepts
Activity An activity is the entry point for any interaction with the user.

Content Provider A content provider handles a shared set of application data that
can be stored in the file system, in a SQLite database, on the
web, or on any other non-volatile storage location that can be
accessed by the application.

Services Services have a range of potential use, acting as the entry point
for retaining an application running in the background for all
forms of reasons.

Broadcast Receiver A broadcast receiver is a building block that enables the system
to carry events to the app outside of a normal user flow, allowing
the app to react to system-wide broadcast announcements.

Foundation A context that influences existing resources in mobile devices.

Environment A context influenced by surroundings, nearby conditions and
circumstances.

User Any context that requires interference or interaction from the
user.

Sensor A device capable of sensing and detecting change in the
environment.

Ambient Temperature Sensor A sensor that is used to detect only surrounding temperature.

Relative Humidity Sensor A sensor that is used to detect humidity.

Light Sensor A sensor that is used to detect light.

Gyroscope Sensor A sensor that is used to detect motion.

Accelerometer Sensor A sensor that is used to detect gravity.

Proximity Sensor A sensor that is used to detect nearby objects.

Pressure Sensor A sensor that is used to detect location.

GPS A system that is used to detect location.

uses-feature Nodes that can be used to specify which hardware features are
required.

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

30

Figure 3. Example of class and subclass.

The concepts are grouped as a collection of subclasses for different main
classes. Figure 4 shows the grouping of the main classes with their subclasses.
Except for the application manifest and android application which are marked
in a box, all the information for the other three classes are specifically grouped
together in a certain way to show the link between each class in order to
promote understanding of mobile applications to the developer. These five
classes are the most basic concepts in mobile environments. Every application
comes with an AndroidManifest.xml file in its root directory. The manifest
file supplies important information regarding the application to the Android
operating system, which is required for running the application. The references
used for designing the Application Manifest’s branch in COCCC ontology
comes directly from the Android Developer website.

The context class branches out into different subclasses that share
common features but also differs significantly in detailed characteristics.
Figure 5 describes the subclasses of contexts.

Context is divided into four categories: environment, user, location,
and foundation. Environment context is defined as a context influenced by
surroundings, nearby conditions and circumstances. Other subclasses of
surroundings include humidity, gravity, noise, touch, motion, vision, nearby
object, position, light, and temperature. User context is defined as any context
that requires interference or interaction from the user. For example, input
from the user, the user’s interaction with application interface, and also how
information uploaded by the user (e.g. video, image, and sound) is presented
to other users. Location context describes the current location of the mobile
device in which the context is influenced by latitude and longitude. Foundation
context is defined as context that influences the existing resources in mobile
devices. Foundation is divided into three: power, memory, and connectivity.
These resources are available in all mobile devices. Figure 6 shows the
Application Manifest class.

31

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

Figure 4. Main classes and their subclasses.

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

32

Figure 5. Subclasses of contexts.

The application manifest file offers necessary information about the
application to the Android operating system. The information declared in
the manifest is important in order to determine which components will be
used to run the application. The manifest describes the Android application
class components. At the same time, the manifest publishes the application’s
capabilities, for example, the Intent messages they can handle. Besides, the
manifest declares permission to use hardware components, by allowing the
hardware to be integrated with available APIs. To sum up, the application
manifest acts as an intermediary between certain concepts which enables
interaction between them, as permitted by the manifest.

33

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

Figure 6. Components inside the application manifest.

Figure 7. Detection and recognition activity.

14

and connectivity. These resources are available in all mobile devices. Figure 6 shows the Application

Manifest class.

Figure 6. Components inside the application manifest.

The application manifest file offers necessary information about the application to the Android

operating system. The information declared in the manifest is important in order to determine which

components will be used to run the application. The manifest describes the Android application class

components. At the same time, the manifest publishes the application’s capabilities, for example, the

Intent messages they can handle. Besides, the manifest declares permission to use hardware

components, by allowing the hardware to be integrated with available APIs. To sum up, the

application manifest acts as an intermediary between certain concepts which enables interaction

between them, as permitted by the manifest.

15

Figure 7. Detection and recognition activity.

Figure 7 shows the Activity class. The class is divided into two: detection and recognition. The

detection subclass refers to any action or process of identifying the presence of something in the

environment and location which includes light, temperature, motion, noise, gravity, nearby object,

touch, location, and humidity. Recognition is the ability of an application to recognize language or

object(s). Recognition class includes speech and image recognition.

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

34

Figure 7 shows the Activity class. The class is divided into two: detection and
recognition. The detection subclass refers to any action or process of identifying
the presence of something in the environment and location which includes
light, temperature, motion, noise, gravity, nearby object, touch, location, and
humidity. Recognition is the ability of an application to recognize language or
object(s). Recognition class includes speech and image recognition.

Figure 8. Hardware tools present in mobile devices.

Figure 8 shows the subclasses of hardware which falls under the mobile
device class. Hardware tools consist of many subclasses such as sensors,
camera, touchscreen, audio, microphone, USB, and others. The sensors can
be further categorized into three types: motion, environment, and position.
The motion sensor enables the user to monitor the motion of the device.
The position sensor allows the user to determine the position of a device.
The environment sensor lets the user keep track of different environmental
properties.

35

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

Relationship

Semantic relationship is a direct relationship that exists in ontology while
semantic association is an indirect relationship in ontology. Relationship
depicts a type of connection between predetermined concepts. For example,
GPS and Location Detection are linked by isUsedFor relation as shown in
Figure 9. GPS is used for location detection. The inverse of this relation is
isDetectedBy. Table 5 shows the relation and inverse relation of concepts.

Figure 9. Relationships between GPS and Location Detection.

Table 5

Relationship Table

Relation name Source Concept Target concept Inverse relation

isUsedFor Ambient Temperature Sensor Temperature
Detection

isDetectedBy

isUsedFor Relative Humidity Sensor Humidity Detection isDetectedBy

isUsedFor Light Sensor Light Detection isDetectedBy

isUsedFor Gyroscope Sensor Motion Detection isDetectedBy

isUsedFor Light Sensor Noise Detection isDetectedBy

isUsedFor Accelerometer Sensor Gravity Detection isDetectedBy

isUsedFor Proximity Sensor Nearby Object Detection isDetectedBy

isUsedFor Pressure Sensor Location Detection (no GPS) isDetectedBy

isUsedFor GPS Location Detection isDetectedBy

canDetect Ambient Temperature Sensor Temperature canBeDetectedBy

canDetect Relative Humidity Sensor Humidity canBeDetectedBy

canDetect Light Sensor Light canBeDetectedBy

canDetect Gyroscope Sensor Motion canBeDetectedBy

canDetect Accelerometer Sensor Gravity canBeDetectedBy

canDetect Proximity Sensor Nearby object canBeDetectedBy

17

Figure 8 shows the subclasses of hardware which falls under the mobile device class. Hardware tools

consist of many subclasses such as sensors, camera, touchscreen, audio, microphone, USB, and others.

The sensors can be further categorized into three types: motion, environment, and position. The motion

sensor enables the user to monitor the motion of the device. The position sensor allows the user to

determine the position of a device. The environment sensor lets the user keep track of different

environmental properties.

Relationship

Semantic relationship is a direct relationship that exists in ontology while semantic association is an

indirect relationship in ontology. Relationship depicts a type of connection between predetermined

concepts. For example, GPS and Location Detection are linked by isUsedFor relation as shown in Figure

9. GPS is used for location detection. The inverse of this relation is isDetectedBy. Table 5 shows the

relation and inverse relation of concepts.

Figure 9. Relationships between GPS and Location Detection.

Table 5

Relationship Table

Relation

name

Source Concept Target concept Inverse relation

isUsedFor Ambient Temperature

Sensor

Temperature

Detection

isDetectedBy

isUsedFor Relative Humidity

Sensor

Humidity Detection isDetectedBy

isUsedFor Light Sensor Light Detection isDetectedBy

(continued)

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

36

Relation name Source Concept Target concept Inverse relation

canDetect Pressure Sensor Location canBeDetectedBy

canDetect GPS Location canBeDetectedBy

canRecognize Camera Image canBeRecognizedBy

canRecognize Speaker Speech canBeRecognizedBy

giveDeclare uses-feature Hardware Tools declaredBy

givePermission uses-permission Hardware Tools isGivenPermissionBy

Axiom

Axiom is assertion in a logical form. Ontology has its own line of axioms
and these axioms are made up of statements which are assumed as true. For
example, “sensor is an element of mobile devices and is used for detection”,
would have satisfied the axiom. Another example of axiom is: Ambient
Temperature Sensor is used for detecting only surrounding temperature and
cannot be used to detect light or other contexts. The axioms for the context
ontology are presented in Table 6.

Table 6

Logical Table

Concept name Axiom description Logical expression
Sensors A device capable of

sensing and detecting
change in the environment

•	 Sensor ⊆ Hardware Tools ∩ ∃ isUsedFor.
Detection

Ambient
Temperature
Sensor

A sensor that is used to
detect only surrounding
temperature

•	 AmbientTemperatureSensor ⊆ Sensor ∩ ∀
is UsedFor.TemperatureDetection

•	 AmbientTemperatureSensor ⊆ Sensor ∩ ∀
canDetect.Temperature

Relative
Humidity
Sensor

A sensor that is used to
detect only humidity

•	 RelativeHumiditySensor ⊆ Sensor ∩ ∀
isUsedFor.HumidityDetection

•	 RelativeHumiditySensor ⊆ Sensor ∩ ∀
canDetect.Humidity

Light Sensor A sensor that is used to
detect only light

•	 LightSensor ⊆ Sensor ∩ ∀ isUsedFor.
LightDetection

•	 LightSensor ⊆ Sensor ∩ ∀ canDetect.Light

Gyroscope
Sensor

A sensor that is used to
detect only motion

•	 GyroscopeSensor ⊆ Sensor ∩ ∀ isUsedFor.
MotionDetection

•	 GyroscopeSensor ⊆ Sensor ∩ ∀ canDetect.
Motion

(continued)

37

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

Concept name Axiom description Logical expression
Accelerometer
Sensor

A sensor that is used to
detect only gravity

•	 AccelerometerSensor ⊆ Sensor ∩ ∀
isUsedFor.GravityDetection

•	 AccelerometerSensor ⊆ Sensor ∩ ∀
canDetect.Gravity

Proximity
Sensor

A sensor that is used
to detect only nearby
object(s)

•	 ProximitySensor ⊆ Sensor ∩ ∀ isUsedFor.
NearbyObjectDetection

•	 ProximitySensor ⊆ Sensor ∩ ∀ canDetect.
NearbyObject

Pressure Sensor A sensor that is used to
detect location

•	 PressureSensor ⊆ Sensor ∩ ∀ isUsedFor.
LocationDetection

•	 PressureSensor ⊆ Sensor ∩ ∀ canDetect.
Location

GPS A system that is used to
detect location

•	 GPS ⊆ HardwareTools ∩ ∀ isUsedFor.
LocationDetection

•	 GPS ⊆ HardwareTools ∩ ∀ canDetect.
Location

uses-feature Nodes that can be used to
specify which hardware
features are required

•	 uses-feature ⊆ ApplicationManifest ∩ ∀
giveDeclare.HardwareTools

To ask for some information from the ontology, simply type the
expressions on DL Query. Figure 10 and 11 show examples of class query that
can be performed on the context ontology. First, it can be useful to see which
things are classified “under” this expression.

Q: “Which hardware tools can detect certain surroundings?”

To query what kind of sensor is used for certain conditions, the following
question is asked:

Q: “What type of sensor is used to detect nearby object(s)?”

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

38

Figure 10. Example 1: DL Query in Protégé.

Figure 11. Example 2: DL Query in Protégé.

21

To ask for some information from the ontology, simply type the expressions on DL Query. Figure 10 and

11 show examples of class query that can be performed on the context ontology. First, it can be useful to

see which things are classified "under" this expression.

Q: “Which hardware tools can detect certain surroundings?”

Figure 10. Example 1: DL Query in Protégé.

To query what kind of sensor is used for certain conditions, the following question is asked:

Q: “What type of sensor is used to detect nearby object(s)?”

Figure 8. Hardware tools present in mobile devices

Figure 11. Example 2: DL Query in Protégé

39

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

Consistency Checking

Redundancy in instances can lead to an inconsistent ontology which could
decrease the practicality of the ontology itself. Pellet reasoner was used to
check for any inconsistencies since it can handle growing OWL ontologies.
Any inconsistencies in concepts, relationships, and labeling were removed
prior to the use of the Pellet reasoner. Figure 12 shows the results of validation
of context ontology using Pellet.

Figure 12. Pellet consistency checking in Protégé.

If the query detects inconsistent relationship, it will send out a red
error message (Noy, Fergason, & Musen, 2000). Therefore, it is assumed that
the context ontology is free from redundancy since no error is shown in the
message results.

SURVEY ON ACCEPTANCE

The COCCC ontology is evaluated through survey. The survey sets a
benchmark for COCCC in terms of usability from the domain expert’s view.
The demography or experience data of the respondents were measured using
demography questionnaires which covered the respondents’ work background
in mobile application development. Respondents consisted of three males and

23

Figure 12. Pellet consistency checking in Protégé.

If the query detects inconsistent relationship, it will send out a red error message (Noy, Fergason, &

Musen, 2000). Therefore, it is assumed that the context ontology is free from redundancy since no error is

shown in the message results.

SURVEY ON ACCEPTANCE

The COCCC ontology is evaluated through survey. The survey sets a benchmark for COCCC in terms of

usability from the domain expert’s view. The demography or experience data of the respondents were

measured using demography questionnaires which covered the respondents’ work background in mobile

application development. Respondents consisted of three males and two females, with varying work

backgrounds in mobile apps development or testing. The variation in age range was small since the first

Android operating system was launched in 2008, about 10 years ago. Two respondents were involved in

less than five Android projects, two respondents were involved in 5–10 projects, and the other respondent

was involved in more than 10 projects. Table 7 includes detailed demographic data of the respondents.

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

40

two females, with varying work backgrounds in mobile apps development or
testing. The variation in age range was small since the first Android operating
system was launched in 2008, about 10 years ago. Two respondents were
involved in less than five Android projects, two respondents were involved in
5–10 projects, and the other respondent was involved in more than 10 projects.
Table 7 includes detailed demographic data of the respondents.

Table 7

Demographic Data

ID Work
background

in mobile apps
development/

testing

Industry
background
(research or
industrial
training)

Projects
involved

Determine
suitable source
codes related

to location and
speech context

for Android

Determine
type of context

awareness
embedded
in mobile

application
1 Less than 3

years
Less than 3
years

Less than 5
projects

Average Average

2 Less than 3
years

3–6 years 5–10 projects Substantial Average

3 Less than 3
years

3–6 years Less than 5
projects

Minimal Minimal

4 Less than 3
years

3–6 years 5–10 projects Average Average

5 3–6 years Less than 3
years

More than 10
projects

Substantial Professional

After undergoing the COCCC ontology for 30 minutes, technical and
usability questionnaires were administered to the respondents. The technical
part required them to answer questions related to Android mobile application
with regard to COCCC ontology whereas the usability questions measured
their opinion on COCCC ontology in terms of usefulness and ease of use.
Descriptive analytics was used to better understand data obtained from the
questionnaires. Descriptive analytics is a process of using exploratory analysis
consisting of statistical techniques such as mean, measures of dispersion
(standard deviation), charts, graphs and frequency distribution to help in
understanding and visualizing big datasets (Yusuf-Asaju et al., 2018). Table 8
shows the results of each question in which ‘m’ represents the mean while ‘s’
represents the standard deviation. The answers are reflected using a scale of 1
to 5, with 5 indicating strongly agree; 1 indicating strongly disagree.

41

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

Table 8

Usability Questionnaire Results

Usefulness 1 2 3 4 5 m s
Using the proposed context ontology, the
relationship between mobile applications,
devices, contexts, Android Manifests, and activity
elements are clear and understandable.

2 3 4.6 0.55

Using the proposed context ontology, it is easier
for beginner mobile applications developers to
identify contexts, sensors, and the relationship
between context and sensor in mobile applications.

3 2 4.4 0.55

Using the proposed context ontology, it helps to
develop mobile applications more easily.

4 1 4.2 0.45

The proposed context ontology is clear and easy
to follow.

3 2 4.4 0.55

The proposed context ontology is comprehensive
and easy to understand.

3 2 4.4 0.55

Assuming the context ontology is realized in a
sophisticated tool, I would prefer to use it as it
helps me in developing and testing context-aware
mobile applications.

3 2 4.4 0.55

Assuming the context ontology in a sophisticated
tool is available; I would recommend its usage
as the ontology is accurate, complete, and
comprehensively documented.

3 2 4.4 0.55

Based on Table 8, it has been found that most respondents considered COCCC
ontology useful in helping them identify elements needed to develop a mobile
application, as well as assisting them in identifying location and speech related
context in a mobile application. Most respondents agreed that the proposed
context ontology was clear and easy to follow and understand.

CONCLUSION

Context-aware mobile applications are able to sense their surroundings and
adapt themselves to changes. These changes include connectivity and graphi-
cal changes according to the user’s screen orientation (Püschel et al., 2012).

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

42

mIO! Ontology Network has managed to cover all subdomains: device, en-
vironment, interface, location, network, provider, service, time, and user
(Poveda Villalon et al., 2010). Delivery context focuses on device, environ-
ment, location, and network while SOUPA discusses the ontology of location,
time, and user (Rodríguez, 2014).

The COCCC ontology focused on the environment and location.
Although these subdomains have been covered in mIO! Ontology Network,
it introduced context in a general way, failing to go into the details of each
subdomain. On the other hand, the COCCC goes in depth into the function of
each sensor as well as the API to manipulate context in the Android. In terms
of consistency, there is no contradictory knowledge found in the work so far
since the ontology construction follows the METHONTOLOGY method step-
by-step. The COCCC defined every axiom used; corrected hierarchies levels
and was able to relate one concept with another accurately. Future work could
consider the extension of more domain knowledge such as touch and visuals
in the context ontology. The work could also be extended to iOS mobile ap-
plications. This can be achieved by adding iOS API in the context ontology.
Also, other possible methods of developing the ontology could be considered
as the METHONTOLOGY method has already been used to lay the founda-
tion for creating COCCC ontology.

ACKNOWLEDGMENT

We would like to thank the Ministry of Higher Education Malaysia (MOHE)
for funding the research through the FRGS (vote no. 4F857) and Universiti
Teknologi Malaysia for providing the facilities and support.

REFERENCES

Android Developer. (2009). Android Developer. Retrieved from https://
developer.android.com/index.html

Chen, H., Finin, T., & Joshi, A. (2003). An ontology for context-aware
pervasive computing environments. The Knowledge Engineering
Review, 18(3), 97–207.

Chen, H., Perich, F., Finin, T., & Joshi, A. (2004). Soupa: Standard ontology for
ubiquitous and pervasive applications. The First Annual International
Conference on Mobile and Ubiquitous Systems: Networking and
Services, 258–267.

43

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

Corcho, O., Fernández-López, M., Gómez-Pérez, A., & López-Cima, A.
(2005). Building legal ontologies with METHONTOLOGY and
WebODE. Law and the semantic web. Springer Berlin Heidelberg.
142–157.

Fernández-López, M., Gómez-Pérez, A., & Juristo, N. (1997). Methontology:
From ontological art towards ontological engineering. Proceedings of
the Ontological Engineering AAAI-97 Spring Symposium Series, 33–40.

Fonseca, J. M. C., & Lewis, R. (2009). Delivery context ontology. W3C
Working Draft. (Work in progress.).

Gruber, T. R. (1993). A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2), 199–220.

Mohd-Hamka, N., & Mohamad, R. (2014). OntoUji–Ontology to evaluate
domain ontology for semantic web services description. Jurnal
Teknologi, 69(6), 21–26.

Lee, K., Lee, J., & Kwan, M. P. (2017). Location-based service using ontology-
based semantic queries: A study with a focus on indoor activities in a
university context. Computers, Environment and Urban Systems, 62,
41–52.

Noy, N., Fergason, W. R., & Musen, A. M. (2000). The knowledge model of
protege. Proceedings of the 2nd International Conference on Knowledge
Engineering and Knowledge Management, 17–32.

Pinto, H. S., & Martins, J. P. (2004). Ontologies: How can they be built?
Knowledge and information systems, 6(4), 441–464.

Poveda Villalon, M., Suárez-Figueroa, M.C., García-Castro, R., & Gómez-
Pérez, A. (2010). A Context Ontology for Mobile Environments.
Workshop on Context, Information and Ontologies - CIAO
2010 Co-located with EKAW 2010, ISSN: 1613–0073.

Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P.,
Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., & De Bosschere, K.
(2004). Towards an extensible context ontology for ambient intelligence.
EUSAI, 148–159.

Püschel, G., Seiger, R., & Schlegel, T. (2012). Test Modeling for Context-
aware Ubiquitous Applications with Feature Petri Nets. Proc. Workshop
Model-based Interactive Ubiquitous Systems (MODIQUITOUS), 37–40.

Rodríguez, N.D., Cuéllar, M.P., Lilius, J., & Calvo-Flores, M.D. (2014). A
survey on ontologies for human behavior recognition. ACM Computing
Surveys (CSUR), 46(4), 43.

Subhashini, R., & Akilandeswari, J. (2011). A survey on ontology construction
methodologies. International Journal of Enterprise Computing and
Business Systems, 1(1), 60–72.

Journal of ICT, 19, No. 1 (January) 2020, pp: 21-44

44

Sulaiman, M. S., Nordin, S., & Jamil, N. (2017). An object properties filter
for multi-modality ontology semantic image retrieval. Journal of
Information and Communication Technology, 16(1), 1–19.

Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, methods and
applications. Knowledge engineering review, 11(2), 93–136.

Wang, X. H., Zhang, D. Q., Gu, T., & Pung, H. K. (2004). Ontology based
context modeling and reasoning using OWL. Pervasive Computing and
Communications Workshops, 2004. Proceedings of the Second IEEE
Annual Conference, 18–22.

Yusuf-Asaju, A. W., Zulkhairi Md Dahalin, & Azman Ta’a. (2018). Framework
for modelling mobile network quality of experience through big
data analytics approach. Journal of Information and Communication
Technology (JICT), 17(1), 79–113.

Zeshan, F., & Mohamad, R. (2012). Medical ontology in the dynamic
healthcare environment. Procedia Computer Science, 10, 340–348.

