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ABSTRACT

Mobile applications are expected to receive context input 
such as location, speech, and network from different context 
providers. Since context can be considered as knowledge, a 
formal method is needed to capture this knowledge. There is 
less work on ontology model that could be reused to model a 
new context ontology for Android mobile application. Therefore, 
this study proposed an ontology specifically for Android mobile 
application, COCCC, to formalize context knowledge present 
within it. METHONTOLOGY method was used to create 
COCCC ontology as it offers intermediate representation in the 
form of concepts. The concepts from the context ontology were 
extracted from various resources, sorted and categorized based 
on types and functions for standardization purposes. Survey was 
given to five domain experts for evaluation of COCCC ontology 
in terms of its usability. Data from these experts were analyzed 
and the results have confirmed that the proposed context ontology 
is usable to Android mobile application developers.

Keywords: Context ontology, knowledge representation, mobile application, 
ontology.

INTRODUCTION

Understanding and catching up on the latest mobile application technology 
are exhausting to some mobile application developers. The complexity 
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of context-aware mobile application has led researchers to design several 
ontologies to capture the knowledge, as well as organize information within 
the mobile application and its users. The development of context-aware mobile 
application needs to be supported by sufficient context modeling and reasoning 
techniques. The context involved in mobile application development can be 
further categorized in order to better assist mobile application developers 
during the development phase.

Ontology can be referred as ideas abstraction that represents concepts 
inside some body of knowledge (Mohd-Hamka & Mohamad, 2014). The 
categorization of context in a specific body of knowledge provides a formal 
model of conceptualization (Gruber, 1993). A formal ontology consists of a 
specific vocabulary expressed in a representation language (Sulaiman, Nordin, 
& Jamil, 2017). Ontology is made up of hierarchical definitions of principal 
concepts in a domain (Zeshan & Mohamad, 2012). The relationships between 
these different hierarchies are depicted as is-a, part-of, and so on, depending 
on the taxonomy (Subhashini & Akilandeswari, 2011). The structure of 
knowledge in a particular domain can be shared, reused, and merged with 
other ontology models in different domains (Lee, Lee, & Kwan, 2017).

One of the famous mobile application ontologies is mIO! Ontology 
Network.  mIO! Ontology has managed to cover many subdomains in mobile 
applications; device, environment, interface, location, network, provider, 
service, time, and user (Poveda Villalon et al., 2010). However, mIO! Ontology 
cannot be reused to fit Android mobile applications at the source code level as 
the ontology lacks the application program interface (API) present in Android 
mobile apps.

RELATED WORK

Context ontology allows representation of multiple context knowledge and 
also provides a formal language and logic to context knowledge, which assist 
in integration and sharing of information between contexts.

There is a variety of context ontologies with different subdomains such 
as location, environment, device, network provider, role, service, source, and 
user. Table 1 shows a comparison of different existing context ontologies with 
regard to different context subdomains.

COBRA-ONT describes the regular relationships related to people 
and activities which enable the sharing of knowledge and ontology reasoning 
within the CoBra (Context Broker Architecture) infrastructure (Chen, Finin, 
& Joshi, 2003). To solve some challenges in Ambient Intelligent computing 
infrastructures, the CoDAMos ontology provides intelligent services to the 
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user which includes application adaptation, automatic code generation and 
code mobility, and user interfaces (Preuveneers et al., 2004). The ontology 
consists of four fundamental entities: user, service, environment, and platform.

Table 1

Comparison of Existing Context Ontologies
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Environment √ √ √ √ √
Location √ √ √ √ √ √
Device √ √ √ √
Network √ √
Role √ √ √
Service √ √
User √ √ √ √ √

 
CONtext ONtology (CONON) provides an extensible context modeling 

for pervasive computing environments (Wang et al., 2004). CONON presents 
common concepts such as location, user, activity, and computational entity 
in order to capture information on executing situations. These entities can 
be extended hierarchically by adding domain specific concepts. The context 
model is divided into two; upper ontology (high-level ontology) and 
specific ontology. The upper ontology expresses common characteristics 
of fundamental contexts whereas the specific ontology describes details of 
common concepts and their characteristics in their subdomains. Standard 
Ontology for Ubiquitous and Pervasive Applications (SOUPA) addresses 
general issues via upper ontologies method (Chen et al., 2004). SOUPA is 
divided into two main blocks; SOUPA Core and SOUPA Extensions. SOUPA 
Core consists of concept vocabularies that associate with person, agent, belief-
desire-intention (BDI), action, policy, time, space, and event, while SOUPA 
Extensions supports specific concepts in certain domains, for example, 
management (Chen et al., 2004). The limitation of SOUPA ontology is the 
small number of features that describes a mobile device in mobile computing 
environments.
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 Delivery context ontology gives a formal model of environment 
characteristics in which different devices communicate with physical 
services (Fonseca & Lewis, 2009). The ontology includes the attributes of 
the device, the software for accessing the service, and the network which 
provides the connection (Fonseca & Lewis, 2009). Principal entities present 
in this ontology are environment, hardware, software, location, and measure. 
The most prominent work in the ontology mobile computing environment 
is mIO! Ontology, which incorporates nine sets of contextual subdomains 
(Poveda Villalon et al., 2010). The contextual information in mIO! Ontology 
is categorized into 11 different ontologies: device, environment, interface, 
location, network provider, role, service, source, time, and user. The goal of 
mIO! Ontology is to represent the user’s contextual knowledge which may 
later influence his or her interactions with mobile devices. The user will be 
able to interact with services provided by companies through his or her mobile 
device. mIO! Ontology reuses knowledge from other context ontologies such 
as CODAMOS, SOUPA, and Delivery context ontology.

Based on the existing context ontologies, there is no specific model that 
can be reused for modeling a new context ontology that caters specifically for 
Android mobile applications. Speech context, which is widely popular due 
to its speech recognition ability to guide users, has not been covered in these 
existing ontologies. The proposed context ontology however, focuses more 
on the environment surrounding mobile devices especially on location and 
speech. The new ontology specifies how hardware like sensor is connected to 
specific activities such as gravity detection, and more.

CONTEXT ONTOLOGY MODELING

Modeling context ontology is possible since context can be considered as a 
specific kind of knowledge (Poveda Villalon et al., 2010). Concepts in ontology 
construction can be modeled as classes or sub-classes, depending on the 
hierarchy. Since ontology describes the sharing of comprehension of specific 
domains, it can be used as a basic structure to solve problems in knowledge 
sharing (Uschold & Gruninger, 1996). Besides, ontology also helps in improving 
communication between humans or computers. METHONTOLOGY helps 
in developing ontology from scratch (Fernández-López, Gómez-Pérez, & 
Juristo, 1997). For an inexperienced ontology builder, METHONTOLOGY 
offers intermediate representation which is easy to understand (Pinto & 
Martins, 2004). Furthermore, METHONTOLOGY provides guidance in 
creating ontology through specification, conceptualization, formalization, 
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implementation, and maintenance (Corcho et al., 2005). Figure 1 shows five 
development activities in METHONTOLOGY.

Figure 1. Activities in ontology development proposed by METHONTOLOGY 
(Corcho et al., 2005).

These activities can be further described as follows:
•	 Specification - During this stage, we had to specify the reason why the 

ontology is being built, the use of the ontology, and its target user.
•	 Conceptualization - In this stage, we tried to organize the domain col-

lected by tabulating them in a way that can be easily understood by 
ontology experts and developers. At the end of this stage, we came up 
with a list of ontology concepts that are involved in context.

•	 Formalization - During this activity, we transformed the conceptual 
model from conceptualization into a more formal model.

•	 Implementation - We represented the knowledge involved in context, 
grouped them together, and established a relationship between them by 
using Web Ontology Language (OWL).

•	 Maintenance - Any adjustment, update, or correction on the proposed 
ontology was made during maintenance activity.

The evolving nature of mobile computing complicates the formalization 
of all context information in its entirety. However, this research has found 
that the concepts in mobile environments can be categorized into five classes: 

 
Figure 1. Activities in the ontology development proposed by METHONTOLOGY (Corcho et al., 2005) 

 
Figure 2. COCCC Ontology 
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mobile device, context, application manifest, application, and activity. Apart 
from application manifest and mobile device, all information for the other 
three classes are specifically grouped together, to show the link between each 
class to promote understanding of mobile applications to developers. These 
five classes are the most basic concepts in mobile environments. They form 
the backbone of mobile environments, constituting upper-level entities which 
contribute versatile extensibility that enables the addition of more concepts 
later. Table 2 defines main classes and their corresponding descriptions.

Table 2

Main Classes

Main Classes
Android 
Application

An android application can be interpreted as an application that is 
run on mobile devices with Android operating system.

Activity Activity here is referred as detection and recognition performed 
by the application which manipulates input from context.

Mobile Device A mobile device refers to a portable computing device such as a 
smartphone or tablet computer.

Context Context refers to any information that can be used to characterize 
the situation of an entity which includes lighting, level of noise, 
network connectivity, location, speech, bandwidth, et cetera.

Application 
Manifest

Provides necessary information of the application to the Android 
system, which must be possessed by the system before it can run 
any of the application’s codes.

Figure 2 shows the relationship design between Android application, 
application manifest, context, mobile applications, and mobile device. The 
Application Manifest comes from the Android Manifest.

To build a functional context-aware application, a platform, which is 
the mobile device itself, is needed. Sub-categories from the mobile device 
include hardware, software, and battery. The hardware can be called into use 
by declaring them inside the application manifest. The declaration from the 
application manifest enables the application to use hardware such as sensors. 
Depending on which hardware is activated, the Activity class will start to detect 
or recognize any potential Context available within the user’s surroundings. 
Later, the class sends back the information on context to the running Android 
application.
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Figure 2. COCCC Ontology.

Concepts

METHONTOLOGY suggests the conceptualization of ontologies with a set 
of tabular and graphical Intermediate Representation (IR). These IRs enable 
the modeling of the components explained in this section. Concept can be 
perceived differently depending on the main classes. For example, concepts 
in mobile environments include activity, light detection, sensor, etc. These 
concepts are generally organized in taxonomies where inheritance is usually 
involved. Specific types of annotations and metadata are added later to 
the document. Before developing ontology, all concepts related to mobile 
environments need to be identified. The identification of concepts prevents 
redundancy in the ontology, as well as gives a clear idea on which class the 
concept belongs to. Table 3 lists all the concepts involved during context 
ontology development and Table 4 lists the glossary of lower level concepts 
and their corresponding descriptions.

 
Figure 1. Activities in the ontology development proposed by METHONTOLOGY (Corcho et al., 2005) 

 
Figure 2. COCCC Ontology 
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Table 3

Ontology Concepts

Ontology Concepts
Activity Context Mobile Device Detection
Recognition Environment Foundation User
Battery Hardware Tools Sensors Gravity detection
Humidity detection Light detection Location detection Location detection 

(without GPS)
Motion detection Nearby object 

detection
Noise detection Temperature detection

Touch detection Image recognition Speech recognition Location
Surroundings Gravity Humidity Light
Motion Nearby object Noise Temperature
Touch Vision Connectivity Memory
Power Input Social Environment Interface
Speech Sound Image Video
GPS SD Card Touchscreen Accelerometer Sensor
Ambient Temperature 
Sensor

Gyroscope Sensor Light Sensor Magnetic Field Sensor

Pressure Sensor Proximity Sensor Relative Humidity 
Sensor

Android Application 
Project

Manifest File application instrumentation Permission
supports-gl-texture supports-screen uses-configuration uses-feature
uses-permission uses-sdk activity Provider
receiver service uses-library Android Application
Notifications Widgets Broadcast Receivers Intents
Content Providers Services Activities Wi-Fi
USB Telephony NFC Microphone
Camera Bluetooth

The concepts for the ontology are obtained from Android Developer 
website (Android Developer, 2009) and various existing ontologies as 
discussed earlier. As COCCC is a developing ontology, new concepts can be 
added from time to time, forming a more detailed knowledge tree.

After the extraction of entities, the next step is the formation of 
taxonomy. All concepts are arranged in a taxonomic hierarchy. Forming 
taxonomy helps people understand the ontology better and serves as reference 
for integration and reuse of other ontologies. Some of the concepts from Table 
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3 are represented as classes or subclasses and the relationship between them 
are represented as is-a. For example, in Figure 3, Social Environment is a 
child of the User context.

Table 4

Glossary of Concepts

Glossary of Concepts
Activity An activity is the entry point for any interaction with the user.

Content Provider A content provider handles a shared set of application data that 
can be stored in the file system, in a SQLite database, on the 
web, or on any other non-volatile storage location that can be 
accessed by the application.

Services Services have a range of potential use, acting as the entry point 
for retaining an application running in the background for all 
forms of reasons.

Broadcast Receiver A broadcast receiver is a building block that enables the system 
to carry events to the app outside of a normal user flow, allowing 
the app to react to system-wide broadcast announcements.

Foundation A context that influences existing resources in mobile devices.

Environment A context influenced by surroundings, nearby conditions and 
circumstances.

User Any context that requires interference or interaction from the 
user.

Sensor A device capable of sensing and detecting change in the 
environment.

Ambient Temperature Sensor A sensor that is used to detect only surrounding temperature.

Relative Humidity Sensor A sensor that is used to detect humidity.

Light Sensor A sensor that is used to detect light.

Gyroscope Sensor A sensor that is used to detect motion.

Accelerometer Sensor A sensor that is used to detect gravity.

Proximity Sensor A sensor that is used to detect nearby objects.

Pressure Sensor A sensor that is used to detect location.

GPS A system that is used to detect location.

uses-feature Nodes that can be used to specify which hardware features are 
required.
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Figure 3. Example of class and subclass.

The concepts are grouped as a collection of subclasses for different main 
classes. Figure 4 shows the grouping of the main classes with their subclasses. 
Except for the application manifest and android application which are marked 
in a box, all the information for the other three classes are specifically grouped 
together in a certain way to show the link between each class in order to 
promote understanding of mobile applications to the developer. These five 
classes are the most basic concepts in mobile environments. Every application 
comes with an AndroidManifest.xml file in its root directory. The manifest 
file supplies important information regarding the application to the Android 
operating system, which is required for running the application. The references 
used for designing the Application Manifest’s branch in COCCC ontology 
comes directly from the Android Developer website.

The context class branches out into different subclasses that share 
common features but also differs significantly in detailed characteristics. 
Figure 5 describes the subclasses of contexts.

Context is divided into four categories: environment, user, location, 
and foundation. Environment context is defined as a context influenced by 
surroundings, nearby conditions and circumstances. Other subclasses of 
surroundings include humidity, gravity, noise, touch, motion, vision, nearby 
object, position, light, and temperature. User context is defined as any context 
that requires interference or interaction from the user. For example, input 
from the user, the user’s interaction with application interface, and also how 
information uploaded by the user (e.g. video, image, and sound) is presented 
to other users. Location context describes the current location of the mobile 
device in which the context is influenced by latitude and longitude. Foundation 
context is defined as context that influences the existing resources in mobile 
devices. Foundation is divided into three: power, memory, and connectivity. 
These resources are available in all mobile devices. Figure 6 shows the 
Application Manifest class.
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Figure 4. Main classes and their subclasses.
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Figure 5. Subclasses of contexts.

The application manifest file offers necessary information about the 
application to the Android operating system. The information declared in 
the manifest is important in order to determine which components will be 
used to run the application. The manifest describes the Android application 
class components. At the same time, the manifest publishes the application’s 
capabilities, for example, the Intent messages they can handle. Besides, the 
manifest declares permission to use hardware components, by allowing the 
hardware to be integrated with available APIs. To sum up, the application 
manifest acts as an intermediary between certain concepts which enables 
interaction between them, as permitted by the manifest.
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Figure 6. Components inside the application manifest.

Figure 7. Detection and recognition activity.
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Figure 7. Detection and recognition activity. 

 

Figure 7 shows the Activity class. The class is divided into two: detection and recognition. The 

detection subclass refers to any action or process of identifying the presence of something in the 

environment and location which includes light, temperature, motion, noise, gravity, nearby object, 

touch, location, and humidity. Recognition is the ability of an application to recognize language or 

object(s). Recognition class includes speech and image recognition. 
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Figure 7 shows the Activity class. The class is divided into two: detection and 
recognition. The detection subclass refers to any action or process of identifying 
the presence of something in the environment and location which includes 
light, temperature, motion, noise, gravity, nearby object, touch, location, and 
humidity. Recognition is the ability of an application to recognize language or 
object(s). Recognition class includes speech and image recognition.

Figure 8. Hardware tools present in mobile devices.

Figure 8 shows the subclasses of hardware which falls under the mobile 
device class. Hardware tools consist of many subclasses such as sensors, 
camera, touchscreen, audio, microphone, USB, and others. The sensors can 
be further categorized into three types: motion, environment, and position. 
The motion sensor enables the user to monitor the motion of the device. 
The position sensor allows the user to determine the position of a device. 
The environment sensor lets the user keep track of different environmental 
properties.
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Relationship

Semantic relationship is a direct relationship that exists in ontology while 
semantic association is an indirect relationship in ontology. Relationship 
depicts a type of connection between predetermined concepts. For example, 
GPS and Location Detection are linked by isUsedFor relation as shown in 
Figure 9. GPS is used for location detection. The inverse of this relation is 
isDetectedBy. Table 5 shows the relation and inverse relation of concepts.

Figure 9. Relationships between GPS and Location Detection.

Table 5

Relationship Table

Relation name Source Concept Target concept Inverse relation

isUsedFor Ambient Temperature Sensor Temperature 
Detection

isDetectedBy

isUsedFor Relative Humidity Sensor Humidity Detection isDetectedBy

isUsedFor Light Sensor Light Detection isDetectedBy

isUsedFor Gyroscope Sensor Motion Detection isDetectedBy

isUsedFor Light Sensor Noise Detection isDetectedBy

isUsedFor Accelerometer Sensor Gravity Detection isDetectedBy

isUsedFor Proximity Sensor Nearby Object Detection isDetectedBy

isUsedFor Pressure Sensor Location Detection (no GPS) isDetectedBy

isUsedFor GPS Location Detection isDetectedBy

canDetect Ambient Temperature Sensor Temperature canBeDetectedBy

canDetect Relative Humidity Sensor Humidity canBeDetectedBy

canDetect Light Sensor Light canBeDetectedBy

canDetect Gyroscope Sensor Motion canBeDetectedBy

canDetect Accelerometer Sensor Gravity canBeDetectedBy

canDetect Proximity Sensor Nearby object canBeDetectedBy

17 
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Relation name Source Concept Target concept Inverse relation

canDetect Pressure Sensor Location canBeDetectedBy

canDetect GPS Location canBeDetectedBy

canRecognize Camera Image canBeRecognizedBy

canRecognize Speaker Speech canBeRecognizedBy

giveDeclare uses-feature Hardware Tools declaredBy

givePermission uses-permission Hardware Tools isGivenPermissionBy

Axiom

Axiom is assertion in a logical form. Ontology has its own line of axioms 
and these axioms are made up of statements which are assumed as true. For 
example, “sensor is an element of mobile devices and is used for detection”, 
would have satisfied the axiom. Another example of axiom is: Ambient 
Temperature Sensor is used for detecting only surrounding temperature and 
cannot be used to detect light or other contexts. The axioms for the context 
ontology are presented in Table 6.

Table 6

Logical Table

Concept name Axiom description Logical expression
Sensors A device capable of 

sensing and detecting 
change in the environment

•	 Sensor ⊆ Hardware Tools ∩ ∃ isUsedFor. 
Detection

Ambient 
Temperature 
Sensor

A sensor that is used to 
detect only surrounding 
temperature

•	  AmbientTemperatureSensor ⊆    Sensor ∩ ∀ 
is UsedFor.TemperatureDetection

•	 AmbientTemperatureSensor ⊆ Sensor ∩ ∀ 
canDetect.Temperature

Relative 
Humidity 
Sensor

A sensor that is used to 
detect only humidity

•	 RelativeHumiditySensor ⊆ Sensor ∩ ∀ 
isUsedFor.HumidityDetection

•	 RelativeHumiditySensor ⊆ Sensor ∩ ∀ 
canDetect.Humidity

Light Sensor A sensor that is used to 
detect only light

•	 LightSensor ⊆ Sensor ∩ ∀ isUsedFor.
LightDetection

•	 LightSensor ⊆ Sensor ∩ ∀ canDetect.Light

Gyroscope 
Sensor

A sensor that is used to 
detect only motion

•	 GyroscopeSensor ⊆ Sensor ∩ ∀ isUsedFor.
MotionDetection

•	 GyroscopeSensor ⊆ Sensor ∩ ∀ canDetect.
Motion

(continued)
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Concept name Axiom description Logical expression
Accelerometer 
Sensor

A sensor that is used to 
detect only gravity

•	 AccelerometerSensor ⊆ Sensor ∩ ∀ 
isUsedFor.GravityDetection

•	 AccelerometerSensor ⊆ Sensor ∩ ∀ 
canDetect.Gravity

Proximity 
Sensor

A sensor that is used 
to detect only nearby 
object(s)

•	 ProximitySensor ⊆ Sensor ∩ ∀ isUsedFor.
NearbyObjectDetection

•	 ProximitySensor ⊆ Sensor ∩ ∀ canDetect.
NearbyObject

Pressure Sensor A sensor that is used to 
detect location

•	 PressureSensor ⊆ Sensor ∩ ∀ isUsedFor.
LocationDetection

•	 PressureSensor ⊆ Sensor ∩ ∀ canDetect.
Location

GPS A system that is used to 
detect location

•	 GPS ⊆ HardwareTools ∩ ∀ isUsedFor.
LocationDetection

•	 GPS ⊆ HardwareTools ∩ ∀ canDetect.
Location

uses-feature Nodes that can be used to 
specify which hardware 
features are required

•	 uses-feature ⊆ ApplicationManifest ∩ ∀ 
giveDeclare.HardwareTools

To ask for some information from the ontology, simply type the 
expressions on DL Query. Figure 10 and 11 show examples of class query that 
can be performed on the context ontology. First, it can be useful to see which 
things are classified “under” this expression.

Q: “Which hardware tools can detect certain surroundings?”

To query what kind of sensor is used for certain conditions, the following 
question is asked:

Q: “What type of sensor is used to detect nearby object(s)?”
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Figure 10. Example 1: DL Query in Protégé. 

Figure 11. Example 2: DL Query in Protégé. 
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Consistency Checking

Redundancy in instances can lead to an inconsistent ontology which could 
decrease the practicality of the ontology itself. Pellet reasoner was used to 
check for any inconsistencies since it can handle growing OWL ontologies. 
Any inconsistencies in concepts, relationships, and labeling were removed 
prior to the use of the Pellet reasoner. Figure 12 shows the results of validation 
of context ontology using Pellet.

Figure 12. Pellet consistency checking in Protégé.

If the query detects inconsistent relationship, it will send out a red 
error message (Noy, Fergason, & Musen, 2000). Therefore, it is assumed that 
the context ontology is free from redundancy since no error is shown in the 
message results.

SURVEY ON ACCEPTANCE

The COCCC ontology is evaluated through survey. The survey sets a 
benchmark for COCCC in terms of usability from the domain expert’s view. 
The demography or experience data of the respondents were measured using 
demography questionnaires which covered the respondents’ work background 
in mobile application development. Respondents consisted of three males and 
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two females, with varying work backgrounds in mobile apps development or 
testing. The variation in age range was small since the first Android operating 
system was launched in 2008, about 10 years ago. Two respondents were 
involved in less than five Android projects, two respondents were involved in 
5–10 projects, and the other respondent was involved in more than 10 projects. 
Table 7 includes detailed demographic data of the respondents.

Table 7

Demographic Data

ID Work 
background 

in mobile apps 
development/

testing

Industry 
background
(research or 
industrial
training)

Projects 
involved

Determine 
suitable source 
codes related 

to location and 
speech context 

for Android

Determine 
type of context 

awareness 
embedded 
in mobile 

application
1 Less than 3 

years
Less than 3 
years

Less than 5 
projects

Average Average

2 Less than 3 
years

3–6 years 5–10 projects Substantial Average

3 Less than 3 
years

3–6 years Less than 5 
projects

Minimal Minimal

4 Less than 3 
years

3–6 years 5–10 projects Average Average

5 3–6 years Less than 3 
years

More than 10 
projects

Substantial Professional

After undergoing the COCCC ontology for 30 minutes, technical and 
usability questionnaires were administered to the respondents. The technical 
part required them to answer questions related to Android mobile application 
with regard to COCCC ontology whereas the usability questions measured 
their opinion on COCCC ontology in terms of usefulness and ease of use. 
Descriptive analytics was used to better understand data obtained from the 
questionnaires. Descriptive analytics is a process of using exploratory analysis 
consisting of statistical techniques such as mean, measures of dispersion 
(standard deviation), charts, graphs and frequency distribution to help in 
understanding and visualizing big datasets (Yusuf-Asaju et al., 2018). Table 8 
shows the results of each question in which ‘m’ represents the mean while ‘s’ 
represents the standard deviation. The answers are reflected using a scale of 1 
to 5, with 5 indicating strongly agree; 1 indicating strongly disagree.
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Table 8

Usability Questionnaire Results

Usefulness 1 2 3 4 5 m s
Using the proposed context ontology, the 
relationship between mobile applications, 
devices, contexts, Android Manifests, and activity 
elements are clear and understandable.

2 3 4.6 0.55

Using the proposed context ontology, it is easier 
for beginner mobile applications developers to 
identify contexts, sensors, and the relationship 
between context and sensor in mobile applications.

3 2 4.4 0.55

Using the proposed context ontology, it helps to 
develop mobile applications more easily.

4 1 4.2 0.45

The proposed context ontology is clear and easy 
to follow.

3 2 4.4 0.55

The proposed context ontology is comprehensive 
and easy to understand.

3 2 4.4 0.55

Assuming the context ontology is realized in a 
sophisticated tool, I would prefer to use it as it 
helps me in developing and testing context-aware 
mobile applications.

3 2 4.4 0.55

Assuming the context ontology in a sophisticated 
tool is available; I would recommend its usage 
as the ontology is accurate, complete, and 
comprehensively documented. 

3 2 4.4 0.55

Based on Table 8, it has been found that most respondents considered COCCC 
ontology useful in helping them identify elements needed to develop a mobile 
application, as well as assisting them in identifying location and speech related 
context in a mobile application. Most respondents agreed that the proposed 
context ontology was clear and easy to follow and understand.

CONCLUSION

Context-aware mobile applications are able to sense their surroundings and 
adapt themselves to changes. These changes include connectivity and graphi-
cal changes according to the user’s screen orientation (Püschel et al., 2012). 
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mIO! Ontology Network has managed to cover all subdomains: device, en-
vironment, interface, location, network, provider, service, time, and user 
(Poveda Villalon et al., 2010). Delivery context focuses on device, environ-
ment, location, and network while SOUPA discusses the ontology of location, 
time, and user (Rodríguez, 2014). 

The COCCC ontology focused on the environment and location. 
Although these subdomains have been covered in mIO! Ontology Network, 
it introduced context in a general way, failing to go into the details of each 
subdomain. On the other hand, the COCCC goes in depth into the function of 
each sensor as well as the API to manipulate context in the Android. In terms 
of consistency, there is no contradictory knowledge found in the work so far 
since the ontology construction follows the METHONTOLOGY method step-
by-step. The COCCC defined every axiom used; corrected hierarchies levels 
and was able to relate one concept with another accurately. Future work could 
consider the extension of more domain knowledge such as touch and visuals 
in the context ontology. The work could also be extended to iOS mobile ap-
plications. This can be achieved by adding iOS API in the context ontology. 
Also, other possible methods of developing the ontology could be considered 
as the METHONTOLOGY method has already been used to lay the founda-
tion for creating COCCC ontology.
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