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Summary
The transcriptome connects genome to the gene function and ultimate phenome in biology. So

far, transcriptomic approach was not used in peanut for performing trait mapping in bi-parental

populations. In this research, we sequenced the whole transcriptome in immature seeds in a

peanut recombinant inbred line (RIL) population and explored thoroughly the landscape of

transcriptomic variations and its genetic basis. The comprehensive analysis identified total

49 691 genes in RIL population, of which 92 genes followed a paramutation-like expression

pattern. Expression quantitative trait locus (eQTL) analysis identified 1207 local eQTLs and

15 837 distant eQTLs contributing to the whole-genome transcriptomic variation in peanut.

There were 94 eQTL hot spot regions detected across the genome with the dominance of distant

eQTL. By integrating transcriptomic profile and annotation analyses, we unveiled a putative

candidate gene and developed a linked marker InDel02 underlying a major QTL responsible for

purple testa colour in peanut. Our result provided a first understanding of genetic basis of whole-

genome transcriptomic variation in peanut and illustrates the potential of the transcriptome-aid

approach in dissecting important traits in non-model plants.

Introduction

In plant and human genetics, any variation of observable and

measurable traits is traceable to DNA sequence mutations. Many

studies provided compelling evidence that genetic and epigenetic

variations contribute to abundant phenotypic variation in traits via

regulating transcript abundance (Albert andKruglyak, 2015; Chen,

2007; Majewski and Pastinen, 2011). Quantitative trait locus (QTL)

mapping or linkagemapping based on segregating populations is a

popular and successful approach for identifying the links of DNA

sequence variation and phenotypes (Xing and Zhang, 2010).

Plethora of literature available based on several studies suggests

that the functional mutations may be located in a gene that codes

for transcriptional factor or somewhere upstream or downstream

of a gene, which allows modulating large amount of gene

transcription. More and more empirical evidences are emerging

to support the significance of the transcriptomic regulation on

ultimate phenotypic traits in plants (Gou et al., 2011; Jiao et al.,

2010; Li et al., 2014; Liu et al., 2015a,b; Shi et al., 2019; Wang

et al., 2009). In maize, the domestication and genetic improve-

ment were found to bemore prevalently associated with transcrip-

tomic and metabolic variations than genomic variations, perhaps

due to the fact that the mutation of acid amino changes may bring

large side effects on plant survival or adaptation to specific

environments (Liu et al., 2015a, 2015b).

Propelled by high-throughput and low-cost sequencing tech-

nology, the gene expression measured using RNA-based

sequencing (RNA-seq) could be considered for performing QTL

mapping for target phenotypic traits in crop plants (Jansen and

Nap, 2001). Such analysis will help in exploring the transcrip-

tome variation in segregating populations using expression

quantitative trait locus (eQTL) analysis that aims to identify the

genomic regions containing DNA sequence variants that regu-

late the expression level of one or more genes for the target

trait (Albert and Kruglyak, 2015; Kliebenstein, 2009; Majewski

and Pastinen, 2011). Genome-wide eQTL mapping was firstly

reported in yeast in 2002 (Brem et al., 2002) and has been

successfully applied for performing genetic or association

mapping in plants such as Arabidopsis (DeCook et al., 2006;

Lowry et al., 2013; West et al., 2007), rice (Wang et al., 2010,

2014), maize (Fu et al., 2013; Li et al., 2013; Liu et al., 2017),

tomato (Giovannoni, 2018) and lettuce (Zhang et al., 2017).

These studies expanded the understanding on landscape of

transcriptomic variation within genome, thereby enhancing the

understanding of quantitative variations.

Peanut or groundnut (Arachis hypogaea L.) is an important and

globally cultivated oil seed crop in addition to being a good

source of proteins and other micronutrients, such as vitamins,

isoflavonoids and phytosterols (Toomer, 2018). In contrast to

model plants, peanut has the polyploid genome and self-mating
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system, which may raise an open question regarding the general

genetic basis of peanut transcriptomic variations. In 2016, the

reference sequences of its two diploid ancestors were released (

http://www.peanutbase.com; Bertioli et al., 2016). Fuelled by the

advancement on sequencing technologies, the draft genomes

provided an unprecedented opportunity for the researchers to

explore the transcriptomic variation in peanut populations. The

understanding of whole-genome transcriptomic pattern in pea-

nut would be expected to systematically figure out how interac-

tions between genomic and transcriptomic layers can contribute

to phenotypic variations. This knowledge would even be bene-

ficial to discover the putative candidate genes for the detected

QTLs controlling ultimate phenotypic traits, especially in peanut.

Given the fact that peanut has very low seed rate per plant, it

seemed unlikely to narrow down QTL regions so far due to

unavailability of huge mapping population and sufficient recom-

bination.

In the present study, we sequenced the whole transcriptome of

peanut immature seeds after flowering 30 days sampled in a

recombinant inbred line (RIL) population derived from crossing

Zhonghua 10 (pink testa) and ICG 12625 (purple testa). We

explored the landscape of transcriptomic patterns and performed

the eQTL analysis to dissect the regulatory network in peanut.

Finally, A QTL of testa colour as an example was analysed to

illustrate how transcriptomic analyses could help narrow a wide-

spanned QTL to a handle able list of candidate genes, rather than

time- and labour-expensive stepwise map-based cloning strategy.

Our result provides a first understanding of genetic basis of

whole-genome transcriptomic variation in peanut and demon-

strates its utility for dissecting genes of important traits in non-

model plants.

Results

The gene expression variations in peanut immature seed

The immature seed of two parents, Zhonghua 10 and ICG 12625,

and 100 RILs were collected 30 days after flowering and

sequenced for RNA profiling. A total of 530 Gb clean data and

5.06 billion reads were obtained with 47.7 million reads per RIL

on average after aligning to the reference genomes (version G1)

of two diploid ancestors, A. duranensis V14167 and A. ipaensis

K30076 ( http://www.peanutbase.com). The proportion of total

reads mapped on to two diploid ancestor genomes ranged from

84.5% to 88.6% in the RIL population (Data S1). If the fragments

per kilobase per million reads (FPKM) value of one gene was 0

based on the RNA-seq, we have no idea to confirm whether the

gene was not expressed at all or the gene was not detected using

RNA-seq. Thus, we conducted global permutation tests to

confirm the threshold value of detectable gene expression and

the threshold was 0.047 (false discovery rate, FDR < 0.05).

Among uniquely mapped reads, a total of 62 367 genes were

found to be significantly expressed in at least one RIL compared to

the expected value by chance (FPKM > 0.047). Of all called

genes, there were 49 691 genes that expressed in both parents

and more than 90% of RILs, which were employed in subsequent

analyses.

Among 49 691 genes, a total of 9765 genes were found

differentially expressed (DEGs) with more than twofold changes

between parents, Zhonghua 10 and ICG 12625. A total of 3499

DEGs showed higher expression in Zhonghua 10, while 6266 in

ICG 12625 (Data S2). In the RIL population, over 99% genes

showed much broader variation range in their expression in RIL

population as compared to both the parents (Figure 1a), which

may be attributed to reinvention of transcriptomic interaction due

to the whole-genome reshuffling during meiosis process. How-

ever, we can find that the expression variation in the population

(measured as coefficient of variation, CV) strongly depend on the

initial parents’ expression difference (Pearson’s correlation coef-

ficient, r = 0.58, P < 2.2E�16; Figure 1b), implying the high

heritability of expression variations across generations. Three

types of distribution patterns for gene expression were identified

from the population expression data (Data S2). There were

28 392 (57.1%) genes expressed in a bimodal distribution, while

the expression of 15 928 (32.1%) genes exhibited a normal

distribution, leaving 5371 (10.8%) genes as unclassified distribu-

tions. The phenomenon that the major proportion of genes

following bimodal-expressed patterns probably provided an

implicit clue for non-polygenic feature in the transcriptomic layer.

Interestingly, it was found that the proportion of bimodal genes

was obviously proportional to the initial expression difference

between parents (Figure 1c).

Paramutation is a genetic variant that apparently violates

Mendel’s principle of genetic segregation, due to the interaction

between paramutable allele and paramutagenic allele in a

heterozygote, resulting in changing the phenotype of para-

mutable allele to that of paramutagenic allele. The genes with

paramutation-like expression indicate that the offspring expres-

sion is highly distorted towards one parent. To investigate the

inheriting pattern of gene expression, we compared the popu-

lation mean expression with the initial expression of parents for

each gene. It was found that, for the majority of 49 691 genes,

the population mean expression showed roughly approximate to

the parents’ mean expression (Figure 2). It suggested that the

Mendelian principle generally ruled the genetics in the transcrip-

tomic layer, perhaps mediated by the genome-layer variants.

Interestingly, however, we found that the expression of 92 genes

in the population apparently departed from the parents’ mean

expression, following a paramutation-like expression pattern. The

paramutation-like genes distorted the population expression

mean towards one parent, whereas the other parent extremely

expressed with at least three times of standard deviation from the

population mean (Figure 2). Within 92 paramutation-like genes,

50 genes followed a bimodal distribution, and 37 and five genes

appeared to be normal and unclassified distribution, respectively,

implying there was no significant relevance between the para-

mutation-like identity and population distribution (P > 0.05; chi-

squared test). Besides, nearly all detected paramutation-like

genes revealed a uniform expression distortion of population

mean towards the low-expression parent, with one gene excep-

tion that expressed distorted towards ICG 12625 as the high-

expression parent (Figure 2).

RNA-seq-based SNP calling and genetic map
construction

Based on the reads uniquely mapped to the reference sequences,

we totally called 123 039 and 157 248 SNPs from Zhonghua 10

and ICG 12625, respectively, and 51 206–131 142 SNPs from the

RILs. By merging SNPs from all lines, a total of 26 300

polymorphic SNPs were obtained due to the low diversity

between parents in peanut. Of which, 5768 SNPs were found

to be polymorphic between parents and had the missing rate less

than 0.2 in RIL population. From 5768 SNPs, a subset of 1285

SNPs were clearly called to be the homozygous genotype for both

parents, named as the core SNP set. Considering the genomic
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complexity of tetra-polyploid peanut, we used the core SNP set to

construct genetic map to avoid the inference bias due to hemi-

SNPs that segregate between homoeologous regions but not

actually segregate between different genomes. The majority of

core SNPs were allelic transition-type, nearly twofold of the SNPs

with allelic transversion-type, more details of SNP features are

shown in Data S3.

A genetic map was constructed with a total map length of

1911.57 cM and an average map density of 1.47 cM per loci

(Figure S1, Table S1). The 20 linkage groups were designated as

A01–A10 (A subgenome) and B01–B10 (B subgenome) based on

previously reported simple sequence repeats (SSRs; Table S2).

Synteny analysis revealed high co-linearity between genetic map

and the physical map (reference genome) of two wild diploid

ancestors, albeit a small fraction of inverted segments existed

(Figure S2). The linkage groups varied in genetic length that was

proportional to the physical length, which accordantly revealed

the significantly larger A subgenome than B subgenome

(P < 0.05, t test; Table S1). The genetic map covered approxi-

mately 96% of diploid peanut reference genomes, that is 94.3%

for A subgenome and 98.0% for B subgenome (Table S1).

Nevertheless, the overall marker density fluctuated on the genetic

linkage map, probably due to inherited self-mating system and a

limited population size. The B02 linkage group, for instance, had

the smallest flanking interval of 0.99 cM on average, twofold

smaller than the B07 linkage group (2.08 cM on average)

(Table S1).

Genome-wide eQTL analysis in peanut

By treating gene expression as a quantitative trait, a global eQTL

analysis was performed for 49 691 genes in RIL population.

Figure 1 Dynamic population expression variation response to parental difference. (a) The expression variation between parents and population. For each

gene, the x-axis of a dot measured the absolute value of expression difference between parents, while the y-axis measured the population range. (b) The

relations between population expression variations and distribution with parental differences. The population expression variation was measured by the

coefficient of variation (top panel), and the gene expression distributions were categorized as bimodal, normal and unclassified types (bottom panel). In

both panels, all genes were grouped by parental differences (x-axis), measured as the absolute value of log2 of expression level in Zhonghua 10 divided by

the level in ICG 12625. The numbers in parenthesis show the gene numbers in each category.

Figure 2 The landscape of gene expression heritable patterns in peanut.

Each dot showed the gene expression deviation of two parents to the

population mean, measured as the times of the population standard

deviation (SD). The genes with more than 3-SD deviation were regarded as

paramutation-like genes and presented in blue (Zhonghua 10 deviation) or

red (ICG 12625 deviation) dots, otherwise as Mendelian-like genes and

presented in grey dots. Totally, 49 691 genes were involved in this

analysis.
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Totally, 17 044 eQTLs were detected to regulate the expression

variation of 11 268 genes in the RIL population (LOD > 4.19;

Figure S3). The approximately three quarters of all genes did not

detect any eQTL, which may be partly due to the significantly

lower population expression variation than genes that detected

eQTL (P = 2.8E�09, t test; Figure 3a, Data S4). The majority of

the genes (7124) were merely controlled by single eQTL, nearly

twice more than genes (2976) with two eQTLs. There were ~1%
genes (92) that detected more than four eQTLs, among which

five genes were found to be affected by seven eQTLs per gene

(Figure 3b). The eQTLs for bimodal-expressed genes (3446) were

found to explain 21.1% expression variance on average, signif-

icantly higher than the eQTL for normal-expression genes

(P < 0.01, t test; Figure 3c). Interestingly, there were 108 eQTLs

with more than 70% of the explained variation of gene

expression, of which the majority genes (94.4%) followed the

bimodal distribution (Data S4).

On the basis of whether an eQTL regulates the gene expression

nearby or far away, all eQTLs were designated into 1207 local

eQTLs (7%) and 15 837 distant eQTLs (93%) (Data S4). On

average, the local eQTLs explained 27.6% of gene expression

variation, significantly outweighed distant eQTLs (P = 1.2E�149,

t test; Figure 3d), despite distant eQTLs seemed to be more

prevalent in determining overall transcriptomic variation. Overall,

there were 57.33% local eQTLs, which could explain >20% gene

expression variation, but only 19.48% distant eQTLs had

explained expression variation exceeding 20% (Figure 3d). In

local eQTLs, the influenced genes had 35.5% with bimodal

distribution and 12.9% with normal distribution. In contrast, for

the genes influenced by distant eQTLs, the bimodal proportion

decreased to 30.2%, while the normal proportion increased

nearly twofold, up to ~24% (Figure 3e). It suggested that local

genetic variant might be one important source of genetic basis in

the gene expression with non-polygenic feature.

The eQTL hot spots play vital roles in transcriptomic
variation

The identified eQTLs dispersed unevenly across the whole

genome, ranging from 374 eQTLs on chromosome B08 to 2415

eQTLs on chromosome B10. There were five chromosomes (A07,

A09, A10, B09 and B10) carried even over 1000 eQTLs,

approximately fivefold higher than expected by chance assuming

that the eQTLs were evenly located across the genome (Table S3).

To precisely explore the distribution of eQTLs along chromo-

somes, we searched the identified eQTLs at the 1-cM sliding

windows on each linkage group. The eQTL hot spot was detected

at one location in which the number of observed eQTLs exceeded

the threshold of 24 eQTLs per cM (FDR = 0.05) based on 1000

permutation tests. We detected a total of 94 eQTL hot spots

across the whole genome, ranging from 24 to 1559 eQTLs per

hot spot (Figure 4; Table S4). The eQTL hot spot regions totally

covered 7% of the peanut genome, but involved 8652 eQTLs that

accounted for over a half of the total detected eQTLs across

genome. In hot spot regions, the distant eQTLs were significantly

enriched as compared to whole-genome level (Figure 4), up to

97.5%, indicating a hypothesis that the eQTL hot spot may

function in regulating long-range gene expression. Gene ontol-

ogy (GO) analysis was performed for 821 genes on the 9–15 cM

interval of chromosome B10, which was an eQTL hot spot

identifying most eQTLs. It found that these genes mainly

participated in metabolic process, such as macromolecule

(GO:0043170, 211 genes), cellular macromolecule

(GO:0044260, 191 genes), nitrogen compound (GO:0006807,

177 genes) and protein metabolic process (GO:0019538, 130

genes; Data S5). Among 821 genes, a set of 576 genes had gene

annotation, of which 14 genes were transcription factors, such as

bHLH, MYB, GLABRA.

Discovery of candidate genes for purple testa in peanut
using transcriptome-based mapping approach

Exploring the functional genes for target traits is the long-term

and ultimate goal for molecular biologist in order to improve

genetics of crops for feeding human population. Despite the

success of map-based cloning strategy proved in rice, it is still a

huge challenge in peanut due to seed rate (less number of seeds

per plant) problem. Here, we proposed a transcriptome-based

approach to help efficiently determine the putative genes for trait

with interests. In the present study, we tempted to use peanut

testa colour, a trait with high market value, as an example to

illustrate it. The seed testa colour differed between two parents

and segregated in the RIL population (Figure 5a). Of the 100 RILs,

52 lines carried light coloured testa and 48 lines had dark

coloured testa, which followed the expected segregation ratio

(1 : 1, v2 = 0.020, P = 0.887), implying that the colour of seed

testa may be caused by the variant of a single locus of the gene.

The whole-genome QTL scanning only detected one QTL

(LOD = 32.2) at 43.7–44.8 cM on chromosome A10, explaining

78.5% of phenotypic variance for testa colour (Figure 5b). The

closet markers flanking this QTL delimited a bit larger interval

(41.7–45.7 cM), equivalent to 84.6–101.6 Mb on chromosome

A10. In order to fine-map this QTL, a residual heterozygous line

was used to obtain near-isogenic lines (NILs) with pink and purple

testa colour, respectively. Based on the reference genome

sequence, 223 SSR markers were developed at the region of

84.0–103.1 Mb on chromosome A10 and amplified in the

parental lines and the NILs with pink and purple testa. The

polymorphism analysis of the primers enabled to narrow the QTL

interval into a 97 001 012–102 338 287 bp region (Table S5),

including 196 genes based on the reference genomes. In order to

further explore putative genes, the population-based transcrip-

tomic data provide us an alternative to traditional approach using

large populations. From these 196 genes, the majority of the

genes showed weak correlations between gene expression and

testa colour in the population, only 12 genes reached the

significant correlations with testa colour (P < 0.001; Figure 5c;

Table S6). For 12 genes, a two-step procedure was applied to

determine the putative gene. First, DE analysis revealed five genes

expressed significantly different between parents (P < 0.01;

Table S6). Second, three genes were predicted to be involved in

anthocyanidin biological synthesis pathway according to annota-

tion information of A. duranensis V14167 (Figure 5d; Table S6).

Based on these results, three genes (Aradu.10006110,

Aradu.10025440 and Aradu.10025443) were predicted to

involve in anthocyanidin biological synthesis and present purple

testa colours in peanut. Meanwhile, the homology gene of

Aradu.10025443 in tetraploid genome, Arahy.J3K16K, and a

closely linked SNP marker, pTesta1089, were reported controlling

the purple testa in peanut in previous study (Zhao et al., 2019).

Thus, the present study successfully demonstrated the potential

of transcriptome-based genetic mapping approach in discovery of

candidate genes for purple testa in peanut.

To identify the DNA sequence variation of candidate genes, the

whole-genome resequencing data (30 Gb) were generated for

parents and sequence analysis identified 562 818 genome-wide
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SNP/InDel variations. There was an InDel variation between

Zhonghua 10 and ICG 12625 for Aradu.10006110 (C/CTTGACA)

and Aradu.10025440 (CGCCTCG/C), respectively. Based on

these variations, two InDel markers located in two genes, InDel01

and InDel02, were designed and used for genotyping parents

together with 30 germplasms with different testa colour

(Table S7). The amplification in different accessions (Figure 6)

indicated that InDel02 marker had highest detection accuracy of

purple testa in different peanut accessions. However, we found

that the parents had no difference in the locus of pTesta1089

marker and several purple testa accessions had the same

genotype as pink, red and white testa accessions (Figure 6).

These results indicated that, besides Arahy.J3K16K, there may be

another gene(s) controlling purple testa in peanut, probably

attributed to Aradu.10025440.

Discussion

Recent advances in sequencing technologies made available low-

cost and faster data generation, which accelerated deployment of

sequencing-based applications more frequent in different crop

plants for trait mapping and molecular breeding (Pandey et al.,

2016; Varshney et al., 2019). Majority of the earlier sequencing-

based studies were performed by sequencing DNA from segre-

gating genetic populations; however, the RNA sequencing-based

genetic mapping has not yet been used in peanut. In this

research, we successfully performed RNA-seq experiment-based

genetic mapping using a RIL population to explore the landscape

of transcriptomic variation on the key stage of kernel develop-

ment in peanut and discovered genes controlling purple testa

colour.

The genetic basis of the whole-genome transcriptomic
variation in peanut

The genomic variation influences the phenotypic diversity mostly

mediated by transcriptomic and metabolic regulations. The

present study exhibited tremendous variations in a segregation

population for gene expression, which is much higher than the

traditional agronomic variation. We found roughly two-third of

the gene expressions following bimodal distribution, indicating

Figure 3 The features of eQTLs. (a) The relationship between eQTL identification and population expression variation. (b) Summary of genes

identifying different number of eQTLs. (c) The relationship between gene expression distribution and eQTL-explained variance. (d) The relationship between

explained variance and eQTL type. The dot within violin plot indicates the mean value. The P value indicates the significance of difference between

groups based on t test. The dash line represents 20% of explained gene expression variation for eQTL. (e) The proportions of genes with three

distributions regulated by local and distant eQTLs
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the majority of gene expressions to be controlled by single or

several large-effect genes, as qualitative feature. Nearly one

quarter of genes followed normal distribution, suggesting the

polygenic features also complemented the global genetic basis of

transcriptomic variations in peanut. The simple genetic basis of

transcriptomic and metabolic layers of variations was previously

reported in maize (Liu et al., 2017; Wen et al., 2015) and

Arabidopsis (Wu et al., 2016), similar to the findings of present

study as tetraploid species. The transcriptome and metabolome

are the bridging layers between genome and phenome; there-

fore, finding association of the transcriptome, being more closer

to phenome, becomes more precise reasonable. It would be

expected that several large-effect genes cause the transcriptomic

variation. The non-Mendelian inheritance is an interesting ques-

tion in genetics, but only few cloned genes proved to act in non-

Mendelian pattern. In maize, the different alleles of B1 locus

made the uniform purple stalk in an F2 segregation population,

which has been reported to work via epigenetic interaction in the

post-transcriptional layer, denoted as paramutation (Eichten

et al., 2011). The RNA-seq in parents and segregating population

is a good approach to explore the global overview of non-

Mendelian inheritance or paramutation pattern, which were

successfully deployed in maize (Li et al., 2013) and tomato

(Shivaprasad et al., 2012). We presented a pilot study of RNA-seq

Figure 4 The distribution of eQTL hot spots in the genome. The layers from outer to inner showed the following: ➀ twenty chromosomes of peanut;

➁ the frequency of distant eQTLs along the chromosomes; ➂ the frequency of local eQTLs along the chromosomes; ➃ the regions of eQTL hot

spots; and ➄ a case of eQTL hot spot capable to regulate widespread gene expression alteration. This eQTL hot spot fell into the QTL interval on

chromosome A10 for purple testa in peanut.
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experiment on an advanced RIL population in tetraploid peanut

and successfully identified 92 paramutation-like genes, which

showed a specific pattern in the RILs being more towards the

lower parent. This pattern was previously observed in a maize

study, in which the majority of paramutation-like genes (124/145)

were expressed in the population towards the low-expression

parent (Li et al., 2013). It was speculated that most examples of

paramutation involve that a paramutagenic allele was expressed

at lower levels than the paramutable allele.

QTL mapping is a popular and effective tool to dissect

quantitative traits in segregating populations, which can be

intuitively applied in gene expression as eQTL mapping. In

allopolyploid species, it is difficult to differentiate more abundant

inter-homoeologous polymorphisms that are not real single

nucleotide polymorphisms, due to the existence of homoeolo-

gous sequences (Chen et al., 2013; Trick et al., 2009). In the

present study, we only used core SNPs that were identified from

uniquely mapped reads to construct the genetic map. This

strategy makes it precise to construct genetic map and perform

QTL mapping. Although the homoeologous genes had the same

conserved domain, there was still large genomic sequence

variation between homoeologous genes. For example, the

candidate gene Aradu.1025440 and its homoeologous gene

Araip.10031835 had 121 genomic sequence variations (99 SNPs

and 22 InDels), among which there were 14 (12 SNPs and two

InDels) and 107 (87 SNPs and 20 InDels) sequence variations in

exon and intron regions, respectively (Figure S4). We identified

17 044 eQTLs for 11 268 expressed genes. The bimodal-ex-

pressed genes apparently had more large-effect eQTLs than the

normal-expressed genes, which verified the conclusion that genes

with bimodal distribution may be caused by simpler genetic base.

For all eQTLs, there were 15 837 distant eQTLs that acted in

trans, which were 13-fold more than local eQTLs that acted in cis.

Despite the high proportion of distant eQTL, we can see that local

eQTL contributes significantly higher effect to transcriptomic

variation than distant eQTL. It is reasonable that gene expression

follows the polygenic basis, as a quantitative trait. The majority of

minor-effect QTL for gene expression was found to be distantly

regulating factors (distant eQTL), which may be biologically

efficient that only finite genes are needed to contribute infinite

(expression) phenotypic consequences via long-distance interac-

tion such as transcriptional factor, enhancer or silencer. Similarly,

Figure 5 Integrating transcriptomic data

empowered rapid gene exploration for purple

testa. (a) Phenotype of testa colour in peanut

seed. The left panel indicates the Zhonghua 10

(pink) and ICG 12625 (purple), while right panel

shows the colour variability in the population. (b)

Identification of a major QTL underlying testa

colour on chromosome A10. The red rectangle

indicates the 99% support interval of the QTL,

while the red dash lines mean the closest markers

flanking the QTL interval in the map. (c) The

relationship between gene expression and testa

colour in the population. A total of 196 genes

were tested at the candidate region

(97.0~102.3 Mb). The genes with P < 0.001 were

highlighted as red dots. (d) Integrative analyses

help determine putative genes responsible for

purple colour. The top layer indicates the extent of

expression difference (DE) between parents. The

circle size is proportional to the DE level, while the

red filled ones mean the significantly different

expression based on t test (P < 0.01). The middle

layer indicates whether the gene expression can

be regulated itself, as local eQTL and filled in blue,

otherwise in grey. The bottom layer indicates

whether the gene may be involved in

anthocyanidin biological synthesis pathway

according to the peanut and Arabidopsis

annotation, as filled in green, otherwise in gray.
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the phenomena of much more distant eQTL than local eQTL have

been reported in the previous studies in rice, maize and other

species (Liu et al., 2017; Wang et al., 2010; Zhang et al., 2017).

Although a huge number of eQTLs were detected in present

study, they showed strong physical clustering leading to identi-

fication of 94 hot spot regions with eQTLs more than expected by

chance. There was also apparent enrichment of distant eQTLs on

the hot spot regions compared to the non-hot spot regions.

Taking together, the whole-genome transcriptomic variation may

be controlled by a limited number of genomic regions mediated

by high volume of distant eQTLs, which should be biologically

economical way to manipulate accurate regulation process

(Kliebenstein, 2009; Li et al., 2013; Liu et al., 2017). Because of

limited mapping resolution on bi-parental population, our eQTL

analysis could not detect the causal genes underlying gene

expressions. Nevertheless, the present results would provide first

understanding of the genetic controls of transcriptomic landscape

in peanut. The more comprehensive and high-resolution explo-

ration of transcriptomic variation in peanut would be expected in

more diverse populations and multiple tissues.

The omics-based approach benefits efficiently dissecting
trait variation

Identification of the genes controlling phenotypic variation plays

important role in understanding genetic basis of key traits. The

routine QTL mapping and map-based cloning are prevalent and

successful to isolate the underlying genes in model plant species,

such as Arabidopsis and rice (Gou et al., 2011; Jiao et al., 2010; Li

et al., 2014; Wang et al., 2009; Xing and Zhang, 2010). However,

it is an enormous challenge in peanut, which is hard to produce

sufficient recombinations in a small-size NIL population due to low

fecundity. We demonstrated how an integrated approach of

genomic and transcriptomic data could provide an opportunity to

pinpoint the putative gene responsible for trait of interest, using

the seed testa colour as an example. In present study, we detected

a major QTL of testa colour in a RIL population, where the

segregation of phenotype implied a single-gene genetic basis for

testa colour. The closest flanking marker surrounding the QTL of

testa colour enabled to delimit a 17-Mb region responsible to this

QTL on chromosome 10. According to residual heterozygous lines

at this QTL, we constructed four different NIL populations with

~600 lines per population and developed 226 new SSR markers

dispersed within the 17-Mb QTL region. The fine-mapping

approach enabled to narrow down the QTL into a 5.2-Mb region,

which still contained 196 genes. It would be impossible to obtain

sufficient recombination at the QTL region from thousands of NIL

lines in peanut, which may be the routine in map-based cloning in

rice (Li et al., 2014; Xue et al., 2008). However, like many findings

in maize, the gene expression alteration may be dominant in

regulating trait variations, especially for traits involved in plant

domestication (Liu et al., 2015a,b); thus, the deployment of omics

data may be a proven tool to efficiently discover candidate genes

for metabolic traits (Wen et al., 2015). In the present study, we

found that the expression differences between parents were

Figure 6 Variations of three markers in parents

and other germplasms. (a) The position of three

genes and three linked markers on the

chromosome A10. The dark blue rectangles

represented the gene, and the red thick lines

represented the linked markers. (b) The variations

of three markers in parents (Zhonghua 10 and ICG

12625) and other germplasms with white, pink,

red and purple testa colour. In the first and second

lines, the font colour of black, orange, red and

purple represented the germplasms with white,

pink, red and purple testa colour. The genotypes

with grey filling in InDel01 and InDel02 markers

represented the same genotype as the purple

testa colour parent ICG 12625 in our study. The

genotypes with yellow filling in pTesta1089

marker represented the same genotype as the

purple testa colour parent Zhonghua 9 in Zhao’s

previous study.
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inheritable and huge amounts of eQTLs had been identified for

expression variation on single gene. Among the 196 genes, by

integrating the transcriptomic information for parents and RIL

population, correlation between testa colour and gene expression,

and gene annotation, we identified that three genesmay be strong

responsible genes for the testa colour in peanut. Meanwhile, 235

eQTLs that regulated expression level of 201 genes overlapped

with the major QTLs for testa colour. Among these three genes,

one gene has been reported controlling purple testa colour in

peanut in the previous study (Zhao et al., 2019), which indicated

that transcription analysis of population could effectively and

rapidly help identify candidate genes for interested traits. In our

study, we tried to identify the DNA sequence variation of purple

testa and develop two InDel markers based on resequencing data

of parents. In Zhao’s study, marker pTesta1089 that linked with

purple testa had sequence variation (G/A) between pink testa and

purple testa in peanut. However, this marker had no sequence

variation between Zhonghua 10 and ICG 12625 in our study, and

had the same genotype in several purple testa accessions as pink

testa accessions (Figure 6). These results indicated that there may

be additional genes controlling purple testa in peanut. Meanwhile,

the marker InDel02 developed from gene Aradu.10025440

sequences had precise identification in accessions with different

testa colours. We found that if these six bases (GCCTCG) were

absent on the locus of InDel02 marker in one accession, the testa

colour of this accession was purple. It indicated that gene

Aradu.10025440 may be a novel gene controlling purple testa in

peanut. Furthermore, the function of identified candidate gene

needs to be further verified by molecular biological experiments,

CRISPR-Cas9 experiment and RNAi experiment, which were

undergoing. Our results nevertheless illuminated a workable

solution, in an era of big data, to identify candidate genes based

on primarily QTL analysis in peanut, especially for the species

without high seed fecundity such as trees.

Experimental procedures

Plant materials and sequencing

A peanut RIL population was developed by crossing Zhonghua 10

and ICG 12625, followed by successive selfing for seven

generations (Huang et al., 2016). The female parent, Zhonghua

10 (A. hypogaea var. vulgaris), is a cultivar with pink seed coat

developed by Oil Crops Research Institute of the Chinese

Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, China,

in 2004. The paternal parent, ICG 12625 (PI497597, A. hypogaea

var. aequatoriana), is a germplasm with dark purple seed coat

introduced from International Crop Research Institute for the

Semi-Arid Tropics (ICRISAT), Hyderabad, India. The parental lines

and RIL population were planted in one-row plots in an

incomplete randomized block design in experimental field in

2014 in OCRI-CAAS, Wuhan, China.

Five immature seeds from three plants of the two parental lines

and 100 lines randomly selected in the RIL population were

collected in 30DAF. The seeds (including seed testa) were

immediately frozen in liquid nitrogen for RNA extraction. The

immature seeds of the parental lines were obtained in three

biological replications, and the immature seeds of the RIL

population obtained in two biological replications were bulked.

Total RNA was extracted using TRIzol Reagent (TaKaRa, Inc.,

Dalian, China) according to its protocol. RNA degradation and

contamination were monitored on 1% agarose gels. RNA quality

and purity were checked by Agilent 2100 and NanoDrop. The

construction of cDNA libraries was performed from RNA samples

for Illumina paired-end (PE) sequencing following the Illumina

protocol. Subsequently, the library preparations were sequenced

on an Illumina HiSeq 2000 platform (Illumina, San Diego, CA) and

paired-end reads (2 9 100 bp) were generated at Novogene

Bioinformatics Technology Co., Ltd (Beijing, China).

Reads mapping and SNP calling

After removing low-quality reads and reads containing adapter or

ploy-N, the remaining paired-end clean reads were aligned to the

reference genomes (version G1) of two diploid ancestors A. du-

ranensis V14167 and A. ipaensis K30076 ( http://www.peanutba

se.com) using TopHat v2.0.12 (Trapnell et al., 2009). The SNP

calling was performed using SAMtools (Li et al., 2009). The

reliability of expression data was evaluated by the Pearson

correlation coefficients between three biological replications in

two parental lines. The reliability of SNP calling was quantified by

comparing genotypic consistency among three replicated samples

for two parents, respectively. A filtered SNP set was obtained by

employing following criterions: (i) any called SNP genotype should

be covered by more than two reads (depth ≥2); (ii) the SNP must

be polymorphic between parents and within RIL populations; (iii)

the minor allele frequency is beyond 0.2 to exclude extremely

distorted segregation SNPs; and (iv) the rate of missing and

heterozygosity in RIL population should both be less than 0.2,

respectively. As other tetraploid species, the peanut SNP calling

may have a high probability of identifying hemi-SNPs that

segregate between homoeologous regions but not actually

segregate between different genomes (Chen et al., 2013). To

avoid genotyping bias, we selected a core SNP set that clearly

segregates between two parents as two homozygous genotypes

in the following analyses.

Gene expression analysis in RIL population

The Cufflinks v2.1.1 Reference Annotation Based Transcript

(RABT) assembly method was used to identify both known and

novel genes from TopHat alignment results (Trapnell et al., 2010).

The names of novel genes had prefix with ‘Novel’. Based on the

alignment to the reference genomes of two diploid ancestors (

http://www.peanutbase.com), the FPKM for each gene were

calculated using HTSeq v0.6.1 (Anders et al., 2015), as the

qualification of gene expression. Given the systematic bias due to

short-reads alignment to the tetraploid genome, the FPKM value

for each gene was compared to the null distribution of gene

expression, obtained by randomly selecting 1 000 000 non-genic

fragments with 1000-bp length from the RNA-seq data, estimat-

ing the FPKM value and repeating the process 1000 times. The

gene expressed significantly higher than the expected by chance

if the observed FPKM of gene expression exceeded the 95th

percentile of the null distribution (FDR < 0.05). The set of genes

that significantly expressed in both parents and more than 90%

RIL lines were used in the following analyses.

To quantify expressive variations between parents, we calcu-

lated the differential expression for each gene as the absolute

value of log2 on the ratio of FPKM between Zhonghua 10 and ICG

12625. The distribution of gene expression in the RIL lines was

classified into three categories following the procedures: (i)

bimodal distribution, if the threshold of BI value was >1.0 and

P > 0.001 using the package R/BiSEp; (ii) normal distribution, if

not significantly deviated from a standard normal distribution

using the Shapiro–Wilk test (P > 0.01) using the R function

‘shapiro.test’; and (iii) unclassified distribution if it did not follow
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neither normal distribution nor bimodal distribution. The relation-

ship between coefficients of variation of gene expression in the RIL

lines and DE in parents was assessed by Pearson’s correlation

analysis in R ( http://www.R-project.org). For one gene, if one

parent was within the gene expression distribution (two standard

deviation from the population mean) of the RILs but the other

parent had an expression level at least three standard deviations

from the population mean, the gene was considered to be

paramutation-like expression (Li et al., 2013).

Genetic linkage map construction

The core SNP set uniquelymapped to the genomewas employed to

construct the genetic linkage map, aiming to reduce genotyping

bias due to hemi-SNP between homoeologous regions between

subgenomes. Given the core SNP data only covered the genetic

variants within genic regions, we selected another set of 306 SSR

markers with more frequently coverage on intergenic regions to

improve the genetic map. All SSR markers had a uniform distribu-

tion on the previously published genetic map (Huang et al., 2016)

and the reference genomes of two diploid ancestors ( http://

www.peanutbase.com) based on the BLAST analysis. The genetic

map was constructed using JoinMap 3.0 (Van and Voorrips, 2001)

with minimum LOD of 4.0. The genetic distance was generated by

Kosambi map function (Kosambi, 1944). The linkage groups were

designated as A01~A10 for A subgenome and B01~B10 for B

subgenome. The graphic representation of genetic map was

generated in R ( http://www.R-project.org). The comparison maps

of the genetic position with the physical position for the loci in A

and B subgenomeswere shownusing ‘circlize’ software package in

R ( http://www.R-project.org).

QTL analysis for gene expression and testa colour

To explore the genetic determinants of gene expression and testa

colour in peanut, we performed QTL analysis on the variation of

gene expression and testa colour in the RIL population. Based on

the high-density genetic linkage map, the composite interval

mapping (CIM; Zeng, 1994) was implemented in the software

QTL cartographer (Basten et al., 2004) for QTL performing

analysis, with the siding window size of 30-cM and walking

speed of 1-cM. For the phenotype of testa colour, an empirical

LOD threshold value of 3.0 was used to identify a QTL controlling

testa colour. For the gene expression, the permutation tests based

on 100 randomly selected genes were performed. In any selected

gene, the reshuffled expression data across RILs were used to

perform QTL analysis and the largest LOD value was recorded.

The 99th percentile of recorded LOD values based on 1000

permutation was declared as the LOD threshold for this gene at

the FDR < 0.01. The average of LOD thresholds across 100

random genes was treated as the global LOD threshold

(LOD ≥ 4.19) to declare a QTL controlling gene expression,

hereafter as eQTL. If the peaks of two adjacent QTLs were in less

than 5 cM for the same trait, these two eQTLs were combined

and regarded as a single eQTL. The 2-LOD drop interval from the

peak was regarded as the confident interval of QTL at P < 0.01. If

the interval of an eQTL colocalized with its influenced gene, the

eQTL was considered as a local eQTL, otherwise distant eQTL.

Identification of eQTL hot spots

To evaluate the distribution of eQTLs across the genome, we

summarized the number of eQTLs located within a sliding

window of 1-cM along the chromosome. A permutation test

was used to assess whether the number of eQTLs identified in

specific locations was significantly more than the expected by

chance, assuming the eQTLs uniformly distributed across gen-

ome. In each permutation, the total eQTLs were randomly

relocated onto the 1-cM windows across the genome and the

largest number of eQTLs per window was recorded. The process

was repeated 1000 times, and the 99th percentile of 1000

recorded values was regarded as a threshold declaring a genomic

location significantly enriched eQTLs relative to expected by

chance (FDR < 0.01), hereafter as eQTL hot spot. The distribution

of eQTL hot spots in the genome was generated by ‘circlize’

software package in R ( http://www.R-project.org).

Variations of linked markers in germplasms

To identify the sequence variations of candidate genes,

genome resequencing was performed for the parents using

Illumina HiSeq 2500. The DNA was isolated using CTAB

method (Huang et al., 2016), and DNA-seq libraries were

generated using the TruSeq Nano DNA HT Sample Preparation

Kit (Illumina, Novogene Bioinformatics Technology Co., Ltd,

Beijing, China). Each parent obtained genome sequencing data

about 30 Gb data. After quality control, sequence data were

aligned to the reference genomes of two diploid ancestors (

http://www.peanutbase.com) using Burrows–Wheeler Aligner

(Li and Durbin, 2009) and repetitive sequences were removed

using SAMtools (Li et al., 2009). The variation detection

including SNPs and InDels between parents was performed

with HaplotypeCaller in GATK (McKenna et al., 2010). The

linked markers were developed based on the sequence

variation near or in the candidate genes, and PCR amplification

was performed in different germplasms including four white

testa colour, 10 pink testa colour, four red testa colour and 10

purple testa colour.
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