
THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 28/11/2019 par :
Thiziri BELKACEM

Neural Models for Information Retrieval:
Towards Asymmetry Sensitive Approaches Based on Attention Models

JURY
Dr. HDR. Anne-Laure
Ligozat

Mâıtresse de conférences HDR
d’Université Paris-Saclay

Rapporteure

Pr. Eric Gaussier Professeur d’Université
Grenoble Alps

Rapporteur

Pr. Gaël Dias Professeur d’Université de Caen
Normandie

Examinateur

Pr. Mohand Boughanem Professeur d’Université Paul
Sabatier

Directeur de Thèse

Dr. Taoufiq Dkaki Professeur Associé d’Université
Paul Sabatier

co-Directeur de Thèse

Dr. Jose G. Moreno Professeur Associé d’Université
Paul Sabatier

Encadrant

École doctorale et spécialité :
MITT : Domaine STIC : Réseaux, Télécoms, Systèmes et Architecture

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (UMR 5505)

Directeur(s) de Thèse :
Pr. Mohand Boughanem, Dr. Taoufiq Dkaki

Rapporteurs :
Pr. Eric Gaussier et Dr. HDR. Anne-Laure Ligozat

ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to my thesis supervisors
Pr. Mohand Boughanem, Dr. Jose G. Moreno, and Dr. Taoufiq Dkaki, for the
continuous support they gave me since the Master’s degree as well as during the
last three years preparing this thesis. I would like to thank each one of them
for the continued assistance of my Ph.D. study and related research, for their
patience, for all the advice and motivation, and immense knowledge that they
shared with me. Their guidance helped me in all the time of research and writing
of this thesis. I could not have imagined having a better advisers and mentors
for my Ph.D study.

Besides my advisers, I would like to thank the rest of my thesis commit-
tee: I thank the referees Dr. HDR. Anne-Laure Ligozat and Pr. Eric Gaussier
for agreeing to review our research works, and the examiner Pr. Gaël Dias to
evaluate our work. I thank them all for the insightful comments and encour-
agement, but also for the hard question which incited me to widen my research
from various perspectives.

My sincere thanks also goes to Dr. Gilles Hubert the IRIS team leader
and all the other permanent members: Pr. Lynda Tamine-Lechani, Dr. HDR.
Karen Pinel-Sauvagnat, Dr. HDR. Guillaum Cabanac, and Dr. Yoan Pytarch,
who welcomed me as an intern during the preparation of my Master’s project,
who gave me access to the laboratory and research facilities, and who continued
to support me during the preparation of this thesis. I thank them all for their
good relationships, team spirit and warm exchanges that we have had during all
these four years of work within the same team.

I thank my fellow lab-mates in for the stimulating discussions, for the rest-
less periods we were working together before deadlines, and for all the fun we
have had while working all together in the last four years.

Last but not the least, I would like to thank my family: my dear parents
without whom I would never have arrived here, those who gave me life but who
also made sure to make it beautiful and impressive, my father my source of life
knowledge and experience, of positive energy and insight; and my mother my
source of tenderness, patience, smiling and joy. I also thank all my brothers
and sisters, who are my dear and precious friends, for supporting me spiritually
throughout the adventure that I have preparing this thesis and my life in general.
And I will not fail to thank someone who encouraged me a lot and supported me
too, thank you very much Smail for all the good moments shared together despite
my busy schedule and my thesis stress.

KB: Ulama berriket tzitwit, tamment-is zidet.
FR: “Meme si l’abeille est brune (noire), son miel est bon (sucré)”
EN : “Even if the bee is brown (black), its honey is good (sweet)”

KB: Ulac win izegren asif ur yellixs.
FR: “Personne ne peut traverser une rivière sans se mouiller”

EN : “No one can cross a river without getting wet”
(Kabyle sayings)

CONTENTS

I Preface 9

II Background 16

1 Basic Concepts in Information Retrieval 17
1.1 Introduction . 17
1.2 Definitions . 17

1.2.1 Sequence . 17
1.2.2 Document . 19
1.2.3 Query . 19
1.2.4 Relevance . 19

1.3 Text Representation . 19
1.3.1 Bag-of-Words (BoW) Representations 20
1.3.2 Semantic-based Representations 20

1.4 Text Matching Process . 21
1.5 Evaluation in IR . 21

1.5.1 Evaluation Measures . 22
1.5.2 Benchmarks and Campaigns 24

1.6 Text Matching Issues . 24
1.7 Conclusion . 25

2 Basic Concepts in Neural Networks and Deep Learning 26
2.1 Introduction . 26
2.2 Main Concepts and Definitions 27

2.2.1 Notations . 27
2.2.2 Artificial Neurons . 27
2.2.3 The Activation Function 29
2.2.4 Artificial Neural Networks 30

2.3 Some NN Architectures . 31
2.3.1 Convolution Neural Networks (CNN) 31
2.3.2 Recurrent Neural Networks (RNN) 32
2.3.3 Transformers . 34

2.4 Neural Models Training . 34
2.4.1 Supervised Training . 35
2.4.2 Weakly-Supervised and Unsupervised Training 35
2.4.3 Unsupervised Training . 36

2.5 Training Algorithms . 36
2.5.1 Backpropagation . 36

5

2.5.2 Gradient Descent . 36
2.6 Over-fitting and Regularization 37
2.7 Conclusion . 37

III State of The Art Overview 38

3 Text representation models 39
3.1 Introduction . 39
3.2 Distributed representations of words 40

3.2.1 Matrix Factorization Methods 40
3.2.2 Local Context Window Methods 41

3.3 Distributed Representations of Sentences 43
3.3.1 Aggregated Representations 43
3.3.2 Non-Aggregated Representations 45

3.4 Text Matching Using Distributed Representations 46
3.4.1 Direct Matching . 46
3.4.2 Query Expansion . 49

3.5 Issues Related to Distributed Representations 50
3.6 Discussion . 51
3.7 Conclusion . 52

4 Deep Learning in Text Matching Applications 53
4.1 Introduction . 53
4.2 Machine Learning for Information Retrieval 54

4.2.1 LTR Algorithms . 55
4.2.2 Related Issues . 55

4.3 Deep Learning for Text Matching 57
4.3.1 Unified Model Formulation 57
4.3.2 Representation-focused vs Interaction-focused 58
4.3.3 Attention-based vs Position-based 63

4.4 Discussion . 66
4.5 Conclusion . 66

IV Contributions 67

5 Experimental setup 68
5.1 Introduction . 68
5.2 Datasets . 68

5.2.1 WikiQA . 68
5.2.2 QuoraQP . 69
5.2.3 Ad-hoc Document Ranking Datasets 70

5.3 Evaluation metrics . 71
5.4 Baseline models . 71

5.4.1 Classical models . 71
5.4.2 Classical models with word embeddings 72
5.4.3 Neural models . 72

5.5 Tools and frameworks . 72
5.6 Conclusion . 73

6 Query words impact in document ranking using word embed-
dings 74
6.1 Introduction . 74
6.2 Motivation . 75
6.3 Classical Query-Document Matching 76
6.4 Matching Strategies Using Semantic Word Similarities 76

6.4.1 Presence/Absence Split 76
6.4.2 Exact/Semantic Matching Split 77
6.4.3 Relations Between the Different Matching Strategies . . . 77

6.5 Experiments . 78
6.5.1 Evaluation methodology 78
6.5.2 Parameter Setting and Impact Analysis 78
6.5.3 Results and discussion . 79

6.6 Conclusion . 85

7 Neural models for short text matching using attention-based
models 86
7.1 Introduction . 86
7.2 An asymmetry sensitive approach for neural texts matching . . . 87

7.2.1 The Asymmetry Aspect 87
7.2.2 The Asymmetry Sensitive Matching Architecture 88

7.3 Models training . 91
7.3.1 Rank Hinge Loss . 91
7.3.2 Categorical Cross Entropy 91

7.4 Experiments . 92
7.5 Results and Analysis . 93

7.5.1 The Asymmetry Sensitive Approach Analysis 93
7.5.2 Position VS Attention . 103

7.6 Conclusion . 104

8 Attention-based Multi-level Relevance Assessment 106
8.1 Introduction . 106
8.2 A Multi-level Attention-based Architecture 108

8.2.1 Passage-based Document Representation 108
8.2.2 The Multi-level Attention 108

8.3 AM3: An Attention-based Multi-level Matching Model 109
8.3.1 Word Level . 110
8.3.2 Passage level . 110
8.3.3 Document level . 110

8.4 Experiments . 111
8.4.1 Evaluation Setup . 111
8.4.2 Models Configuration . 112
8.4.3 Results and Discussion . 113

8.5 Conclusion . 116

V Overall Conclusion 117

LIST OF FIGURES

1.1 Description of the basic process of information retrieval systems. 18

2.1 Functionality correspondence between a biological neuron and an
artificial neuron. 28

2.2 A closer look at the operating process of an artificial neuron. . . 28
2.3 The curves describing the different behaviours corresponding to

three different activation functions used in neural networks. . . . 29
2.4 Architecture of a multi-layer perceptron MLP with one hidden

layer. 30
2.5 Example of a bidirectional recurrent neural network (bi-RNN) [1]. 32
2.6 Closer view of LSTM cells used in a bidirectional RNN network. 33

3.1 A general architecture of the Word2Vec model [2] to learn word
mebeddings. 42

4.1 General framework describing a unified neural model for text
matching. 58

4.2 A general architectures showing the main differences between the
interaction-focused models and the representation-focused models. 59

6.1 Highlighting query words occurrences in a relevant document D+
1

and an irrelevant document D−2 75
6.2 Analysis of the equation 6.3 sensitivity to parameters α and λ in

the AP 88-89 collection, in case of using BM25 as Mtfidf 79
6.3 Comparison of the performances, in terms of MAP and P@5, of

the different matching strategies, w.r.t. the different values of the
parameter α in the collection AP 88-89. 80

6.4 Evolution of the performances of the different matching equations
with respect to the value of ε, in the Robust04 collection. 81

6.5 Contributions of different query terms, according to their pres-
ence/absence relevant documents, in the relevance score compu-
tation for relevant documents in the AP 88-89 dataset. 83

6.6 Contribution of query terms according to their presence/absence
in the relevant documents of the GOV2 and Robust04 datasets,
to the total relevance score values. 84

7.1 Solution 2 fills completely the missing part described in Q. 87
7.2 A generalized neural matching framework for extending state-of-

the-art models with an attention gating layer. 89

7

7.3 State-of-the-art models extension using the proposed attension-
based framework. 90

7.4 Distribution of the different question types in the test dataset of
WikiQA. 96

7.5 Ranking of the different candidate answers corresponding to the
question example, by some of the evaluated models, in their dif-
ferent versions. 98

7.6 Comparison of importance weights computed by the attention
layer of the asymmetric architectures of three different models. . 99

7.7 Performance, in terms of accuracy in the QuoraQP dataset, of
different extended neural models using different architectures. . . 100

7.8 Proportion (%) of the importance weights of the keywords of
three different questions, from the QuoraQP dataset, computed
by the attention layer of the extended models. 102

7.9 Comparison of the valid and test accuracy values during training on
the QuoraQP dataset, of the MV-LSTM [3] model with/without the
attention layers. 105

8.1 Example of a matching signals distribution over a relevant long
document w.r.t. a query of three words. 107

8.2 Extension of the unified neural matching model of figure 4.1,
using attention layers applied in several levels, in order to focus
on the most important matching signals at each level. 109

8.3 Architecture of our AM3 model. The document has three pas-
sages, and all the passages and the query have three words. A
bi-LSTM layer is used in the document-level. 109

LIST OF TABLES

1.1 Set of notations. 18

2.1 Set of notations. 27
2.2 List of widely used loss functions per model objective. 35

3.1 Set of notations. 40

4.1 Set of notations. 54

5.1 Statistics of the original WikiQA dataset of Yang et al. [4], com-
pared to the one processed in MatchZoo [5] 69

5.2 Sample from the WikiQA dataset of questions and their corre-
sponding answers and labels. 69

5.3 Description of the experimental QuoraQP dataset. 69
5.4 Sample of some question pairs from the QuoraQP dataset. 70
5.5 Statistics of the TREC datasets used for ad-hoc document ranking. 70

6.1 Experimental results using the BM25 in Mtfidf (., .) of the differ-
ent matching strategies. 81

6.2 Experimental results using the LM in Mtfidf (., .) of the different
matching strategies. 82

6.3 Comparison of the different matching strategies with some state-
of-the-art models in two different datasets. 85

7.1 Descriptions and settings of the hyper-parameters of the Match-
Zoo [5] tool, in both WikiQA and QuoraQP datasets. 92

7.2 Comparison of the performance of the different evaluated models
in the WikiQA dataset, using the different architectures. 94

7.3 Comparison of the performances, in terms of MAP, of the Sym-
metric and Asymmetric matching of the different neural models
compared to classical models, in the WikiQA collection. 95

7.4 Comparison of W/L/T variations of the performance, in terms of
MAP, of the extended models compared to their original coun-
terparts, w.r.t. every question type in the WikiQA dataset. . . . 97

7.5 Results of the oracle version of every evaluated mode, compared
to the corresponding original ones. 98

7.6 The similarity scores assigned to a pair of similar questions (q1,
q2) and a pair of non-similar questions q1, q3) by the different
neural models within the symmetric and asymmetric architectures.101

8

7.7 Comparison of the results of our approach, using Internal models
at MatchZoo, against External models. 103

7.8 Ranking of the 3 first answers retrieved by the MV-LSTM model,
among 21 possible answers corresponding to question “Where do
crocodiles live?” in WikiQA dataset, compared to the extended
versions using attention features. 104

8.1 Performances evaluation of several baselines, in the Robust04
dataset, using the document content compared to the passage-
based content. 113

8.2 Performances evaluation of several state-of-the-art models ex-
tended with attention layers at different levels. 114

8.3 Performances evaluation of the AM3 model using different con-
figurations, in the Robust04 dataset. 116

Part I

Preface

9

INTRODUCTION

Thesis Context

In this thesis, we are interested in problems related to text representation and
matching, and several related applications in information retrieval, such as ques-
tion answering and document retrieval.

Information retrieval (IR) is a field of computer science that allows an IR sys-
tem (IRS) to select, from a collection of documents those that likely correspond
to a user’s information need [6]. More specifically, IR is mainly the activity of
obtaining information resources, such as documents, passages and answers, that
are supposed to match an information need expressed as a query or a question.
IR models are proposed and implemented to cope with the main purpose of IR,
retrieving relevant information w.r.t. a query. Most of IR models are based on
the same assumption, documents and queries are represented as weighted bag
of words (BoW) and the relevance is interpreted as same as lexical matching be-
tween query words and document words. These models estimate the relevance
score based on the exact matching between words of the input text sequences.
Hence, some returned documents by the IRS do not always address the search
intent of the user’s query. This limitation is due the BoW representations that
consider every text sequence as a set of independent words. The main problem
resulting from these approaches is the vocabulary mismatch. It consists in using
a different vocabulary in the query (or question) and its corresponding relevant
results (documents or answers).

To overcome the BoW and exact matching limitations, semantic based ap-
proaches using external resources such as WordNet have been proposed [7].
These approaches are resource consuming and lack of genericity. Recently, new
approaches based on machine learning algorithms have been used in order to
learn vector representations, namely embedding models [2, 8, 9] that leverage the
semantic feature of different words in a text, allowing semantic links between
text sequences to be expressed via vector operations. In addition, advances
in image processing, through neural networks and deep learning [10], have in-
spired research in the different fields of text matching [11] to explore several deep
models to take advantage of the computational ability and the non-linearity of
these models, in order to capture different latent characteristics related to text
representation and matching.

10

Research Issues
In this thesis, we address three main issues related to different text matching
tasks: (1) the impact of using embedded representations of words in IR models;
(2) the impact of the neural model’s architecture w.r.t. different matching
tasks; (3) dealing with the document length wile using neural models for ad-hoc
document ranking. In the following, we describe each of these main issues in
more details.

1. Embedded Representations in Text Matching
Recent text matching models largely use the distributed representations of words
[2, 9] and sequences [8, 12]. These embedded representations, enable the match-
ing models to consider the semantic relatedness between two different texts since
similarities between words are computed based on their vector representations.
In the context of document retrieval, the proposed models [13, 14, 15] represent
documents and queries by their component word vectors, and their similarities
are computed based on vector computations that handle all the word vectors of
the query and the document in the same way. This may solve problems related
to exact matching. However, several questions may rise on how combining both
query word vectors and document word vectors when computing their similarity.
Indeed, we believe that there is a key difference between the query words and
the document words. In fact, query words that do not appear in the document
may have a different impact and contribute differently to the document content,
compared to those that are present in this document.

In this thesis, we first analyze the different ways that the distributed rep-
resentations of words and sequences have been used, in text matching. Then,
we propose a different matching strategies, combining the semantic-based word
matching with the exact matching, in order to analyze the contribution and
impact of query terms in the matching function.

2. Neural Models and Text Matching Tasks
Deep learning is gaining a large interest in recent NLP and IR. Several mod-
els based on different architectures have been proposed to handle a bunch of
tasks related to text matching. We distinguish mainly the simple feed-forward
models [16], the convolutional models [17] and the recurrent models [18]. In
most of these models, the input sequences undergo the same transformations to
construct the corresponding representations, independently from the task being
addressed. The nature of the task can be defined w.r.t. the relationship be-
tween the input text sequences and their types. Specifically, we distinguish two
types of matching: (1) the symmetric matching refers to matching tasks where
inputs are of the same nature, such as paraphrase identification and document
classification ; (2) the asymmetric matching refers to tasks where inputs are of
different natures, such as ad-hoc document ranking and answer sequence selec-
tion. Most neural text matching models in the state-of-the-art [3, 19, 20, 21, 22]
have adopted a Siamese architecture [23] due to its simplicity. In these models,
both input representations are constructed in the same way, from the vectors
of their component words. The models do not consider the differences between
text matching tasks in general. The complementary relationship between some

text sequences, such as the query and the document or the question and the
answer, is not taken into account.

In this thesis, we first describe the asymmetry aspect related to some text
matching applications, and then propose an approach to take into account the
type of the matching task, (1) or (2), to better process the inputs and perform
the matching.

More recently, position-based models [3, 24] and attention-based models [25,
26], have been proposed, taking into account the word position in a text, in
the former, and the importance of a word in the text sequences, in the latter.
Position information of a word in a text, is one of important features that
help text representation learning. However, the importance of a given piece of
information among others in a text is not considered in position features, as
it is made in the attention models. In these latter, the attention weights help
to identify the core information to be considered in a given text sequence, and
thus can be used with position features in order to help the model to focus
in the most important information while processing the different positions of a
sequence. However, none of the proposed neural models for text matching have
combined the position information with the attention weights.

In this thesis, we combine the position-based representation learning ap-
proach with the attention-based model. We believe that when the model is
aware of both word position and importance, the learned representations will
get more relevant features for the matching process.

3. Dealing with Document Lengths in Neural Models
Most neural IR models struggle to deal with the variation of documents length.
Long documents may cover several topics which over complicate the matching
task and decrease performances of current neural IR models. To overcome this
problem, the common solution [21] is to cut off the exceed text in order to make
the document content shorter and hence the model more effective.

Previous analysis [21, 27] have shown that long documents usually contain
relevant parts far from their beginning, and suggest to assess the document
relevance at different information granularities, in particular, the word-level
and the passage-level. Several passage retrieval models [28, 29, 30] have been
proposed in order to deal with the document length problem in IR, but these
models are not able to capture the different semantic links along the document,
such as the relatedness between different passages of a document and their
relevance features. These models are based on simple aggregation functions to
combine the passage-level relevance scores.

In our work, we propose a matching approach assess the document relevance
at different levels w.r.t the information granularity in a document and address
the document length problem.

Main Contributions
The main contribution of this thesis is the definition of text matching models
using neural networks and distributed representations of texts. We proceed in
three main stages: (1) analyzing the use of distributed word representations in
classical IR models, and pointing out how these representations contribute to

the performance of different models; (2) studying the matching of short texts
using neural networks, and how the different matching tasks are handled by
existing models; (3) proposing a neural model that better handle document
length variation. At each of these stages, a solution is proposed to solve the
problems encountered by existing methods. More precisely, our contributions
are as follows:

1. Word embedding in classical IR models. First, we analyze the importance
of query terms that are not present in the relevant documents while per-
forming the document-query matching, using the distributed word repre-
sentations. To do this, we use different document-query matching strate-
gies. The objective is to treat the terms of the query that are absent in
a document differently from those that are present in it. We combine
the exact matching of classical IR models with the semantic matching of
distributed word representations. The matching strategies are evaluated
and compared to state-of-the-art models, using different TREC datasets.
We specifically use news datasets, such as Robust and AP, as well as the
GOV2 web dataset. Results support our hypothesis about the differences
between query words.

2. Neural models for text matching. In a second step, we analyze the neural
text matching state-of-the-art and identify the main differences between
text matching applications. Using the attention-based models [31], we
made two main contributions:

• Asymmetry Sensitive Architecture for Neural Text Matching. We first
describe the asymmetry aspect of several text matching tasks. More
specifically, asymmetric tasks include document-query matching as
well as question-answer matching, and involve a kind of comple-
mentary relationship between the input sequences that the model
can leverage. Symmetric tasks, include document classification and
paraphrase identification, and aim at identifying if both input text
sequences mean the same thing or refer to the same information. To
handle the differences of these matching tasks, we propose an asym-
metry sensitive architecture enabling to extend different neural text
matching models using attention layers. We further extend several
well known models, and show the interest of taking into account the
nature of the task being addressed, in the matching model.

• Attention-based matching using Multiple positional Vector representa-
tions. In a second step, we analyzed the impact of combining position
features and attention weights of different words in text sequences, on
the matching tasks. Extending the position-based model MV-LSTM
[3] with attention layers, within the asymmetry sensitive architec-
ture described above, we proposed made a comparative analysis of
the MV-LSTM model with and without the attention features.

Experimental results, in question-answer matching and question pairs
identification tasks, show that our asymmetry sensitive architecture en-
ables to enhance the performances of different extended models using the
attention layers. Besides, while combining the position features with the

attention weights, the model performs better on ranking relevant informa-
tion.

3. Multi-level Relevance Assessment of Long Documents. Finally, in order to
cope with the problem of document length in neural text matching models,
we focus on two main aspects, and proceed accordingly: (a) identifying
the most important elements in a sequence using attention models; (b)
the fact that a long document can deal with several topics and thus can
contain different relevant passages. We proposed two main approaches:

• A Multi-level Attention-based Architecture. We consider passage-
based document representations, where every document is viewed
as a set of its passages that are likely to be relevant, as in [21, 27].
We propose an attention-based architecture to extend several neural
text matching state-of-the-art models, in order to perform a multi-
level relevance assessment. To do this, we use attention layers at the
word-level as well as the passage-level. The attention weights en-
able us to identify the most important words of every input sequence
(query or passage), in the former, and passages to be considered in
the matching layer, in the latter.
• An Attention-based Multi-level Matching Model (AM3). Then, we

propose AM3, a multi-level neural matching model that exploits
three different levels of information granularity: the word-level, the
passage-level and the document-level. Considering a long document
as a set of passages, our AM3 model focuses on the most important
words of the query and the passage, using attention weights. At the
word-level, we compute attention weights for the different words in
the query and the document. At the passage-level, we first compute
a matching matrix between all words of the query and the different
document passages. Then, we represent every passage by an embed-
ded vector computed using a set of filters applied to the matching
matrix, and we compute attention weights for the different passages
to highlight the most relevant ones. Finally, at the document-level,
we use an interaction layer in order to compute the final matching
score of the whole document.

We evaluate these contributions using a news-wire TREC dataset (Ro-
bust), and the experimental results show the advantage of using the passage-
based document representation, compared to the use of the document con-
tent set to a maximum size. Furthermore, the extended models, within the
proposed architecture outperform the corresponding original counterparts.

Thesis Overview and Organization
This document is made of three main parts and a conclusion. The Background
part II contains two chapters describing the basic concepts in IR and neural
networks; the State of The Art Overview part III contains two other chapters
describing the text representation models and the deep models in text matching;
the Contributions part IV contains a first chapter describing all the experimen-
tal framework that is used in this work, and three other chapters describing

our contributions and analysis. Finally, the Conclusion part V gives a gen-
eral assessment of the work carried out during the preparation of this thesis,
and how the proposed models contribute to the resolution of the various issues
that we addressed. In the followings, we describe each of the different chapters
separately:

• Chapter 1 describes several basic concepts in information retrieval. First,
we provide a set of basic definitions (section 1.2), then describe the main
text representation methods (section 1.3), and the matching process (sec-
tion 1.4). Section 1.5 describes the main objective of evaluating an IR
system, and a set of evaluation measures and campaigns. Different issues
related to text matching are discussed in section 1.6.

• Chapter 2 describes a set of basic concepts about artificial neural networks
(NN) and deep learning. We give a set definitions related to these models
in section 2.2. In section 2.3, we describe a set of most used neural archi-
tectures, and we focus mainly on those used in this thesis. In section 2.4,
we describe the NN training process and methods, and give a set of widely
used algorithms in section 2.5. In section 2.6, we explain the over-fitting
problem of neural models and describe some methods used to solve this
problem.

• Chapter 3 concerns text representation approaches. It presents a set of
models that are used to learn distributed representations of text, at the
word-level (section 3.2) and the sequence level (section 3.3). In section
3.4 we discuss how these representations have been used in different text
matching applications. We provide a taxonomy describing several state-
of-the-art models that use these representations. Issues related to these
representations are listed in section 3.5 and we end with a discussion in
section 3.6.

• Chapter 4 gives first a description of the learning to rank (LTR) framework
in section 4.2. In section 4.3 we give an overall overview of the deep
learning applications in text, in particular for representation learning and
matching, and define a unified deep model for text matching, that supports
different state-of-the-art models. In section 4.3, we give a taxonomy of
deep models for text matching based in two main criteria, the architecture
and the representation features. In section 4.4, we discuss several issues
related to deep models in text matching.

• Chapter 5 describes the experimental setup and frameworks used in the
different experiments. In section 5.2, we describe the different datasets.
In section 5.3 we give a list of evaluation metrics that we use to evaluate
performance of the different models. In section 5.4, we give an overall
description of the different baseline models, specifically those of the clas-
sical models, the classical models using word embeddings and the neural
models. Finally, in section 5.5, we describe the list of frameworks and
technical tools.

• Chapter 6 we perform an empirical analysis of the impact of word em-
beddings in classical IR models. We based our analysis on the different

contributions of query words that are present in relevant documents com-
pared to those that are not. We define three different matching strategies
using the semantic similarities between embedded word vectors, in section
6.4. Finally, in section 6.5, we describe the experimental results and anal-
ysis, where we evaluate the impact of different parameters used in each of
the matching strategies we proposed.

• Chapter 7 explains our main contributions about neural models for short
text matching. First, in section 7.2 we propose a matching approach that
enables several neural matching models to handle the differences between
text matching tasks. We define the asymmetry aspect of several text
matching tasks, in section 7.2.1. In section 7.2.2, we describe our approach
to better address the different matching tasks, and extend several neural
matching models. We describe the training process of the different models
in section 7.3. In section 7.4, we analyze results of the different models
separately, and perform an empirical analysis of an attention-based model
with multiple positional representations, for matching sequences.

• Chapter 8 describes a matching model for ad-hoc ranking of long docu-
ments. In section 8.2, we describe our multi-level matching architecture
enabling us to extend several text matching models with attention layers,
in order to perform a multi-level relevance assessment. Furthermore in
section 8.3, we propose AM3 an attention-based matching model, where
word-level, passage-level, and document-level signals contribute to the fi-
nal matching score. Finally, in section 8.4, we describe the experimental
part and give a detailed analysis of the obtained results.

• Conclusion and future work are listed in part V.

Part II

Background

16

CHAPTER 1

BASIC CONCEPTS IN
INFORMATION RETRIEVAL

1.1 Introduction
Information retrieval (IR) is defined as finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information need from
within large collections of documents (usually stored on computers) [32].

First approaches in IR were proposed for text search [33]. The main objec-
tive of such a task is to find relevant results that satisfy an information need
expressed in a query. In order to perform the retrieval task, an IR system (IRS)
performs these main steps: once the dataset is indexed, a query and document
representations are constructed. Then perform the query-document matching,
and finally rank the candidate documents. This process is highlighted in figure
1.1. In this figure, the indexing step creates a token-to-documents list. This
index can help finding a document terms. Representations are built first, for
both the query and the documents. These representations are then matched and
a score is assigned to every document-query pair. These scores are supposed to
reveal the relevance of a document w.r.t. the query. Finally, the documents are
ranked according to the relevance score and the top k results are returned to the
user. If the user is not satisfied with the results, the query may be reformulated
[34], based on the user’s feedback [35] or an external resources [36]. Then a new
search iteration is performed in order to return new results that could more
satisfy to the user.

In the following, we consider a set of notations defined in table 1.1. We
will first present several basic concepts related to the IR process. Mainly the
relevance concept, the IR matching models and evaluation, then we end up with
some issues that an IRS needs to handle.

1.2 Definitions

1.2.1 Sequence
We refer with sequence to the different granularities of the text representation,
including sentences, passages, paragraphs and documents. Thus, we consider as

17

Chapter 1 Basic Concepts in Information Retrieval

or

Document
Representation

Query
Representation

Matching

Ranking
Results

Reformulation

Feedback

Top k results

IndexingIndexing

token-to-documents list

if:

Figure 1.1: Description of the basic process of information retrieval systems.

Notation Description
|S| Cardinal of the set S
wi the ith word of a sequence
s =< w1...w|s| > sequence of words
{w1, ..., wn} set of words
Q query
D document
qi a query word
dj a document word
V set of all vocabulary words
RSV relevance status value

Table 1.1: Set of notations.

18

Chapter 1 Basic Concepts in Information Retrieval

a sequence any list of words that follow each other in a precise order, in order
to express a given information.

1.2.2 Document

A document is defined in Wikipedia1 as “everything that may be represented
or memorialized in order to serve as evidence”. Several literal definitions have
been provided [37, 38]. Documents can be digital or paper. In [39], Levy have
provided the main characteristics of a digital document, compared to paper one.
In IR, documents are the central elements of any IRS. In this work, we consider
digital document, such that every document is considered as sequence of words
D =< d1...d|D| >.

1.2.3 Query

A query is a sequence of words that are used by the user in order to express
his/her information need. Some studies [40, 41] have shown that the most
common length of a query is about two words [40], and multiple queries could
be used in order to express the same information sought [41].
As for the document, the user query is also a sequence of words Q =< q1...q|Q| >
with |Q| is much smaller than |D|.

1.2.4 Relevance

The concept of relevance is central to IR. It is defined as a ”correspondence
in context between an information requirement statement and an item or ele-
ment, i.e. the extent to which the item covers material that is appropriate to
the requirement statement” [42]. Cooper [43] have given several definitions of
relevance from different resources.
We can distinguish two main definitions of relevance [44]: 1) the system relevance
(relevance as seen by the IRS) corresponding to the scoring value computed for a
given document w.r.t. a given query. 2) the user relevance (relevance according
to the user) referring to the satisfaction of his/her information need expressed
in the query. The analysis of Mao et al. [45] highlights the differences between
the system relevance of a result and the user satisfaction.

1.3 Text Representation

In order to perform the query-document matching, their contents (texts in our
case) are first mapped to internal representations. Several text representation
models have been used in IR models. In this section, we present two main
classes among others: the first one is the classical Bag-of-Words representation
used in several exact matching-based models [46]. The second class is about
distributed representations for semantic-based matching [47].

1https://en.wikipedia.org/wiki/Document#Abstract definitions

19

https://en.wikipedia.org/wiki/Document#Abstract_definitions

Chapter 1 Basic Concepts in Information Retrieval

1.3.1 Bag-of-Words (BoW) Representations
BoW is the common approach used for representing text in most classical text
matching tasks, in general and information retrieval in particular. A BoW is
a structurally simple representation constructed without linguistic or domain
knowledge skills. It consists in representing every input sequence s using a set
of independent words {w1, ..., wn}. Where wi is a given word of a sequence s
as defined in table 1.1. Hence, every word sequence can be represented based
on one-hot word vectors whose dimension are equal to the size of the dataset
vocabulary. The only non null value of every vector is either 1 or a real value
representing the weight or frequency of each word in the dataset. This kind of
representations have been used in several text matching models including text
classification [48], document ranking [46, 49] and question answering [50]. While
using the BoW representations, the texts similarity is based on exact matching
of words of the input sequences, and that consists on leveraging only lexical
similarities. This matching approach does not take into account the semantic
relatedness of words and their meanings. This leads to a well known vocabulary
mismatch problem. In IR, this problem happens when words that are used in the
query are different from those used in relevant documents, and where synonyms
of the query words can be used instead. Besides, some words of the query can be
polysemous and hence, be used in documents that are not relevant to the query.
The exact matching does not take into account these aspects, and a document
having many or all query words is expected to be relevant. Nevertheless, some
documents could contain query words without necessarily being relevant for that
query, while other documents could contain no query word and be relevant. To
cope with these issues, semantic-based matching approaches have been proposed
taking into account synonyms and words of the same context.

1.3.2 Semantic-based Representations
Semantic-based similarities between words could be used to cope with the vo-
cabulary mismatch problem. Several models have been proposed to construct
word representations that are capable to better handle the semantic similarities
between words and sequences.

The commonly called word embedding [51] or distributed word representa-
tions, are a vector representation of words used to capture fine-grained seman-
tic and syntactic regularities. These models construct a semantic-based vector
space where every word is represented with a real-valued vector. There are two
main approaches for building distributed word representations: 1) the global
matrix factorization approach, such as Latent Semantic Analysis (LSA) [47]
and GloVe [9], 2) the local context window approach, such as Word2Vec [52].

LSA [53] word vector representations are based on a singular value decom-
position (SVD) method applied to a document-word matrix. The LSA-based
approaches assume that the vectors dimensionality is highly valuable. The main
idea behind this assumption is that reducing the dimensionality of the observed
data from the number of initial contexts to a much smaller number will pro-
duce better approximations of semantic similarities [54]. GloVe [9] is a global
log-bilinear regression model that combines different aspects about the global
matrix factorization methods and the local context window methods. It lever-
ages statistical information by training the model only on the nonzero elements

20

Chapter 1 Basic Concepts in Information Retrieval

in the global word-word co-occurrence matrix, rather than on the entire sparse
matrix.

Differently from matrix factorization-based methods, models based on the
local context window method, such as the Word2Vec model [55] and the Log-
BiLinear model [56], represent words according to their contexts (neighbors),
and learn word vector representations through a neural network architecture.
These models have demonstrated the capacity to learn linguistic patterns as
linear relationships between the word vectors [52].

1.4 Text Matching Process
Text matching aims to compare two text sequences based on several criteria. It
is the core of many tasks. A large set of text matching models are proposed in
the literature. We present a generic model to explain the text matching process.
Given two text sequences s1 and s2, a representation function ϕ and a vocabu-
lary space V . Each sequence is represented by a vector ϕ(si) ∈ R|V |, if a BoW
representation scheme is used; or a matrix ϕ(si) ∈ RV×dim, if a distributed
representation scheme is used.

The similarity between the two sequences, named relevance status value
(RSV), is then computed as described in function 1.1. This assessment takes
into account the importance weights of every term of s1 in s2.

RSV (s1, s2) = M(ϕ(s1), ϕ(s2)) (1.1)

In case of document retrieval task, documents of the dataset are ranked based
on their relevance scores RSV (Q,D) and top k ones are returned to the user
by the IRS.

Several models have been proposed in text matching literature to compute
the RSV value for matched sequences. The classical matching models [57, 49]
are refereed to as tf.idf model, since they rely on word statistics such as the
term frequency (tf) and the inverse document frequency (idf). The idf weight-
ing, firstly introduced by Sparck Jones in 1972 [46], is based on empirical ob-
servations of the global term frequency tf, whereby highly frequent terms in a
collection should be given less weight than less frequent terms that are more
common and less discriminative. The work that followed in IR [57, 49, 58] have
highly used this perception. Some of the well known tf.idf models are the vector
space model [59], the probabilistic BM25 model [57], and the language modeling
LM [60]. Recently, several models based on machine learning techniques have
been proposed and used in several text matching applications [61, 62, 63].

We are interested in classical matching models using distributed representa-
tions as well as neural models. A detailed description of these models is provided
in the chapter 4.

1.5 Evaluation in IR
The quality of the documents ranking performed by a matching model is essen-
tial. Indeed, the user usually considers only the first page of ranked documents
(the top 10 or 20) by a web search engine [64]. If relevant documents are not
present in the first page, the user will not be satisfied by the results returned

21

Chapter 1 Basic Concepts in Information Retrieval

by the system. Several measures and practical benchmarks have been proposed
in order to evaluate how effective is an IR approach.

1.5.1 Evaluation Measures
Several evaluation measures are used in order to assess the effectiveness of an
IRS. In this section, we present some of widely used measures in IR. We group
them according to their use, results-based or ranking-based:

Results-based

Results-based evaluation measures evaluate the overall set of returned docu-
ments per query. The objective is to measure how an IRS is capable to find all
relevant documents and reject all irrelevant documents.

• Recall & Precision. [65] Given ρ a set of retrieved documents by a given
system, precision P is the fraction of relevant documents that have been
retrieved, ρ+, over the total amount of returned documents, while the
recall R corresponds to the fraction of relevant documents that have been
retrieved among all relevant documents.

P = ρ+

ρ+ + ρ−
(1.2) R = ρ+

ρ+ + ρ̄+ (1.3)

where ρ = ρ+ + ρ− is the total number of retrieved documents. ρ− and
ρ̄+, refer respectively to, a number of irrelevant retrieved documents, and
a number of relevant documents that were not found for the given system.

• Acc. The Accuracy is one of the metrics used to evaluate binary classifiers.
While in ranking tasks, the objective is to evaluate the ordering of the
relevant elements in a list of results, in classification tasks, the evaluation
objective is to assess the systems’ ability to correctly categorize a set of
instances.
For example, as a binary classification application in text matching, we
would like the system to predict the correct label (ex: 0 or 1) that reflects
an element’s relevance. Hence, given a dataset having S positive elements
and N negative elements. The accuracy (Acc) of a model M could be
defined as in equation 1.4.

Acc(M) = TS + TN

S +N
(1.4)

where, TS and TN are respectively the number of elements that are cor-
rectly classified as positive ones, and the number of elements that are
correctly classified as negative ones. Hence, for a total population (evalu-
ation dataset), the closer to 1 is the model’s accuracy, the better it is.

The recall, precision and Acc assume that the relevance of each document
could be judged in isolation, independently from other documents [66]. How-
ever, in [67], Goffman recognized that the relevance of a given document must

22

Chapter 1 Basic Concepts in Information Retrieval

be determined with respect to the documents that are returned before that doc-
ument. In another work [32], Manning et al. argued that the user cares more
about good results that are on the first page or the first three pages. This leads
to measuring precision at fixed low levels of retrieved results, such as 10 or 30
documents. Hence, the effectiveness must be assessed in different ranks of the
returned results list.

Ranking-based

The ranking-based evaluation measures highlight the results ranks and promote
relevant models that return documents at the top of results list.
• P@k. The objective is to compute, at a given rank position k, the corre-

sponding precision value P . It is computed as described in equation 1.2,
where only the top k results need to be examined to determine if they are
relevant or not [32].

• MAP. The mean average precision (MAP) is one of the evaluation mea-
sures in widespread use. The MAP computed for a set of n queries corre-
sponds to the mean of the average precision scores for each query in this
set.

MAP =
∑n
i=1AP (Qi)

n
(1.5) AP (Qi) =

∑ni

k=1 (P@k(Qi).εk)
ρ

(1.6)
where ni refers to the number of retrieved results for the queryQi. P@k(Qi)
refers to the precision at cut-off k in the corresponding results’ list. εk is
an indicator function which is equal to 1 if the item at rank k is a rele-
vant document, 0 otherwise [68]. ρ refers to the number of total relevant
documents.

• MRR. The Reciprocal Rank (RR) computes the reciprocal of the rank at
which the first relevant document is retrieved for a given query Qi. RR
is equal to 1 if a relevant document is retrieved at the 1st rank, or 1

2 if
a relevant document is retrieved at 2nd rank and so on. When averaged
across all evaluation queries, the measure is called the Mean Reciprocal
Rank (MRR).

MRR = 1
n

n∑
i=1

1
ranki

(1.7)

where ranki refers to the rank position of the first relevant document for
the query Qi.

• DCG the Discounted Cumulative Gain (DCG) aims to measure relevant
documents ranked highly in the rank list, and penalize highly relevant
documents appearing lower in a search result list by means of the graded
relevance value which is reduced logarithmically proportional to the posi-
tion k of the result [69].

DCG@k =
k∑
i=1

εi
log2(i+ 1) (1.8)

23

Chapter 1 Basic Concepts in Information Retrieval

where εi refers to the relevance value of the result at position i.
Since search result lists vary in length depending on the query, the nor-
malized DCG (nDCG) computes the cumulative gain that the user obtains
by examining the retrieval result up to a given ranked position k [69] .

nDCG@k = DCGk
IDCGk

(1.9)

where IDCG@k =
∑|RELk|
i=1

2εi−1
log2(i+1) is the ideal discounted cumulative

gain, where RELk represents the list of relevant documents in the corpus
up to position k, ranked in a descending order of their relevance.

1.5.2 Benchmarks and Campaigns
The Text Retrieval Conference (TREC)2 provides a complete evaluation bench-
mark to compare the different proposed IR methods. The TREC datasets re-
sult from a project initiated by the Defense Advanced Research Project Agency
(DARPA)3, co-organized by the National Institute of Standards and Technol-
ogy (NIST)4. The NII Testbeds and Community for Information access Research
(NTCIR)5 is a series of evaluation workshops designed to enhance research in
information technology including mainly information retrieval and question an-
swering. A grid of several evaluation campaigns launch, for text processing
research, could be found in [70].

1.6 Text Matching Issues
We can distinguish several limitations related to classical text matching meth-
ods. First, the widely used BoW representation approach considers the words
of a text as independent elements. However, words of a given text are some how
related to each other. We believe that characteristics of the different words in a
sequence, such as the sequencing, positions and co-occurrences are some of the
most important aspects that could help to distinguish the relevant document
from other documents that contain the query words without necessarily being
relevant. Besides, the BoW-based matching models [57, 50, 48] are statistical
methods where the query words frequency in a document is the basic asset to
compute its relevance. These models are based on the exact matching and con-
sider documents with no query word as irrelevant. However, several documents
could be relevant without having any lexical match information with the query.
For instance, synonyms of the query words can be used instead of these words
themselves. Hence, a semantic-based matching scheme is needed in order to
cope with these limitations.
To overcome the aforementioned problems, semantic-based methods, such as la-
tent semantics LSI [71] and LSA [53], concept-based methods [7, 72], and word-
sense matching [73], can provide a way to represent a text as a set of concepts,
where word representations are computed based on a word co-occurrence matrix
factorization, or external resource such as thesaurus. These models enable to

2https://trec.nist.gov/
3https://www.darpa.mil/
4https://www.nist.gov/
5http://research.nii.ac.jp/ntcir/index-en.html

24

http://research.nii.ac.jp/ntcir/index-en.html

Chapter 1 Basic Concepts in Information Retrieval

efficiently leverage statistical information in a text corpus but perform relatively
poorly in word analogy tasks [9]. Recently, context-based representation mod-
els [52, 56] have been proposed. These models enable to learn semantic-based
word representations allowing to effectively compute the semantic relatedness
between lexically different words and reveal the contextual similarities and links.
Hence, these representation models can be used to overcome limitations of the
classical BoW and latent semantic models.

Beyond the word-based similarity, IR approaches are confronted with a va-
riety of issues related to the text matching process. First, the gap between the
query length and the document length makes it difficult to retrieve the appro-
priate document for the user query. More specifically, the query is shown [74]
to be regularly short and made of a small amount of key words, which leads
sometimes to ambiguity problems. In contrast, the document is much longer
and could span different topics. Hence, these documents may be entirely or par-
tially relevant. Such that, they may have passages that are likely more relevant
to the query than other passages of the same document. Besides, in the same
document or word sequence in general, words are not of the same importance,
and we need to handle them accordingly in a matching model. Finally, most
text matching models handle the sequences being matched in the same way
regardless of the nature of the matching task. In chapter 7 we highlight the
differences between several matching tasks and the related issue.

To handle the different aspects aforementioned, text representation and
matching models need to process input sequences deeper than the simple word-
level analysis and the lexical similarity assessment. To do so, recent text match-
ing models tend to use automatic and deep learning techniques, to build models
for text representation learning and relevance assessment of different results
(documents, answers). In chapter 4, we give an overall description of these
models and discuss several related issues.

1.7 Conclusion
In this chapter, we have viewed the basic concepts in IR, from the input rep-
resentation to the results retrieval. We have seen the main limitations of the
classical BoW representation approach and the exact matching process. In fact,
the simplicity of these classical methods does not allow the matching models
to capture semantic relatedness as well as the contextual information that are
important and could influence the retrieval process. To overcome these limi-
tations, approaches based on word co-occurrences represent a document as a
set of concepts. The objective of these approaches is to explore the semantic
relatedness between words while performing the text matching process.

The recent IR research interest is focused on using machine learning and
deep learning techniques in order to solve several issues related to classical text
matching models. Several deep models have been proposed exploiting both the
semantic representations and the neural networks. The objective of the neural-
based models is to capture higher level semantic features and relevance signals,
for better performing the matching function. In the next chapter, we will present
a set of basic concepts about neural models and deep learning aspects.

25

CHAPTER 2

BASIC CONCEPTS IN
NEURAL NETWORKS AND

DEEP LEARNING

2.1 Introduction

The advances in machine learning have emerged a set of non-linear methods
known as deep structured learning, or more commonly deep learning [75]. These
new techniques are based on different structures of artificial neural networks,
which are composed of multiple processing layers, to learn representations of
data with multiple levels of abstraction [10].

Deep learning methods have affected several artificial intelligence fields such
as computer vision [76], speech recognition [77] and machine translation [78].
Artificial neural networks have been introduced in 1943 by McCulloch and Pitts
[79]. It is a bio-inspired1 computational approach, including several models for
automatic information processing [80, 81, 51]. Besides, the invention of the
Graphic Processing Units (GPUs) [82] is one of the most important factors that
encouraged and emerged several developments in the deep learning area. Indeed,
GPUs rapidly manipulate and alter memory to accelerate the creation of images
in a frame buffer intended for output to a display device. Their highly parallel
structure makes them more efficient than general-purpose central processing
units (CPUs), for algorithms that process large blocks of data in parallel such
as DNNs.

In this chapter, we aim to present a set of basic concepts of neural models
and deep learning. We introduce key definitions and computational aspects.
Following this, we present the mostly used neural model architectures. Finally,
we present the training process of neural-based methods and some related issues.

1Biologically Inspired Computing is a field, related to artificial intelligence, and concerns
a study that loosely knits together subfields related to the topics of connectionism, social
behaviour and emergence. Wikipedia

26

Chapter 2 Basic Concepts in Neural Networks and Deep Learning

Notation Description
x input vector
xi one element (coordinate) of x
y output vector
yj one output element in y
f transformation function
ψ combination function
δ activation function
W weight matrix connecting two different layers of a network
b bias vector corresponding to nodes of one layer in the network
h a hidden state of a given hidden layer in the network
£ loss function (objective function)
θ all the free parameters of a model

Table 2.1: Set of notations.

2.2 Main Concepts and Definitions

2.2.1 Notations
Along this chapter, we adopt a set of notations, most of which are described in
table 2.1.

2.2.2 Artificial Neurons
The artificial neuron or a formal neuron [83] is a computational unit for non
linear data processing. Figure 2.1 shows an abstraction of the functionalities of
a biological neuron in a formal neuron.
The set of dendrites in the biological neuron are structures that receive electrical
messages through the synaptic connections. These messages correspond to a
set of input data values received by the artificial neuron, via every xi input
connection. The cell body on the biological neuron is the element that process
the received electrical messages. This process corresponds to the combination
and activation process, and which is represented by the function f in the in the
artificial neuron of figure 2.1. Finally, the axon terminal of the biological neuron
corresponds to the output y of the formal neuron that will be fed to neurons of
another layer returned as a final output value.

The neuron model is a mathematical model that receives different input
information as a set of digital signals. These inputs are then integrated, using
function f , with a set of free and trainable parameters, including the connection
weights wi and the input bias b, to produce a single output. This aspect is
highlighted in figure 2.2, where we identify several elements that are involved in
transforming the input signals vector x = [x1, ...xn] to the single output y.

The Free Parameters

To every neuron, is associated a set of trainable parameters, called free pa-
rameters, including the connection weight vector w and the bias b which is a
connection weight corresponding to an additional (imaginary) input of value 1.

27

Chapter 2 Basic Concepts in Neural Networks and Deep Learning

dendrite Axon terminal

Cell body

.

.

.

.

.

.

Figure 2.1: Functionality correspondence between a biological neuron and an
artificial neuron.

.

.

.

Inputs Aggregation Output

1

Figure 2.2: A closer look at the operating process of an artificial neuron.

28

Chapter 2 Basic Concepts in Neural Networks and Deep Learning

The free parameters are usually referred to as model parameters, and denoted
as θ = {b, w} ∈ R× Rn.

The Transformation Function

Every artificial neuron includes a function f used to transform the input ele-
ments of x to the output y. The function f is in fact composed of two main
functions: the aggregation function ψ and the activation function δ, as shown
in figure 2.2. The objective of these functions is to combine the different inputs
using a linear function, in the former, and to transform this combination using
a non-linear function, in the latter. Hence, f can be defined as in equation 2.1.

y = f(x), and f (x) = δ (ψ (x1, ..., xn)) = δ

(
n∑
i=1

wixi + b

)
(2.1)

where wi is the connection weight corresponding to the input xi.

2.2.3 The Activation Function

The activation function, also called transfer function, is used to control the infor-
mation propagation through a multi-layer network, based on a defined threshold
value ε. Depending on this value and the output value yj , the neuron could have
several states:

• yj < ε: neuron inhibited or inactive;

• yj ≈ ε: transition phase;

• yj > ε: neuron active.

In practice, several activation functions are used depending on the applica-
tion’s objective. Every activation function takes a single number and performs
a mathematical operation on it to map it to a corresponding interval. Some of
the widely used activation functions are Tanh, ReLU, and Sigmoid. In figure
2.3 we show their corresponding curves.

(a) Sigmoid (b) Tanh (c) ReLU

Figure 2.3: The curves describing the different behaviours corresponding to
three different activation functions used in neural networks.

In [84], presents an overview of activation functions and compare them
through an empirical analysis using several deep learning applications.

29

Chapter 2 Basic Concepts in Neural Networks and Deep Learning

2.2.4 Artificial Neural Networks
Although a single neuron is able of learning and solving some classification prob-
lems, it can not model complex links between data and complex tasks though.
Neural networks are highly connected graphs where nodes correspond to arti-
ficial neurons working in parallel and vertices correspond to the network con-
nections. Each neuron is an elementary processor that computes an output
value based on the information it receives in input, as described in figure 2.2.
The connections between the different neurons are weighted and make up the
network topology, and which can vary from one model to another. Figure 2.4
shows an example of a simple multi-layer perceptron MLP, with three layers.
An MLP [85], called also a simple feed-forward network [86], consists of neurons
that are ordered into layers. Between the input layer and the output layer, there
could be several hidden layers all connected in one side only, from current to
next layer in the direction of the output.

There are also recurrent architectures where the inputs of a neuron can be
its own outputs. These NN architectures are presented in section 2.3 among
other widely used models.

.

.

.

.

.

.

Figure 2.4: Architecture of a multi-layer perceptron MLP with one hidden layer.

In figure 2.4, the input layer of the NN corresponds to the input data x, the
hidden layer contains a set of computed hidden (intermediate) states hj . The
parameters θij = {wij , bi} include a connection weight wij and a bias value bi,
corresponding to the node i connected to the node j. The output layer gives
the final computed value(s) by the network. Note that the size of the last layer
depends on the application’s objective. For example, if the NN is used for a
classification objective [87], the output layer may have several nodes, such that
each node refers to a corresponding class label. While in regression applications
[88], the output contains only one node that corresponds to a single score.
An NN composed of a succession of layers is refereed to as n-layer neural network
with n corresponds to the number of hidden layers, an NN is considered to be
deep or shallow w.r.t. the number n. Such that, the NN is considered as
deep if n > 1 [75]. Hence, the definition of the deep learning: ”A class of

30

Chapter 2 Basic Concepts in Neural Networks and Deep Learning

machine learning techniques that exploit many layers of non-linear information
processing for supervised or unsupervised feature extraction and transformation,
and for pattern analysis and classification.” [75].

The objective of every layer in the NN (except the input layer) is to ap-
proximate a function f∗, based on the transformation function f (equation 2.1)
applied at every node of that layer. The training process corrects the param-
eters θ for a better approximation of the predictions through a set of learning
iterations. Hence, the approximated transformation function of a given layer of
the MLP is as defined in equation 2.2.

f∗(x) = δ (Wx+ b) (2.2)

where W and b refer, respectively, to the connection weights matrix and the
bias vector corresponding to one layer in the MLP.

2.3 Some NN Architectures
Several NN architectures have been proposed to address different tasks. In this
section, we present mainly those used in this thesis.

2.3.1 Convolution Neural Networks (CNN)
Because the simple MLP neural networks are not able to process data with
several dimensions, the CNN models are used to handle data with more than
2 dimensions. In this section, we describe basic characteristics of the CNN
networks. Models using these networks for text matching applications are de-
scribed in chapter 4. The convolutional network is first used in 1989 by Denker
et al [89] and Lecun et al. [90] for handwritten character recognition. The
follow-up works in image processing [91, 92, 76, 93] use a large range of CNN
architectures. The trend to use the CNN models is due to their hierarchical
architecture allowing a multi-level data processing, within two main types of
layers: convolutional layers, and subsampling (more commonly pooling) layers.
The main characteristics of the convolution network are as follows:

• 3D layering of neurons. the layers can be of 3 dimensions, width, height
and depth. The neurons of a layer are connected to only a few nodes of
the layer before ;

• Local connectivity. the CNN first creates representations of a small parts
of the input data sample, then assembles these representations to handle
larger areas. This is performed by enforcing the local connectivity pattern,
using different filters for a spatially local pattern recognition;

• Sharing weights. since the CNN uses several filters to extract different local
patterns from the input image, every filter is slid along the image using
the same free parameters. Hence, the number of trainable parameters is
reduced, and every filter recognizes a specific pattern with a corresponding
weight.

• Convolution and Sub-sampling. The convolutional layer shares many weights
through the different filter windows, and the pooling layer sub-samples the

31

Chapter 2 Basic Concepts in Neural Networks and Deep Learning

output of the convolutional layer to reduce the data rate received from the
layer before. A subsampling layer can be a max-pooling function or an-
other aggregation function (avg or sum) that maps a window of the input
matrix to a single value.

Every time a convolution layer is applied, the image’s size shrinks. Besides,
the corner pixels of the image are used only a few number of times during
convolution as compared to the central pixels, and this leads to information
loss. To overcome this issue, CNN models use a padding function which consist
on adding some values, usually zeros, to the image borders to fit in the original
input shape.

2.3.2 Recurrent Neural Networks (RNN)
Recurrent neural networks are based on David Rumelhart’s work in 1986 [94]. A
RNN is a network with backward (recurrent) and forward connections between
the different nodes. These connections form a directed graph along temporal
sequence. The recurrent connections bring the information from nodes of the
output back to nodes of the input. Figure 2.5 shows an example of a RNN with
bi-directional connections (bi-RNN) [1]. A RNN is used for modeling sequence

Hidden
Layers

Outputs

Backward
Connections

Forward
Connections

Inputs

Figure 2.5: Example of a bidirectional recurrent neural network (bi-RNN) [1].

data of different applications, such as speech recognition [95, 96, 1] and text
processing [97, 98].

In a RNN, given an input sequence x =< x1...xn >, the hidden layers of the
network compute a tensor of hidden state vectors h = [h1, . . . , hn], where every
hidden state ht is then used to compute a corresponding output yt, as shown in
equation 2.3 [98].

ht = δ (Wxhxt +Whhht−1 + bh)
yt = Whyht + by

(2.3)

where Wxh, Whh and Why are connection weights corresponding to the input-
hidden, the hidden-hidden and the hidden-output connections, respectively. bh
and by are bias corresponding respectively to the hidden and the output layers.

32

Chapter 2 Basic Concepts in Neural Networks and Deep Learning

Figure 2.6: Closer view of LSTM cells used in a bidirectional RNN network.

δ refers to the activation function.
In case of bidirectional RNN structure, as shown in figure 2.5, the hidden state
ht is computed in both the forward an the backward directions [99]. Hence,
the equation 2.3 becomes as shown in equation 2.4, where ht =

[−→
h t,
←−
h t

]
is the

tensor that is computed by the hidden layers.
−→
h t = δ

(
W
x
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h

)
←−
h t = δ

(
W
x
←−
h
xt +W←−

h
←−
h

←−
h t−1 + b←−

h

)
yt = W−→

h y

−→
h t +W←−

h y

←−
h t + by

(2.4)

The RNN models can use their recurrent connections to explore the sequen-
tial information of an input sequence. However, error signals flowing backward
in time tends to blow up or vanish, resulting in a kind of information oblivion
by the RNN. To overcome this problem, Long short term memory (LSTM) cells
have been introduced [100].
An LSTM cell is a complex node of a RNN with memory. These cells are com-
posed of several gates associated to the activation vector of the neural node. The
different gates are regulators that correct and modify the signal being processed
by every node, according to the previous information. Hence, every node in the
LSTM network has an input gate, an output gate, and a forget gate, thus allow
the constant error to flow through the network. A description of the LSTM cells
is provided in figure 2.6, where the hidden states ht is computed following the
pipeline functions of equation 2.5.

it = δ (Wxixt +Whiht−1 +Wcict−1 + bi)
ft = δ (Wxfxt +Whfht−1 +Wcfct−1 + bf)
ct = ftct−1 + it tanh (Wxcxt +Whcht−1 + bc)
ot = δ (Wxoxt +Whoht−1 +Wcoct−bo)
ht = ot tanh (ct)

(2.5)

where δ is the activation function of the hidden layer. i, f , o, and c are respec-
tively the input gate, forget gate, output gate and the cell activation vector, all
corresponding to the current input xt.

33

Chapter 2 Basic Concepts in Neural Networks and Deep Learning

Some variations of the LSTM units do not have one or more of these gates
or may have other gates. For example, gated recurrent units (GRUs) [18] do
not have an output gate. Further more, a bi-RNN architecture using LSTM
cells results in a bidirectional LSTM (bi-LSTM) [101]. The latter can access
long-range context in both input directions, thanks to the LSTM memory cells
and the bidirectional processing of the bi-RNN.

2.3.3 Transformers
The Transformer is a deep learning model introduced by Vaswani et al. [102],
used in processing natural language data such as text. A Transformer is designed
in a same way than a RNN based solely on attention mechanisms [31] and
simple feed forward layers, to handle ordered sequences of text. The main
difference between the RNN and a Transformer is that the latter does not take
into account the information (words or sequences) ordering, allowing for much
more parallelization than RNNs during training [102].

Since their introduction, Transformers have become the basic building block
of most state-of-the-art architectures in natural language processing [103]. Since
the Transformer architecture facilitates more parallelization during training
computations, it has enabled training on much more data than was possible be-
fore it was introduced. This led to the development of pretrained systems such
as BERT (Bidirectional Encoder Representations from Transformers) [104].

2.4 Neural Models Training
In order to train a neural model, an objective function, sometimes referred to
as a cost function, or a loss function, is defined to measure the learning error
w.r.t. the desired data. This error represents the difference between the desired
output (true labels) and the predicted value. Based on this error, the network
is trained by updating its free parameters with the objective of minimizing it.
To do so, weight updates are made to continually reduce the error until, either a
good enough model (with a minimum error rate) is found, or a specific number
of training iterations is reached.

Depending on the application’s objective, the model can be supervised when
true labels are given to adjust the model’s parameters; weakly supervised when
a few, imprecise or noisy true labels are provided for training the model in a
supervised manner; or unsupervised where no truth information is provided for
training. The general training process, in case of supervised applications, can
be summarized as follows: first, select a set of training samples, then propagate
the inputs over all the network, by computing several intermediate results until
reaching the final output layer. The latter provides a value that is then used
in order to compute the error rate compared to the true label corresponding to
every input sample. Finally, the model parameters are updated w.r.t. the error
value.

In order to train deep learning models, we need massive sets of training data.
Many traditional lines of research in machine learning (ML) are motivated by
training data issue. The hand-labeled training datasets are expensive and time-
consuming to be created — often requiring subject matter experts (SMEs) to
get accurate true labels.

34

Chapter 2 Basic Concepts in Neural Networks and Deep Learning

Application
Type Function Equation Description

Regression Square error (y − ŷ)2 Quadratic difference between the prediction and the
true label. It assesses the quality of the estimator.

Absolute error |y − ŷ| A measure of the difference between two continuous
variables: prediction and label.

Classification

Square loss (1− yŷ)2
A real-valued error focused on classification which
has a strict ”yes”/”no” interpretation. It indicates if
predictions were correct or not.

Hinge loss max{1− yŷ, 0}
It considers that when the prediction and the label
have the same sign the prediction is true. It is used for
”maximum-margin” classifications, such as SVM.

Logistic error 1
ln 2 ln

(
1 + e−yŷ

) It converts log-odds to probabilities of correspondence
between the prediction and the labels.

Cross entropy −y ln(ŷ)− (1− y) ln(1− ŷ)
It measures the average number of bits needed to identify
an event using an optimized function for an estimated
probability distribution, rather than the true distribution

Table 2.2: List of widely used loss functions per model objective.

In the followings, we describe different types of training directions driven
by the data availability. The supervised, weakly-supervised and unsupervised
training process are described in sections 2.4.1 and 2.4.2, respectively.

2.4.1 Supervised Training
Supervised learning techniques construct predictive models by learning from a
large number of training examples, where each training example has a corre-
sponding true output label called also the ground-truth. In supervised learning,
neural models are trained to minimize an error value. This value is measured
by the difference between all the values predicted by the trained model and
the corresponding true label values. Different cost functions compute different
errors for the same prediction, and will therefore have a significant effect on the
model performance, depending on the task being addressed, i.e. regression or
classification. In this section, we present some widely used error functions.
Given an input data vector X, a true labels vector Y corresponding to X, and
a prediction vector ŷ = g(x; θ), where g refers to the NN model architecture,
and θ represents all the model parameters. The model predicts an output value
ŷ for each input x in the training sample. An error associated with ŷ is then
computed comparing the prediction to the corresponding true label y. This
error is computed using a loss function £(y, ŷ; θ). This function varies from one
model to another. Table 2.2 gives a list of widely used loss functions.
In practice, loss values are estimated for the entire set of different samples in

the training/evaluation dataset, and the value to be considered is called mean
error. This value is computed by averaging the different loss values observed
over all the different samples (examples) of the dataset and computed with the
same loss function.

2.4.2 Weakly-Supervised and Unsupervised Training
To overcome the problem of truly labeled training data unavailability, several
solutions have been used to generate reliable training data. Many methods have
found that, unlabeled data when used in conjunction with a small amount of
labeled data [105], or using weak labels [106], that may be noisy or of lower
quality but larger-scale, can produce considerable improvement in learning the
model’s accuracy.

35

Chapter 2 Basic Concepts in Neural Networks and Deep Learning

The recent trend in ML research and deep learning applications tends to use
weak labels to train finite models, for classification [107] and for regression [108]
objectives. The weak labels are automatically generated and computed rather
by a pre-trained model [109] or by a model assumed to be effective [110]. In
[111], Zhou gives an overview of different weak supervision types.

2.4.3 Unsupervised Training
Differently from the supervised and weakly-supervised learning methods, the un-
supervised learning methods aim to train a model in order to predict accurate
results such that no true labels are provided. The objective is to directly in-
fer the properties of the dataset density without providing correct answers or
degree-of-error for each observation [112]. Compared to supervised methods, the
unsupervised learning the error is in general computed w.r.t. the input com-
pared to its predicted representation, in a representation learning process, or by
minimizing the distances between elements of the same group, in a clustering
objective.

Note that in this thesis our work is not concerned by the weakly-supervised
and unsupervised approaches, we propose only supervised models.

2.5 Training Algorithms
Several algorithms can be used to train NN models. In the following, we give a
broad definition of the most used ones.

2.5.1 Backpropagation
The backpropagation is an algorithm used to train neural networks. It can be
seen as an application of a chain computation rule or chain reminder that uses
a backward differentiation [10]. Rumelhart et al. [94] have proven that this
algorithm can effectively train multi-layer neural networks undoubtedly, which
was a major catalyst for subsequent research in training neural networks with
backpropagation [113, 114, 115]. It is based on the gradient (derivative) of an
objective function £ with respect to the connection weights W of a multilayer
NN. The backpropagation process is applied repeatedly to propagate gradients
through all nodes of the NN, starting from the output all the way to the input
(backward pass) [10].

Formally, let g be the NN model to be trained. Given an input data sample
x, a corresponding true label value y, and the predicted output value ŷ = g(x).
The backpropagation method aims to learn a mapping function g : x→ y, based
on a differentiable objective function £ (ŷ, y) that computes the error value at
each iteration, to better approximate the true association of every element in
the input space X to the corresponding element in the output space Y .

2.5.2 Gradient Descent
Gradient descent, also called gradient backpropagation, is one of the most pop-
ular algorithms for optimizing neural networks. Gradient descent is a way to
minimize the cost function £(θ) by updating the parameters in the opposite

36

Chapter 2 Basic Concepts in Neural Networks and Deep Learning

direction of the gradient ∆£ w.r.t. the free parameters θ. A learning rate α
is then used to determine the size of the steps taken to reach a local or global
minimum optimized error value. Hence, the parameters θ are updated at each
training iteration t as shown in equation 2.6.

θt = θt−1 − α∆£(θ) (2.6)

There are three variants of the gradient descent algorithm, which differ in the
number of input examples (samples) used to compute the gradient of the cost
function £. Depending on the quantity of examples given, usually, there is a
trade-off between the quality of the parameters update and the time required
to perform an update.

• Batch Gradient Descent (GD). is computed on all input examples and their
corresponding labels, then perform a single update, at every iteration. The
GD algorithm can be very slow and even impossible for data sets that do
not fit in the memory.

• Stochastic Gradient Descent (SGD). differently than the GD, it uses the
cost gradient of only one example at each iteration. At each iteration, the
model parameters are updated using a learning example drawn at random,
which makes the algorithm faster.

• Mini-batch Gradient Descent (MGD). combining the GD and SGD, the
MGD updates the model’s parameters for each minibatch (training subset)
of the input data. Hence, the MGD reduces the variance of parameter
updates (relative to SGD), which can lead to more stable convergence.

2.6 Over-fitting and Regularization
The over-fitting happens when the model contains more parameters than can be
trained with the dataset that is used (train set), ie: the model’s complexity is
not effective to the training data [116]. Hence, the resulting model struggles to
generalize or produce accurate results in an unknown dataset (validation set).

During training, the weights grow in size in order to handle the specifics of
the examples seen in the training data. The large weights make the network
unstable, resulting in large differences in the outputs corresponding for minor
variation or statistical noise on the expected inputs [117]. In order to avoid over-
fitting situations and poor performances when making predictions, we need to
update the learning algorithm to encourage the network to keep the weights
small and penalize the large weights. This is called weight regularization and it
can be used as a general technique to reduce over-fitting of the training dataset
and improve the generalization of the model. Traditionally, regularization is
conducted by including an additional term in the cost function of a learning
algorithm. In [118], several illustrative examples on weights regularization have
been compared. Several regularization techniques have been suggested in the
literature, such as early stopping, dropout, weight decay and curvature-driven
smoothing, as described in [80]. In the following, we describe three regulariza-
tion methods that are widely used in different deep learning applications.

• Early stopping. [119, 120] While using this method, the available data
samples are divided into three subsets: training, validation, and testing

37

sets. The error on the validation set is monitored during the training
process and when the validation error increases for a specific number of
iterations, the training is stopped, and the weights at the minimum of the
validation error value are returned.

• Dropout. [121, 122] This method consists on randomly omitting, with
a defined probability value, a part of the feature detectors (nodes) on
each training example. It aims to prevent complex co-adaptations of the
different units on the training data. In [122], Hinton et al. have performed
an empirical study evaluating several dropout rates in different layers of a
NN for images classification, and showed that a dropout values of 0.2 and
0.5 enable to highly reduce the classification errors relative to different
existing methods.

• Batch Normalization. [123] This method makes the data normalization a
part of the model’s architecture. It performs the normalization for each
training mini-batch. The objective of this method is to improve the train-
ing and reduce the impact of the changes in the distribution of network
activations, due to the changes in the network parameters. Hence, make
the network training converges faster.

2.7 Conclusion
In this chapter, we presented some basic concepts on neural networks and deep
learning.

The data availability and accessibility have encouraged researchers to study
the current world in different areas. The resulting research work have came up
with several training tips and strategies (sections 2.4 and 2.5) to enhance and
develop deep learning applications.

In this thesis, we are interested in application of these new technologies in
different text matching applications. We describe and discuss several models
for representation learning and matching in Part III of this document.

Part III

State of The Art Overview

38

CHAPTER 3

TEXT REPRESENTATION
MODELS

3.1 Introduction
Multiple issues and weaknesses have been mentioned while using the classical
BoW representations in different text matching tasks [124, 125, 126], such as
the large features dimension, highly sparse representations, lack of semantics
and the vocabulary mismatch. Another important issue is related to short
queries that can be ambiguous [127]. These as are the major limitations that
have encouraged research in NLP to focus on dense representations capable of
capturing semantics and context information.

Vector space models have already been used in distributional semantics [128].
Since then, we have seen the development of multiple models used for estimating
continuous representations of words in order to overcome the limitations of the
BoW representations. Refereed to as word embedding (the most used), distribu-
tional semantics or distributed representations, these representations are based
in a language model theory [129, 130] to learn to predict words by knowing their
contexts. Some of them [51] use neural networks and hence, are called neural
network language models (NNLM). The NNLMs, as a variety of distributional
semantics models, have shown [131] their effectiveness, in word analogy and se-
mantic relations tasks, compared to Latent Semantic Analysis (LSA) [47, 132].
Bengio et al [51] were the first to propose a neural language model by introduc-
ing the idea of simultaneously learning a language model that predicts words
based on their contexts. This idea has since been adopted in many studies.
Some of the widely used models for distributed word representations in text
matching tasks, including NLP and IR applications, are the Word2Vec model
[2] and GloVe [9]. The success of distributed word representations has also led
to work on learning distributed representations for larger text units, including
paragraphs and documents [8]. Other works [133, 134, 135] make use of ex-
ternal semantic resources, in conjunction with the distributed word vectors, in
order to learn accurate representations for words and sequences of words. These
methods are out of the scope of this thesis, more details about these models can
be found in the work of Nguyen et al [136].
The main motivation of using the distributed representations of words as well
as of sequences, in text matching applications, is that simple vector calculus

39

Chapter 3 Text representation models

Notation Description
e embedding function
E embedding space
dim dimension of the embedding space
~wi embedded vector of word wi
s =< w1...w|s| > text sequence
c context window of several words
wt word at position t of a word sequence
~Q query embedded vector
~D document embedded vector

Table 3.1: Set of notations.

reflect semantic relatedness between words and sequences. For instance, dis-
tances between word vectors are semantically significant, since word embedded
vectors are learned so that words belonging to the same context have similar
vectors [52]. The same applies to sequence vectors [2, 12], where sentences
that share semantic and syntactic properties are thus mapped to similar vector
representations [12].

In the following sections, we use the notations defined in Table 3.1. We
assume that words are the smallest unity of a text, and do not consider the
character-based representation models [137, 138]. We detail the main works re-
lated to distributed text representations and their different levels of granularity.
Specifically, word representation models and sequence representation models are
presented, in sections 3.2 and 3.3 respectively. Several text matching models
that are based on distributed representations of words and sequences, are pre-
sented in section 3.4.1. Finally, in section 3.5, we discuss several issues related to
the learning and the use of distributed representations of words and sequences.

3.2 Distributed representations of words
In this section, we present some models for learning distributed word represen-
tations. These models are grouped into two different classes [9], methods based
on matrix factorization and methods based on local context windows.

3.2.1 Matrix Factorization Methods
The matrix factorization (MF) approach is used to factor analysis procedures
[139, 140]. One of the most used and simpler factorization methods for text
representation is the singular value decomposition (SVD) [141]. In text mining,
this method is used to handle the semantic aspects of a large text collections,
and construct dense representations. Such as the LSI [47], the LSA [142] and
the PLSI [143] latent models. These models use a large term-document or term-
context occurrence matrices to capture statistical information of different words
in a corpus. These matrices are decomposed using the SVD method, in order to
capture the most important latent concepts for indexing huge amount of text
data, and hence construct a semantic-based dense representations for words and
sequences.

40

Chapter 3 Text representation models

Differently from the aforementioned latent space-based methods, other meth-
ods such as, HLA [144], COALS [145] and HPCA [146] use word-word co-
occurrence matrices, where both rows and columns correspond to words and
the entries correspond to the number of times a given word occurs in the con-
text (window) of another given word. Recently, Pennington et al. [9] have
proposed the global vectors for word representation, namely GloVe. This model
is a word representation learning method that combines the MF technique, using
a word-word matrix ; with the local context window of every word. This method
exploits the “global” log-bilinear regression model [147], which is a statistical
technique used to analyze the relationship between more than two categori-
cal variables. GloVe leverages statistical information about a text dataset, by
training the model only on the nonzero elements of the co-occurrence matrix,
rather than on the entire sparse matrix or on individual context windows of a
large corpus. It combines the global and the local contexts during training to
learn the embedded representations of words. This process is highlighted in the
objective function of equation 3.1 [9].

£ =
V∑

i,j=1
f (xij) (e(wi) · e(wj) + bi + bj − log xij)2 (3.1)

where xij , e(wi) and e(wj) are co-occurrence number, and the embedded repre-
sentations of words wi and wj , respectively. bi and bj are bias values associated
to e(wi) and e(wj), respectively. V is the dataset vocabulary, and f(x) is a
weighting function defined as follows:

f(x) =
{

(x/xmax)α if x < xmax
1 otherwise (3.2)

where α is a defined parameter, such that rare and highly frequent co-occurrences
are not overweighted.

3.2.2 Local Context Window Methods
Differently from the matrix factorization methods, the local context-based ap-
proach aims to learn word representations based on the occurrence window
called local word context. The neural network language model (NNLM) [51] is
the origin of context-based methods for learning word representations, and it is
a probabilistic language model where word probabilities are computed using a
neural network architecture. The NNLM simultaneously learns distributed rep-
resentations embeddings for input words, and the probability function for the
corresponding context windows using its word vectors. NNLM uses a language
model such that, given a sequence s =< w1...w|s| >, where wt ∈ V is the word
at position t. The objective is to learn a function f that computes the proba-
bility to get words of a given context window c =< wt−n+1 · · ·wt > of length n
in s, using a NN architecture. The NNLM computes the probability of getting
a sequence of words knowing a current word wt, using a NN that takes in input
the sparse vector of every vocabulary word.

The NNLM is trained to optimize a loss function £ for all the words of the
sequence1 s and their corresponding context windows c. As defined in equation

1In practice, all the context windows are considered in all the training dataset C.

41

Chapter 3 Text representation models

Input Layer
Hidden
Layer

Output Layer

The neural network connections

Figure 3.1: A general architecture of the Word2Vec model [2] to learn word
mebeddings.

3.3.
£(θ) =

∑
(wt,c)∈s

logP (wt|c; θ) (3.3)

where θ refers to all the parameters of the NN used to compute the probability
P .

The results obtained by the NNLM model have led Collobert et al. [148] to
use the full symmetric context window of a word, in order to learn its repre-
sentation vector, rather than just predicting its preceding context words. In
their model [148], Collobert et al. use a symmetric context window c =<
wt−n+1 · · ·wt · · ·wt+n−1 >. Hence, the context of a word wt refers to n words
before and n words after.

Following the success of previous NNLM methods, Mikolov et al [55, 2]
proposed an effective embedding method, called Word2Vec, for computing dis-
tributed representations of words. Figure 3.1 shows a general architecture of the
Word2Vec model, where x corresponds to the NN input vector, h is the hidden
layer of dimension dim, and y is the output vector. Two different configura-
tions of this architecture have been adopted in [2]. Specifically, the CBOW and
the Skip-Gram architectures are both based on the architecture of the NNLM.
Mikolov et al. have adapted several techniques to improve the learning effec-
tiveness and the quality of the outcome representations.

The CBOW model [2] is similar to the model of Collobert and Weston [148],
and is trained to predict a word wt based on the words in its symmetric context
c. First, words of the context c are aggregated (sum or average) and fed to the
model. After training, the vector representation is provided by the hidden layer
h of the NN. Differently from the CBOW architecture, the Skip-Gram model
[2] is trained to predict the symmetric context, given the word wt in the center.
In both configurations of the Word2Vec (CBOW and SkipGram), for each word-
context pair (wt, c), the ith element in the output layer of the NN (figure 3.1),
and is computed as shown in equation 3.4.

yi = eIN (c).eOUT (wt) = EIN .~c.EOUT . ~wt (3.4)

where EIN , EOUT ∈ R|V |×dim are the NN connection weights related to the

42

Chapter 3 Text representation models

hidden layer h of size dim, and consist on the embedding spaces. ~c and ~wt are
respectively the context and the current word vectors, with {~c, ~wt} ⊂ R|V |.

In case of the CBOW configuration, wt is the central word to be found;
and c is its corresponding context having n words before and n words after.
Vectors of these words are aggregated in a single input vector x =

∑
w∈c ~w

and fed to the NN (figure 3.1). While in the Skip-Gram model, the objective
is to predict a word wj which consists on a word from the context window
of the central word wt. Hence, for each central word wt, the network will
iterate 2 × n times with the same input x = wt in order to predict all the
words wj ∈ {wt−k, ..., wt−1, wt+1, ..., wt+k} of the context window [149]. Each
predicted wj is expected to be of the same semantic context as the previous
predicted words.

Following several results and analysis of the context-based distributed word
representations, some authors have been interested in the adaptation of the
Word2Vec model [2] to the task being addressed. For instance, the cross-lingual
embedding models [150, 151, 152], the DESM [153] composed of the two dif-
ferent embedding sub-spaces IN and OUT (figue 3.1), and the relevance-based
embedding model [154] for query expansion. In the scope of this thesis, we
have made a large use of the previously proposed embedded word representa-
tions, specifically Word2Vec [2] and GloVe [9], in order to exploit the semantic
aspects of words and sequences in a text.

3.3 Distributed Representations of Sentences

The distributed word representations have been the basis of several works on
text matching applications, such as question answering [155, 156, 157] and docu-
ment retrieval [158, 159, 160], by exploiting the word-level semantic relatedness
between words within different contexts.

Several models have been proposed to construct embedded representations
for sentences and documents. We can divide the different models into two main
categories [136], according to the approach which is used to generate the embed-
ding of the input text: 1) aggregated [161, 162, 163, 164], where the proposed
models construct the embedded vector of a text based on the component word
representations, and apply aggregation functions to build the sentence repre-
sentation. 2) non-aggregated [8, 12, 165, 166, 167], in this class, models directly
obtain a representation vector of a text sequence without using a summation-
based combination of component word vectors, and a non linear method is used.

3.3.1 Aggregated Representations

Models of this class use a linear function that combines word vectors of an
input sequence to construct its corresponding representation vector. This class
includes models that are based on the simple Averaged Word Embedding (AWE)
approach [168, 150, 158, 13]. The AWE method consists on using the sum or
average of the embedded vector representations of component words in a given
sequence, to produce a global vector representation. Such that, for a given
sequence words s = {w1...wm}, the corresponding embedded representation

43

Chapter 3 Text representation models

e(s) is computed as in equation 3.5.

e(s) = 1∑
i βi

∑
wi∈s

βie(wi) (3.5)

where βi is the weight of word wi, and e(wi) its embedded vector. Note that in
case of a simple average function is used βi = 1, ∀wi ∈ s, and hence

∑
i βi = m

Several models are based on equation 3.5 to estimate embedded represen-
tations for word sequences. For instance, Kenter et al. [161] have proposed
the Siamese Continuous Bag of Words (Siamese CBOW) model. This method
aims at learning embedded word vectors and aggregating them using an average
function, in order to construct embedded representations for input sentences. A
cosine similarity function is then used to match the different sentence vectors.
During training, the model optimizes the word embeddings to better compute
the whole sentence representations. The Siamese CBOW [161] is based on a
supervised set up, and learns to predict sentences occurring next to each other
in the training dataset. Differently from the supervised Siamese CBOW model
[161], Hill et al. [162] have proposed the Sequential Denoising Auto-Encoder2

(SDAE), built with an LSTM-based encoder-decoder architecture, and which
is a supervised method for learning sentence embedding from an unlabelled
dataset. This model is trained to optimize the embedded word vectors. The
final sentence representation is computed by aggregating component word vec-
tors, using a linear combination. The SDAE model first introduces some noise
by swapping some bi-gram word vectors of an input sequence, then is trained
to reconstruct the original sentence.

Without using a neural architecture, Arora et al. [163] have proposed a
strong new baseline for sentence embedding learning. This method consists on
a simple weighted average of the word vectors of a given sequence, as described
in equation 3.5. The averaged vector representation is then modified using a
principal component analysis (PCA) [170] or the singular value decomposition
(SVD) [141] method. The authors first construct all the sentence vectors by
averaging their word embeddings, then compute a singular vector for every sen-
tence, in order to optimize the different representations and reduce the sentence
vocabulary space. Another similar approach is proposed by De Boom el al.
[164], and that is also based on averaging weighted word vectors of a given se-
quence. Given the pair of sentences to be matched, the model first computes
initial averaged embedding vectors for both of them using same word weights.
After that, the weights are updated using a gradient descent process, which is
expected to minimize the error corresponding to similar sentences, in order to
learn better coefficients for the average function.

The simple averaged embedding treats all words with the same importance
in the combination. Although some works [150, 158] have considered terms
weighting (equation 3.5), Zamani et al. [165] have argued that aggregating
word vectors of a long sequence could result in imprecise representations of
the corresponding semantic content. Links such as, the dependencies and sim-
ilarities between different words, sequences, and paragraphs in a text are not

2An autoencoder [169] is a neural network that learns to learn data representation by
reducing the dimension of the inputs, mainly it is made of two parts, the encoder that learn
to map the input to a lower dimension representation, and the decoder that tries to reconstruct
the input data by decoding the representation learned by the encoder.

44

Chapter 3 Text representation models

taken into account. To cope with this limitation, non-aggregated representation
models have been proposed.

3.3.2 Non-Aggregated Representations
Non-aggregated representation learning approaches do not use AWE functions.
These methods construct a latent vector for every sentence using a function
that learns to map the initial word representations (pre-trained embeddings or
sparse one-hot vectors) to a latent representation of the whole sentence.

One of the most popular models for computing sequence embeddings is the
ParagraphVector of Le [8] which is derived from the previous work Word2Vec
[55] for learning embedded word representations. The ParagraphVector model
considers a paragraph3 as an atomic unit instead of a combination function
of its component words. Hence, it extends the Word2Vec model’s architecture
with an additional input token dedicated for learning paragraph embeddings.
It is based on maximizing the average log probability of getting an in-context
word, given the other words of its context and the sequence containing them.
Differently from this model, the Skip-Thought model [12] preserves the semantic
compositionality principle4 while learning distributed representations of input
sentences. Skip-Thought consists on an encoder-decoder neural network [18, 31].
Its encoder is a recurrent network (RNN) that produces a vector representation
of the source sentence and the decoder is another RNN that sequentially pre-
dicts the words of adjacent sentences. The underlying assumption [12] is that,
in the content of a sentence, anything that leads to a better reconstruction of
neighbouring sentences is also essential to the representation of the current sen-
tence.
In [172], Ai et al. propose the enhanced paragraph vector (EPV-DBOW) by
adapting the original ParagraphVector from [8] to IR tasks. It includes three
modifications of the original ParagraphVector: (1) the word frequency in the
collection, used in the ParagraphVector, is replaced in EPV-DBOW by the doc-
ument frequency. (2) to avoid over-fitting short documents, an L2 regularization
parameter is used in EPV-DBOW, and takes into account the document length.
(3) EPV-DBOW first uses the document to predict the target word, then the
target word to predict its context in that document. Another model [167] is
proposed by Logeswaran and Lee, and is called Quick Thought (QT). QT learns
the sentence representations while learning to predict the context in which a
sentence appears, among other contrastive sentences. QT uses an encoder-
decoder architecture, where the encoder computes an embedded representation
of the input sentence, then the decoder attempts to find the embedded vectors
corresponding to its component words.

Based on a classical language model, Zamani and Croft [165] have proposed
a theoretical framework for estimating query embedded representations based
on the individual embedded vectors of all vocabulary words. Specifically, the
model provides a way to learn query embeddings using a softmax or sigmoid
transformations of the vocabulary word vectors, to compute a maximum like-

3The paragraph corresponds to any sequence of words, such as sentences, passages or a
whole document.

4Principle of Semantic Compositionality [171] ”is the principle that the meaning of a whole
is a function only of the meanings of its parts together with the manner in which these parts
were combined”.

45

Chapter 3 Text representation models

lihood probability estimating the query representation vector. Wu et al. [173]
have proposed the word mover’s embedding (WME) model for constructing
distributed representations for different length sequences and documents. Ex-
tending the word mover’s distance (WMD) [174], the WME model considers
the distance between two documents as the minimum transportation cost be-
tween the two documents. This model learns document representation vectors
by generating a random document from which the distance is calculated using
the WMD. This process is repeated dim times for every document in the dataset
resulting in a vector representation of dimension dim.

Recently, Park et al. [175] have proposed a supervised paragraph vector
(SPV) for learning distributed representations for words, documents and class
labels. The original ParagraphVector model [8] generates a single representa-
tion for a given sequence which is then used for all tasks. Hence, Park et al.
[175] assume that different tasks may require different representations. The
objective is to propose a task-specific representation learning algorithm which
extends the paragraph vector model to a supervised method. The SPV model
uses class labels along with words and documents, and obtains corresponding
representations with respect to the particular classification task, enabling to
obtain the representations of words, documents, and class labels. SPV [175]
uses a simple MLP network of three layers. Each neuron in the input layer
refers to one word. The main difference of the SPV from the ParagraphVector
[8] is that the documents class label information is used in input. The learning
process of the ParagraphVector assumes that a document vector can be derived
by predicting sequences of its constituent words. While the training of the SPV
model assumes that a class vector can be derived by predicting sequences of its
content.

3.4 Text Matching Using Distributed Represen-
tations

The distributed representations of words and sequences are used in order to
overcome the weaknesses of the classical BoW representations, and the exact-
matching models. They enable to use a non-exact matching where distances
represent semantic links between the matched words or sequences.

We identify two main ways of using distributed representations of words and
sequences: (1) models for direct matching including classical and neural models
that leverages the distributed representations of words and sequences in order to
better match texts; (2) models for query expansion that leverage the embedded
word representations in order to find better candidate words for expanding the
user query. In this work, we focus more on models of the class (1), and describe
in more details several models of this class.

3.4.1 Direct Matching
We refer with “direct matching” to all models using distributed representa-
tions for the purpose of text matching except expansion-based methods. Direct
matching methods, include: (a) classical text matching models that use either
BoW representations [57, 129], word embedding representations [176, 174], or
sequence embedding representations [172, 177]; (b) neural text matching models

46

Chapter 3 Text representation models

[16, 178, 179, 180, 21], where most of the proposed models use the distributed
representations in the same way. First, construct distributed representations for
the input texts being matched, based on vectors of their component words, then
a NN with a succession of different layers extracts interaction characteristics and
computes the similarity matching score. The neural text matching models are
detailed in chapter 4. In this chapter, we consider classical models (a) and we
focus on models involving distributed representations of words and sequences.
The objective is to analyze how these representations have been considered.

Embedded representations of words can be incorporated in different ways
in classical text matching models. One way is to represent input texts (e.g.
queries and documents, questions and answers) as sets of their word vectors
(BoV), then integrate the word representations into existing matching models.
For example, the neural translation language model (NTLM) [181] leverages the
neural word embedded representations to enhance a classical translation model
[182] for query-document matching. In the NTLM model, a probability P (qi|D)
that a query term qi appears in a document D is considered as a translation
process where the probability P (qi|dj) enables to get the term qi via a term dj
of the document. ie: translate every term in the input query to a given term in
the document, as described in equation 3.6.

P (qi|D) =
∑
dj∈D

P (qi|dj)× P (dj |D) (3.6)

where P (dj |D) is the probability that the word dj appears in the document D.
The probability P (qi|dj) denotes the translation process and is computed using
the corresponding word vectors as follows:

P (qi|dj) =
cos
(
~qi, ~dj

)
∑
w∈V cos

(
~w, ~dj

) (3.7)

where w is a word from the vocabulary space V . ~qi and ~dj are respectively a
query word and a document word vectors.

Another way to use the embedded word representations in text matching is
to assign importance weights to word vectors of the input text sequences. For
instance, Zheng and Callan [183] have proposed a model for weighting query
terms based on their distributed representations. For a given query Q, the
authors first compute a features vector ~ti associated to every word qi ∈ Q. Such
that, ~ti is the difference between the word vector and the mean vector of all the
query words. As shown in equation 3.8.

~ti = ~qi − ~Q (3.8)
~Q = 1

|Q|

|Q|∑
j

~qj (3.9)

where ~Q and ~qi are the averaged query vector and the vector of a query word,
respectively. The model then uses an l1-norm regularization method, in order
to learn an importance weight for the features vector ~ti of every query word.
First, a true weight ri is estimated, and represents a binary score corresponding
for every query word based on relevance judgments. Then, a new weight is

47

Chapter 3 Text representation models

computed based on the true weight ri. The weighted key words of the query
are then used on the Indri5 query language model to rank documents of the
collection.

Ganguly et al. [159] propose a generalized language model for text match-
ing based on embedded word vectors. They assume that, in a query-document
matching task, the query words that are not used in relevant documents pass
through a noisy channel that gives them a new lexical and semantic form. This
transformation is expressed using semantic similarities between word vectors.
The relevance score is computed with a linear combination of the different word
transformations, using words from the document and the collection. Guo et al.
[14] proposed a document-query matching model based on cosine similarities
between all the words in the query with all the document words. The match-
ing process is considered as a non-linear transport problem from all document
terms to all query terms. Hence, the relevance score is computed based on the
transport flows from the document to the query.

Word representation models often have poor performance when the matching
is performed across all the documents of the collection [184]. When it comes
to classical matching models using word embeddings, the analysis made by
Mitra et al [184] have shown that good results in re-ranking tasks do not imply
automatically good performance on large document collections. In order to
overcome this limitation, more complex processing is needed to represent the
information contained in a text sequence. One possible strategy to construct
an embedded representation for a whole text sequence, is to derive a dense
vector from the embedded vectors of its component words. In IR, the query and
the document can be compared based on their embedded word vectors using a
variety of similarity measures, such as the cosine similarity function [16, 185].
Nalisnick et al [153] and Mitra et al [184] have used an AWE method to construct
query and document vectors, such that individual words are represented with
the Word2Vec [2] embedding model. They analyzed the characteristics of the
Word2Vec representations for estimating the relevance of a document according
to a query. They highlighted that it is more appropriate to calculate the IN-
OUT similarity between words of the query Q and words of the document D. In
other words, the query terms are represented in the EIN space and the document
terms in the EOUT space (equation 3.4). The relevance of the document w.r.t.
the query is then computed using an averaged cosine function of equation 3.10.

DESM(Q,D) = 1
|Q|

∑
qi,IN∈Q

~qi,IN ~DOUT

‖~qi,IN‖ ‖ ~DOUT ‖
(3.10)

~DOUT = 1
|D|

∑
dj∈D

~dj,OUT

‖~dj,OUT ||
(3.11)

where ~qi,IN and ~dj,OUT are respectively the vector representation of the query
word qi in the embedding space EIN and the vector representation of the doc-
ument word dj represented in the embedding space EOUT .

Ai et al. [177] have analyzed the usefulness of the ParagraphVector model [8]
in classical text matching models. Unlike in [172], They showed that integrating

5https://sourceforge.net/p/lemur/wiki/The%20Indri%20Query%20Language/

48

https://sourceforge.net/p/lemur/wiki/The%20Indri%20Query%20Language/

Chapter 3 Text representation models

the ParagraphVector model with a traditional LM approach produces unstable
performance and limited improvements. Another model that uses a LM is pro-
posed by Peters et al. [186]. In their model, the authors used a bidirectional
language model bi-LM [187], that combines the forward and backward language
models to jointly maximize the likelihood on both directions. Such that, given
a sequence s, the bi-LM of s is computed by combining the likelihood of the
forward and the backward contexts of every word in s, as shown in equation
3.12.

p(wi|s) =
N∑
i=1

log p(wi|w1, . . . , wi−1;
−→
θ) + log p(wi|wi+1, . . . , w|s|;

←−
θ) (3.12)

where
−→
θ and

←−
θ are the LM parameter in the forward and backward directions,

respectively. Experimental results have shown that the bi-LM combined with
the pre-trained word embeddings outperforms the original bi-LM [187] which is
based on the character-level embeddings.
Recently, Al-Sabahi et al. [188] proposed a modified BM25 model for document
summarization using word embeddings. Namely MBM25EMB, this model ex-
tends the BM25 model [57] with word embeddings to build sentence vectors from
their word vectors. Documents are then represented as sets of their sentence
vectors, that are computed by averaging their weighted word embeddings. The
parameters tf and idf of the original BM25 [57] model are computed differently
in the embedding space. Specifically, the frequency (tf) of a given term in a
sentence is measured by the maximum cosine similarity value between this term
and all other terms in that sentence. The sentences are then weighted according
to the MBM25EMB model in order to construct the summary of a long doc-
ument. The experimental results show that the MBM25EMB model performs
comprehensively better compared to different text summarization state-of-the-
art methods.

3.4.2 Query Expansion
The query expansion process [189] is a reformulation technique that aims to
enrich the query content with additional words, usually taken from the vocab-
ulary. The added words, called expansion candidates, are supposed to help the
matching model to find relevant documents and resolve the ambiguity of short
queries. When the embedded word representations are used for query expansion,
instead of matching the query and the document directly in the latent space,
word vectors are used to find good candidates for expanding the user query.
The selection of candidate words is general is based on a global vocabulary,
where similarities between word vectors are used to select the right terms, then
the extended query is used to retrieve documents using a classical IR model.
Several methods [160, 190, 191, 165] have been proposed for estimating the rel-
evance of candidate terms to the query. Most of these methods share a common
procedure: first, every candidate term is compared individually to each term of
the query using their vector representations, then the scores are aggregated for
each candidate. Top k candidate terms are then added to the final query. Some
models [192] can use additional filtering methods, such as the co-occurrence
matrix of the selected candidates with the query words.

49

Chapter 3 Text representation models

In the context of this thesis, we do not propose expansion-based models.
The objective of this paragraph is to highlight the query expansion approach
as a particular use-case of the embedded word representations in text matching
applications.

3.5 Issues Related to Distributed Representa-
tions

In this chapter, we described several models for distributed text representation
learning, namely at the word granularity level [193, 55, 146, 9] as well as at the
sequence level, that can be either a sentence [8, 12, 165] or an entire document
[8, 133, 173].

Using distributed representations in text matching models leads to several
questions. First of all, the training of these representations is such an important
step. The main question is about using pre-trained representations or train
the embedding models on our own corpus. Several works [13, 183, 165] are
satisfied with using publically available pre-trained embedding models, such as
Word2Vec [55] and GloVe [9]. The common argument is that the pre-trained
representations are learned using sufficiently large corpora and the vocabulary
is sufficiently rich. Besides, the fact of training a distributed representation
method is in itself a complicated task given the number of parameters to be
tuned, depending on the embedding model that is used, such as the word context
window size, the embedding space dimension, the algorithm to be used (Skip-
gram, CBOW, GloVe, ...). In general, a context window size is taken between
5 and 10 as suggested by Mikolov et al.[55, 52] and the embedding dimension
varies from 200 to 400 where the most used dimension is 300 ; Other authors
prefer to train the representation models in the target corpus [159, 14, 191], in a
general large text collection [176, 194] or more specifically in a domain specific
corpus [195, 15]. This option leads to learning new embedding spaces, and have
to deal with the issues related to the embedding training. More specifically,
the dataset pre-processing and the architecture of the NN that is used to learn
these representations. In [196], it was found that the data pre-processing, such
as word lemmatization, before training word embedding models is effective, and
leads to capture semantic similarities, especially for rare words. Frej et al. [186]
presented a detailed empirical study of how the choice of the neural architecture
(e.g. LSTM, CNN, or self attention) influences both, the end task accuracy and
the qualitative properties of the learned representations.

Second, another important issue is related to rare words in the corpus. In-
deed, to train the word embedding models [55, 9], a minimum word frequency
is used. Hence, rare words in the dataset are not present in the learned space.
These words, called out of vocabulary (OOV) words, cause a problem when they
are used in the text sequences being matched, such as a user query or a question,
and/or in relevant results, such as documents and answers. To solve the OOV
words problem, some methods [13, 153] tend to simply ignore them, while other
methods [176, 14] consider the these words as an important matching signals,
and define a specific token for every OOV word. These tokens are represented
using a random embedding vector and used in the matching process.

50

Chapter 3 Text representation models

3.6 Discussion
The distributed representations of words and sequences have impacted several
works in text matching applications. These representations have improved re-
search results when used in some classical models [159, 14, 191, 13, 183, 165],
but the performances are limited. Several studies [197, 198] have evaluated the
impact of using distributed representations of words in different text matching
tasks. These studies have argued that word embeddings do not solve lexical
ambiguity problems, such as polysemy, since all the meanings of the same word
are represented by the same vector, regardless of its different contexts. Be-
sides, context criteria alone are not sufficient to calculate the approximation or
matching characteristics of two different texts, in text matching applications.
The similarities computed with these representations may lead to an inappro-
priate exploitation of certain semantic relatedness. For example, Mrkšić et al.
[199] have shown that the word “cheaper” is found in words closer to the word
“expensive”, using the representation vector GloVe [9], in this case, these simi-
larity feature is not appropriate for finding words to expand a user query that
is for example about “cheap apartments for rent”.

Although recent models [200, 201] consider contextual word representations,
such as EMLo [187] and BERT [104], but these representations use a task-
specific architectures that include the pre-trained representations as additional
features [187], or require fine-tuning [104], in the target corpus to well perform in
the task being addressed. Analyses made by Tenney et al. [202] and Qiao et al.
[203] have shown several limitations related to the use of these representations.
For instance, in [202], the empirical analysis have shown that contextualized em-
beddings outperform their non-contextualized counterparts better on syntactic
tasks in comparison to semantic tasks, suggesting that these embeddings encode
syntax more so than higher-level semantics. In [203], Qiao et al. have evalu-
ated the performance of the contextualized word representations learned with
the BERT model [104], and showed the effectiveness of these representations in
a question-answering focused passage ranking tasks, and the interaction-based
sequence matching model. However, this analysis [203] have revealed that on
TREC ad-hoc ranking, the evaluated ranking models using BERT representa-
tions, even further pre-trained on a large ranking dataset, perform worse than
classical learning to rank and several neural text matching models that are pre-
trained on user clicks. Furthermore, in [200] the contextual embeddings yield
great ranking performance improvements, but they come with a considerable
cost at inference time when incorporated in a document retrieval model. Such
that, the classical word embedding, in particular GloVe [9], is shown to be more
effective in terms of time than the BERT [104] and ELMo [187].

Distributed representations of sequences [8, 133, 173, 12, 165] are also lim-
ited in terms of performance. The exploitation of these representations with
classical models [172, 153, 184] helped sometimes improving the results. How-
ever, the latent features of the sentence vectors are not explicit and do not refer
to concrete information about the dataset. Unlike the classical tf-idf signals
where every feature refers to a significant statistical aspect about words and
documents of the collection, such as the word frequencies, the discrimination
discrimination, importance weights, and so on. In [177], Ai et al. have analyzed
the usefulness of the ParagraphVector model [8] in classical IR models. They
have shown that this sequence embedding model is not suitable for represent-

51

Chapter 3 Text representation models

ing long documents, since it tends to over-fits short documents, which leads to
privileging short documents when the ParagraphVector representations are used
in a retrieval model. Besides, the AWE-based sequence representations is not
suitable for representing the semantic information inside long sequences (para-
graphs and documents), and can produce an insignificant vector representation
due to aggregating a large amount of semantic word representations [165].

In order to cope with the limitations of distributed representations of words
and sequences used in classical IR models, it would be preferable if the matching
model could automatically extract matching signals, and then combine them,
in a way that structural and semantic information could be leveraged.

3.7 Conclusion
In this chapter, we have discussed several text representation models that are
used to represent single words and sequences. Along this chapter, we have seen
how text representation approaches have evolved in order to better represent
different texts. In particular, the embedded word vectors have been used in order
to leverage non-exact matching information. Different models for embedding
sequences of words and whole documents have been proposed. The aim of these
models is to better represent semantic information in a word sequence. However,
these representations have shown limited performances when used with classical
matching models, and more powerful methods are needed in order to build text
representations and better perform the matching function.

52

CHAPTER 4

DEEP LEARNING IN TEXT
MATCHING APPLICATIONS

4.1 Introduction
Neural networks are known for their ability to build, in a latent space, dis-
tributed representations that are able to capture semantics of different types of
information (e.g. images, sound, text). In recent years, deep neural networks
have led to remarkable progress in several research areas such as speech recog-
nition, computer vision, and text mining tasks, including several IR tasks [11].
In text processing, the neural models are used to construct distributed (embed-
ded) representations of words and sequences, as well as to perform the matching
process.

We have seen, in chapter 3, that the distributed representations of words are
not capable of solving several linguistic issues such as, words polysemy [197, 198],
and performances are limited document ranking due to several factors related
to the training of these representations [204]. Although, the distributed repre-
sentations of sequences and documents [8, 133, 173] have been proposed, these
methods struggle to handle the semantic information when comparing different
texts [177]. The text representations are generally learned independently from
the matching task. The recent interest in text matching [31, 168, 179, 166]
tends to use a set of neural approaches to learn end-to-end models that better
perform the task being addressed. In these models, features are automatically
learned using a NN structure and no (or few) features engineering is needed.
This differs from the models described in the previous chapter 3 that do not
rely on relevance characteristics for learning the matching function. The deep
neural networks (DNN) are used in matching applications in order to overcome
some issues related to the classical learning to rank (LTR) framework [61, 205],
where an important human effort is needed in order to prepare a set of matching
features. Hence, the basic objective of using DNNs is to enhance those meth-
ods and reduce the human intervention, such as the features engineering, on
different ranking systems.

In this chapter, we will first discuss a set of basic aspects of machine learning
and their use in text matching applications, mainly the LTR method and some
related issues (section 4.2). We will then discuss the use of DNN models in
different text processing tasks. Specifically, we will present (section 4.3) a set

53

Chapter 4 Deep Learning in Text Matching Applications

Notation Description
X input space of a model
xi one input example
Y output space (true labels)
yi an output label corresponding to an input xi
∆ labeled dataset containing pairs (xi, yj)
Φ a matching model (function)
F features space (set of characteristic functions)
£ loss (objective) function
ϕ representation function

Table 4.1: Set of notations.

of deep models proposed for text matching applications. Furthermore (section
4.4), we will discuss the main issues related to the use of DNN architectures
in text IR and different text matching applications in general. To do so, let us
consider the notation previously defined in table 3.1 and extend it with some
additional elements that are needed in this chapter.

4.2 Machine Learning for Information Retrieval

Machine learning (ML) has been used in IR applications since the 1980’s [206].
In this section, we give a weaver description of the way machine learning methods
have been used in IR for ranking.

In general, ML algorithms are used in two main ways in IR: (1) for text
representation learning [55, 12], where the input representations are optimized
during training. (2) for matching [207, 185], where a ranking function is learned
from handcrafted features. Most ML models for IR are focused on learning
ranking functions [208, 209, 210, 211, 205, 212], and are refereed to as Learning
To Rank (LTR) models.

Let F be a feature space that contains a set of predefined feature functions
(tf, BM25, document’s section...)1. Hence, in the LTR framework, the input
space corresponds to X ⊂ R|F |, where every element xi ∈ X is a vector of
weighted features. This vector gives weights, computed by the different feature
functions in X, relatively to the text sequences being matched (e.g. query-
document or question-answer). Let yi ∈ Y refers to the true relevance label
(e.g. relevance judgment). The LTR model is trained to optimize the function Φ,
called hypotheses, in order to learn the parameters θ to better combine features
of F w.r.t. every input xi.

In IR, the input space X contains features computed to different text pairs
(e.g. document-query), and the true label yi corresponds to the relevance judg-
ment.

1Some features used in the LTR dataset LETOR [213]

54

Chapter 4 Deep Learning in Text Matching Applications

4.2.1 LTR Algorithms
Literally, all the existing LTR methods can be grouped [207] into three ap-
proaches: the pointwise approach, the pairwise approach, and the listwise ap-
proach. In the following, we consider the query-document matching task and
describe the different LTR algorithms accordingly. To do so, consider a query
Q and a set of candidate documents {D1, ..., Dm}. Let Φ be the LTR model to
be trained, and Y the output space.

• Pointwise. In the pointwise approach [214, 215, 216], the model’s input
is a features vector xi corresponding to a pair (Di, Q), and yi ∈ Y is
the relevance label that the model Φ is trained to approximate, such that
Φ(xi) = yi.
Note that the pointwise approach does not consider the interdependency
among the returned documents [61], and thus the position of a document
in the final ranked list is invisible to its loss function.

• Pairwise. In the pairwise approach [217, 210, 218], Φ takes a pair of
features vectors, xi and xj corresponding to (Di, Q) and (Dj , Q), respec-
tively. Such that, Di is more relevant to Q than Dj . Hence, the model Φ
is trained to learn a preference function f(xi) � f(xj), where � refers to
the preference and f computes the relevance score of a document based
on its features vector.
In this case, the loss function measures the inconsistency between the truth
preference and the model’s preference, and the objective is to rank the
relevant document better than the irrelevant one. However, this approach
processes document pairs related to the same query independently. Such
that, for a set of features vectors {xi, xj , xt, xz} corresponding to a set
of documents {Di, Dj , Dt, Dz} related to the same query Q, where Di

is preferred over Dj , and Dt is preferred over Dz, the pairs (xi, xj) and
(xt, xz) are handled independently and we can not figure out what is the
preferred document in (Di, Dt).

• Listwise. The listwise models [209, 219, 220] consider the entire set of doc-
uments {D1, ..., Dm} related to Q. Hence, the model’s input corresponds
to a set of feature vectors {x1, ..., xm}. The model Φ is then trained to
approximate the true labels {y1, ..., ym} corresponding each one to a rele-
vance score associated to every document Di w.r.t. the query Q.

The aforementioned LTR algorithms differ in their learning objectives, and
every objective function takes into account the application’s purpose.

4.2.2 Related Issues
The LTR models, have already achieved great success in many IR applications
[214, 215, 219, 210, 208, 211, 212], mainly in the modern Web search engines
like Google2 or Bing3. In the followings, two main issues to cope with when
designing LTR model:

2http://google.com
3http://bing.com

55

Chapter 4 Deep Learning in Text Matching Applications

• Features engineering. Another aspect is the feature selection and filter-
ing. These features can help improve the efficiency of training the LTR
models [221]. However, their preparation is a difficult process, since they
are hand-crafted. Indeed, the major obstacle in LTR is the availabil-
ity of high quality relevance features. Most existing LTR models rely on
hand-crafted features. These features are time consuming, since their con-
struction involves an important human efforts. Specifically, one needs to,
first, select a set of important features, then compute their weights (man-
ually or automatically) for every example in the dataset. This process is
often data-specific, and could require domain experts in order to perform
the features selection in some cases (ex. describing scientific documents).
Although several studies [222, 221] have proposed different automated fea-
ture selection methods, the features engineering is still an expensive step
and requires a complicated procedures.

• Training objective. In [61], Liu et al. have discussed several issues about
the objective functions used in different LTR algorithms. In fact, the LTR
methods for IR use ML techniques in order to perform the ranking of
relevant documents. However, the loss functions that are used by these
models, mainly the pairwise and listwise approaches, take into account
only part of the ranking objective in IR. To deal with this limit, Liu et
al. [61] suggested to adopt loss functions based on the IR true evaluation
measures. Such that, this true loss for ranking could be defined at the
query level and consider the position of relevant results. The statistical
consistency further discusses whether the minimization of the expected
risk, defined with the loss function, can lead to the minimization of the
expected risk defined with the true loss function.

To cope with these issues, particularly the features engineering, it would be
of a great value if the LTR ranking model could, in one hand, automatically
learn the useful relevance features, and in the other hand, learn the relevance
function which is capable of accurately identifying the relevant items within a
diverse and a noisy dataset.
Deep learning models [77, 76, 223] provide a set of powerful computational
methods that could give more potential for learning several complicated tasks
in text matching, than the traditional shallow models. Essentially, these models
enable to learn efficient abstract representations from raw data [224]. Such
that, input data samples are represented by distributed structures, where the
real values refer to weights of latent features that are automatically captured by
the NN. Hence, these models can be used as alternatives in order to avoid the
problems of the feature engineering in the traditional LTR framework. Due to
their potential benefits, and along with the expectation that similar successes
with deep learning could be achieved in IR [225], DNNs are used to develop
several deep models to handle different tasks in text representation learning
and matching.

In the following section, we will discuss how deep models are used to handle
text matching applications, and present a set of deep learning models for text
matching applications.

56

Chapter 4 Deep Learning in Text Matching Applications

4.3 Deep Learning for Text Matching
DNN models have been used in diverse IR and NLP tasks. This interest is
motivated mainly by the accurate learning of distributed representations, such as
the distributed vectors of words [55, 9], and the structured arrangement of them
[8, 12] for natural language expressions such as sentences and documents, and
effectively utilizing these representations in matching tasks [184, 185, 178, 226].
Several NN models have been proposed to model end-to-end text processing
tasks. These models have been discussed in multiple tutorials and surveys [227,
228, 11], where the neural models use neural networks order to automatically
extract different matching signals and better combine them. These models are
used in several text matching applications, for instance:

• Ad-hoc Search, such as document retrieval [180, 110, 179] and passage
retrieval [229].

• Question Answering applications, such as answer sentence selection [230,
231, 232] and community question answering [233, 234].

• Classification tasks, such as document classification [235, 25] and para-
phrase identification [168, 236]

The different neural models for text matching applications are divided into
two main groups [178], specifically representation-focused models and interaction-
focused models.

4.3.1 Unified Model Formulation
Before describing models of the different groups, let us first define a unified
model formulation, adapted from [11], and that we further use to describe dif-
ferent neural matching models. Consider the framework described in figure 4.1,
where a matching model is composed of two main parts: the representation part
builds distributed representations of the input sequences, and can use several
models described in section 3.3; the matching part compares the representations
built in the representation part.

We first define the input space of a neural model for text matching as X =
S(Q) ∪ S(D), where S(Q) is the generalized query space, containing the first
sequence of the pair of sequences to be matched (e.g. query or question); S(D) is
the generalized document space containing the second sequence of the pair (e.g.
document or answer). In the input spaceX, for every generalized query sequence
s

(Q)
i ∈ S(Q), we define Ti =

{
s

(D)
i1 · · · s

(D)
ini

}
⊆ S(D) a set of ni sequences.

Let yi be a set of true labels corresponding to the input example s
(Q)
i and

the set yi = {yi1, · · · yini} of sequences. Such that, yij is the relevance label
corresponding to the input s(D)

ij w.r.t. s
(Q)
i . The objective of a neural model

for text matching is to learn the optimal model Φ∗ by minimizing a set of
prediction errors. These errors are computed using a defined loss function £,
corresponding to every true label yij compared to the predicted value ŷij . As
described in equation 4.1.

Φ∗ = argmin
∑
i

∑
j

£
(

Φ; s(Q)
i , s

(D)
ij , ŷij , yij

)
(4.1)

57

Chapter 4 Deep Learning in Text Matching Applications

E

Representation Matching

... Final
Score

...

...

Figure 4.1: General framework describing a unified neural model for text match-
ing.

where the estimated output label ŷij is computed by the matching model Φ that
could be abstracted as in equation 4.2.

Φ def= g
(
ϕ(s(Q)

i), ϕ(s(D)
ij)

)
= ŷij (4.2)

where ϕ is a representation function that extracts features from a raw text input,
and that function ψ combines the embedded word representations e (wt) of an
input sequence s =< w1...w|s| >.

ϕ(s) = ψ
(
e (w1) , ..., e

(
w|s|

))
(4.3)

where e : V 7→ E is an embedding function that maps every word in a vocabulary
V to a real valued structure in the embedding space E4. Hence, ψ is a repre-
sentation function of input sequences, and that could be an aggregation-based
(section 3.3.1) or not (section 3.3.2).

4.3.2 Representation-focused vs Interaction-focused
In this part, we describe and compare a set of representation-focused mod-
els [16, 237, 238, 239, 240, 241] and the interaction-focused models [178, 242,
19, 179, 17]. To describe the main differences between representation-focused
and interaction-focused models, we consider two general architectures describ-
ing models of every class, as shown in figure 4.2.
In the followings, we highlight the different components of every framework.

Representation-focused Models

Figure 4.2a illustrates a general framework for representation-focused models.
Models of this class attempt to learn latent patterns that best represent the

4In case of embedded word vector representations, E ⊂ Rdim with dim is the dimension
of the embedding space.

58

Chapter 4 Deep Learning in Text Matching Applications

E

Representation Matching

... Final
Score

...

...

...

...

(a) The representation-focused framework

E

Representation Matching

... Final
Score

...

...

(b) The interaction-focused framework

Figure 4.2: A general architectures showing the main differences between the
interaction-focused models and the representation-focused models.

59

Chapter 4 Deep Learning in Text Matching Applications

input sequences. In the representation part, the function ϕ computes distributed
representations ϕ(s(Q)

i) and ϕ(s(D)
ij) corresponding to the input sequences s(Q)

i

(e.g. query or question) and s
(D)
ij (candidate result, e.g. document or answer),

respectively. As shown in equation 4.4.

ϕ(s) = φ
(
ψ
(
e (w1) , ..., e

(
w|s|

)))
(4.4)

where e (wt) is an embedded word vector of the sequences s. The representations
φ(s(Q)

i) and φ(s(D)
ij) are then fed to the matching function g, and that can be a

NN (e.g. CNN or RNN) or a simple matching function (e.g. cosine). φ combines
the lower level features computed by the function ψ. This latter computes lower
level (e.g. letter-level or word-level) features.

Several existing neural models for text matching could be put in this cate-
gory. Huang et al [16] proposes a deep structured semantic model (DSSM) for
ad-hoc web search. The DSSM network consists of two symmetric deep branches
whose parameters are shared for both input sequences - specifically a query Q
and a document D. All hidden layers of the DSSM model are stacked MLPs,
used to compute intermediate semantic representations. Based on the general
representation-focused model of figure 4.2a, in the DSSM model, the embed-
ding space E contains a set of representation vectors learned in the letter-level.
Called [16] word hashing. This model aims to reduce the dimensionality of the
initial BoW term vectors that use all the dataset vocabulary. The intermediate
representation function ψ corresponds to a concatenation of the different letter
n-gram vectors of an input sequence (document and query). The representation
function φ corresponds to the set of stacked MLP layers used to compute the
semantic representations of input sequences [16]. While the matching layer g
corresponds to the cosine simimarity function.

The work of Shen et al [237] extends the DSSM model by introducing a
convolution neural network (CNN) into the DSSM architecture. In this model,
called Convolutional Latent Semantic Model (CLSM) or convolutional DSSM
(C-DSSM), instead of having a simple MLP layer in the representation function
φ, a convolution layer is used to map the sparse initial representations computed
by ψ into a semantic-based representations. The convolution layer transforms
the tri-grams of the different words in the input sequences, into a latent vector
then a max-pooling layer is used to extract the most significant local character-
istics, and construct fixed length global vectors for the input sequences.
In other models, the representation function φ (figure 4.2a) could be a CNN
of multiple convolution and pooling layers, as in the convolutional LTR model
of Severyn and Moschitti [238] and the ARC-I model architecture of Hu et al.
[17]. For instance, the convolutional LTR model [238] first, the function ψ con-
catenates the different word vectors then the function φ computes the embedded
representation corresponding to every input sequence using a CNN layer. In the
matching part, a first similarity signal called xsim is computed using a learn-
able matching matrix M . This signal is aggregated, in a same features vector
X =

[
ϕ(s(Q)

i)||xsim||ϕ(s(D)
ij ||xtfidf

]
with the computed representations, where

xtfidf are tf-idf features relating the input sequences, and || refers to a concate-
nation. The resulting vector X is then fed to the matching function g which
corresponds to an MLP layer, to build an LTR-like classifier.

In other cases, the representation function φ (figure 4.2a) is made of a recur-
rent NN. For instance, Sutskever et al. [78] proposed an end-to-end model that

60

Chapter 4 Deep Learning in Text Matching Applications

learns to predict a target sentence supposed to be similar to a given input sen-
tence, represented by its component word embeddings, using an LSTM encoder-
decoder model. The MV-LSTM model of Wan et al. [3] uses a bi-LSTM layers in
the function ϕ to learn position-based representations for every input sequence.
The Skip-thought model [12] uses a GRU5 layers to learn the sequence-to-vector
mapping function ϕ, by predicting forward and backward sentences of a given
current sentence. Some recent recurrent-based models [243, 241] combine rep-
resentation signals computed by the hidden states of the recurrent networks of
function ϕ, with external signals to strengthen the final representations. For ex-
ample, in the RNN-Similarity model [243], Kamath et al. proposed to integrate
sequence-level features, such as expected answer types (e.g. location, human,
entity or number) in the field of sequence answer selection. These features are
based on the semantic information of the input question, and used in order to
learn the matching as well as the representation functions of the final model.
Differently from RNN-Similarity model[243], in the DRCN model proposed by
Kim et al. [241], each layer of the representation learning branches (figure 4.2a)
provides a concatenated information of attention-based features as well as hid-
den features of all the preceding recurrent layers, in order to enable preserving
the original and the attention-based information about the input sequences. All
the information, from the bottommost word embedding layer to the uppermost
recurrent layer, are concatenated in the same features vector and fed to a fully
connected layer to compute the final matching score.
Furthermore, both of the recurrent and a convolution layers could be combined
[240, 244] in the same representation function φ, for capturing the context de-
pendencies with convolutional layers, taking into account the sequencing of in-
formation by the recurrent layers.

Interaction-focused Models

In the interaction-focused framework, the model attempts to learn different
matching features given the initial distributed representations of the input se-
quences being matched. The objective in this framework is to make the inputs
interact earlier in the model [178], in order to extract matching signals in a
lower level compared to the representation-focused models. The general frame-
work that can illustrate the architecture of such models is presented in figure
4.2b, where representation part computes initial representations of the input
sequences, by combining their component word vectors in the function ψ. In
the matching part, the layer ⊗ refers to the function that extracts interaction
features from the word-level, and the function ξ refers to the subsequent layers
that compute relevance features of a higher levels. Hence, the matching function
g can be redefined as in equation 4.5.

g
(
ϕ(s(Q)

i), ϕ(s(D)
ij)

)
= ξ (M) (4.5)

where M is a word-level matching matrix computed as in equation 4.6, and
which varies depending on the different models of the state-of-the-art. ξ is an
interaction function applied to the word-level signals, as highlighted in figure

5Is a specific LSTM architecture that, differently from the basic LSTM, GRU uses a gating
mechanism to track the state of a given sequences without using separate memory cells [31]

61

Chapter 4 Deep Learning in Text Matching Applications

4.2b.
M = ⊗

(
ϕ(s(Q)

i), ϕ(s(D)
ij)

)
(4.6)

where ⊗ is a matching function (e.g. cosine).
Three different types of NN architectures could be used to learn the interac-

tion function ξ of figure 4.2b. In case a CNN model is used [17, 19], the objective
is to learn a contextual features. Hence, a sliding window cQ×D is defined and
moved in the matrix M , corresponding to a combination of two sliding windows,
c(Q) and c(D), considered in the input sequences, s(Q)

i and s
(D)
ij respectively, at

the same time. In case an MLP architecture is used [178, 245], the objective is to
learn different interactions between the matching features from the word-level.
Finally, in case a recurrent architecture RNN is used [27, 246], the objective is to
learn sequence and structure-based features. Hence, the matrix M is considered
as an ordered sequence of information.
Regardless the function ξ, the input texts can be represented in different ways,
including classical one-hot word vectors [179], pre-trained embedded represen-
tations [17], or representations that are updated (learned) during the model’s
training [19].

One of the models that use a CNN architecture to learn the function ξ is the
ARC-II model proposed by Hu et al. [17]. This model uses an interaction ma-
trix M computed using a product scheme between input query and document
matrix representations. These representations are constructed by accumulating
the component sequence word vectors. The intuition is to capture the interac-
tions between words in a latent space rather than the word-word co-occurrences
in the whole corpus. This intuition is supported by the effective performance of
ARC-II [17] on different text matching tasks, such as sentence completion, ques-
tion answering and paraphrase identification. In [179], Mitra et al. emphasize
the importance of lexical matching in deep neural models for IR. They showed
that representation-focused models tend to perform less when faced with rare
terms. They also argued that web search requires both exact and non-exact
(semantic-based) matching. Indeed, this type of search involves the use of sev-
eral rare terms in some queries [179], and these are not necessarily used in the
training collections of the latent representation spaces, and the exact matching
will be more accurate to find the appropriate documents. Based on this motiva-
tion, the authors proposed a neural IR model, called DUET architecture, that
incorporates both lexical and semantic matches. The DUET model consists
of two parallel parts: the local model for exact matching that seeks to learn
interaction signals between two texts; and the distributed model for semantic
matching, based on the latent representation of texts. Final matching scores are
computed by aggregating scores given by both the local and distributed parts of
the DUET model [179].

Some other models define the interaction function ξ using an MLP network.
For example, the DeepMatch model proposed by Lu and Li [242] applies a deep
MLP to the interaction matrix M corresponding to a word-word co-occurrence
matrix. This model considers a hierarchical decisions for matching at different
levels of abstraction. Local decisions, which capture the interaction between se-
mantically related words, are combined through the different hierarchical layers
of the NN, to learn the global matching decision.
The DeepMatch model is trained [242] using triplet sequences

(
s

(Q)
i , s

(D)+
ij , s

(D)−
ij

)
,

62

Chapter 4 Deep Learning in Text Matching Applications

where s(D)+
ij , s

(D)−
ij ∈ Ti, and s

(Q)
i is more similar to s(D)+

ij than to s(D)−
ij . The

objective is to maximize the similarity values computed by g (equation 4.5)
for the positive pairs versus the negative ones, as described in the hinge-loss
function of equation 4.7.

£
(
s

(Q)
i , s

(D)+
ij , s

(D)−
ij

)
=

max
(

0, ε+ g
(
ϕ
(
s

(Q)
i

)
, ϕ
(
s

(D)−
ij

))
− g

(
ϕ
(
s

(Q)
i

)
, ϕ
(
s

(D)+
ij

)))
(4.7)

where ε = 0.1 is a parameter used to control the training margin.
In [178], Guo et al. proposed a deep relevance matching model (DRMM). They
show that the deep learning methods built for semantic matching, would not
be well suited to ad-hoc research. The latter concerns basically the relevance
matching rather than the semantic matching. Based on this main difference,
DRMM model computes the word-word interactions between input sequences,
using the matching function ⊗ (equation 4.6) corresponding to a cosine similar-
ity, then the word-level matrix M is transformed into histograms. Every match-
ing histogram regroups local interactions according to their signal strength levels
rather than their position.

In other cases, the matching function g (equation 4.5) uses mainly a recur-
rent NN. For example, in the work of Wan et al. [246], the authors propose the
Match-SRNN model for position-based matching between input sequences. In
the Match-SRNN model, given the input sequences s(Q)

i and s
(D)
ij , a word-level

matching tensor M is computed using the ⊗ function defined in equation 4.6.
Where every element mtk in M corresponds to the interaction at position t of
s

(Q)
i and at position k of s(D)

ij . This interaction is computed based in a combina-
tion of the prefix and the current word of every sequence. The matching matrix
M is then fed to a the interaction function g that corresponds to a spatial RNN
followed by an MLP layer to compute a final matching score.
Another RNN-based architecture is proposed by Fan et al. [27]. The authors
highlighted that the main limitations of the document-wide models is that they
perform a competition between long and short documents; while the passage-
based models leverage simplified aggregation strategies of local signals but can-
not well capture complex relevance patterns. To overcome these limitations,
the authors proposed a Hierarchical Neural Matching model (HiNT) which con-
sists of two stacked components [27]. Specifically, the local matching layer that
uses an RNN architecture to compute a passage-level matching patterns; and the
global decision layer that uses a second RNN architecture that performs interac-
tions between the different passage-level signals to compute the document-level
relevance features. The objective of the HiNT model is to assess, automatically,
the relevance of long documents in the right information granularity, the word-
level, the passage-level or the whole document. The local layer uses a spatial
GRU [246] applied to a query-passage matching matrices. Then the global deci-
sion layer uses a hybrid network architecture to select signals from both passage
and document level and compute the final matching score.

4.3.3 Attention-based vs Position-based
In some particular cases, specific assumptions about the input elements could be
considered in the representation learning functions. Specifically, the attention

63

Chapter 4 Deep Learning in Text Matching Applications

aspect that assumes that some elements are likely to be more important than
others in a given sequence; and the position of these elements in that sequence.
Hence, we distinguish the attention-based models and the position-based models,
among others that we refer to as general-features-based models.

Attention-based Models

The ”attention” concept, resulting from machine translation [31], has brought
a significant gain in several NLP applications, including sentiment classification
[25, 26] and paraphrase identification [236]. Attention-based models, identify
the core information to be considered in a given sequence and allow focusing on
some discriminated elements. The main idea is as follows:
Given an input sequence s =< w1...w|s| >, the attention model is expected to
learn a coefficient vector α that determines how much attention should be given
for each element in wt. The elements in s will be then weighted accordingly.
Hence, the attention vector α = [α1, ..., α|s|] is used in order to perform an
optimal weighting process according to the task to be performed. Where every
weight value αt represent the amount of attention to be given to the word at
position t of the sentence. These values are computed [157] as described in
equation 4.8.

αt = exp(V T .wt)∑|s|
t=1 exp(V

T .wt)
(4.8)

where V is a model parameter and represents the attention coefficients vector
for the input sentence, and V T its transposed vector.

Several authors have proposed attention-based models for text matching.
For instance, Zichao Yang et al [25] propose a hierarchical attention network for
document classification. The model combines a word and a sentence attention
levels in a recurrent model architecture. The input text is first represented using
word embeddings, then a first bidirectional GRU (bi-GRU) layer is applied to
compute a representation vector for the input text. This vector is then passed
through an MLP layer in order to construct an intermediate representation
vector that will be used to learn attention coefficients of the different words. A
second bi-GRU layer is used to compute the sentence level representation and
learn the corresponding attention coefficients. The same process as in the word
level is repeated in the sentence level. The final score is then computed based
on these representations. Liu Yang et al [157] propose an attention-based neural
model (ANMM) for question-answer matching. The input question and answer
sequences are represented by their embedded word vectors. Then an interaction
matrix is computed using the cosine similarities. The ANMM uses a neural
architecture with a value shared weighting scheme, and a gating function where
the question words are used to compute attention scores for the final matching
signals. The shared weighting scheme [157], called bin-sum, aims at using the
same connection weights for some nodes of the fully connected layer, where
signals are in the same interval that represents the matching signal strength.
Recently, Peng and Liu [22] proposed an attention-based convolutional neural
model for short text matching. The model is made of two modules that work
in parallel: the word-level and phrase-level. The model combines the word
overlap feature of the input text sequences, represented as word vectors, with
the features learned by the NN, to compute the relevance probability of the

64

Chapter 4 Deep Learning in Text Matching Applications

answer. First, matching matrices are computed for both the word-level and the
phrase-level, using the cosine function, then a pooling layer is applied to both
the matching matrices, in order to select the most important matching signals
from the word level and the phrase level in parallel. Then, attention weights
are computed at word and phrase levels, using the ReLU activation function for
the input text representation. Finally, the word-level and the phrase-level score
vectors are concatenated and fed to a hidden fully connected layer, to compute
the final output probability.

Position-based Models

Differently from the attention-based approach, in the position-based models
[3, 247, 24] the matching function is provided with the positional information
corresponding to the different words in the input sequences being compared.

The word position is already considered, implicitly, in convolutional and
recurrent models for text matching. In convolutional models [185, 17], the
convolution layers process selected windows or n-grams of the input text in
order to extract contextual features. In recurrent models [12, 78, 239], the
words ordering of a given input sentence is processed in the different gates of
the a RNN node (section 2.3.2). However, only the hidden activation vector
corresponding to the last input word, is considered as the embedding vector of
the whole sentence. Position-based models [247, 3] consider the position of every
individual word in a given text, as an important factor to determine its weight.
In the model proposed by Hui et al. [247], a semantic matching matrix is first
computed for the embedded word vectors of the document and the query. This
matrix is then distilled, by selecting the k most significant matching signals along
the document dimension. The objective is to localize the relevance matching
over all the matrix entries. This matrix is then fed to the DRMM model [178]
architecture as input, to compute the final matching score.
Wan et al. [3] proposed the MV-LSTM model for matching sentences using
representations computed at different positions of every sentence. The model
uses bi-LSTM networks (section 2.3.2), where every hidden state computes a
different representation for the input sentences. Hence, each input sentence
acquires a different representation at every position. For example, consider the
input sentence s =< w0w1...w|s| >, where wt is the word w at position t. The
hidden states

−→
ht and

←−
ht , computed as defined in equation 2.5, are concatenated

to construct the bidirectional representation vector st =
[−→
ht ,
←−
ht

]
at position t

of the sentence s. Hence, for two input sentences s(Q)
i and s(D)

ij , the MV-LSTM
[3] computes interaction matrices based on the bidirectional representations of
each sentence. These matrices are then fed to a pooling layer that extracts
k strongest interaction signals. Called k-Max pooling, this process is used in
several neural text matching models [248, 185, 238, 21]. It aims at removing the
noisy features from the interaction tensor.

Recently, Song et al. [24] proposed the positional convolution neural match-
ing model (P-CNN). This model considers positional influence and interaction
in multiple levels for text matching. The P-CNN first encodes the signals of po-
sitional information at the word level, the phrase level, and the sentence level.
Then, a position-to-similarity mapping layer is defined to transform word-level
positional information into local matching signals. At the phrase-level, a CNN

65

Chapter 4 Deep Learning in Text Matching Applications

layer with position-sensible filters is used. A final matching function is then
used to aggregate positional information, from the word and phrase levels, and
compute a final matching score.

4.4 Discussion
Several issues are related to the use of deep models in text matching applications.
We identify two main factors, the data and the models. In the following, we are
going to discuss some issues related to every factor.

The type of data that is required in text matching applications, such as
question answering and ad-hoc retrieval, consists mainly of three parameters:
(1) a set of generalized queries, (2) a set of generalized documents, (3) relevance
judgments (explicit human decisions or implicit such as click data). These three
elements are more than required in order to design deep models in text matching
applications. It is also useful to distinguish between deep neural models that
focus on ranking long documents, from those designed for short text matching
(e.g., for the question answering task, or for document ranking where the doc-
ument representation is based on a short text field like title). The challenges in
both of them are different, and DNN models need to be designed accordingly
[249]. In one hand, when computing similarity between pairs of short texts, the
vocabulary mismatch problem is more likely to happen than when retrieving
long documents which could contain thousands of words and query words are
more likely to be used [250]. In another hand, long documents may contain
mixture of many topics and the query matches may be spread over the whole
document. The neural ranking model must effectively aggregate the relevant
matches from different parts of a long document [251, 27].

Another issue is related to the adaptability of neural models for the different
applications of text matching. Indeed, the structures of deep models designed
for text matching are often tailored to perform on specific datasets [249]. In
addition, IR tasks deal with text of variable length, from short sequences (in
case of answer selection) to long documents. This issue makes it inappropriate
to directly adapt a deep model, designed for short text matching application,
to the ad-hoc document retrieval.

Finally, text matching applications are different according to the task being
addressed. In recent studies [11, 252], a new classification of neural text match-
ing sate-of-the-art is provided. The different neural models for text matching
could be divided according to the way of handling the different inputs to per-
form the task being addressed. In a previous work [252], we have introduced
the asymmetry aspect regarding the different text matching applications in IR,
and how the input sequences could be processed in order to perform the target
task. This aspect will be discussed in more details latter in chapter 7.

4.5 Conclusion
In this chapter, we reviewed several neural text matching models, and provided
a road-map of using the deep neural networks in different text matching appli-
cations.

The trend to use deep models in text matching is motivated by several limits

66

of the classical LTR methods, mainly the features engineering which is costly
and time consuming. Hence, the deep models designed for text leverage the
computational ability of NNs to automatically compute and combine relevance
signals. We defined a unified neural matching model that we used to describe
different state-of-the-art models. All the different neural matching models de-
scribed in this chapter handle different matching tasks independently of the
nature of the data and the task itself. However, the analysis made in [249] show
that models designed for short text matching are inappropriate for ranking long
documents. Finally, we described the models based on positional features and
those putting a specific attention on particular words in a text sequence. We
noticed that the positional features enable to enhance state-of-the-art results,
as well as attention models do. However, to the best of our knowledge, there is
no model that has considered both positional features and attention weight in
the same model.

This chapter closes the state-of-the-art part of this document. In the follow-
ing part, we will detail our contributions made during the preparation of this
thesis, to solve several problems and issues discussed in this part. In particular,
concerning the exploitation of distributed representations in IR, as well as the
use of deep models in text matching applications.

Part IV

Contributions

67

CHAPTER 5

EXPERIMENTAL SETUP

5.1 Introduction
In this chapter, we describe the experimental setup used to evaluate the differ-
ent contributions and baselines. This setup includes the datasets, the evaluation
metrics, the frameworks and technical tools used to perform the different ex-
periments. We also describe the different baseline models that we considered to
compare the performances of our models to the state-of-the-art results.

5.2 Datasets
In this work, we focus on two main tasks, short text matching and ad-hoc
document ranking. Therefore, we used different datasets to run our experiments.

5.2.1 WikiQA
WikiQA is a set of question and sentence pairs, provided by Microsoft Research
[4]. The questions have been collected from Bing query logs, and have an average
length of more than 7 words. Each question is associated with a Wikipedia page
that potentially contains the answer. The candidate answers have an average
length of more than 25 words. They correspond to selected sentences from the
summary section of the corresponding Wikipedia page that provides the most
important information about every question’s topic.

Table 5.1 gives some statistics about the WikiQA dataset. The original cor-
pus contains 3047 questions and a total of 29258 sentences. It includes several
questions that have neither correct nor wrong answers. These questions have
been filtered in the version we use in our experiment and which is provided
by MatchZoo1. Hence, the new WikiQA version that we used includes 2477
questions and a total of 24590 sentences. Such that for every question there
is at least one correct answer and at least one wrong answer. A sample of the
WikiQA dataset is given in table 5.2.

1https://github.com/NTMC-Community/MatchZoo/tree/1.0/data/WikiQA

68

Chapter 5 Experimental setup

Dataset Original MatchZoo
Characteristic Train Valid Test Total Train Valid Test Total
#num questions 2118 296 633 3047 2118 122 237 2477
#num sentences 20360 2733 6165 29258 20939 1115 2536 24590

Table 5.1: Statistics of the original WikiQA dataset of Yang et al. [4], compared
to the one processed in MatchZoo [5]

QuestionID Question DocumentID DocumentTitle SentenceID Sentence Label

Q16 how much is 1
tablespoon of
water?

D16 Tablespoon D16-0 This table-
spoon has a
capacity of
about 15 mL.

1

Q16 how much is 1
tablespoon of
water?

D16 Tablespoon D16-6 It is abbre-
viated as
T, tb, tbs,
tbsp, tblsp, or
tblspn.

0

Q23 how old is zsa
zsa gabor’s
daughter?

D23 Zsa Zsa Gabor D23-1 Gabor was
also a so-
cialite.

0

Q23 how old is zsa
zsa gabor’s
daughter?

D23 Zsa Zsa Gabor D23-5 She later acted
in We’re Not
Married!

0

Table 5.2: Sample from the WikiQA dataset of questions and their correspond-
ing answers and labels.

5.2.2 QuoraQP
The QuoraQP2 dataset consists of over 404K question pairs which are either
similar or not. Statistics of this dataset are provided in table 5.3. A data
sample of the QuoraQP dataset is listed in table 5.4, where each question pair
is given a different id, and it is composed of two different sequences (questions)
with their corresponding identifiers qid1 and qid2. The last column tells whether
the question pair is similar or not (1 or 0 respectively).

Question pairs Positive (duplicates) Negative (non-duplicates)
404351 149306 255045

Table 5.3: Description of the experimental QuoraQP dataset.

2https://data.quora.com/First-Quora-Dataset-Release-QuestionPairs

69

Chapter 5 Experimental setup

id qid1 qid2 question1 question2 is duplicate

0 1 2 What is the step by
step guide to invest
in share market in
india?

What is the step by
step guide to invest
in share market?

0

1 3 4 What is the story
of Kohinoor (Koh-i-
Noor) Diamond?

What would happen
if the Indian govern-
ment stole the Ko-
hinoor (Koh-i-Noor)
diamond back?

0

5 11 12 Astrology: I am a
Capricorn Sun Cap
moon and cap ris-
ing...what does that
say about me?

I’m a triple Capri-
corn (Sun, Moon
and ascendant in
Capricorn) What
does this say about
me?

1

7 15 16 How can I be a good
geologist?

What should I do to
be a great geologist?

1

Table 5.4: Sample of some question pairs from the QuoraQP dataset.

5.2.3 Ad-hoc Document Ranking Datasets
We used two different types of the Text REtrieval Conference (TREC)3 collec-
tions, news and Web datasets. All these datasets have the same format specified
by the TREC campaign. For each dataset, a set of queries and relevance judg-
ments (Qrels) are provided. Statistics about all the TREC datasets are provided
in table 5.5.

Collection # of documents TREC query ids
AP 88-89 165 K 51 - 200

Robust04 528 K 301 - 450
601 - 700

GOV2 25 M 701 - 800

Table 5.5: Statistics of the TREC datasets used for ad-hoc document ranking.

News Datasets

We used two different datasets:

• Associated Press (AP). This is a set of news papers containing over 165K
documents of different years (1988-1990). In our experiments, we only used
documents of the AP-1988 and AP-1989, which correspond to the common
use in IR literature, and for which relevance judgments are provided for
150 different queries.

• Robust04. This contains documents of the TREC 2004 Robust Track4.
The dataset consists of news papers documents in discs 4 and 5 of the
TREC data excluding documents of the Congressional Record set. This
dataset contains over 528K documents and 250 judged queries.

3https://trec.nist.gov/data.html
4https://trec.nist.gov/data/t13 robust.html

70

Chapter 5 Experimental setup

Web Dataset

We used one Web dataset which is the GOV2 dataset. This dataset is used
in the TREC Terabyte Track5. It contains a large proportion of the crawlable
pages from .gov, in both HTML and text formats. Text documents may come
from original PDF, Word or Postscript files. The GOV2 collection is 426GB in
size and contains over 25 million documents. The GOV2 dataset includes 100
queries and the corresponding relevance judgments for the different associated
documents.

5.3 Evaluation metrics
We have used different metrics in order to evaluate the performance of our
proposed models as well as the different baselines. Several evaluation measures
have been previously defined in section 1.5.1. In this section, we cite the different
measures that we used in our experimental process, and give a brief reminder
of their definitions and the reasons for our choice.

• MAP. Our aim is to evaluate for each query the distribution of relevant
documents in the set of returned results.

• nDCG@k. We used this measure at different ranks, 1, 3, and 5 in the
evaluation with a question-answering task; and at 5, 10 and 20 while
evaluating with the ad-hoc document ranking task.

• P@k. The precision at different ranks is used to promote the relevant
documents of a ranked results list. We evaluated the precision at different
ranks, 1, 3, 5, 10, and 20.

• MRR. We used this measure for evaluations in the question-answering
task. We assume that the user is likely to be satisfied if the correct answer
is found in the top of results list.

• Acc. In our experiments, we only used this measure while evaluating the
neural models in the paraphrase identification task. We evaluated the
models ability to correctly find all the positive question-pairs.

5.4 Baseline models
While evaluating our different contributions, we considered several baseline
models, namely classical and neural models.

5.4.1 Classical models
We considered two classical models that have already proven their effective-
ness in different text matching applications. In the following, we give a brief
description of the different models. We provided more details part III.
• BM25. is a probabilistic weighting model defined by Robertson et al.

[253].

• LM. we used the language model of Metzler [49].
5https://www-nlpir.nist.gov/projects/terabyte/

71

Chapter 5 Experimental setup

5.4.2 Classical models with word embeddings
We compared our models to some models where the word embedded represen-
tations have been used to enhance the classical ones.

• RM-Cent. [191] is a query expansion model using word embedded repre-
sentations.

• NWT. [14] is a model where all terms of the query are compared indiffer-
ently to all terms of the document, using cosine similarities with learned
weights.

5.4.3 Neural models
We have also considered a set of neural models from the MatchZoo6 framework.

• ARC-I, ARC-II. [17], are two convolutional models for sentence matching.
ARC-I is a representation-focused model and ARC-II is an interaction-
focused model.

• DSSM. [16], is a model made of two symmetric deep MLP structures to
compute semantic representations for the input sequences.

• CDSSM [185], is an extension of the DSSM model [16] with a convolutional
layer.

• DRMM [178], a histogram-based model for ad-hoc retrieval.

• DUET [179], a convolutional model composed of two parallel modules
running together, the local model and the distributed model.

• MatchPyramid [19], a hierarchical convolution-based model for short text
matching.

• MV-LSTM [3], a position-based recurrent model for sequence representa-
tion and matching.

• ANMM [157], is an attention-based neural model for short text matching.

• KNRM [180], is an end-to-end neural matching model for ad-hoc retrieval.

5.5 Tools and frameworks
We used different tools to perform the experimental and evaluation processes.
Here, we give a brief description of those tools.

• MatchZoo. [5] is a framework for implementing, experimenting and com-
paring neural-based text matching models. This framework is developed
with Python using different deep learning libraries such as Keras7 and
TensorFlow8, in addition to other libraries that are developed mainly for

6https://github.com/NTMC-Community/MatchZoo/tree/1.0/matchzoo/models
7https://keras.io/
8https://www.tensorflow.org/

72

https://github.com/NTMC-Community/MatchZoo/tree/1.0/matchzoo/models

Chapter 5 Experimental setup

the different text matching processing steps, such as the matching ten-
sors computation. Two main versions of the MatchZoo framework are
provided. Specifically, the MatchZoo.1.09 release which is a software-like
module, where models could be run using a command line; and the Match-
Zoo.2.x10 which is still under development and is a library-like package.
In our experiments, we only used the first one (MatchZoo.1.0) which is a
first stable release, on which we have run several models, modified some
of them and added new ones.

• INDRI. [254] is a text search engine developed as a part of the Lemur
Project11. This tool, designed for academic purpose, and is used to pre-
process, parse and index different text datasets. INDRI can parse TREC
newswire datasets and web collections. It allows running a set of baselines
and returning the results in the TREC standard format. We used INDRI
to parse and index the different datasets that we used in the experiments,
as well as to run different classical baseline models, such as BM25 and
LM.

• Pyndri. [255] is a python interface to the INDRI search engine. It is
designed as an integrated Python library dedicated to IR research. Pyn-
dri12 offers read-only access at two levels in a given INDRI index, the
dictionary and tokenized document collection, as well as the queries eval-
uation on the constructed index. In our experiments, we first indexed the
different datasets using INDRI, in order to have an homogeneous data
pre-processing (tokenization, lemmatization ...), then used Pyndri for ac-
cessing the different indexes.

• Trec eval13. [256] is the standard tool used by the TREC community for
evaluating a ad-hoc retrieval models. Given the results file (run) produced
by the model being evaluated and a standard set of judged results, this
package provide a list of performance values in terms of different metrics,
such as MAP, nDCG and precision.

5.6 Conclusion
In this chapter, we described all the experimental set up that we adopted dur-
ing the preparation of this thesis. Mainly, we described the different datasets,
evaluation measures, baseline models and finally the technical tools. Instead of
using MatchZoo to run the different neural baselines, one could use the original
implementation corresponding to every model. In our case, we used MatchZoo
since the different baselines are implemented using the same libraries and use
datasets of a same format.

9https://github.com/NTMC-Community/MatchZoo/tree/1.0
10Accessible in Aug 2019: https://github.com/NTMC-Community/MatchZoo/tree/2.2-dev
11The Lemur Project develops search engines, and other tools for text analysis

to support research and development of IR and text mining. It is accessible in:
https://sourceforge.net/projects/lemur/

12https://github.com/cvangysel/pyndri
13https://github.com/usnistgov/trec eval

73

https://sourceforge.net/projects/lemur/

CHAPTER 6

QUERY WORDS IMPACT IN
DOCUMENT RANKING

USING WORD EMBEDDINGS

6.1 Introduction
In the previous chapters 1 and 3, we discussed several limitations of the models
using the classical BoW representations, mainly the vocabulary mismatch. To
solve this problem, recent approaches [257, 191, 154, 173] rely on the use of
distributed representations of words [55, 9], enabling a semantic-based matching.

Most of the models described in section 3.4 compare all query terms with
all document terms in the same way. These models do not distinguish between
query terms that are present in the document and those that are not. We believe
that the absence of a query word in a relevant document is an important factor
in the matching process, because query terms that are absent in the relevant
document can appear in another semantic form in that document.
In this chapter, we analyze the impact of query terms that are not present
in the relevant documents, on the document-query matching using embedded
word vectors. To do so, we experiment different document-query matching
strategies. We combine the exact matching of classical IR models with the
semantic-based matching of distributed word representations. We studied three
different matching strategies:

• Comparison of all query terms with all document terms in the same way.

• Comparison of the terms of the query with those of the document, accord-
ing to their presence/absence in that document.

• Discriminatory comparison of the query terms with the document terms,
based on their presence in that document and their similarities based on
exact matching.

The chapter is organized as follows: in section 6.2, we give an example of a
query and two candidate documents, where the relevant document does not
contain as much query words as the irrelevant one. In section 6.3, we describe
the classical query-document matching, that is then extended, in section 6.4,

74

Chapter 6 Query words impact in document ranking using word embeddings

<DOC>
<DOCNO> AP880312-0074 </DOCNO>
<FILEID>AP-NR-03-12-88 1041EST</FILEID>
<FIRST>r i AM-HumanSmuggling 03-12 0659</FIRST>
<SECOND>AM-Human Smuggling,0682</SECOND>
<HEAD>

Reports Say Smugglers Sell Bangladeshis Into Prostitution, Servitude
</HEAD>
...
<TEXT>

 Border guards rescued 88 men, women and children from traffickers who were
trying to smuggle them out for
prostitution and indentured servitude abroad, officials and newspapers said
Saturday.
 ...
 A senior police official, speaking on condition of anonymity, said hundreds of
women had been smuggled across the border in recent years. ...
 In some cases, people have paid smugglers who promised them an escape from
Bangladesh's grinding poverty, according to newspapers. The smugglers, known as
``manpower agents,'' promise jobs as servants and manual laborers in prosperous
Middle Eastern nations.
 Often the victims end up as nothing more than slaves in households or on farms.
...Bangladesh and the Indian state of West Bengal in an effort to stop the
smuggling.
...
 Dhaka newspapers said 200 women and children had been rescued from the
smugglers and 15 men had been charged with human trafficking since Jan. 1.
...
 The Dainik Bangla, a Bengali-language newspaper, said last October that police
suspect some children have been smuggled out of Bangladesh for more macabre
purposes.
…

</TEXT>
</DOC>

<DOC>
<DOCNO> AP881014-0043 </DOCNO>
<FILEID>AP-NR-10-14-88 0327EDT</FILEID>
<FIRST>r a PM-AlienHouse 10-14 0479</FIRST>
<SECOND>PM-Alien House,0493</SECOND>
<HEAD>

House Functioned As Debtors Prison For Illegal Aliens
</HEAD>
<DATELINE>FULLERTON, Calif. (AP) </DATELINE>
<TEXT>

 More than six dozen illegal aliens, including three tearful children, were found by
authorities in a house that served as a debtors prison for immigrants who could not
pay their smugglers.
 ... Immigration and Naturalization Service and 14 were suspected of being the
smugglers, authorities said.
 All the aliens were from Mexico and owed from $300 to ``whatever the market
would bear'' to the smugglers, known as coyotes, Tom Gaines, an assistant district
director for the INS, said Thursday.
 ...
 Twelve of those arrested were arraigned Wednesday on conspiracy and illegal
immigrant smuggling charges. Two are juveniles and will be deported, authorities
said.
 INS officers raided the home Sunday as part of a four-month investigation into an
alleged alien smuggling ring, Gaines said. ... The smugglers just had guards at
every door. It was plain intimidation to keep them there.''
 In similar cases, illegal aliens who cannot pay their smugglers try to get word of
their plight and need of money to relatives,
authorities say.

 ...
</TEXT>

</DOC>

Q: Combating Alien Smuggling

Figure 6.1: Highlighting query words occurrences in a relevant document D+
1

and an irrelevant document D−2 .

to propose different matching strategies using word embeddings. In section 6.5,
we describe the experimental setup and the evaluation results.

6.2 Motivation

In most IR models using word embeddings, the absence of query words in the
relevant documents is often addressed by mean of the query expansion [191,
257, 192], but the words in the new query are processed in the same way. Other
models [14, 159, 153] compute the query-document similarity score by using all
interactions between the words in the document and those in the query. The
presence/absence of query words in a document is not explicitly considered in
these models. Figure 6.1 shows a concrete example where a relevant document
has several missing query words compared to an irrelevant document, where
more query words have been used. Let us consider the query Q =“Combating
Alien Smuggling”, for which the document AP880312-0074 is relevant, and we
refer to it as D+

1 ; and the document AP881014-0043 is irrelevant, and we refer
to it as D−2 . Both D+

1 and D−2 are taken from the AP TREC dataset. Using
the BM25 model implemented in INDRI, the system ranked the document D+

1
at position 179 while the irrelevant document D−2 is ranked at first position
of the list. In figure 6.1, we show some snippets of documents, D+

1 and D−2 .
We used three different colors to highlight the query words and the occurrences
of their stems in each document. We can notice that, the relevant document
D+

1 contains only one query word for which the stem is “smuggl”. While the
irrelevant one D−2 contains more query words, of stems “smuggl” and “alien”.
This example highlights the fact that the occurrence of all query terms in a
document does not imply that this document is relevant.

75

Chapter 6 Query words impact in document ranking using word embeddings

6.3 Classical Query-Document Matching
In tfidf models based on the standard BoW representation, the relevance score
sc assigned to a document D w.r.t. a query Q is generally computed [258]
based on the exact match between every query term qi and document term dj ,
as shown in the general equation 6.1.

sc(Q,D) =
∑

qi∈Q∩D
Mtfidf (qi, D) (6.1)

Mtfidf (qi, D) is the weight corresponding to the query word qi in the document
D, and is computed using a classical tfidf or any IR model.

This approach assumes that the query terms contribute to score sc only if
they are present in the document, while those that are not, even if they con-
tribute to the description of the information sought by the user in the query.
These terms are not considered in this approach, which results in some informa-
tion missing. To cope with this limitation, distributed representations of words
[2, 9] can be used. These representations enable to exploit the semantic simi-
larities between two words lexically different wi and wj , such that the semantic
relatedness is translated by a function sim computing a distance between the
corresponding vectors ~wi and ~wj .

In the following sections, we describe different matching strategies, described
in an earlier work [259], and allowing to exploit the semantic links between the
vectors of the query words and those of the document, based on the occurrence
of the query words in the documents.

6.4 Matching Strategies Using Semantic Word
Similarities

One simple way is to compare all query terms with all the terms of the document
using their representation vectors, as in [14, 260]. Thus, the importance of every
term in the document is assessed w.r.t. the terms of the query, as described in
equation 6.2:

sc(Q,D) =
∑
dj∈D

∑
qi∈Q

Mtfidf (dj , D)× sim(qi, dj)α (6.2)

Mtfidf (dj , D) is the weight of the document term dj , sim(qi, dj) is a normalized
semantic similarity between the terms qi and dj term. α is a parameter used to
control the impact of the semantic similarity sim(qi, dj).

Based on the comparison of all query words with all document words in
equation 6.2, we can transform this equation to better highlight the aspect
of presence/absence of query terms in the document (equation 6.3) and/or on
the exact or lexical matching between the terms (equation 6.4). In both these
strategies, we consider a normalized word similarity function sim(qi, dj).

6.4.1 Presence/Absence Split
In this strategy, we intend to observe the contribution of query terms that are
not present in the document to the assessment of the document’s relevance

76

Chapter 6 Query words impact in document ranking using word embeddings

score. We decompose the equation 6.2 into two parts: the first part deals with
the terms of the query that are present in the document while the second part
deals with the terms of the query that are not in the document. This process is
shown in equation 6.3:

sc(Q,D) = λ×
∑
dj∈D

∑
qi∈Q∩D

Mtfidf (dj , D)× sim(qi, dj)α+

(1− λ)×
∑
dj∈D

∑
qi∈Q\D

Mtfidf (dj , D)× sim(qi, dj)α
(6.3)

where λ is used to control the impact of each part in the equation.

6.4.2 Exact/Semantic Matching Split
We have decomposed the first part of the equation 6.3 into two components, as
shown in equation 6.4. In this equation, we can separately observe the impact
of the following elements:

• The exact matching of the query terms and the document terms, which is
described by the first part of equation 6.4 (

∑
qi∈Q∩DMtfidf (qi, D));

• The semantic matching between the query terms in the document and
its other terms, which is described by the second part of equation 6.4
(
∑
qi∈Q∩D

∑
dj∈D\{qi}Mtfidf (dj , D)× sim(qi, dj)α);

• The semantic similarity between terms of the query that are not in the
document with the terms of the document, which is expressed in the third
part of equation 6.4 (

∑
dj∈D

∑
qi∈Q\DMtfidf (dj , D)× sim(qi, dj)α).

.

sc(Q,D) =λ1 ×
∑

qi∈Q∩D
Mtfidf (qi, D)+

λ2 ×
∑

qi∈Q∩D

∑
dj∈D\{qi}

Mtfidf (dj , D)× sim(qi, dj)α+

(1− λ1 − λ2)×
∑
dj∈D

∑
qi∈Q\D

Mtfidf (dj , D)× sim(qi, dj)α

(6.4)

λ1 + λ2 ≤ 1 are parameters used to control the impacts of the different items
cited above.

6.4.3 Relations Between the Different Matching Strate-
gies

In the previous matching strategies, note that if λ = 0.5 in equation 6.3 and if
λ1 = λ2 = 1/3 in equation 6.4 then the equations 6.3 and 6.4 are equivalent to
the equation 6.2.

Consider the matching function as defined in equation 6.5:

sim(wi, wj) =
{

1 if wi = wj
0 otherwise

(6.5)

77

Chapter 6 Query words impact in document ranking using word embeddings

If the similarity between the query terms and the document terms is computed
by the equation 6.5, then the equation 6.1 will be a special case of each of the
matching strategies described by the equations 6.2, 6.3, and 6.4. Indeed, when
λ = 0.5 in the equation 6.3 and λ1 = λ2 = 1/3 in the equation 6.4, the equations
6.2, 6.3, and 6.4 become similar to 6.1.

6.5 Experiments
6.5.1 Evaluation methodology
Since the overall experimental framework of this work was described in chapter
5, we will briefly recall the experimental set up used in order to evaluate the
different matching strategies and compare them. We used two traditional models
to compute the Mtfidf function in each of the equations, 6.1, 6.2, 6.3 and 6.4,
namely the BM25 [253] where following the common use in IR, parameters k1
and b are set to 1.2 and 0.75 respectively; and the language model of Metzler
et al. [49] where λD = 0.2 and λC = 0.4. We used the three TREC datasets
described in table 5.5. The AP 88-89 is used to set the parameters λ, λ1, λ2
and α of the different matching strategies defined in section 6.3. Performances
are reported using Robust04 and GOV2.

6.5.2 Parameter Setting and Impact Analysis
We use the cosine function to compute the similarity sim between every doc-
ument term dj and query term qi. For the embedded word representations,
we used the pre-trained Word2Vec1 model, where each word is represented by
a vector of 300 dimensions. Out of vocabulary terms are simply ignored. We
conducted experiments on the dataset AP 88-89 to set the different hyper-
parameters. The parameter α takes values in {1, 2,20} (above 20 the perfor-
mances were unchanged), the parameters λ, λ1 and λ2 take values in {0.1, 0.2...0.9}.
We used trec eval to evaluate our model’s performances in terms of MAP, P@5,
P@10 and P@20 as well as the nDCG@20. The analyses of the equations 6.2
and 6.4 were similar to the one of the equation 6.3 for which we describe the
impact of the different parameters that are used. Figure 6.2 shows the evolution
of performance, in terms of MAP and P@5, using the BM25 model to compute
Mtfidf in the equation 6.3. In this figure, each curve corresponds to a value of
α.

We notice that MAP and P@5 gradually evolve in line with the increase in
the value of λ for α ∈ {1, 2}. For α ∈ {3, 4, 5, 6} the performances are stable for
the values of λ ∈ {0.4, 0.5, 0.6} then decrease slowly for λ > 0.6. For α = 7 the
values of MAP and P@5 become more stable with λ ≥ 0.4.

This analysis shows the impact of the λ parameter used to analyze the
influence of query terms that are not in the document on the matching process.
In the equation 6.3, λ = 0.4 gives the best results, explaining the importance
of query terms that are not in the document in the matching process. For
α ∈ {1, 2, 3, 4} the performance is worse than for α = 7, because the semantic
similarity had more impact on the matching process. According to Zamani and
Croft [154], since continuous representations of words are based on the notion

1https://code.google.com/archive/p/Word2Vec/

78

Chapter 6 Query words impact in document ranking using word embeddings

0.2 0.4 0.6 0.8
5 · 10−2

0.1

0.15

0.2

0.25

0.3
BM25

λ

M
A

P

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5
BM25

λ

P
@

5

1 11
2 12
3 13
4 14
5 15
6 16
7 17
8 18
9 19
10 20

Figure 6.2: Analysis of the equation 6.3 sensitivity to parameters α and λ in
the AP 88-89 collection, in case of using BM25 as Mtfidf .

of context [2], they can lead to the use of irrelevant terms in document-query
matching (e.g. the terms secured and dangerous have a great semantic similarity
but dangerous is not relevant for the query “security transport”).

Based on the above analysis, we have defined the parameter values that
correspond to the compromise between the performance in terms of P@5 and
the MAP, leading to the following configuration: α = 7 in both equations 6.2
and 6.3; and λ = 0.4 in the equation 6.3. For the equation 6.4, we use the
following configuration: α = 5, λ1 = 0.5 and λ2 = 0.3.

6.5.3 Results and discussion
As explained in section 6.3, we analyze the contributions of query terms, that
are missing in the document, to the semantic-based matching process. In the
following, we evaluate the different matching strategies to answer different re-
search questions (RQ), where the labels eq6.2, eq6.3, and eq6.4 correspond to
the different matching strategies defined by the equations 6.2, 6.3, and 6.4,
respectively.

RQ1: How parameter α impacts the performances of the three match-
ing strategies?

We first analyze the behavior of each of the defined matching strategies, ac-
cording to the different values of the α parameter. The figure 6.3 shows the
evolution of the performances, in terms of MAP and P@5, of the different
matching strategies.

In figure 6.3, according to the different curves, we can notice that all the
equations behave in the same way with a slight difference in performance. The
most important difference is that for α ∈ [4, 8], the performances of equations
eq6.3 and eq6.4 are slightly better than the results of the equation eq6.2. How-
ever, for α > 8 the performances of all the different matching equations decrease,
because the contribution of the semantic similarity between words, sim(qi, dj),
is largely reduced due to the exponent value.
These results show, in one hand, that for the different equations 6.2, 6.3 and
6.4, the parameter α has the same impact; and in the other hand, the distinc-
tion between the query words that are in the document and those that are not
(equations 6.3 and 6.4), has led to some improvement in the MAP and P@5

79

Chapter 6 Query words impact in document ranking using word embeddings

0 5 10 15 20

0.1

0.15

0.2

0.25
BM25

α

M
A

P

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5
BM25

α

P
@

5

eq6.2
eq6.3
eq6.4

Figure 6.3: Comparison of the performances, in terms of MAP and P@5, of the
different matching strategies, w.r.t. the different values of the parameter α in
the collection AP 88-89.

values compared to the indifferent processing of all the query terms (equation
6.2).

RQ:2 What is the impact of a similarity threshold?

As suggested in several state-of-the-art analysis [14, 261, 192] that use the cosine
similarity between word vectors, defining a threshold value to control the impact
of this similarity is important. Hence, we evaluated the different matching
strategies using a minimum threshold of the semantic similarity between words
ε ∈ {0.0, 0.1, ..., 1.0}. The objective is that the similarities taken into account
must be greater than the ε value. For this purpose, the similarity between a
query word qi and a document word dj is computed as defined in the equation
6.6.

simε(qi, dj) =
{
sim(qi, dj) if sim(qi, dj) > ε

0 otherwise
(6.6)

where sim(qi, dj) is the cosine similarity between the representation vectors of
qi and dj . Figure 6.4 shows the performances evolution of the different matching
equations, according to the different values of ε, using the BM25 model in Mtfidf

as defined in the section 6.3.
In this figure, we find that the ε threshold has a negative impact on the

performance of each of the proposed matching strategies. We can see a similar
behaviour of all strategies. For a low threshold value ε ∈ [0.0, 0.2], the perfor-
mance values gradually decrease as the values of ε become larger, ε ∈ [0.3, 1.0].
We used the α parameter to regularize the impact of the semantic similarity
between words. Consequently, the small similarities (when simε(qi, dj) ≈ 0) are
omitted, due to the property of the α power function near 0, and which have
lead to a drop in performance, when an important values of ε is used.

RQ3: How the matching strategies are effective compared with clas-
sical models?

We also compared the different matching strategies that we propose with tradi-
tional IR models. Tables 6.1 and 6.2 show the results obtained on two datasets,
Robust04 and GOV2, using BM25 and LM respectively, to compute the value
of Mtfidf in each of the matching equations eq6.2, eq6.3 and eq6.4. We reported

80

Chapter 6 Query words impact in document ranking using word embeddings

Figure 6.4: Evolution of the performances of the different matching equations
with respect to the value of ε, in the Robust04 collection.

Dataset Model MAP
W/L/T

P@5
W/L/T

P@10
W/L/T

P@20
W/L/T

nDCG@20
W/L/T

Robust04
BM25 0.2362 0.4747 0.4285 0.3528 0.4105

eq6.2 0.2400+
152/85/13

0.4851
32/19/199

0.4309
37/32/180

0.3548
43/38/168

0.4139
120/86/43

eq6.3 0.2403+
116/73/61

0.4851
1/3/246

0.4301
6/8/236

0.3550
15/12/223

0.4140
119/89/41

eq6.4 0.2401
148/95/7

0.4956+
49/29/172

0.4293
52/53/145

0.3772
63/55/132

0.4160
125/96/29

GOV2
BM25 0.2595 0.5463 0.5315 0.4977 0.4401

eq6.2 0.2554
90/56/4

0.5141
30/38/82

0.5040-
35/52/63

0.4893
46/42/62

0.4262
71/67/12

eq6.3 0.2553
89/57/4

0.5154-
42/44/63

0.5013-
39/55/56

0.4893
53/53/44

0.4263-
75/65/10

eq6.4 0.2524
86/60/4

0.5128
45/43/62

0.4933
45/54/50

0.4829
58/51/41

0.4161
73/69/8

Table 6.1: Experimental results using the BM25 in Mtfidf (., .) of the different
matching strategies.

81

Chapter 6 Query words impact in document ranking using word embeddings

Dataset Model MAP
W/L/T

P@5
W/L/T

P@10
W/L/T

P@20
W/L/T

nDCG@20
W/L/T

Robust04
LM 0.2310 0.4265 0.3936 0.3331 0.3807

eq6.2 0.2337
162/75/13

0.4378
37/25/188

0.4016
40/32/178

0.3392
60/32/158

0.3868
29/37/183

eq6.3 0.2336
119/81/50

0.4345
2/4/244

0.4016
8/9/233

0.3392
16/12/222

0.3865
29/37/183

eq6.4 0.2324
166/77/7

0.4249
45/42/163

0.3952
59/52/139

0.3438+
82/50/118

0.3856
132/89/29

GOV2
LM 0.2516 0.4054 0.4289 0.4094 0.3456

eq6.2 0.2446
81/65/4

0.4201
37/28/85

0.4161
43/46/60

0.4077
56/45/49

0.3392
79/57/14

eq6.3 0.2444
81/64/5

0.4201
37/28/85

0.4161
43/46/61

0.4064
56/46/48

0.3384
79/58/13

eq6.4 0.2277-
67/79/4

0.3544
43/52/55

0.3638-
45/55/50

0.3695
60/63/27

0.2954-
70/71/9

Table 6.2: Experimental results using the LM in Mtfidf (., .) of the different
matching strategies.

the performances in terms of MAP, P@5, P@10, P@20 and nDCG@20 of each
equation. The values in bold type represent the best performance over the
different models. Results labelled with (+) or (−) show the significance 2 in,
respectively, improvements or decrease in performance compared to the corre-
sponding baseline model. W/L/T refer to the number of queries whose perfor-
mance is improved (Win), deteriorated (Loss) or remained unchanged (Tied) by
the corresponding matching strategy, w.r.t. the corresponding baseline.

In both tables 6.1 and 6.2, when considering the Robust 04 dataset, the
different matching strategies perform better than the classical baselines, BM25
and LM. The improvements are significant, concerning MAP and P@5 with
BM25 and in terms of P@20 with ML. The matching strategies eq6.2 and eq6.3
outperform the BM25 model with more than 2% in terms of P@5. The matching
strategy eq6.4 outperforms the BM25 model with more than 4% in terms of P@5.
In the GOV2 dataset, both equations eq6.2 and eq6.3 outperform traditional
models, BM25 and LM, in terms of only P@5. When the LM model is used to
compute values of Mtfidf , the differences are not significant.

RQ4: How does the different query terms contribute to the relevance
assessment?

In order to explain the results obtained in the different datasets, we analyzed the
impact of the different query terms in the computation of the score of relevant
documents in every dataset. Let sct(D,Q) be the total relevance score computed
for a document D according to the query Q defined as in equation 6.7. Note
that in this analysis, we only consider documents that are judged as relevant.

sct(D,Q) = sca(D,Q) + scp(D,Q) (6.7)

• sca(D,Q) =
∑
qi∈Q, qi /∈Q∩D

∑
dj∈D sim(qi, dj) is the score calculated ac-

cording to the terms of the query that are absent in the document;

• scp(D,Q) =
∑
qi∈Q∩D

∑
dj∈D sim(qi, dj) is the score calculated according

to the terms of the query that are present in the document.
2We used the statistical test t-test with a confidence level of 95%.

82

Chapter 6 Query words impact in document ranking using word embeddings

Relevant documents in AP 88-89

C
on

tri
bu

tio
n

to

Figure 6.5: Contributions of different query terms, according to their pres-
ence/absence relevant documents, in the relevance score computation for rele-
vant documents in the AP 88-89 dataset.

sim(qi, dj) is the cosine similarity between the terms qi and dj .
First, we are going to analyze the proportion of relevant documents that are

concerned with the problem of query words absence in the AP 88-89 dataset
used to set the different parameters of the studied matching strategies.

Figure 6.5 shows the percentages of contribution of the query terms that are
present in the document, refereed to with scp, and the terms that are absent in
the document, noted sa, when computing the total score refereed to with sct
for the relevant documents in the collection AP 88-89. Remember that we used
this dataset to set the different parameters in each of the matching strategies we
proposed. In this figure, each bar represents a relevant document whose score
is computed by the equation 6.7. We can see that the scores of the majority
of relevant documents (green area) are significantly affected by the similarities
between the query terms that are absent in the documents and the terms of
these documents.

Now, let us analyze the relevance scores of the test datasets, Robust04 and
GOV2. Figure 6.6 shows the contribution percentages of the query terms that
are present in the document, scp, and the terms that are not, sca, to the com-
putation of the total score sct for the relevant documents in each of the GOV2
(figure 6.6a) and Robust04 (figure 6.6b) collections. In figure 6.6, we see that
the scores of the relevant documents in the Robust04 dataset (figure 6.6b) are
influenced by the similarities of the query terms that are not in the document
(score sca) in a consistent way. This explains the improved research results
obtained by the different matching strategies we proposed (tables 6.1 and 6.2).
However, in the GOV2 dataset (figure 6.6a), the scores of relevant documents
are not significantly influenced by the similarities between the query terms that
are absent in the relevant documents and the terms of these documents (sca).
In the Robust04 collection, nearly 12% of the relevant documents do not con-
tain any query terms, so processing query terms that are missing in the relevant
documents accordingly has worked well. Differently from the GOV2 collection

83

Chapter 6 Query words impact in document ranking using word embeddings

Relevant documents in GOV2

C
on

tri
bu

tio
n

to

(a)

Relevant documents in Robust04

(b)

Figure 6.6: Contribution of query terms according to their presence/absence
in the relevant documents of the GOV2 and Robust04 datasets, to the total
relevance score values.

that contains only 1.1% of relevant documents without any query term. This
explains the non-influence of the split of the query terms according to their
presence/absence in the documents of the GOV2 dataset.

RQ5: How the proposed matching strategies perform in comparison
to state-of-the-art models?

In this analysis, we evaluate how much the different matching strategies are ef-
fective compared to traditional model and some state-of-the-art models, where
embedded word representations have been used to enhance traditional IR mod-
els.

In table 6.3, MBM25 and MLM refer to the use of model BM25 and LM
respectively to compute Mtfidf in equations eq6.2, eq6.3 and eq6.4. RM-Cent
corresponds to the model of Kuzi et al. [191] which is a query expansion model
using the embedded representations of words. NWT refers to the model of
[14], where all terms of the query are compared indifferently to all terms of the
document. In this table, we report the results of the different approaches to the
state of the art as presented in the corresponding articles for RM-Cent [191]
and NWT [14]. The values in bold type represent the best performance over
the different models

In table 6.3, we can notice that the matching strategies we studied outper-
form the state-of-the-art models in terms of P@5 in the Robust04 dataset and
in terms of nDCG@20 in the GOV2 dataset. In all the matching strategies, we
exploit all semantic interactions between the word vectors of the document and
the word vectors of the query. Differently from models that process all query
terms indiscriminately, RM-Cent [191] selects the most suitable terms for ex-
panding the query, then the resulting query is used in a classic language model,
to rank documents of the dataset; and the NWT model [14] where word vectors
are used to capture semantic similarities between document terms and all query
terms without distinction. Although the matching strategies that we propose
are not more effective than all the baselines, the results support our intuitions

84

Chapter 6 Query words impact in document ranking using word embeddings

Collection Model MAP P@5 P@10 P@20 nDCG@20

Robust04

MBM25

eq6.2 0.2400 0.4851 0.4309 0.3548 0.4139
eq6.3 0.2403 0.4851 0.4301 0.3550 0.4140
eq6.4 0.2401 0.4956 0.4293 0.3772 0.4160

MLM

eq6.2 0.2337 0.4378 0.4016 0.3392 0.3868
eq6.3 0.2336 0.4345 0.4016 0.3392 0.3865
eq6.4 0.2324 0.4249 0.3952 0.3438 0.3856

RM-Cent 0.2910 0.4950 - - -
NWT 0.2740 - - 0.3800 0.4260

GOV2

MBM25

eq6.2 0.2554 0.5141 0.5040 0.4893 0.4262
eq6.3 0.2553 0.5154 0.5013 0.4893 0.4263
eq6.4 0.2524 0.5128 0.4933 0.4829 0.4161

MLM

eq6.2 0.2446 0.4201 0.4161 0.4077 0.3392
eq6.3 0.2444 0.4201 0.4161 0.4064 0.3384
eq6.4 0.2277 0.3544 0.3638 0.3695 0.2954

RM-Cent 0.3350 0.6230 - - -
NWT 0.304 - - 0.5240 0.4220

Table 6.3: Comparison of the different matching strategies with some state-of-
the-art models in two different datasets.

about the importance of query words that absent in relevant documents, in the
relevance assessments.

6.6 Conclusion
In this chapter, we have analyzed the document-query matching process using
word embedding in classical IR models.

We proposed different matching strategies based on the presence/absence of
query terms in the document. We used semantic similarities between document
and query terms to address the vocabulary mismatch between the document and
the query. The results show that explicitly taking into account query terms that
are not used in the document improves the matching process, and provide better
results than traditional models based only on exact matching. The results are
comparable to those of some state-of-the-art models in the Robust04 dataset.
However, using the GOV2 collection, the different matching strategies do not
provide a clear improvement, as the documents in this collection differ to the
one in Robust04. In particular, documents in GOV2 are longer and they contain
most of the query terms (which is shown by the analysis in the section 6.5.3).

The embedded representations of words are also used in neural matching
models, in order to construct representations of whole sequences being matched.
In the next chapter, we present our work on text matching with neural models.

85

CHAPTER 7

NEURAL MODELS FOR
SHORT TEXT MATCHING

USING ATTENTION-BASED
MODELS

7.1 Introduction
We define the nature of a text sequence according to its length, that can be
short or long, and its usefulness that can be providing or seeking for infor-
mation. Our objective in this chapter is two folds: the first is to handle two
different matching tasks according to their nature; the second is to study and
evaluate the impact of some word-level features, such as position and attention,
in matching different sequences. To do so, we first define the nature of the
matching task, based on the type of the inputs and the relationship between
them. We distinguish two types of matching, the symmetric matching and the
asymmetric matching. In the symmetric tasks, such as document classification
[19], we assume that inputs and outputs are interchangeable. In the asym-
metric tasks, such as question-answer matching [185], the inputs are different
and are not interchangeable. To handle these aspects, we propose a general
architecture extending several state-of-the-art neural matching models, using
attention layers. In a second step, we argue that the combination of different
word-level features, such as attention and position, may lead to better results.
In one hand, Position-based models [247, 3] rely on the word position to com-
pute representations of the input text. The positional information of the word,
such as proximity, word dependencies, and the sequence structure, are impor-
tant in learning text representations and can have an important impact on the
matching process. On the other hand, Attention-based representation models
[26, 236, 157], learn coefficient vectors that put more attention on some words
and enable to designate the most important words in the input text, regardless
of their position. Hence, we believe that it would be interesting for a represen-
tation learning model to have information about the most important words, as
well as their positions in the input text.

In this chapter, we present our neural approach for text matching. We will
first motivate and detail the proposed models, in section 7.2. We then describe

86

Chapter 7 Neural models for short text matching using attention-based models

Q: How African Americans were immigrated to the U.S.?

A1: “ African immigration to the United States refers to immigrants to the United States who are or were
nationals of Africa.”

A2: African American people are descendants of mostly West and Central Africans who were involuntarily
brought to the United States by means of the historic Atlantic slave trade.

How by means of ..slave tradeSolution 2

How immigration toImmigrated to?Solution 1

Immigrated to involuntarily brought to

Puzzle : How Immigrated to ??

Figure 7.1: Solution 2 fills completely the missing part described in Q.

the experimental process and the evaluation results, in section 7.4.

7.2 An asymmetry sensitive approach for neural
texts matching

Most proposed neural text matching models (section 4.3) are based on a Siamese
[23] architecture, where both inputs undergo the same type of processing, re-
gardless of the nature of the matching task. To take into account the differences
between text matching tasks, we propose a framework that extends several state-
of-the-art neural matching models, in order to enable them to handle the inputs
in different ways w.r.t. the nature of the matching task. To do so, we use an
attention-based model [31] to propose a matching architecture that gives more
attention to the most important words in the input sequences. Subsequently,
we extend several models from the state-of-the-art in the proposed framework.

7.2.1 The Asymmetry Aspect
In order to highlight the asymmetry aspect, we consider the question-answer
matching task. Expressed in a natural language, the question describes a specific
user’s information need. It can be seen as a puzzle where the missing pieces
must be found and put together, in a logical way, to solve the problem. The
pattern of each gap in a puzzle describes the corresponding missing part. It
is all the same for the question-answer matching problem, a pattern represents
the missing information and it can be filled by one or more answers. Not all
answers can be suitable, only those that conform to the pattern (the question)
that describes the missing part can correctly fill it. The example in figure 7.1
from the WikiQA dataset illustrates this perception. In this figure, words of
the answers A1 and A2 that are in bold characters represent semantic and
syntactic relatedness with the question Q. The underlined words represent the
keywords (pattern clues) in Q, and its corresponding matches in A1 and A2.
In this example, to correctly answer the question Q, we have to focus on the

87

Chapter 7 Neural models for short text matching using attention-based models

terms “How” and “immigrated to” describing the missing information. Q is
about how the immigration process was performed. The two different answers
A1 and A2 give two different solutions, solution 1 and solution 2 respectively.
Based on semantic and syntactic relatedness, both the answers match with the
question. However, one can notice that solution 2 better solves the problem
than solution 1 does. The answer A2 contains the corresponding information.
Hence, solution 2 represents the missing piece of the puzzle.

This example shows that syntactic and semantic-based similarities are not
enough to completely solve the problem. The question has some words that
require particular attention to retrieve the correct answer.

The previous example highlights the asymmetry aspect of the question-
answer matching task as well as of similar problems, such as document-query
matching. Hence, we consider the following definitions:

• The symmetric matching task consists in identifying if two texts are se-
mantically similar, and concern inputs of the same type, such as sentence
completion [262, 3], document classification [19, 263], and paraphrase iden-
tification [168, 20, 264].

• The asymmetric matching task consists of knowing if a text provides the
information sought in another text. The input texts are supposed to be
of different natures, and their similarity is determined not only by their
semantic and lexical links but also by their complementarity. This type of
tasks mainly includes question-answer matching [157, 22], document-query
matching [185, 21], and textual entailment1 [265].

7.2.2 The Asymmetry Sensitive Matching Architecture
The previous example in figure 7.1 shows the main idea about the asymmetric
matching tasks, and the need to take into account the importance of each of
the keywords of a text sequence, beyond the semantic and lexical links between
the input sequences being matched. In this work, we propose an approach to
take these aspects into account. Specifically, we use attention-based layers, to
allow the matching model to focus on the most important words in the input
sequences according to the nature of the task being addressed.

Model Description

We consider two generalized input sequences, s(Q)
i =< w

(Q)
0 ...w

(Q)
|s(Q)

i
|
> that

can be a query, a question or any input sequence to be compared with another
sequence; and s

(D)
ij =< w

(D)
0 ...w

(D)
|s(D)

ij
|
> that can be a document, an answer

sentence or any other sequence. Based on the general architecture that we
previously described in figure 4.1, we define an extension framework where the
model Φ is extended using attention layers in the function ϕ. This process
is shown in figure 7.2, where we use Φ′ instead of Φ and ϕ′ instead of ϕ, to
refer the extension of the original model Φ, the extended representation layer,
respectively. ϕ′ is supposed to process every input sequence in a different way
according to the task being addressed.

1Inferring a directional relation between different text sequences.

88

Chapter 7 Neural models for short text matching using attention-based models

E

Representation Matching

... Final
Score

...

...

attention gating

Figure 7.2: A generalized neural matching framework for extending state-of-
the-art models with an attention gating layer.

In figure 7.2, the greyed layer ω represents the extension attention layer.
Hence, ϕ′

(
s

(Q)
i

)
and ϕ′

(
s

(D)
ij

)
are representations corresponding to the input

sequences s(Q)
i and s(D)

ij , respectively. The representation function ϕ′ is defined
based on the attention layer ω with an activation parameter. More precisely,
for an input sequence s ∈

{
s

(Q)
i , s

(D)
ij

}
, an activation parameter ρ(s) is defined,

and the corresponding representation ϕ′(s) is then computed as in equation 7.1.

ϕ′(s) =
{
ψ ◦ ω(s) if ρ(s) = 1
ϕ(s) otherwise (7.1)

where ϕ is a function used to compute the internal representations of the in-
puts, as defined in equation 4.3. ψ is a representation function that combines
the different word vectors e (wt) of s to compute a corresponding initial rep-
resentation. The ω function computes a weighted representation for the input
sequence, and is defined in equation 7.2.

ω(s) = ᾱs =
[
e (w1)α1, ..., e

(
w|s|

)
α|s|
]

(7.2)

where wt is the word at position t in s. ᾱ =
[
α1, ..., α|s|

]
is the attention weight

vector, where αt is an attention weight computed as in equation 4.8.
The matching part of the framework described in figure 7.2 remains the

same. The whole extended model Φ′ is trained from end to end, where the cor-
responding parameters include both parameters of the original model Φ (figure
4.1) and parameters of the added attention gating layer. Thus, the parameters
of Φ′ are θΦ′ = {θΦ, θω} with θΦ and θω are the parameters of the original model
Φ and those of the attention layer ω, respectively. Finally, the relevance score of
an input sequence s(D)

ij w.r.t. a another input s(Q)
i is computed by the extended

model Φ′ defined as in equation 7.3.

Φ′ def= g
(
ϕ′(s(Q)

i), ϕ′(s(D)
ij)

)
(7.3)

89

Chapter 7 Neural models for short text matching using attention-based models

... ...

K-max
Pooling

Matching
matrix

Flatten &
final MLP

...

...

E

...

...

attention gating

Representation Matching

(a) Extension of the MatchPyramid model [19]

...

...

E

...

...

attention
gating

Representation Matching

Word
hashing

...

...
...

max

max

max

max

...

convolution max-pooling Semantic
representations

(b) Extension of the CDSSM model [185]

Figure 7.3: State-of-the-art models extension using the proposed attension-
based framework.

The framework proposed in this section can be used to extend different
state of the art models. In the following paragraph, we show some neural text
matching models that we extended, based on the framework from figure 7.2.

Extension of Some State-of-the-art Neural Models

In section 7.2.2, we have described an extension framework that is applicable for
most neural text matching model. We used a generalized input sequences, s(Q)

i

and s(D)
ij , to enable inclusion of the maximum number of text matching models.

However, the adaptation of this framework could vary from model to another.
This aspect is illustrated in figure 7.3 with two examples of extended neural text
matching models. Namely, MatchPyramid [19] that is an interaction-focused
model and CDSSM [185] that is a representation-focused model.

In figure 7.3a, we show our extended version of the MatchPyramid model
[19]. In this case, the function ψ can be seen as a void function, where the in-
puts do not undergo any transformation. Hence, the matching part of this model
uses the attention-based weighted word vectors instead of the original represen-

90

Chapter 7 Neural models for short text matching using attention-based models

tations. The rest of the model remains unchanged, with a set of convolution and
pooling layers that compute matching signals from different abstraction levels.
In figure 7.3b, we show the extension of the CDSSM model [185]. In this figure,
the ψ function corresponds to the word-hashing function [16], where tri-gram
letters are used as an input instead of a sequence words. In this case, one can
consider the original words of a sequence instead of the n-gram letters, by con-
sidering ψ as a void function, like in figure 7.3a. Thus, the ω layer compute
attention weights for the n-gram letters or the original words. In both the ex-
tended models of figure 7.3, the function g represents the interaction part of
each model, where the objective is to compute characteristics and intermediate
results until the final output score sc.

We have also extended several other neural matching models, as described in
figure 7.3, but we considered only two examples in this figure. All the models we
have extended, including those shown in figure 7.3, are evaluated and compared
to their original versions (section 7.5.1).

In the followings, we describe the experimental process and the evaluation
results of our approach applied to different models. First, in the section 7.3
we describe the objective functions used for training. Then in section 7.4, we
describe the experimental setup and discuss the different results.

7.3 Models training
In order to train the different neural models we used two different objective
functions. In particular, the rank hinge loss and the categorical cross entropy.

7.3.1 Rank Hinge Loss
The rank hinge loss (RHL) is an objective function used to train a ranking
tasks. This function is used in several text matching models [178, 266]. Given
a sequence s and two other different sequences s+ and s−, such that s+ is most
similar to s and must be ranked better then s−. Given a trainable model with
θ a set of learnable parameters, the ranking loss function £RHL is defined as in
equation 7.4.

£RHL(s, s+, s−; θ) = max(0, 1− sc(s, s+) + sc(s, s−)) (7.4)

where θ represents all the trainable parameters of the model being learned.
sc(s, s∗) is the matching score predicted by the model w.r.t. the input sentences
s and s∗.

7.3.2 Categorical Cross Entropy
The categorical cross entropy (CCE) is an objective function used to train mod-
els designed for a classification tasks [267]. Formally, given two sequences s1 and
s2, the objective of the cross entropy is to compute the probability that these
sentences can be similar or of the same category. This means that it assess the
probability ŷ that the event x = (s1 ≈ s2) may occur. The loss function £CCE

is defined in equation 7.5.

£CCE(y, ŷ; θ) = −
∑
x

y log (ŷ) (7.5)

91

Chapter 7 Neural models for short text matching using attention-based models

Parameter Value DescriptionWikiQA QuoraQP
num iters 400 500 Number of training epochs.

test weights iters 400 500 Testing epoch.

text1 maxlen 20 20 Maximum length of the
generalized query input.

text2 maxlen 40 20 Maximum length of the
generalized document input.

batch size 100 1024 Number of samples in one
training batch.

losses rank hinge loss categorical crossentropy The objective function
optimized during training.

Table 7.1: Descriptions and settings of the hyper-parameters of the MatchZoo
[5] tool, in both WikiQA and QuoraQP datasets.

where ŷ is the predicted probability computed by the model, and y is the id of
the true label corresponding to x. θ represents all the trainable parameters of
the model being trained.

7.4 Experiments

Experiments were performed2 using the MatchZoo [5] framework for neural
text matching models. We used two datasets, the WikiQA dataset [4] and the
QuoraQP dataset. We provided more details about the used datasets and the
different tools in chapter 5.

We adopted a cross-validation with 80% to train, 10% to test and 10% to
validate the different models results. As embeddings, we used the publically
available pre-trained 300-dimensional word vectors of GloVe3, which is trained
in a common crawl dataset. All the evaluated neural models were trained using
the ranking hinge loss function (section 7.3.1) for 400 epochs, on the WikiQA
dataset and the categorical cross entropy loss function (section 7.3.2) for 500
epochs, on the QuoraQP4 dataset. For every model, we reported the results
performance at the end of the training epochs. Table 7.1 show more details
about the hyper parameters related to MatchZoo [5] and that are set to the
same values regardless of the models being evaluated.

Concerning parameters of the baselines, we opted for the recommended
hyper-parameters configuration, either on the corresponding papers or in Match-
zoo5. Exceptionally, in the CDSSM model [185], we used embedded word vectors
rather than the tri-letter hashing method [185] in order to assess the impact of
the attention layer (equation 7.2) at the word-level, in the same way than in the
other evaluated models.

2The corresponding code will be available on MatchZoo and public to allow the repro-
ducibility of all the results we show in this chapter.

3http://nlp.stanford.edu/data/glove.840B.300d.zip
4The loss values of some of the models converged after more than 400 epochs in QuoraQP

dataset.
5https://github.com/NTMC-Community/MatchZoo/tree/1.0/examples

92

Chapter 7 Neural models for short text matching using attention-based models

7.5 Results and Analysis
In this section, we describe and analyze the different results of the proposed
models in this chapter, separately, and compare the performance of each model
to different baselines.

7.5.1 The Asymmetry Sensitive Approach Analysis
In this section, we evaluate and analyze the asymmetry-sensitive architecture
that we propose for text matching. We use a set of labels to refer to every
architecture configuration. The symmetric matching includes the basic model
(Original) and the application of the attention layer ω (equation 7.2) to both
model inputs simultaneously, we refer to this as (Q+A). The asymmetric match-
ing includes applying the ω layer for one of the inputs at a time, the question
only (Q) or the answer only (A).

As in the previous section, we answer a set of research questions related to
the text matching problems, and how they could be solved with our architecture.

RQ1: What is the architecture’s impact on matching text sequences
of different natures?

Table 7.2 shows the performance, in terms of MRR, P@1 and P@3, nDCG@1
and nDCG@3, of the different evaluated neural models in the WikiQA dataset,
using the original architecture of each model as well as the extended archi-
tectures. The latter are noted by adding the labels (Q), (A) and (Q+A) as
described above. In this table, the values in bold characters represent the
maximum performances. The symbols N and H represent, the significance
in6,respectively, improvement and decrease of the performances.

We note that, for almost all models and metrics, at least one of the asym-
metric architectures, either (Q) or (A), outperforms its symmetric counterparts,
namely (Q+A) and the original version. Except the KNRM model, where the
symmetric extended version (Q+A) outperforms all its asymmetric counterparts
as well as the corresponding original model. Indeed, in the KNRM model [180]
the strongest matching signals in the word-level translation matrix are fed for
a simple MLP structure. This kind of networks does not enable the handling
the different inputs individually. Hence, the attention weights computed in the
word-level for both the input sequences, in the corresponding KNRM.(Q+A)
extended model, gave better performance than the original KNRM does. Note
that the improvements are significant for the MV-LSTM model. In table 7.2,
the results show that taking into account the attention layer in (Q) or (A) allows
a significant improvement in the performance of the different models, especially
in terms of MRR and P@1 where: the architecture (Q) of the ARC-II, MV-
LSTM and MatchPyramid models outperform the original architecture of each
model. The architecture (A) of the DUET and CDSSM models largely exceeds
their original architectures.

In order to analyze more closely the results shown in table 7.2, we want to
check for improvements in the different questions of the test set of the WikiQA

6T-test with p = 0.05.

93

Chapter 7 Neural models for short text matching using attention-based models

Model MRR P@1 P@3 nDCG@1 nDCG@3
ARC-I 0.6053 0.4430 0.2517 0.4430 0.5642

ARC-I.(Q) 0.5977 0.4346 0.2461 0.4346 0.5529
ARC-I.(A) 0.5913 0.4093 0.2560 0.4093 0.5671

ARC-I.(Q+A) 0.5931 0.4093 0.2531 0.4093 0.5656
ARC-II 0.5708 0.3840 0.2489 0.3840 0.5410

ARC-II.(Q) 0.5748 0.4177 0.2419 0.4177 0.5357
ARC-II.(A) 0.5528 0.3544 0.2531 0.3544 0.5327

ARC-II.(Q+A) 0.5814 0.3924 0.2503 0.3924 0.5485
CDSSM 0.5586 0.3671 0.2475 0.3671 0.5285

CDSSM.(Q) 0.5222 0.3333 0.2335 0.3333 0.4973
CDSSM.(A) 0.5886 0.4135 0.2461 0.4135 0.5490

CDSSM.(Q+A) 0.5622 0.3924 0.2405 0.3924 0.5266
DUET 0.6259 0.4599 0.2714 0.4599 0.6016

DUET.(Q) 0.6314 0.4641 0.2742 0.4641 0.6116
DUET.(A) 0.6383 0.4852 0.2714 0.4852 0.6112

DUET.(Q+A) 0.5982 0.4262 0.2531H 0.4262 0.5589H
KNRM 0.5208 0.3333 0.2264 0.3333 0.4788

KNRM.(Q) 0.5158 0.3038 0.2236 0.3038 0.4607
KNRM.(A) 0.5138 0.3249 0.2264 0.3249 0.4744

KNRM.(Q+A) 0.5282 0.3502 0.2321 0.3502 0.4942
MatchPyramid 0.6529 0.4726 0.2869 0.4726 0.6448

MatchPyramid.(Q) 0.6715 0.5063 0.2981 0.5063 0.6649
MatchPyramid.(A) 0.5575H 0.3544H 0.2531H 0.3544H 0.5381H

MatchPyramid.(Q+A) 0.4698H 0.2574H 0.2110H 0.2574H 0.4211H
MV-LSTM 0.6215 0.4388 0.2813 0.4388 0.6101

MV-LSTM.(Q) 0.6691N 0.5021N 0.2897 0.5021N 0.6539N
MV-LSTM.(A) 0.6174 0.4388 0.2714 0.4388 0.5984

MV-LSTM.(Q+A) 0.5904 0.4093 0.2517H 0.4093 0.5562H

Table 7.2: Comparison of the performance of the different evaluated models in
the WikiQA dataset, using the different architectures.

dataset. Table 7.3 shows the performance of the different neural models that
we extended and evaluated, using the corresponding different architectures, as
compared to the classical BM25 and LM models. In this table, the extension
‘..ω” refers to the application of the ω attention layer (equation 7.2) with the
corresponding model, as described in the examples in figure 7.3. W/L/T rep-
resent the number of improved (Win), decreased (Loss) and unchanged (Tie)
questions respectively, for each model as compared to its Original architecture.
The symbols N and H represent, respectively the significant improvements and
decrease in performance.

In table 7.3, we find that the MAP is better at least for one of the asymmet-
ric architectures for all neural models, allowing better performance compared
to the classical models. Regarding statistics on the different test questions, we
note that the number of questions improved by the architectures (Q) and (A) is
more important than with the architecture (Q+A), this is true for the different
evaluated models. Note that these results strongly support our hypothesis re-
garding the impact of asymmetric architectures on question-answer asymmetric
matching tasks. In addition, the performances obtained with the asymmetric
model (Q)-MatchPyramid.ω are the best for this dataset7, while the number of

7(Q)-MatchPyramid.ω also outperforms all methods reported by MatchZoo in

94

Chapter 7 Neural models for short text matching using attention-based models

Class Model MAP W/L/T
Classical
Models

BM25 0.5762 -/-/-
LM 0.5932 -/-/-

Neural
Models

Symmetric

Original

ARC-I 0.5792 -/-/-
ARC-II 0.5606 -/-/-
CDSSM 0.5473 -/-/-
DUET 0.6113 -/-/-
KNRM 0.5093 -/-/-

MatchPyramid 0.6436 -/-/-
MV-LSTM 0.6046 -/-/-

(Q+A)

ARC-I.ω 0.5829 57/61/119
ARC-II.ω 0.5648 66/66/105
CDSSM.ω 0.5523 85/76/76
DUET.ω 0.5801H 64/76/97
KNRM.ω 0.5198 83/77/77

MatchPyramid.ω 0.4697H 56/129/52
MV-LSTM.ω 0.5562 64/83/90

Asymmetric

(Q)

ARC-I.ω 0.5792 37/45/155
ARC-II.ω 0.5595 42/72/123
CDSSM.ω 0.5134 76/91/70
DUET.ω 0.6158 69/58/110
KNRM.ω 0.4982 76/71/90

MatchPyramid.ω 0.6591 47/42/148
MV-LSTM.ω 0.6507N 70/41/126

(A)

ARC-I.ω 0.5815 58/61/118
ARC-II.ω 0.5439 60/81/96
CDSSM.ω 0.5779 78/75/84
DUET.ω 0.6251 68/53/116
KNRM.ω 0.5015 77/76/84

MatchPyramid.ω 0.5502H 43/97/97
MV-LSTM.ω 0.6165 68/67/102

Table 7.3: Comparison of the performances, in terms of MAP, of the Symmetric
and Asymmetric matching of the different neural models compared to classical
models, in the WikiQA collection.

improved queries is greater for the CDSSM model with architecture (Q+A). In
table 7.3, we note that when the numbers of improved and deteriorated ques-
tions are very close, the difference between the performance of the original model
and its corresponding extended architecture, such as (Q), (A) or (Q+A) is not
significant.

In order to get more explanations about these results, we also analyzed
the questions whose results were improved or deteriorated to see if there is a
correlation with the type of question (who, when, where...). Hence, another
research question needs to be answered at this point. This question concerns
the correlation between the type of questions addressed by the models and the
improvements obtained with their extended architectures.

RQ2: Is there any correlation between the question types and the
architecture that gets better improvement?

In order to answer this question, we first analyze the different questions in the
WikiQA test dataset. There are five different question types: who, when, what,
where, and how. Figure 7.4 shows the distribution of the different types over

https://github.com/NTMC-Community/MatchZoo.

95

Chapter 7 Neural models for short text matching using attention-based models

34 15 130 36 22

237

Distributions

Total

0% 25% 50% 75% 100%

who when what where how

Figure 7.4: Distribution of the different question types in the test dataset of
WikiQA.

the total of 237 test questions. In this figure, we notice that almost 55% of the
test questions are what questions. The remaining 45% is distributed among the
other four different types, and only 15 questions are of type when.

Given the non-uniform distribution of the different types of questions, in the
test corpus of WikiQA dataset, as described in figure 7.4, it doesn’t seem obvious
to figure out the type of questions for which every model is more effective. For
instance, if a model improves 10 questions of type who and 10 questions of
type what, we cannot figure out in which type of the two this model is more
efficient. Hence, we analyzed the W/L/T variations of the performance, in
terms of MAP8, for the different extended models compared to their original
counterparts, for each type of question. The objective of this analysis is to
find out, for every extended model, the type of questions on which it is most
effective. Table 7.4 shows the proportions W/L/T of every extended model.
In this table, values in bold characters correspond to the maximum Win (W)
value per model.

In table 7.4, we notice that every model extension is more effective on one
or more question type than its corresponding counterparts. For instance, ARC-
II (Q) is more effective on where questions. Its counterpart ARC-II (A) is
more effective on how questions, and finally ARC-II (Q+A) is more effective
on who questions. This behaviour is also noticeable with the other models, in
particular DUET, KNRM, and MV-LSTM, compared to their corresponding
extensions. Based on this, we approximated the results of an ideal model that
can automatically adapt its configuration, either (Q), (A) or (Q+A), depending
on the type of question being processed. This corresponds to the oracle version
of every evaluated model, whose performances are given in table 7.5. Formally,
given a model Φ whose extensions are Φ(Q), Φ(A) and Φ(Q+A). The performances
in terms of an evaluation measure M of the corresponding oracle model Φoracle

8We only considered the MAP measure since it gives an overall evaluation of all the test
set of questions. But, one can consider another measure, such as nDCG@k, precision or else,
for the same analysis.

96

Chapter 7 Neural models for short text matching using attention-based models

Proportions %
Question Type where how who when what

Model W L T W L T W L T W L T W L T
ARC-I (Q) 9.1 22.7 68.2 16.7 33.3 50.0 14.7 8.8 76.5 26.7 6.7 66.7 15.4 18.5 66.2
ARC-I (A) 31.8 13.6 54.5 30.6 30.6 38.9 14.7 17.6 67.6 33.3 13.3 53.3 23.1 30.0 46.9

ARC-I (Q+A) 27.3 18.2 54.5 27.8 33.3 38.9 17.6 14.7 67.6 40.0 13.3 46.7 22.3 29.2 48.5
ARC-II (Q) 27.3 18.2 54.5 19.4 33.3 47.2 17.6 8.8 73.5 13.3 53.3 33.3 16.2 34.6 49.2
ARC-II (A) 27.3 18.2 54.5 33.3 47.2 19.4 26.5 17.6 55.9 26.7 20.0 53.3 22.3 39.2 38.5

ARC-II (Q+A) 27.3 27.3 45.5 27.8 27.8 44.4 32.4 11.8 55.9 26.7 33.3 40.0 26.9 31.5 41.5
CDSSM (Q) 31.8 31.8 36.4 38.9 41.7 19.4 20.6 35.3 44.1 46.7 26.7 26.7 31.5 40.8 27.7
CDSSM (A) 54.5 27.3 18.2 38.9 36.1 25.0 17.6 29.4 52.9 33.3 26.7 40.0 30.8 33.1 36.2

CDSSM (Q+A) 50.0 27.3 22.7 38.9 27.8 33.3 23.5 17.6 58.8 33.3 40.0 26.7 36.2 36.9 26.9
DUET (Q) 36.4 18.2 45.5 33.3 30.6 36.1 26.5 14.7 58.8 26.7 33.3 40.0 27.7 25.4 46.9
DUET (A) 40.9 18.2 40.9 30.6 33.3 36.1 26.5 17.6 55.9 40.0 20.0 40.0 25.4 21.5 53.1

DUET (Q+A) 31.8 22.7 45.5 36.1 38.9 25.0 26.5 23.5 50.0 26.7 40.0 33.3 23.8 33.1 43.1
KNRM (Q) 45.5 13.6 40.9 44.4 27.8 27.8 29.4 20.6 50.0 13.3 40.0 46.7 29.2 34.6 36.2
KNRM (A) 36.4 31.8 31.8 22.2 33.3 44.4 35.3 23.5 41.2 40.0 20.0 40.0 33.1 35.4 31.5

KNRM (Q+A) 40.9 18.2 40.9 41.7 25.0 33.3 35.3 29.4 35.3 20.0 46.7 33.3 33.8 36.2 30.0
MatchPyramid (Q) 36.4 4.5 59.1 22.2 16.7 61.1 17.6 17.6 64.7 6.7 33.3 60.0 18.5 18.5 63.1
MatchPyramid (A) 31.8 36.4 31.8 19.4 55.6 25.0 8.8 38.2 52.9 0.0 53.3 46.7 20.0 36.9 43.1

MatchPyramid (Q+A) 31.8 54.5 13.6 16.7 63.9 19.4 17.6 52.9 29.4 13.3 66.7 20.0 26.9 50.8 22.3
MV-LSTM (Q) 27.3 18.2 54.5 25.0 16.7 58.3 20.6 17.6 61.8 26.7 20.0 53.3 33.8 16.9 49.2
MV-LSTM (A) 31.8 22.7 45.5 36.1 30.6 33.3 20.6 26.5 52.9 20.0 46.7 33.3 29.2 26.9 43.8

MV-LSTM (Q+A) 22.7 27.3 50.0 38.9 30.6 30.6 14.7 32.4 52.9 20.0 46.7 33.3 28.5 36.9 34.6

Table 7.4: Comparison of W/L/T variations of the performance, in terms of
MAP, of the extended models compared to their original counterparts, w.r.t.
every question type in the WikiQA dataset.

are estimated as in equation 7.6.

M(Φoracle) ≥ maxM
(
M(Φ),M(Φ(Q)),M(Φ(A)),M(Φ(Q+A))

)
(7.6)

where M(x) gives the performance value of the model x according to the evalua-
tion measure M . In table 7.5, the underlined values refer to the best achieved by
the models in their original versions. The values in bold characters refer to the
best performance w.r.t. every measure, and symbols N the significance of the
improvements according to the t-test. In this table, we notice that all the oracle
versions perform better than the original models with significant improvements.
These results approximate the best results that could be produced by a model
that can automatically adapt its configuration, specifically to be symmetric (A)
or (Q), or asymmetric (Q+A) or stay in the original one, according to the na-
ture of the matching task being addressed. Constructing this model represents
the aim of a future work.

RQ3: What is the impact of the attention layer on the behaviour of
the different neural models?

To answer this question, we first analyze the behavior of the different neural
models, with and without the attention layer, w.r.t. the ranking of the differ-
ent candidate answers of a given question from the dataset. Next, we analyze
attention weights computed by this layer for every word in an example ques-
tion and/or answer. Let us consider the following question, from the WikiQA
dataset, and for which there are 10 candidate answers with only 4 of them are
relevant.
q: “What happened to George O’malley on grey’s anatomy?”
In figure 7.5, we represent the ranking of the 10 candidate answers using a list of
10 squares. Each square represents one of the candidate answers. Relevant an-
swers are represented by opaque squares. The objective is to push the relevant

97

Chapter 7 Neural models for short text matching using attention-based models

Version Models Performances
MAP P@1 P@3 nDCG@1 nDCG@3 MRR

Original

ARC-I 0.5879 0.4430 0.2517 0.4430 0.5642 0.6053
ARC-II 0.5606 0.3840 0.2489 0.3840 0.5410 0.5708
CDSSM 0.5473 0.3671 0.2475 0.3671 0.5285 0.5586
DUET 0.6113 0.4599 0.2714 0.4599 0.6016 0.6259
KNRM 0.5093 0.3333 0.2264 0.3333 0.4788 0.5208

MatchPyramid 0.6443 0.4726 0.2869 0.4726 0.6448 0.6529
MV-LSTM 0.6046 0.4388 0.2813 0.4388 0.6101 0.6215

Oracle

ARC-I.ω 0.6575N 0.5148N 0.2883N 0.5148N 0.6556N 0.6737N
ARC-II.ω 0.6701N 0.7089N 0.3024N 0.5190N 0.6764N 0.6854N
CDSSM.ω 0.7180N 0.5992N 0.3136N 0.5992N 0.7220N 0.7349N
DUET.ω 0.7354N 0.6203N 0.3136N 0.6203N 0.7350N 0.7485N
KNRM.ω 0.6629N 0.5190N 0.2939N 0.5190N 0.6525N 0.6784N

MatchPyramid.ω 0.7726N 0.6456N 0.3375N 0.6456N 0.7810N 0.7862N
MV-LSTM.ω 0.7569N 0.6540N 0.3263N 0.6540N 0.7677N 0.7778N

Table 7.5: Results of the oracle version of every evaluated mode, compared to
the corresponding original ones.

With: Relevant (1)
Irrelevant (0)

Original (Q) (A)

Ideal rank:

MV-LSTM

ARC-II

CDSSM

MatchPyramid

DUET

Objective

Figure 7.5: Ranking of the different candidate answers corresponding to the
question example, by some of the evaluated models, in their different versions.

answers to the left of the list in order to return them first, which corresponds to
the Ideal rank result. In figure 7.5, we considered some of the evaluated models,
without and with the attention layer ω (equation 7.2), used to construct the
different extensions, (Q) and (A).
We consider the previous question q, and the answer a which one of the cor-
responding relevant answers, and which is returned by all the neural models
considered in figure 7.5. For both q and a, we give the corresponding list of
keywords indexed in MatchZoo:
q: “What happened to George O’malley on Grey’s anatomy?”
keywords: happened, george, o’malley, grey, ’s, anatomy.
a: “In 2007, Knight’s co-star Isaiah Washington (Preston Burke) insulted him
with a homophobic slur, which resulted in the termination of Washington’s Grey’s
Anatomy contract.”
keywords: knight, ’s (1), isaiah washington (1), preston, burke, resulted, termi-
nation, washingthon (2), ’s (2), grey, ’s (3), anatomy, contact.
For each of the neural models considered in figure 7.6, we retain the asymmetric

98

Chapter 7 Neural models for short text matching using attention-based models

(a) Weights of the keywords of the question q
computed by the attention layer ω of each
model with its corresponding asymmetric
architecture (Q).

(b) Weights of the keywords of the question ai computed
by the attention layer ω of each model with its
corresponding asymmetric architecture (A).

Figure 7.6: Comparison of importance weights computed by the attention layer
of the asymmetric architectures of three different models.

architecture with which the model performed best in previous analyses, and then
investigate the weights of importance computed in each model, for the keywords
of the question q and the answer a. The figure 7.6 shows the different computed
values. The objective is to analyze how the attention layer weights the different
words according to their real (literal) importance in the corresponding sentence.

In the figure 7.6a, the keywords happened and george are highly weighted in
the question q by all the three models, which is consistent with the objective
of q. Indeed, the question is about what happened to george. In figure 7.6b,
the keywords contract, resulted and termination have acquired highest weights.
These words represent the core information provided by the answer a. These
results show the contribution of using the attention layer in the weighting process
of the words of the question/answer according to their real importance.

RQ4: What is the impact of the asymmetric architecture on the
matching of texts of the same nature?

So far, we have analyzed the contribution of the architecture we propose (section
7.2.2) in the case of asymmetric matching tasks, such as question and answer
matching. We also want to analyze the interest of our approach in the case
of symmetric matching tasks. We consider the paraphrase identification task.
Specifically, using the QuoraQP dataset (section 5.2), we are going to analyze
the performance of our model in detecting similar question pairs.

In figure 7.7, we show the performances in terms of Accuracy of different ex-
tended neural models while matching question pairs in the QuoraQP dataset. In
this figure, we find that, as expected, most of the models do not benefit from the
asymmetric architectures, specifically (A) and (Q). This is due to the symmetric
nature of this matching task, except the CDSSM model for which performances
of the asymmetric architectures, (A) and (Q), substantially exceed those of the
original version. Indeed, the CDSSM model uses a convolution layer to take
into account the context [185] of a word, and the attention weights computed

99

Chapter 7 Neural models for short text matching using attention-based models

Models

A
c
c
u
r
a
c
y

ARC-II CDSSM DUET MV-LSTM MatchPyramid

Architectures

Figure 7.7: Performance, in terms of accuracy in the QuoraQP dataset, of
different extended neural models using different architectures.

exclusively for one of the inputs at a time enable to inform the model about the
most important words of each context, thus improving its performance. Simi-
larly in case of the MV-LSTM model, where words are handled depending on
their positions [3], attention weights are used to inform the model about the
importance of the word at each position.

For the rest of the models, the asymmetric architectures have not a sig-
nificant impact on their results, and the corresponding original architectures,
ARC-II, DUET, and MatchPyramid, perform better than their extended coun-
terparts.

Given the results shown in figure 7.7, we want to analyze the behaviour of
our asymmetric matching architecture in the symmetric matching task. To do
so, we consider the following three different example questions from the Quo-
raQP dataset: q1: “Are we living in a simulation?”
q2: “Do we have any proof that we live in a simulation?”
q3: “Is there a possibility that we actually are existing in a programmed plat-
form?”
Where, q1 is similar to q2 (Label = 1), but not similar to q3 (Label = 0). In
the table 7.6 we present the similarity scores computed by the different models
using each of the different architectures. In table 7.6, opaque green cells refer
to the improvement of the similarity score of the positive pair (q1, q2) with the
corresponding model architecture, compared to the original architecture of that
model. We note that the score of the question q2 is optimized in the asymmet-
ric architectures (Q) and (A) as well as in symmetric architecture (Q+A). In
particular, in case of the ARC-II and CDSSM models, the original architecture
assigns inappropriate scores to the different pairs (q1, q2) and (q1, q3), the at-
tention layer has allowed to compute similarity scores that correctly distinguish
the positive pair (q1, q2) from the negative one (q1, q3). To verify these results,
we computed the attention weights assigned by the ω layer, applied for q1 in the

100

Chapter 7 Neural models for short text matching using attention-based models

Question Pairs Label Architecture Predicted Score sc(qi, qj)
ARCI-II CDSSM DUET MatchPyramid MV-LSTM

q2 1 0.0464 0.3694 0.7067 0.1002 0.5658
q3 0

Original
0.9641 0.3694 0.1416 0.0131 0.1447

q2 1 0.3621 0.2092 0.6211 0.9084 0.6783
q3 0 (Q+A) 0.3464 0.2917 0.0840 0.0456 0.0150
q2 1 0.2638 0.7184 0.6946 0.7736 0.7060
q3 0 (Q) 0.0024 0.2727 0.1576 0.1612 0.0162
q2 1 0.1530 0.6922 0.8057 0.6116 0.6600

q1

q3 0 (A) 0.0462 0.2208 0.4703 0.1055 0.2225

Table 7.6: The similarity scores assigned to a pair of similar questions (q1, q2)
and a pair of non-similar questions q1, q3) by the different neural models within
the symmetric and asymmetric architectures.

architectures (Q) and (Q+A), and those computed for the other two questions,
q2 and q3, in the architectures (A) and (Q+A). The figure 7.8 shows the atten-
tion weights assigned to each of the terms of these questions by the different
models.

In figure 7.8, we notice that for each model, either the symmetric (Q+A)
or asymmetric (Q) and (A) architecture is used, the attention layer has the
same impact on the computation of the importance weights for the different
words of the three questions q1, q2 and q3. In addition, for the models that
compute incorrect similarity scores (table 7.6), such as ARC-II and CDSSM,
the attention layer allows the model to focus on the keywords of the different
inputs. Therefore, these models produced more suitable similarity scores, using
the asymmetric architectures (A) and (Q), as shown in table 7.6.

RQ5: How effective is our approach compared to state-of-the-art
models that are not Implemented in MatchZoo?

We would like to compare our results to others models that already performed
good results in the datasets that we used in these experiments. Hence, we
considered external models to the MatchZoo tool, and compared the best per-
formances that we obtained in our experiments, with the asymmetric/symmetric
architectures, to those published in the corresponding papers to the considered
baselines. These baselines are:

• SUMBASE;PTK [268] is a Kernel-based model, combining intra and cross
word similarities between text pairs. The intuition behind this model is
that similar questions are likely to require similar answer patterns. Hence,
the model computes similarities between different training pairs, and use
them as additional features.

• PairwiseRank + SentLevel [231] is an approach for answer selection for
question answering. This method directly exploits existing pointwise neu-
ral network models, by extending the Noise Contrastive Estimation ap-
proach with a triplet ranking loss function, in order to exploit interactions
in triplet inputs, containing a question paired with positive and negative
examples.

Table 7.7 shows the performance of our approach in terms of MAP and MRR.
Internal models are the models implemented in MatchZoo, for each model,

101

Chapter 7 Neural models for short text matching using attention-based models

ARC-II
(Q+A)

CDSSM
(Q+A)

DUET
(Q+A)

Match-
Pyramid
(Q+A)

MV-LSTM
(Q+A)

ARC-II
(Q)

CDSSM
(Q)

DUET
(Q)

Match-
Pyramid
(Q)

MV-LSTM
(Q)

living simulation

(a) q1

ARC-II
(Q+A)

CDSSM
(Q+A)

DUET
(Q+A)

Match-
Pyramid
(Q+A)

MV-LSTM
(Q+A)

ARC-II
(A)

CDSSM
(A)

DUET
(A)

Match-
Pyramid
(A)

MV-LSTM
(A)

live simulationproof

(b) q2

ARC-II
(Q+A)

CDSSM
(Q+A)

DUET
(Q+A)

Match-
Pyramid
(Q+A)

MV-LSTM
(Q+A)

ARC-II
(A)

CDSSM
(A)

DUET
(A)

Match-
Pyramid
(A)

MV-LSTM
(A)

(c) q3

Figure 7.8: Proportion (%) of the importance weights of the keywords of three
different questions, from the QuoraQP dataset, computed by the attention layer
of the extended models.

102

Chapter 7 Neural models for short text matching using attention-based models

Model MAP MRR

Internal
(extended models)

ARC-II(Q) 0.5595 0.5748
CDSSM(A) 0.5779 0.5886
DUET(A) 0.6251 0.6383

MatchPyramid(Q) 0.6591 0.6715
MV-LSTM(Q) 0.6507 0.6691

External SUMBASE;PTK [268] 0.7559 0.7700
PairwiseRank + SentLevel [231] 0.7010 0.7180

Table 7.7: Comparison of the results of our approach, using Internal models at
MatchZoo, against External models.

we consider the asymmetric architecture that gave the best results, specifi-
cally (Q) or (A). The values in bold characters show the best performance
for each measure. External models represent state-of-the-art models that are
not implemented in MatchZoo. In this table, we note that the external model
SUMBASE;PTK gives better results than the other models. In addition, the
PairewiseRank + SentLevel model gives better results than the different In-
ternal models with the corresponding architectures. Future work will focus on
evaluating our asymmetric approach with these models in order to obtain new
state-of-the-art results.

7.5.2 Position VS Attention

In this section, we aim at analyzing the main impact of word-level attention
weights combined with the position feature of the different words. To do so, we
consider MV-LSTM [3], which is a position based model for sequence matching,
and that we extended and evaluated in the previous analysis. We aim to answer
two main research questions:

RQ6: How does the position-based model behave with/without the
attention weights?

Table 7.8 shows the 3 first answers, corresponding to one sampled question from
WikiQA dataset. The considered question is ”Where do crocodiles live?” and
there are 21 possible answers in the WikiQA dataset, where only one question
is relevant (label = 1).

In this table, we show how these answers are ranked by the proposed archi-
tectures of the MV-LSTM model. The number between brackets (.) corresponds
to the retrieval rank according to every model. Note that the answers retrieved
by the MV-LSTM model [3] as well as those retrieved by the different MV-LSTM
model architectures, deal with the same subject as the question. However, the
correct answer is ranked better by the MV-LSTM (Q) model. Compared to the
rank with MV-LSTM (A) and MV-LSTM (Q+A) models. This example shows
the advantage of focusing on the input question words.

103

Chapter 7 Neural models for short text matching using attention-based models

First answers
Predicted scores and rank values (.)

True labelMV-LSTM Extended
(Q) (A) (Q+A)

Crocodiles (subfamily Crocodylinae) or
true crocodiles are large aquatic
tetrapods that live throughout the
tropics in Africa, Asia, the
Americas and Australia.

(3)
0.3646

(1)
0.9003

(2)
0.2871

(3)
0.3640 1

Crocodiles have more webbing on the
toes of the hind feet and can better
tolerate saltwater due to specialized
salt glands for filtering out salt,
which are present but non-functioning
in alligators.

(1)
0.8989

(2)
0.8826

(1)
3.5154

(1)
2.0885 0

Also when the crocodile ’s mouth is
closed, the large fourth tooth in the
lower jaw fits into a constriction in
the upper jaw.

(2)
0.6290

(4)
-1.1083

(4)
-0.2245

(6)
-0.2575 0

They are carnivorous animals, feeding
mostly on vertebrates such as fish,
reptiles, birds and mammals, and
sometimes on invertebrates such
as molluscs and crustaceans,
depending on species and age.

(6)
-2.0848

(3)
-0.6799

(3)
0.2831

(2)
0.5409 0

Table 7.8: Ranking of the 3 first answers retrieved by the MV-LSTM model,
among 21 possible answers corresponding to question “Where do crocodiles
live?” in WikiQA dataset, compared to the extended versions using attention
features.

RQ7: What is the gain of the attention weights combined with the
position features in a classification task?

Figure 7.9 shows the comparison of the accuracy evolution during the training
and validation phase of the different architectures of the proposed model MV-
LSTM and the MV-LSTM baseline, in the QuoraQP dataset. The red line on
the graphics corresponding to MV-LSTM (A), MV-LSTM (Q) and MV-LSTM
(Q+A), show the accuracy value of the MV-LSTM model [3] after training.

Note that all MV-LSTM architectures evolve in the same way and and get
higher accuracy values compared to the MV-LSTM performance. MV-LSTM
(Q) outperforms the MV-LSTM baseline with 3.8% in terms of accuracy. The
attention-based weights has the same effect in the different MV-LSTM architec-
tures, in the QuoraQP dataset, because it is a dataset for a symmetric matching
task, where inputs are of the same nature, where the task consists of identifying
whether an input question is a duplicate of another question or not. So, the
comparison process considers inputs with approximately a same length and the
same structure.

7.6 Conclusion
In this chapter, we presented our contributions to the neural short text matching
state-of-the-art. The experimental results support our hypothesis concerning
the impact considering the asymmetry aspect of several text matching tasks, in
the architecture of the matching model; and showed the advantage of combining
the position features and and the word-level attention weights.

First, we highlighted the asymmetry aspect of several text matching tasks,
and then defined a generalized architecture enabling the model to process the in-

104

Chapter 7 Neural models for short text matching using attention-based models
A

cc
ur

ac
y

va
lu

es
A

cc
ur

ac
y

va
lu

es

MV-LSTM MV-LSTM (A)

MV-LSTM (Q+A) MV-LSTM (Q)

Training epochs Training epochs

Figure 7.9: Comparison of the valid and test accuracy values during training on the
QuoraQP dataset, of the MV-LSTM [3] model with/without the attention layers.

put text sequences w.r.t. their nature. In a second step, we extended several well
known text matching models and built their corresponding asymmetric archi-
tectures. We performed experiments in two different question-answer datasets,
considering the question-answer matching which is an asymmetric task, and
the paraphrase identification which is a symmetric matching task. The results
we obtained are promising in addressing the asymmetry aspect thanks to the
attention layer. In the case of symmetric tasks, we saw that the asymmetric ar-
chitecture did not have a significant impact on the performance of some models
(RQ4). The attention layer corrected the similarity scores computed by mod-
els based on an MLP architecture, such as the CDSSM model [185], and the
MV-LSTM model [3] based on positional features of words. In this model, the
attention coefficients combined with the position information helped improving
the results with more than 3.8% in terms of accuracy.

Finally, the analysis (RQ2) that we performed, concerning the questions
type, have revealed that there is an important correlation between the type of a
question and the extended models performances. Besides, the estimated oracle
results are more performent than those of all the evaluated matching models.
Hence, future work will focus our reflection on a model that, in one hand handle
the question type automatically, and in the other hand take into account the
symmetric/asymmetric aspect of the matching task.

105

CHAPTER 8

ATTENTION-BASED
MULTI-LEVEL RELEVANCE

ASSESSMENT

8.1 Introduction

Dealing with the document length is one of the most important challenges in IR
[269]. The main problem is that, long documents may cover different topics, and
only some parts are relevant to the query. This may complicate the matching
task and decrease performances of current neural IR models. To deal with this
issue, common neural IR models define a maximum document length in advance
and pad shorter documents [21]. However, cutting off the exceeded text of a
document could lead to information loss. Pang et al. [21] showed that the exceed
part of a long document usually contains much important matching information.
To highlight this aspect, we consider the query number 253 of the AP TREC
dataset. In this dataset, there are six relevant documents, of which the longest
contains more than 600 words and the shortest contains about than 250 words.
Hence, it becomes difficult to set a maximum length for all documents in this
dataset for a neural matching model.

Figure 8.1 shows an explicit description1 of the relevance signals distribution
in a query-document matching matrix, corresponding to the query 253 (y axis),
containing three words, and the longest relevant document (x axis) containing
more than 600 words. In this figure, note that the strongest matching signals,
corresponding to similarity values close to max = 1.0 and that are highlighted
with the white rectangles, are located after the 250th (around the 270th) word,
and several other strong matching signals appear in the second half part of the
document (300th to the 600th word). This example highlights the fact that a
query-document matching information can be lost if the document content is
truncated. Another study is provided by Fan et al. [27], where the authors
discussed the diverse relevance granularity in a long document, and that could
be relevant completely or include several relevant passages or paragraphs.

1This example is realized by using the word-word cosine similarities, between all the words
of a TREC query and all the words of one of the corresponding relevant documents in the AP
dataset.

106

Chapter 8 Attention-based Multi-level Relevance Assessment

max

min

Figure 8.1: Example of a matching signals distribution over a relevant long
document w.r.t. a query of three words.

In this chapter, we first revisit the question of whether passage-based meth-
ods could help neural models to overcome the document length problem or not.
Several passage-based models [28, 29, 30] have been already proposed in IR to
rank long documents. The main limitation of the previously proposed methods
is that passage-level signals are combined in a simple way that higher level rele-
vance patterns are not considered. For instance, the best-passage approach [29]
that rank the whole document based on its most relevant passage, or the linear
combination-based model [28] that merely aggregate the scores of the different
passages in a linear function. These methods cannot capture complex relevance
information, such as the interaction between passages, which could help to figure
out if the document is truly relevant or not w.r.t. the query. Differently from
previous work [29, 28, 27], we assume that some passages of a long document
are likely to be more relevant than others and need to be considered differently,
and hence put more attention on them. We focus on the study of two main
aspects: (1) the impact of considering a document passages, in order to capture
and combine the relevant parts of a long document, and solve the document
length problem, (2) the impact of putting more attention on some passages of
the same document and its component words, and words of the query.

In the followings, we first (section 8.2) define a multi-level assessment frame-
work based on attention layers, in both word and passage levels, to extend sev-
eral neural matching models from the state-of-the-art. The input document is
represented with a set of passages that are likely to be relevant. Furthermore,
(section 8.3) we propose our attention-based multi-level matching model (aM3),
where we consider the document relevance at three different levels, namely at
the word-level, the passage-level and the document-level.

107

Chapter 8 Attention-based Multi-level Relevance Assessment

8.2 A Multi-level Attention-based Architecture
In this section, we present a multi-level attention-based approach to assess a
document relevance. The main goal is to evaluate the impact of putting more
attention in some words of a query or a document, and in some passages of the
document. We present in the following a general framework that can be used to
extend several neural models, as described in figure 8.2. First, we introduce the
document representation, then we describe our multi-level attention approach.

8.2.1 Passage-based Document Representation
To deal with the document length problem in neural IR models, we propose to
represent a document as a set of passages of a long document to construct its rep-
resentation. Specifically, Every document in the dataset could be segmented into
passages of k words, and represented by D = {P1, ..., Pl} which is a set of l differ-
ent passages from this document, where every passage Pi

def= < w
(D)
ij ...w

(D)
ij+k−1 >

is a sequence window of k words, and w(D)
ij is a word at position j of the passage

Pi.
This representation can be used with different neural matching models from the
state-of-the-art. In the following, we describe how the attention weights can be
put to highlight a different passages and their component words in a document,
as well as in the query words.

8.2.2 The Multi-level Attention
We assume that in a long document, there are some passages that are more
relevant that others for a given query. Therefore, we need to consider them
differently. In addition, words of every text (query and passages) are not of the
same importance, and we need to put more attention in the most important ones.
To do so, we propose to extend several state-of-the-art neural text matching
models by adding attention layers. More specifically, given a matching model
Φ of the general framework defined in chapter 4 (figure 4.1), where the inputs
s

(Q)
i and s(D)

ij refer to the query Q and a passage of a document D, respectively.
Φ can be extended (construct model Φ′) using attention layers. These layers
can be put in the word-level and/or to the passage-level, corresponding to the
layers ω and ωp, respectively in figure 8.2.

In this figure, we consider a query of three words and passages of three words
each one. These words are weighted by the layer ω as defined in equation 7.2.
At the passage-level, the layer ωp computes attentions weights for the different
passages after aggregating their word vectors, as defined in equation 8.1.

ωp (P1, ..., Pl) = α(P)ϕ′(D) (8.1)

where α(P) = [α(p)
1 , ...α

(p)
l] is the attention weight vector corresponding to the

different passages in the input document D. Parameter α(p)
i is the attention

weight corresponding to the passage Pi and computed using equation 7.2.

The passage-level attention layer ωp can be applied in two different places of
the passage-level of the general architecture, as shown in figure 8.2. Before the

108

Chapter 8 Attention-based Multi-level Relevance Assessment

E ... Final
Score

...

Higher Interaction
Layers

Matching
Layer

Word-levelEmbedding Passage-level

Figure 8.2: Extension of the unified neural matching model of figure 4.1, using
attention layers applied in several levels, in order to focus on the most important
matching signals at each level.

Final
ScoreE

MPL
bi-LSTM

Word-levelEmbedding Passage-level Document-level

Convolution

Figure 8.3: Architecture of our AM3 model. The document has three passages,
and all the passages and the query have three words. A bi-LSTM layer is used
in the document-level.

matching layer, ωp put attention on the passages based only on the component
information independently from the query. After the matching layer, ωp put
more attention on some passages based on the lower level interaction features
between the query and the document content. The final function g corresponds
to the higher interaction layers used to compute the matching score.

8.3 AM3: An Attention-based Multi-level Match-
ing Model

We propose an Attention-based Multi-level neural Matching Model (AM3) that
exploits three different levels of information granularity: the word-level, the
passage-level and the document-level. In the followings, we describe the different
levels of our AM3 model accordingly.

109

Chapter 8 Attention-based Multi-level Relevance Assessment

8.3.1 Word Level
In the word-level, the aim is to consider words of the input sequences according
to their importance. In our model, the function ψ is considered as an identity
function and represented by dotted lines. At this level, we compute attention
weight vectors, ᾱ(Q) and ᾱ(Pi) corresponding to all words of the query Q and
the passages, respectively, using the attention layer ω defined in equation 7.2.

8.3.2 Passage level
In the word-level, the model is provided with relevance signals corresponding
to every word in the different passages of the document but not the passages
themselves. At the passage-level, the aim is to better distinguish the most
important passages of the whole document. First, we compute a word-word
matching matrix M (w) of the query Q and passages of the document D using
equation 8.2.

M (w) =
[
ᾱ(P1)P1, ..., ᾱ

(Pl)Pl

]
� ᾱ(Q)Q (8.2)

where � is the cosine similarity.
Then, we compute a relevance vector ẑi for every passage Pi in D, using a
convolutional layer of k × |Q| dimensional filters, with k is the passages length,
applied to the word-word matching matrix M (w), as described in equation 8.3.

ẑfi
def= δ

(
wfzi + bf

)
, f = 1, 2, ..., F (8.3)

where zi corresponds to the convolution window and F is the number of filters,
which is also the dimension of the vector ẑi. The parameters wf and bf stands
for the convolution layer weights and bias, respectively, corresponding to the
filter f , and δ is the corresponding activation function.

Once the vector representation ẑi is computed for every passage, we compute
the passage-level attention weight vector ᾱ(z) =

[
α

(z)
1 , ..., α

(z)
l

]
, where α(z)

i is the
attention weight of the passage Pi computed using equation 4.8, where the word
vector wt is substituted by the passage vector ẑi. The attention vector ᾱ(z) en-
ables the matching layers of the document-level to focus on the most important
passages. Hence, the passage-level signals to consider in the document-level are
given by the matrix M (p) computed as in equation 8.4.

M (p) def= ᾱ(z) ⊗ ẑ =
[
α

(z)
1 ẑ1, ..., α

(z)
l ẑl

]
(8.4)

where ⊗ corresponds to the element-wise product.

8.3.3 Document level
The whole document relevance can be assessed based on the passage-level match-
ing signals. The main idea is that the document can be considered as relevant if
there is an important interaction between its different relevant areas. Therefore,
at the document-level we construct a document-wide relevance patterns based
on signals from the passage-level of the matrix M (p). To this end, we can use
one of the two options as a combination layer.

110

Chapter 8 Attention-based Multi-level Relevance Assessment

Recurrent Layer (LSTM)

The aim of using a recurrent layer is to process the different passages according
to their positions in a document. We assume that a document where the relevant
passage appeared at the beginning could be preferred by the user. Hence, the
passage-level relevance matrix M (p) is fed to a long short term memory (LSTM)
layer [100]. In addition, in order to perform a kind of interaction between the
different passages, we use a bidirectional recurrent network, where hidden the
states (equation 2.5)

−→
h and

←−
h , of the forward and the backward directions

respectively, are concatenated to construct the document-level relevance features
as described in equation 8.5.

ybiLSTM =
[−→
h ,
←−
h
]

(8.5)

where, if a simple LSTM layer is used, then we consider yLSTM =
[−→
h
]
.

Feedforward Layer (MLP)

The simple feedforward network [270] enables to move the information only in
the forward direction of the NN (from input to output), and apply a non-linear
transformation at every layer. We fed the matrix M (p) to a multiple layers
perceptron (MLP) in order to transform the passage-level relevance signals as
described in equation 8.6.

yMLP = δF (W (F)M (p) + b(F)) (8.6)

where W (F) and b(F) are the feedforward layer parameters, and δF is the MLP
layer activation function.

Then, a final MLP layer is used to combine the document-level features y
and compute the final relevance score sc. As described in equation 8.7.

sc = δsc(Wy + b) (8.7)

where W and b are parameters of the MLP layer, and δsc is the final layer’s
activation function. y ∈ {ybiLSTM , yLSTM , yMLP } is the final features vector
computed in the document level by adopting one of the possible options, namely
bidirectional LSTM, simple LSTM or MLP layer.

8.4 Experiments
In this section, we describe the experimental process and the obtained results,
and analysis. We will first describe the evaluation setup (section 8.4.1), mainly
the dataset and the evaluation protocol, then (section 8.4.3), we will describe
the and discuss the obtained results.

8.4.1 Evaluation Setup
We consider the ad-hoc document ranking task and train our AM3 model, and
the different evaluated neural models to optimize the rank hinge loss objective

111

Chapter 8 Attention-based Multi-level Relevance Assessment

function (equation 7.4). We used the Robust04 news TREC dataset (details
about this dataset are given in table 5.5 of section 5.2.3). Robust04 contains
250 queries, hence we performed a 5-fold cross validation, with 150 queries for
training, 50 queries for validation and 50 queries for test.

Experiments are conducted using the MatchZoo [5] framework. We have
added our AM3 model to MatchZoo. In order to evaluate our passage-based
document representation approach, we extended some pre-implemented neural
models in this framework with the attention layers ω () and ωp at several levels,
as described in section 8.2.2.
Instead of using all passages of a document, we use passages that are retrieved
by the INDRI2 search engine, with a passages length set3 to 5 words without
overlap.

We have trained our AM3 model using the Adam optimizer [271] with a batch
size of 100. To avoid overfitting the data, we used a dropout rate with different
values in {0.0, 0.1, ..., 0.5}, in layers of the document-level (section 8.3.3). The
filters number F used in equation 8.3 takes values in {5, 10, ..., 100}. Our model
as well as the neural baselines use the pre-trained Glove4 word embeddings with
embedding size 300. All the models are trained over 600 epochs, then evaluated
according to their performances in the last epoch.
Concerning the hyper-parameters of the different baselines, we have considered
the models configuration corresponding to the best results published in the
corresponding paper.

8.4.2 Models Configuration
We have extended several neural baselines described in section 5.4, using differ-
ent attention layers as described in section 8.2.2.
• Original refers to the original model without any modification.

• ω.P refers to the use of the attention layer ωp (equation 8.1), at the
passage-level, to compute attention weights for the different passages.

• ω.Q refers to the attention weights computed by the layer ω (equation
7.2) at the word-level of the query input.

• ω.D refers to the attention weights computed, by layer ω (equation 7.2),
at the word-level of the different passages of the input document.

For the DUET model [179], we considered different cases. In fact, this model is
composed of two parallel convolutional models, the local and the distributed. We
refereed for each of them with the labels local and distrib respectively. The lo-
calDistrib label refers to the application of the attention layer, ω.Q, ω.P and/or
ω.D in the corresponding level at both local and distributed parts of the DUET
models.

We have also considered different configurations of our AM3 model for the
document-level and the passage-level processing. The evaluated configurations
are refereed to using the following labels:

2http://lemurproject.org/indri.php
3The passage length took values from {5, 10, ..., 100} then we chose the value that gave the

best results.
4http://nlp.stanford.edu/data/glove.840B.300d.zip

112

Chapter 8 Attention-based Multi-level Relevance Assessment

Document
Representation Models Performance

Document
Content

Model MAP P@1 P@5 P@10 nDCG@1 nDCG@5 nDCG@10
BM25 0.237 0.528 0.468 0.424 0.459 0.444 0.428

ARC-II 0.063 0.044 0.057 0.064 0.062 0.041 0.055
DUET 0.117 0.237 0.170 0.155 0.218 0.170 0.160

MatchPyramid 0.118 0.169 0.162 0.163 0.150 0.146 0.150
MV-LSTM 0.102 0.116 0.114 0.112 0.106 0.105 0.106

DRMM 0.155 0.341 0.255 0.247 0.317 0.250 0.248

Passages

BM25 0.220 0.320 0.257 0.232 0.252 0.243 0.234
ARC-II 0.149 0.136 0.160 0.156 0.128 0.149 0.157
DUET 0.179 0.228 0.218 0.200 0.215 0.209 0.211

MatchPyramid 0.130 0.120 0.126 0.121 0.115 0.116 0.122
MV-LSTM 0.164 0.172 0.181 0.166 0.153 0.170 0.170

DRMM 0.336 0.504 0.410 0.356 0.467 0.402 0.375

Table 8.1: Performances evaluation of several baselines, in the Robust04 dataset,
using the document content compared to the passage-based content.

• FL refers to the use of a feedforward layer to combine the passage-level
features (section 8.3.3).

• LSTM refers to the use of a simple LSTM layer to combine the passage-
level features. In this case, the document-level features computed in equa-
tion 8.5 are y =

[−→
h
]
.

• bi-LSTM refers to the use of a bidirectional LSTM layer to combine the
passage level features in equation 8.5.

Note that, in case the ω.P label is not used, the passage-level features tensor
of equation 8.4 is M (p) = ẑ.

8.4.3 Results and Discussion
We considered the performance evaluation in terms of precision (P) and nor-
malized discounted cumulative gain (nDCG), at ranks 1, 5 and 10 in addition to
the mean average precision (MAP). The objective is to answer several research
questions, as follows.

RQ1: Does the passage-based document representation approach cor-
rectly capture relevant documents?

First, we evaluate the impact of using the passage-based document represen-
tation, compared to the use of the whole document content to run existing
state-of-the-art models, and show how it affects the models performances. We
used some neural models that are implemented in MatchZoo, in addition to the
BM255 classical model implemented in INDRI.
Table 8.1 shows the performances of the different evaluated models. In this table,
note that the BM25 model does not benefit from the passage-based document
representation. Indeed, the new document content (based on the concatenated

5While using the BM25 model, we concatenated the different passages, of the same docu-
ment, that are retrieved by INDRI, to construct the new document content.

113

Chapter 8 Attention-based Multi-level Relevance Assessment

Models Configurations MAP P@1 P@5 P@10 nDCG@1 nDCG@5 nDCG@10

ARC-II

Original 0.149 0.136 0.160 0.156 0.128 0.150 0.157
ω.P 0.132 0.124 0.146 0.139 0.105 0.132 0.137

ω.P+ω.Q 0.137 0.152 0.143 0.142 0.144 0.141 0.147
ω.P+ω.D 0.175 0.172 0.216 0.204 0.168 0.200 0.206

ω.P+ω.D+ω.Q 0.153 0.168 0.149 0.140 0.157 0.146 0.149

DUET

Original 0.179 0.228 0.218 0.200 0.215 0.209 0.211
ω.P+local 0.175 0.268 0.212 0.192 0.247 0.209 0.209
ω.P+distrib 0.157 0.196 0.187 0.169 0.177 0.177 0.180

ω.P+localDistrib 0.191 0.280 0.230 0.211 0.251 0.232 0.230
ω.P+local+ω.Q 0.176 0.240 0.216 0.198 0.221 0.210 0.212
ω.P+local+ω.D 0.235 0.324 0.281 0.254 0.308 0.284 0.281

ω.P+local+ω.D+ω.Q 0.226 0.312 0.270 0.250 0.288 0.271 0.270
ω.P+distrib+ω.Q 0.153 0.188 0.165 0.158 0.169 0.165 0.168
ω.P+distrib+ω.D 0.178 0.200 0.208 0.204 0.189 0.202 0.210

ω.P+distrib+ω.D++ω.Q 0.176 0.220 0.192 0.186 0.212 0.191 0.199
ω.P+localDistrib+ω.Q 0.176 0.240 0.216 0.198 0.221 0.210 0.212
ω.P+localDistrib+ω.D 0.230 0.304 0.273 0.250 0.283 0.274 0.273

ω.P+localDistrib+ω.D+ω.Q 0.226 0.336 0.279 0.254 0.307 0.275 0.275

MatchPyramid

Original 0.130 0.120 0.126 0.121 0.115 0.116 0.122
ω.P 0.186 0.232 0.194 0.186 0.197 0.197 0.203

ω.P+ω.Q 0.236 0.320 0.278 0.240 0.299 0.282 0.269
ω.P+ω.D 0.156 0.168 0.158 0.141 0.151 0.150 0.151

ω.P+ω.D+ω.Q 0.135 0.244 0.174 0.146 0.193 0.172 0.160

MV-LSTM

Original 0.164 0.172 0.181 0.166 0.153 0.170 0.170
ω.P 0.177 0.228 0.196 0.183 0.215 0.192 0.191

ω.P+ω.Q 0.179 0.176 0.191 0.190 0.171 0.182 0.193
ω.P+ω.D 0.168 0.152 0.186 0.178 0.149 0.173 0.178

ω.P+ω.D+ω.Q 0.183 0.164 0.204 0.193 0.156 0.188 0.194

Table 8.2: Performances evaluation of several state-of-the-art models extended
with attention layers at different levels.

passages) contains words with less frequencies than the original document con-
tent. Hence, query words frequencies are also reduced, and this seems to be the
reason why the BM25 performances decreased.

While considering the neural models, the document content corresponds to
only the first 200 words of every document, which corresponds to the maximum
document length supported by the different evaluated neural models in Match-
Zoo in this experiments. However, as shown in section 8.1, relevance signals are
located far away from the first 200 words. We notice that the passage-based
document representation has a positive impact on the different neural models
performances, compared to the use of a cut document content. For instance,
performances in terms of MAP, of the models ARC-II, DUET and the MV-
LSTM are better, with respectively more than 136%, 52% and 60% when using
the passage-based representations than when using the document content.

Moreover, results of the DRMM model are better than the BM25 using the
passage-based representations, in terms of MAP and nDCG@1. These results
support our hypothesis concerning the relevance distribution over the long doc-
uments, and the information loss engendered by the cutting off of the document
content. Indeed, the passage-based document representation makes it possible
to reduce the size of the document, and thus make it bearable by the neural
models. In addition, the passages selection process (section 8.2.1) constructs
a document content that necessarily contains the query words, which help to
better assess the document relevance.

114

Chapter 8 Attention-based Multi-level Relevance Assessment

RQ2: What is the impact of the multi-level attention weights in state-
of-the-art models?

In addition to the passage-based document representation, we investigate how
the attention weights computed at different levels (figure 8.2) impact the per-
formances of existing neural matching models. Table 8.2 shows the performance
results of several extended neural baselines with the attention layers ω and ωp
applied at different levels within different configurations. We used different la-
bels in order to refer to each of them as described in section 8.4.2.

In this table, we can notice that at least one configuration of the extended
models performs better than its original counterpart. The best performances of
every model are highlighted with bold characters. Best results are obtained by
the DUET model using the ω.P+local+ω.D extension. The latter improves the
performance with more than 31% in terms of MAP and more than 28% in terms
of nDCG@5, compared to the corresponding original model. Note that for this
analysis, we do not consider the DRMM model [178]. In fact, this model uses a
histogram function for mapping the word-level matching signals into lower-sized
vectors, where every vector corresponds to the matching histogram of one query
word with all the document.

Most of the model extensions using the attention layer ωp at the passage-
level combined with the attention layer applied at the word-level of the docu-
ment (ω.P +ω.D) or of the query (ω.P +ω.Q) perform better than the original
versions as well as the extensions using the attention layer at the passage level
only, the word level only or both of them at once (ω.P + ω.D + ω.Q). In fact,
the word-level weights enable to identify the core information of every passage,
and the passage-level weights consider the importance differences among the
different passages. For instance, in case of ARC-II, the configuration ω.P+ω.D
outperforms all the other configurations, improving the performance of the orig-
inal model with more than 35% in terms of P@5. For the MatchPyramid model,
the ω.P+ω.Q extension outperforms all the other models. Such that the results
are more than 166% better than those of the original MatchPyramid model in
terms of P@1. In fact, the attention weights computed for the different words in
the query inform the model structure to focus on the passages having the most
important words of the query.

Moreover, the ω.P+local+ω.D extension of the DUET model performs bet-
ter results than all the other extensions of this model, except for the P@1 where
the ω.P+localDistrib+ω.D+ω.Q extension outperforms the original model with
more than 47% in terms of P@1 compared to the 42% improvements with the
ω.P+local+ω.D extension. In fact, ω.D enables to identify the most important
words of the different passages, in addition to ω.P enabling to focus the inter-
action process of both the local and distributed parallel models of DUET on the
most relevant passages.

The conclusion to be drawn from these results is that when the attention is
put on the word-level, attention weights must be computed exclusively for words
of only one of the two inputs at a time, the query input or the document input,
resulting in an asymmetric configuration of the model. Note that, for most

115

Chapter 8 Attention-based Multi-level Relevance Assessment

Model Configuration MAP P@1 P@5 P@10 nDCG@1 nDCG@5 nDCG@10

Feedforward
Layer

AM3.FL 0.218 0.316 0.251 0.235 0.283 0.249 0.251
AM3.FL+ω.Q 0.208 0.304 0.258 0.231 0.257 0.252 0.249
AM3.FL+ω.D 0.185 0.212 0.225 0.211 0.171 0.207 0.211

AM3.FL+ω.Q+ω.D 0.199 0.276 0.241 0.222 0.252 0.231 0.235
AM3.FL+ω.P 0.241 0.348 0.303 0.252 0.321 0.296 0.279

AM3.FL+ω.P+ω.Q 0.213 0.308 0.254 0.233 0.272 0.249 0.249
AM3.FL+ω.P+ω.D 0.232 0.304 0.279 0.264 0.272 0.266 0.274

AM3.FL+ω.P+ω.Q+ω.D 0.207 0.288 0.254 0.226 0.249 0.244 0.245

Recurrent
Layer

AM3.LSTM 0.210 0.316 0.281 0.244 0.244 0.266 0.259
AM3.LSTM+ω.Q 0.220 0.328 0.293 0.264 0.287 0.289 0.272
AM3.LSTM+ω.D 0.232 0.336 0.302 0.271 0.316 0.296 0.293

AM3.LSTM+ω.Q+ω.D 0.184 0.240 0.246 0.210 0.220 0.222 0.226
AM3.LSTM+ω.P 0.228 0.328 0.274 0.25 0.307 0.265 0.264

AM3.LSTM+ω.P+ω.Q 0.226 0.348 0.296 0.261 0.295 0.287 0.276
AM3.LSTM+ω.P+ω.D 0.217 0.344 0.282 0.250 0.308 0.284 0.272

AM3.LSTM+ω.P+ω.Q+ω.D 0.181 0.264 0.234 0.207 0.225 0.222 0.214
AM3.biLSTM 0.209 0.28 0.245 0.225 0.257 0.24 0.237

AM3.biLSTM+ω.Q 0.220 0.328 0.292 0.260 0.288 0.283 0.277
AM3.biLSTM+ω.D 0.199 0.24 0.235 0.218 0.197 0.228 0.231

AM3.biLSTM+ω.Q+ω.D 0.161 0.140 0.164 0.169 0.148 0.165 0.167
AM3.biLSTM+ω.P 0.202 0.316 0.238 0.229 0.268 0.232 0.237

AM3.biLSTM+ω.P+ω.Q 0.245 0.384 0.327 0.290 0.343 0.315 0.304
AM3.biLSTM+ω.P+ω.D 0.228 0.292 0.260 0.238 0.268 0.255 0.256

AM3.biLSTM+ω.P+ω.Q+ω.D 0.216 0.316 0.254 0.222 0.295 0.251 0.244

Table 8.3: Performances evaluation of the AM3 model using different configu-
rations, in the Robust04 dataset.

the evaluated models, results of one of the asymmetric configurations, namely
the ω.P+ω.D or the ω.P+ω.Q, are better than the corresponding symmetric
configuration. ω.P+ω.Q+ω.D. This is due to the asymmetric nature of the
query-document matching. As it is discussed in a similar task (question-answer
matching) in chapter 7.

RQ3: What are the performances of the different configurations of
the AM3 model?

To answer this question, we used different configurations of our AM3 model.
The objective is to evaluate the impact of putting the attention at different
levels (word-level and/or passage-level). More specifically, we evaluated the
impact of the attention weights computed for the different passages, referred
to with label ω.P ; and the impact of the attention weights at the word-level
of the query, referred to with label ω.Q, and of the document, referred to with
label ω.D. Furthermore, we evaluate the impact of the recurrent layers (LSTM
vs bi-LSTM), used in the document-level to combine the passage-level features,
compared to the feedforward layer (FL). Table 8.3 shows performances of the
different configurations accordingly.

In this table, the underlined values show the best performance over the
configurations using the feedforward layer, and the best ones over those using
the recurrent layers, LSTM or biLSTM. The best performances over all the
different configurations are highlighted with bold characters.

Note that the attention at the passage-level (label ω.P) has a clear impact in
performances. Results of most of the model variants where the attention layer
is applied at the passage-level, are better than those of their counterparts where
this layer is not used. Moreover, the model variant AM3.biLSTM+ω.P+ω.Q
gives the best results of the AM3 model. Indeed, the attention layer applied
at the word level of the query (label ω.Q) helped improving better the results,

116

when combined with the attention weights computed to the different passages
(label ω.P). However, when the word-level attention weights are computed for
the document words (label ω.D), results are not as good as those of the con-
figurations having label ω.Q. Hence, when the document-level is provided with
the weighted passage representations as well as signals about the most impor-
tant query words, results are better. For the second time, the advantage of an
asymmetric configuration in performing the asymmetric matching task (query-
document) is observed, as was the case in results of table 8.4.3.

Concerning the document-level interactions using the recurrent layers or the
feedforward layer, we notice that the best performances reached by the vari-
ants using a recurrent layer, in particular the AM3.biLSTM+ω.P+ω.Q model
outperforms the best results of the model configuration using a simple feedfor-
ward layer, namely the AM3.FL+ω.P model. Indeed, the recurrent layer takes
into account the passages sequencing in the memory cells [100]. Hence, the re-
current layer provides more relevant signals than those provided by the simple
feedfoward layer to the final matching layer of our model.

8.5 Conclusion
In this chapter, we propose a passage-based document representation method
for ad-hoc ranking of documents. Unlike the common solution that consists on
cutting off the exceeded text of a document to make it bearable by a neural
model.

We first, show that several matching signals are located far away in the
document (after the first 200 words), and combining different pre-ranked pas-
sages of a document enables to get better results. We then suggest to repre-
sent documents as sets of passages that are likely to be relevant. Based on
these representations, we extended several neural matching models from the
state-of-the-art, using attention layers. We noticed the improvements of all the
extended models’ results using the attention weights at different levels. Note
that, the asymmetric configurations where the attention is put on the passages
and their words (configurations ω.P+ω.D) or words of the query (configura-
tions ω.P+ω.Q) have better results than those of the symmetric configurations
(ω.P+ω.Q+ω.D) where attention is put on both document and query words
and the different passages. Such that, when the passages are used instead of
the whole document content, results are improved with more than 136% in
terms of MAP. Besides, while using the extended versions with the attention
layers at different levels, the improvements were up to 166% in terms of P@1.
Which support our hypothesis about the multi-level relevance granularity in a
document.

Furthermore, we proposed a multi-level matching model. Results confirmed
for a second time the advantage of an asymmetric configuration of the multi-level
matching, to handle the query-document matching.

Part V

Overall Conclusion

117

CONCLUSION

Contributions Overview
The work presented in this thesis is part of the general context of information
retrieval, and it focuses specifically in deep learning models.

We were particularly interested in IR models that exploit distributed repre-
sentations of words, and those using neural models to learn matching features.
We have focused the state-of-the-art part on these two lines of research, and we
have devoted two chapters to the description of the different models proposed in
this framework. Specifically, chapter 3 focuses on models exploiting distributed
representations of words and sequences to improve classical IR models, such as
the enhanced language model with word embeddings [159] and the MBM25EMB
model [188] that extended the BM25 using word embeddings. Chapter 4 focuses
on models using neural networks to, first capture distributional semantics in the
corpus of different documents and construct latent representations, then learn
the matching function comparing these representations to better rank relevant
results.

In this context, we addressed four main questions:

1. While performing the document-query matching based on the semantic
matching using word embeddings, most of the proposed models [183, 14]
handle the query words regardless of their occurrence or not in the docu-
ments. We assume that query words contribute to the matching process
in different ways, depending on their presence or absence in every docu-
ment. Hence, we aim to answer this question: How do the different terms
of the query contribute to the relevance assessment of different documents,
according to their presence/absence in every document?

In order to answer this question, we analyzed the the impact of pres-
ence/absence of query words in the matching process using word embed-
ding [259]. To do so, we compared three different matching strategies,
where every word in a document is weighted using a classical IR model,
and then compared to the different query words, using the cosine distance
between their embedded vectors. Each of the three strategies focuses on
a specific aspect:

• All the words of the query are equi-important. Hence, we match
them with all document terms in the same way.

• The presence/absence of a query word in a document maters. Hence,
we match the query words with those of the document accordingly.

118

Chapter 8

• The presence/absence of a query word in a document is an important
aspect, and the exact matches are of different importance than the
semantic matches. Hence, we compare the query terms with the
document terms, based on their presence in every document, while
highlighting their similarities based on exact/semantic matching.

The experimental results show that considering query terms that are ab-
sent in the document, differently from those that are not, improves the
performances of traditional models using embedded word vectors. More
specifically, in datasets where the major of relevant documents do not
contain any/most of exact matches with the query words, the proposed
matching strategies performed better results.

2. In a second step, we focused our work on text matching using neural
models. Indeed, the text matching applications include several tasks that
are of various natures. However, most existing neural matching models
[25, 236, 231, 110] handle the input sequences in the same way, and their
representations are computed using the same6 function, whatever is the
nature of the matching task. In this case, the question is: What are the
main distinctions between the different matching tasks? and how a neural
matching model can deal with the different inputs accordingly?
To answer this, we first highlighted the asymmetry aspect of the match-
ing task involving input sequences of different natures, such as question-
answer and query-document matching, then proposed a neural matching
architecture that enables to handle this aspect [252]. More specifically,
this architecture uses attention layers, such that the model’s configura-
tion correspond to the nature of the task. The experimental results, in
question-answer matching as an asymmetric task and paraphrase iden-
tification as a symmetric task, have shown a great performance of the
adaptable architecture, while extending several state-of-the-art models.
We concluded that for an asymmetric matching task, it is better to have
an asymmetric model. While for symmetric tasks, the attention layers
enable to improve the performances of some models, but the differences
are not significant.

3. Based on the asymmetry sensitive approach we propose [252], we analyzed
some word-level features in neural matching models. More specifically, the
impact of attention and position features on text matching. Indeed, the
recently proposed attention-models [31] put more attention on the most
important words in a given sequence, while the position-based models
[3] leverage the position information of every word in a sequence. The
question that we aim to answer is: How the attention-based and position-
based approaches can help improving the performance of neural models for
text matching?
In order to answer this question, we extended the positional model MV-
LSTM [3] using attention layers at the word-level, and evaluated different
configurations [272], according to the nature of the matching task, sym-
metric or asymmetric [252]. Experimental results have shown that the

6We consider two representation layers having similar architectures as same functions.

119

Chapter 8

combining the attention weights with the position information, in an asym-
metric configuration, improved results of the original model [3], based on
only position features, with more than 3.8% and 7% in terms of accuracy
and MAP, respectively.

4. Finally, while using neural networks for ad-hoc ranking of long documents,
most neural models struggle dealing with the document length, and the
common solution is to set a maximum document length [21]. According to
several studies that have already been performed [27], this solution leads
to an information loss. In another hand, the passage-based models [29, 30]
have already shown great results in ranking long documents. In this case,
the question that raises is: How the passage-retrieval techniques can help
neural models to better rank documents?

In order to solve this problem, in a current work, we consider two assump-
tions [252]: (1) every document can be represented as a set of passages,
where the different passages are not of the same importance; (2) there are
three different relevance granularities in a document, namely the word-
level, the passage-level and the document-level. To handle these aspects,
we proceed as follows:

• We proposed a multi-level architecture to extend different state-of-
the-art matching models, using attention layers at different levels.
The documents are represented as sets of passages, and attention
weights are computed for words of the query and the passages, and
for the different passages. The aim is to focus the matching function
on most important words of the query and the document, as well as
the most relevant passages of this one.

• We extended several state-of-the-art neural models, using the pro-
posed architecture. Such that for every extended model, we com-
pared different configurations according to the attention layers, in
order to show the advantages of considering the attention weights at
different levels.

• Furthermore, we proposed our attention-based multi-level matching
model (AM3). We considered different configurations: at the word-
level, we compute attention weights for words of the query and the
document. At the passage-level, we used a convolution layer applied
to a word-word matching matrix, using a set of filters to compute the
embedded vector of every passage, then compute attention weights
for the different passages. Finally, in the document-level, we com-
pared different combination layers, in order to compute the relevance
score of the whole document.

The experimental results show that the passage-based document repre-
sentations have helped improving performances of several state-of-the-art
neural matching models, with more than 136% in terms of MAP compared
to those using the limited document content. Besides, the attention put
on the different passages have improved results of the extended models are
up to 166% in terms of P@1, when using an asymmetric configurations.
Finally, the results of our AM3 model, using an asymmetric configura-

120

Chapter 8

tion too, are better than the best results corresponding to the extended
models.

Perspectives and Future Work
The work reported in this thesis could be extended in several directions.
First of all, it would be interesting to provide additional validations of our mod-
els using larger datasets. For instance, the SQUAD dataset [273] which contains
more than 100k questions can be used in order to evaluate our contributions
in the question answering tasks. In order to evaluate the document ranking
models, the LETOR 4.0 dataset [213] provides a large set of evaluated docu-
ments and computed features for LTR models. This dataset uses the GOV2
web page collection (25M pages) and two query sets from the Million Query
track of TREC 2007 and TREC 2008. Another dataset is provided recently in
the TREC 2019 Deep Learning Track7. Namely MS-MARCO [274], this dataset
is intended to evaluate deep learning models for text matching. It includes six
different parts, among which parts dedicated to document ranking using labeled
passages, which can be used in order to validate the results of the contributions
in chapters 6 and 8, as well as parts for question answering tasks that can be
used to evaluate the contributions in chapter 7.

In all of the different contributions, we only considered the traditional word
embeddings, such as Word2Vec [2] and GloVe [9]. However, recent works [200,
201] consider contextual word embedding representations, such as BERT [104],
where every occurrence of a word in the corpus can be represented differently.
The advantages of this kind of embeddings is that the different meanings of a
same word are not considered to be the same. Hence, the results of the different
matching strategies shown in chapter 6 could be improved by considering a
contextual word embeddings.
Besides, the neural matching architectures proposed in chapters 7 and 8 can
be extended in order to include the pre-trained contextual word embeddings,
as additional features of the different input sequences, in order to handle the
different word contexts accordingly. To do this, the contextual embedding layer
can be used instead of the regular embedding layer. Then, compute attention
weights for the different context-based embedded vectors. The aim is to enable
the model, trained in a learning to rank setup, to focus more on the context of a
word in the relevant document, and thus learn to distinguish between the word
used in a relevant context and the same word used in an irrelevant context.

Another important perspective is related to the neural matching architec-
ture proposed in section 7.2. Indeed, the model proposed in this section aims to
address the asymmetry aspect of some text matching tasks, such as question-
answer and similar tasks. Through the different analysis of the results of this
model, we made two main conclusions: (1) when the matching task is asymmet-
ric the architecture’s configuration that performs better results corresponds to
one of the asymmetric configurations, (Q) or (A), the same is true when it is
a symmetric task on which the symmetric architectures are either the (Q+A)
configuration or the model’s original configuration; (2) there is a clear correla-
tion between the the questions type (e.g. when, who...) and the architecture

7https://microsoft.github.io/TREC-2019-Deep-Learning/

121

https://microsoft.github.io/TREC-2019-Deep-Learning/

that performed best results of the different evaluated models. Hence, we esti-
mated the performance of the Oracle version corresponding to every extended
model and we figured out that its results could reach state-of-the-art results.
To achieve this, constructing a model architecture that is able to automatically
adapt its configuration (Q), (A) or (Q+A), according to the question’s type
as well as the nature of the matching task being addressed, is an important
direction to explore. This perspective can also be extended for query-document
matching, where the documents can be represented as sets of passages.

BIBLIOGRAPHY

[1] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In 2013 IEEE interna-
tional conference on acoustics, speech and signal processing, pages 6645–
6649. IEEE, 2013.

[2] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their composition-
ality. In Advances in neural information processing systems, pages 3111–
3119, 2013.

[3] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and
Xueqi Cheng. A deep architecture for semantic matching with multiple
positional sentence representations. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[4] Yi Yang, Wen-tau Yih, and Christopher Meek. WikiQA: A challenge
dataset for open-domain question answering. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Lisbon, Portugal, September 2015. Association for Computa-
tional Linguistics.

[5] Yixing Fan, Liang Pang, JianPeng Hou, Jiafeng Guo, Yanyan Lan, and
Xueqi Cheng. Matchzoo: A toolkit for deep text matching. arXiv preprint
arXiv:1707.07270, 2017.

[6] Gerard Salton. Information storage and retrieval. reports on analysis,
search, and iterative retrieval. 1968.

[7] Mustapha Baziz, Mohand Boughanem, Nathalie Aussenac-Gilles, and
Claude Chrisment. Semantic cores for representing documents in ir. In
Proceedings of the 2005 ACM Symposium on Applied Computing, SAC
’05, pages 1011–1017, New York, NY, USA, 2005. ACM.

[8] Quoc Le and Tomas Mikolov. Distributed representations of sentences
and documents. In International conference on machine learning, pages
1188–1196, 2014.

[9] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 con-
ference on empirical methods in natural language processing (EMNLP),
pages 1532–1543, 2014.

122

Chapter 8 Bibliography

[10] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[11] Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed
Zamani, Chen Wu, W. Bruce Croft, and Xueqi Cheng. A deep look into
neural ranking models for information retrieval. Information Processing
and Management, page 102067, 2019.

[12] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel
Urtasun, Antonio Torralba, and Sanja Fidler. Skip-thought vectors. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, pages
3294–3302. Curran Associates, Inc., 2015.

[13] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From
word embeddings to document distances. In International Conference on
Machine Learning, pages 957–966, 2015.

[14] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce . Semantic matching
by non-linear word transportation for information retrieval. In Proceed-
ings of the 25th ACM International on Conference on Information and
Knowledge Management, pages 701–710. ACM, 2016.

[15] Yanshan Wang, Sijia Liu, Naveed Afzal, Majid Rastegar-Mojarad, Liwei
Wang, Feichen Shen, Paul Kingsbury, and Hongfang Liu. A comparison of
word embeddings for the biomedical natural language processing. Journal
of biomedical informatics, 87:12–20, 2018.

[16] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and
Larry Heck. Learning deep structured semantic models for web search
using clickthrough data. In Proceedings of the 22nd ACM international
conference on Information & Knowledge Management, pages 2333–2338.
ACM, 2013.

[17] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional
neural network architectures for matching natural language sentences.
In Advances in neural information processing systems, pages 2042–2050,
2014.

[18] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[19] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and
Xueqi Cheng. Text matching as image recognition. In Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

[20] Gaurav Singh Tomar, Thyago Duque, Oscar Täckström, Jakob Uszkoreit,
and Dipanjan Das. Neural paraphrase identification of questions with
noisy pretraining. pages 142–147, 2017.

123

Chapter 8 Bibliography

[21] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang Xu, and Xueqi
Cheng. Deeprank: A new deep architecture for relevance ranking in in-
formation retrieval. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, CIKM ’17, pages 257–266, New
York, NY, USA, 2017. ACM.

[22] Yongxing Peng and Bo Liu. Attention-based neural network for short-
text question answering. In Proceedings of the 2018 2Nd International
Conference on Deep Learning Technologies, ICDLT ’18, pages 21–26, New
York, NY, USA, 2018. ACM.

[23] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and
Roopak Shah. Signature verification using a” siamese” time delay neu-
ral network. In Advances in neural information processing systems, pages
737–744, 1994.

[24] Yang Song, Qinmin Vivian Hu, and Liang He. P-cnn: Enhancing text
matching with positional convolutional neural network. Knowledge-Based
Systems, 169:67–79, 2019.

[25] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Ed-
uard Hovy. Hierarchical attention networks for document classification. In
Proceedings of the 2016 conference of the North American chapter of the
association for computational linguistics: human language technologies,
pages 1480–1489, 2016.

[26] Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A
decomposable attention model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 2249–2255, 2016.

[27] Yixing Fan, Jiafeng Guo, Yanyan Lan, Jun Xu, Chengxiang Zhai, and
Xueqi Cheng. Modeling diverse relevance patterns in ad-hoc retrieval.
In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, SIGIR ’18, pages 375–384, New
York, NY, USA, 2018. ACM.

[28] Xiaoyong Liu and W Bruce Croft. Passage retrieval based on language
models. In 11th international conf. CIKM’02, 2002.

[29] Mengqiu Wang and Luo Si. Discriminative probabilistic models for pas-
sage based retrieval. In 31st international ACM SIGIR’08 conf., 2008.

[30] Yuanhua Lv and ChengXiang Zhai. Positional language models for infor-
mation retrieval. In 32nd international ACM SIGIR’09 conf., 2009.

[31] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[32] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. In-
troduction to information retrieval. Natural Language Engineering,
16(1):100–103, 2010.

124

Chapter 8 Bibliography

[33] Hans Peter Luhn. A statistical approach to mechanized encoding and
searching of literary information. IBM Journal of research and develop-
ment, 1(4):309–317, 1957.

[34] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information
retrieval, volume 463. ACM press New York, 1999.

[35] Chengxiang Zhai and John Lafferty. Model-based feedback in the lan-
guage modeling approach to information retrieval. In Proceedings of the
Tenth International Conference on Information and Knowledge Manage-
ment, CIKM ’01, pages 403–410, New York, NY, USA, 2001. ACM.

[36] Susan T Dumais. Improving the retrieval of information from exter-
nal sources. Behavior Research Methods, Instruments, & Computers,
23(2):229–236, 1991.

[37] Suzanne Briet. Qu’est-ce que la documentation?, volume 1. Éditions
documentaires, industrielles et techniques, 1951.

[38] Michael K Buckland. What is a “document”? Journal of the American
society for information science, 48(9):804–809, 1997.

[39] David M Levy. Fixed or fluid?: document stability and new media. In
Proceedings of the 1994 ACM European conference on Hypermedia tech-
nology, pages 24–31. ACM, 1994.

[40] Bernard J Jansen, Amanda Spink, Judy Bateman, and Tefko Saracevic.
Real life information retrieval: A study of user queries on the web. In
Acm sigir forum, volume 32, pages 5–17. ACM, 1998.

[41] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz.
Analysis of a very large web search engine query log. In ACm SIGIR
Forum, volume 33, pages 6–12. ACM, 1999.

[42] Carlos A Cuadra. Experimental Studies of Relevance Judgments. Final
Report [by Carlos A. Cuadra and Others]. System Development Corpora-
tion, 1967.

[43] William S Cooper. A definition of relevance for information retrieval.
Information storage and retrieval, 7(1):19–37, 1971.

[44] Stefano Mizzaro. Relevance: The whole history. Journal of the American
society for information science, 48(9):810–832, 1997.

[45] Jiaxin Mao, Yiqun Liu, Ke Zhou, Jian-Yun Nie, Jingtao Song, Min Zhang,
Shaoping Ma, Jiashen Sun, and Hengliang Luo. When does relevance mean
usefulness and user satisfaction in web search? In Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’16, pages 463–472, New York, NY, USA,
2016. ACM.

[46] Karen Sparck Jones. A statistical interpretation of term specificity and
its application in retrieval. Journal of documentation, 28(1):11–21, 1972.

125

Chapter 8 Bibliography

[47] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Lan-
dauer, and Richard Harshman. Indexing by latent semantic analysis. Jour-
nal of the American society for information science, 41(6):391–407, 1990.

[48] David D Lewis. Text representation for intelligent text retrieval: A
classification-oriented view. Text-based intelligent systems: current re-
search and practice in information extraction and retrieval, pages 179–197,
1992.

[49] Donald Metzler and W Bruce . Combining the language model and
inference network approaches to retrieval. Information processing & man-
agement, 40(5):735–750, 2004.

[50] Matthew W. Bilotti, Paul Ogilvie, Jamie Callan, and Eric Nyberg. Struc-
tured retrieval for question answering. In Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’07, pages 351–358, New York, NY, USA,
2007. ACM.

[51] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jau-
vin. A neural probabilistic language model. Journal of machine learning
research, 3(Feb):1137–1155, 2003.

[52] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regulari-
ties in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages 746–751, 2013.

[53] Thomas K Landauer and Susan T Dumais. A solution to plato’s prob-
lem: The latent semantic analysis theory of acquisition, induction, and
representation of knowledge. Psychological review, 104(2):211, 1997.

[54] Thomas K Landauer, Peter W Foltz, and Darrell Laham. An introduction
to latent semantic analysis. Discourse processes, 25(2-3):259–284, 1998.

[55] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[56] Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and ex-
plicit word representations. In Proceedings of the eighteenth conference on
computational natural language learning, pages 171–180, 2014.

[57] Stephen E Robertson and Steve Walker. Some simple effective approx-
imations to the 2-poisson model for probabilistic weighted retrieval. In
17th international ACM SIGIR’94 conf. Springer-Verlag New York, Inc.,
1994.

[58] Donald Metzler. Generalized inverse document frequency. In Proceedings
of the 17th ACM Conference on Information and Knowledge Management,
CIKM ’08, pages 399–408, New York, NY, USA, 2008. ACM.

[59] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Commun. ACM, 18(11):613–620, November 1975.

126

Chapter 8 Bibliography

[60] Jay Michael Ponte and W Bruce Croft. A language modeling approach
to information retrieval. PhD thesis, University of Massachusetts at
Amherst, 1998.

[61] Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations
and Trends R© in Information Retrieval, 3(3):225–331, 2009.

[62] Charu C Aggarwal and ChengXiang Zhai. Mining text data. Springer
Science & Business Media, 2012.

[63] Ye Zhang, Md Mustafizur Rahman, Alex Braylan, Brandon Dang, Heng-
Lu Chang, Henna Kim, Quinten McNamara, Aaron Angert, Edward Ban-
ner, Vivek Khetan, et al. Neural information retrieval: A literature review.
arXiv preprint arXiv:1611.06792, 2016.

[64] Bernard J Jansen and Amanda Spink. Analysis of document viewing
patterns of web search engine users. In Web mining: Applications and
techniques, pages 339–354. IGI Global, 2005.

[65] James W Perry, Kent Allen, and Madeline M Berry. Machine literature
searching x. machine language; factors underlying its design and develop-
ment. American Documentation (pre-1986), 6(4):242, 1955.

[66] Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vech-
tomova, Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty and
diversity in information retrieval evaluation. In Proceedings of the 31st
Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’08, pages 659–666, New York, NY,
USA, 2008. ACM.

[67] William Goffman. A searching procedure for information retrieval. Infor-
mation Storage and Retrieval, 2(2):73–78, 1964.

[68] Andrew Turpin and Falk Scholer. User performance versus precision mea-
sures for simple search tasks. In Proceedings of the 29th Annual Inter-
national ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’06, pages 11–18, New York, NY, USA, 2006.
ACM.

[69] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation
of ir techniques. ACM Transactions on Information Systems (TOIS),
20(4):422–446, 2002.

[70] Patrick Paroubek, Stéphane Chaudiron, and Lynette Hirschman. Princi-
ples of evaluation in natural language processing. Traitement Automatique
des Langues, 48(1):7–31, 2007.

[71] Susan T Dumais, George W Furnas, Thomas K Landauer, Scott Deer-
wester, and Richard Harshman. Using latent semantic analysis to improve
access to textual information. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 281–285. Acm, 1988.

[72] Julio Gonzalo, Felisa Verdejo, Irina Chugur, and Juan Cigarran. Indexing
with wordnet synsets can improve text retrieval. arXiv preprint cmp-
lg/9808002, 1998.

127

Chapter 8 Bibliography

[73] Mark Sanderson. Word sense disambiguation and information retrieval.
In SIGIR’94, pages 142–151. Springer, 1994.

[74] Avi Arampatzis and Jaap Kamps. A study of query length. In Proceedings
of the 31st annual international ACM SIGIR conference on Research and
development in information retrieval, pages 811–812. Citeseer, 2008.

[75] Li Deng, Dong Yu, et al. Deep learning: methods and applications. Foun-
dations and Trends R© in Signal Processing, 7(3–4):197–387, 2014.

[76] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[77] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mo-
hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Brian Kingsbury, et al. Deep neural networks for acoustic mod-
eling in speech recognition. IEEE Signal processing magazine, 29, 2012.

[78] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learn-
ing with neural networks. In Advances in neural information processing
systems, pages 3104–3112, 2014.

[79] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, 1943.

[80] Christopher M Bishop et al. Neural networks for pattern recognition.
Oxford university press, 1995.

[81] Mohand Boughanem, Taoufiq Dkaki, Josiane Mothe, and C Soule-Dupuy.
Mercure at trec7. In TREC, volume 1998, pages 355–360. Citeseer, 1998.

[82] John Nickolls, Ian Buck, and Michael Garland. Scalable parallel program-
ming. In 2008 IEEE Hot Chips 20 Symposium (HCS), pages 40–53. IEEE,
2008.

[83] Jerome Y Lettvin, Humberto R Maturana, Warren S McCulloch, and
Walter H Pitts. What the frog’s eye tells the frog’s brain. Proceedings of
the IRE, 47(11):1940–1951, 1959.

[84] Giovanni Alcantara. Empirical analysis of non-linear activation func-
tions for deep neural networks in classification tasks. arXiv preprint
arXiv:1710.11272, 2017.

[85] Marvin Minsky and Seymour A Papert. Perceptrons: An introduction to
computational geometry. Cambridge MA: MIT press, 1969.

[86] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. Introduction to
multi-layer feed-forward neural networks. Chemometrics and intelligent
laboratory systems, 39(1):43–62, 1997.

[87] Richard P Lippmann. Pattern classification using neural networks. IEEE
communications magazine, 27(11):47–50, 1989.

128

Chapter 8 Bibliography

[88] Donald F Specht. A general regression neural network. IEEE transactions
on neural networks, 2(6):568–576, 1991.

[89] John S Denker, WR Gardner, Hans Peter Graf, Donnie Henderson,
Richard E Howard, W Hubbard, Lawrence D Jackel, Henry S Baird, and
Isabelle Guyon. Neural network recognizer for hand-written zip code dig-
its. In Advances in neural information processing systems, pages 323–331,
1989.

[90] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backprop-
agation applied to handwritten zip code recognition. Neural computation,
1(4):541–551, 1989.

[91] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks,
3361(10):1995, 1995.

[92] Michael Egmont-Petersen, Dick de Ridder, and Heinz Handels. Image pro-
cessing with neural networks—a review. Pattern recognition, 35(10):2279–
2301, 2002.

[93] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully
convolutional neural networks for volumetric medical image segmentation.
In 2016 Fourth International Conference on 3D Vision (3DV), pages 565–
571. IEEE, 2016.

[94] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning
representations by back-propagating errors. Cognitive modeling, 5(3):1,
1988.

[95] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmid-
huber. Connectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In Proceedings of the 23rd
international conference on Machine learning, pages 369–376. ACM, 2006.

[96] Kazuya Kawakami. Supervised sequence labelling with recurrent neural
networks. PhD thesis, Ph. D. thesis, Technical University of Munich,
2008.

[97] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text
with recurrent neural networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 1017–1024, 2011.

[98] Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. Learning text simi-
larity with siamese recurrent networks. In Proceedings of the 1st Workshop
on Representation Learning for NLP, pages 148–157, 2016.

[99] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

[100] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735–1780, 1997.

129

Chapter 8 Bibliography

[101] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification
with bidirectional lstm and other neural network architectures. Neural
Networks, 18(5-6):602–610, 2005.

[102] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is
all you need. In Advances in neural information processing systems, pages
5998–6008, 2017.

[103] Alec Radford, Jeffrey Wu, Dario Amodei, Daniela Amodei, Jack Clark,
Miles Brundage, and Ilya Sutskever. Better language models and their
implications. OpenAI, 2018b. URL https://openai. com/blog/better-
language-models, 2019.

[104] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
2019.

[105] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-
supervised learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE
Transactions on Neural Networks, 20(3):542–542, 2009.

[106] Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and
Daniel S. Weld. Knowledge-based weak supervision for information ex-
traction of overlapping relations. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language
Technologies - Volume 1, HLT ’11, pages 541–550, Stroudsburg, PA, USA,
2011. Association for Computational Linguistics.

[107] Nikhil Rasiwasia and Nuno Vasconcelos. Scene classification with low-
dimensional semantic spaces and weak supervision. In 2008 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1–6. IEEE,
2008.

[108] Shangxuan Tian, Shijian Lu, and Chongshou Li. Wetext: Scene text de-
tection under weak supervision. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1492–1500, 2017.

[109] Mostafa Dehghani, Aliaksei Severyn, Sascha Rothe, and Jaap Kamps.
Learning to learn from weak supervision by full supervision. arXiv preprint
arXiv:1711.11383, 2017.

[110] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and
W. Bruce Croft. Neural ranking models with weak supervision. In Pro-
ceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’17, pages 65–74, New
York, NY, USA, 2017. ACM.

[111] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. Na-
tional Science Review, 5(1):44–53, 2017.

130

Chapter 8 Bibliography

[112] Geoffrey E Hinton, Terrence Joseph Sejnowski, and Tomaso A Poggio.
Unsupervised learning: foundations of neural computation. MIT press,
1999.

[113] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne E Hubbard, and Lawrence D Jackel. Hand-
written digit recognition with a back-propagation network. In Advances
in neural information processing systems, pages 396–404, 1990.

[114] Anthony TC Goh. Back-propagation neural networks for modeling com-
plex systems. Artificial Intelligence in Engineering, 9(3):143–151, 1995.

[115] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In
Neural networks for perception, pages 65–93. Elsevier, 1992.

[116] John E Moody. The effective number of parameters: An analysis of gen-
eralization and regularization in nonlinear learning systems. In Advances
in neural information processing systems, pages 847–854, 1992.

[117] Russell Reed and Robert J MarksII. Neural smithing: supervised learning
in feedforward artificial neural networks. Mit Press, 1999.

[118] Yaochu Jin, Tatsuya Okabe, and Bernhard Sendhoff. Neural network reg-
ularization and ensembling using multi-objective evolutionary algorithms.
In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE
Cat. No. 04TH8753), volume 1, pages 1–8. IEEE, 2004.

[119] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping
in gradient descent learning. Constructive Approximation, 26(2):289–315,
2007.

[120] Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Early stopping and
non-parametric regression: an optimal data-dependent stopping rule. The
Journal of Machine Learning Research, 15(1):335–366, 2014.

[121] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya , and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958,
2014.

[122] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya , and Rus-
lan R Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[123] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In International
Conference on Machine Learning, pages 448–456, 2015.

[124] Hanna M. Wallach. Topic modeling: Beyond bag-of-words. In Proceedings
of the 23rd International Conference on Machine Learning, ICML ’06,
pages 977–984, New York, NY, USA, 2006. ACM.

[125] Anne Kao and Steve R Poteet. Natural language processing and text min-
ing. Springer Science & Business Media, 2007.

131

Chapter 8 Bibliography

[126] W Bruce Croft, Donald Metzler, and Trevor Strohman. Search engines:
Information retrieval in practice, volume 520. Addison-Wesley Reading,
2010.

[127] Robert Krovetz and W Bruce Croft. Lexical ambiguity and information
retrieval. ACM Transactions on Information Systems (TOIS), 10(2):115–
141, 1992.

[128] Burghard B Rieger. On distributed representation in word semantics. In-
ternational Computer Science Institute Berkeley, CA, 1991.

[129] Abraham Bookstein and Don R Swanson. Probabilistic models for auto-
matic indexing. Journal of the American Society for Information science,
25(5):312–316, 1974.

[130] Stephen Paul Harter. A probabilistic approach to automatic keyword in-
dexing. PhD thesis, University of Chicago, 1974.

[131] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count,
predict! a systematic comparison of context-counting vs. context-
predicting semantic vectors. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 238–247, 2014.

[132] Thomas K Landauer and Susan Dumais. Latent semantic analysis. Schol-
arpedia, 3(11):4356, 2008.

[133] Gia-Hung Nguyen, Lynda Tamine, Laure Soulier, and Nathalie Souf.
Learning concept-driven document embeddings for medical information
search. In Conference on Artificial Intelligence in Medicine in Europe,
pages 160–170. Springer, 2017.

[134] Yuan Ni, Qiong Kai Xu, Feng Cao, Yosi Mass, Dafna Sheinwald, Hui Jia
Zhu, and Shao Sheng Cao. Semantic documents relatedness using concept
graph representation. In Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining, pages 635–644. ACM, 2016.

[135] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston,
and Oksana Yakhnenko. Translating embeddings for modeling multi-
relational data. In Advances in neural information processing systems,
pages 2787–2795, 2013.

[136] Gia-Hung Nguyen. Modèles neuronaux pour la recherche d’information:
approches dirigées par les ressources sémantiques. PhD thesis, Université
de Toulouse, Université Toulouse III-Paul Sabatier, 2018.

[137] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov.
Bag of tricks for efficient text classification. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 427–431, 2017.

[138] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Chara-
gram: Embedding words and sentences via character n-grams. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 1504–1515, 2016.

132

Chapter 8 Bibliography

[139] George Elmer Forsythe and Peter Henrici. The cyclic jacobi method for
computing the principal values of a complex matrix. Transactions of the
American Mathematical Society, 94(1):1–23, 1960.

[140] Gene H Golub and Christian Reinsch. Singular value decomposition and
least squares solutions. In Linear Algebra, pages 134–151. Springer, 1971.

[141] David W Miller. Computer solution of linear algebraic systems, 1968.

[142] Thomas K Landauer, Danielle S McNamara, Simon Dennis, and Walter
Kintsch. Handbook of latent semantic analysis. Psychology Press, 2013.

[143] Thomas Hofmann. Probabilistic latent semantic indexing. In ACM SIGIR
Forum, volume 51, pages 211–218. ACM, 2017.

[144] Kevin Lund and Curt Burgess. Producing high-dimensional semantic
spaces from lexical co-occurrence. Behavior research methods, instru-
ments, & computers, 28(2):203–208, 1996.

[145] Douglas LT Rohde, Laura M Gonnerman, and David C Plaut. An im-
proved model of semantic similarity based on lexical co-occurrence. Com-
munications of the ACM, 8(627-633):116, 2006.

[146] Rémi Lebret and Ronan Collobert. Word emdeddings through hellinger
pca. arXiv preprint arXiv:1312.5542, 2013.

[147] Andy Field. Discovering statistics using SPSS. Sage publications, 2009.

[148] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost)
from scratch. Journal of machine learning research, 12(Aug):2493–2537,
2011.

[149] Xin Rong. word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738, 2014.

[150] Ivan Vulić and Marie-Francine Moens. Monolingual and cross-lingual in-
formation retrieval models based on (bilingual) word embeddings. In Pro-
ceedings of the 38th international ACM SIGIR conference on research and
development in information retrieval, pages 363–372. ACM, 2015.

[151] Jocelyn Coulmance, Jean-Marc Marty, Guillaume Wenzek, and Amine
Benhalloum. Trans-gram, fast cross-lingual word-embeddings. arXiv
preprint arXiv:1601.02502, 2016.

[152] Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and Dan Roth. Cross-
lingual models of word embeddings: An empirical comparison. arXiv
preprint arXiv:1604.00425, 2016.

[153] Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and Rich Caruana. Im-
proving document ranking with dual word embeddings. In Proceedings
of the 25th International Conference Companion on World Wide Web,
WWW ’16 Companion, pages 83–84, Republic and Canton of Geneva,
Switzerland, 2016. International World Wide Web Conferences Steering
Committee.

133

Chapter 8 Bibliography

[154] Hamed Zamani and W Bruce Croft. Relevance-based word embedding. In
Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 505–514. ACM, 2017.

[155] Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu. Learning continu-
ous word embedding with metadata for question retrieval in community
question answering. In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers),
pages 250–259, 2015.

[156] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical
question-image co-attention for visual question answering. In Advances
In Neural Information Processing Systems, pages 289–297, 2016.

[157] Liu Yang, Qingyao Ai, Jiafeng Guo, and W Bruce Croft. anmm: Rank-
ing short answer texts with attention-based neural matching model. In
Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management, pages 287–296. ACM, 2016.

[158] Guoqing Zheng and Jamie Callan. Learning to reweight terms with dis-
tributed representations. In Proceedings of the 38th International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
SIGIR ’15, pages 575–584, New York, NY, USA, 2015. ACM.

[159] Debasis Ganguly, Dwaipayan Roy, Mandar Mitra, and Gareth J.F. Jones.
Word embedding based generalized language model for information re-
trieval. In Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’15, pages
795–798, New York, NY, USA, 2015. ACM.

[160] Fernando Diaz, Bhaskar Mitra, and Nick Craswell. Query expansion with
locally-trained word embeddings. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 367–377, 2016.

[161] T Kenter, A Borisov, M de Rijke, K Erk, and NA Smith. Siamese cbow:
Optimizing word embeddings for sentence representations. 2016.

[162] Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed
representations of sentences from unlabelled data. In Proceedings of
NAACL-HLT, pages 1367–1377, 2016.

[163] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-
beat baseline for sentence embeddings. 2016.

[164] Cedric De Boom, Steven Van Canneyt, Thomas Demeester, and Bart
Dhoedt. Representation learning for very short texts using weighted word
embedding aggregation. Pattern Recognition Letters, 80:150–156, 2016.

[165] Hamed Zamani and W. Bruce Croft. Estimating embedding vectors for
queries. In Proceedings of the 2016 ACM International Conference on the
Theory of Information Retrieval, ICTIR ’16, pages 123–132, New York,
NY, USA, 2016. ACM.

134

Chapter 8 Bibliography

[166] Tiancheng Zhao, Kyusong Lee, and Maxine Eskenazi. Unsupervised dis-
crete sentence representation learning for interpretable neural dialog gen-
eration. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1098–1107,
2018.

[167] Lajanugen Logeswaran and Honglak Lee. An efficient framework for learn-
ing sentence representations. 2018.

[168] Wenpeng Yin and Hinrich Schütze. Convolutional neural network for
paraphrase identification. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 901–911, 2015.

[169] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimension-
ality of data with neural networks. science, 313(5786):504–507, 2006.

[170] Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems
of points in space. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 2(11):559–572, 1901.

[171] Francis Jeffry Pelletier. The principle of semantic compositionality. Topoi,
13(1):11–24, 1994.

[172] Qingyao Ai, Liu Yang, Jiafeng Guo, and W. Bruce Croft. Improving lan-
guage estimation with the paragraph vector model for ad-hoc retrieval.
In Proceedings of the 39th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR ’16, pages 869–
872, New York, NY, USA, 2016. ACM.

[173] Lingfei Wu, Ian En-Hsu Yen, Kun Xu, Fangli Xu, Avinash Balakrish-
nan, Pin-Yu Chen, Pradeep Ravikumar, and Michael J Witbrock. Word
mover’s embedding: From word2vec to document embedding. pages 4524–
4534, 2018.

[174] Gao Huang, Chuan Guo, Matt J Kusner, Yu Sun, Fei Sha, and Kilian Q
Weinberger. Supervised word mover’s distance. In Advances in Neural
Information Processing Systems, pages 4862–4870, 2016.

[175] Eunjeong L Park, Sungzoon Cho, and Pilsung Kang. Supervised para-
graph vector: distributed representations of words, documents and class
labels. IEEE Access, 2019.

[176] Tom Kenter and Maarten de Rijke. Short text similarity with word em-
beddings. In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, CIKM ’15, pages 1411–1420,
New York, NY, USA, 2015. ACM.

[177] Qingyao Ai, Liu Yang, Jiafeng Guo, and W. Bruce Croft. Analysis of
the paragraph vector model for information retrieval. In Proceedings of
the 2016 ACM International Conference on the Theory of Information
Retrieval, ICTIR ’16, pages 133–142, New York, NY, USA, 2016. ACM.

135

Chapter 8 Bibliography

[178] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. A deep rel-
evance matching model for ad-hoc retrieval. In 25th ACM International
Conf. CIKM’16, 2016.

[179] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. Learning to match
using local and distributed representations of text for web search. In Pro-
ceedings of the 26th International Conference on World Wide Web, WWW
’17, pages 1291–1299, Republic and Canton of Geneva, Switzerland, 2017.
International World Wide Web Conferences Steering Committee.

[180] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell
Power. End-to-end neural ad-hoc ranking with kernel pooling. In Pro-
ceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’17, pages 55–64, New
York, NY, USA, 2017. ACM.

[181] Guido Zuccon, Bevan Koopman, Peter Bruza, and Leif Azzopardi. Inte-
grating and evaluating neural word embeddings in information retrieval.
In Proceedings of the 20th Australasian document computing symposium,
page 12. ACM, 2015.

[182] Adam Berger and John Lafferty. Information retrieval as statistical trans-
lation. SIGIR Forum, 51(2):219–226, August 2017.

[183] Guoqing Zheng and Jamie Callan. Learning to reweight terms with dis-
tributed representations. In Proceedings of the 38th International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
SIGIR ’15, pages 575–584, New York, NY, USA, 2015. ACM.

[184] Bhaskar Mitra, Eric Nalisnick, Nick Craswell, and Rich Caruana. A
dual embedding space model for document ranking. arXiv preprint
arXiv:1602.01137, 2016.

[185] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil.
Learning semantic representations using convolutional neural networks
for web search. In 23rd International Conference on World Wide Web’14,
2014.

[186] Matthew Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih.
Dissecting contextual word embeddings: Architecture and representation.
In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 1499–1509, 2018.

[187] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word
representations. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pages 2227–2237, 2018.

[188] Kamal Al-Sabahi and Zhang Zuping. Document summarization using
sentence-level semantic based on word embeddings. International Jour-
nal of Software Engineering and Knowledge Engineering, 29(02):177–196,
2019.

136

Chapter 8 Bibliography

[189] Melvin Earl Maron and John L Kuhns. On relevance, probabilistic index-
ing and information retrieval. Journal of the ACM (JACM), 7(3):216–244,
1960.

[190] Dwaipayan Roy, Debjyoti Paul, Mandar Mitra, and Utpal Garain. Us-
ing word embeddings for automatic query expansion. arXiv preprint
arXiv:1606.07608, 2016.

[191] Saar Kuzi, Anna Shtok, and Oren Kurland. Query expansion using word
embeddings. In Proceedings of the 25th ACM international on confer-
ence on information and knowledge management, pages 1929–1932. ACM,
2016.

[192] Navid Rekabsaz, Mihai Lupu, Allan Hanbury, and Hamed Zamani. Word
embedding causes topic shifting; exploit global context! In Proceedings of
the 40th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’17, pages 1105–1108, New York,
NY, USA, 2017. ACM.

[193] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training
neural probabilistic language models. arXiv preprint arXiv:1206.6426,
2012.

[194] Navid Rekabsaz, Bhaskar Mitra, Mihai Lupu, and Allan Hanbury. Toward
incorporation of relevant documents in word2vec. ArXiv, abs/1707.06598,
2017.

[195] Kaveh Taghipour and Hwee Tou Ng. Semi-supervised word sense dis-
ambiguation using word embeddings in general and specific domains. In
Proceedings of the 2015 conference of the North American chapter of the
association for computational linguistics: human language technologies,
pages 314–323, 2015.

[196] Oded Avraham and Yoav Goldberg. The interplay of semantics and mor-
phology in word embeddings. EACL 2017, page 422, 2017.

[197] Ignacio Iacobacci, Mohammad Taher Pilehvar, and Roberto Navigli.
Sensembed: Learning sense embeddings for word and relational similarity.
In Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), volume 1, pages 95–105,
2015.

[198] Yadollah Yaghoobzadeh and Hinrich Schütze. Intrinsic subspace evalua-
tion of word embedding representations. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 236–246, 2016.

[199] Nikola Mrkšic, Diarmuid OSéaghdha, Blaise Thomson, Milica Gašic, Lina
Rojas-Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. Counter-fitting word vectors to linguistic constraints. In
Proceedings of NAACL-HLT, pages 142–148, 2016.

137

Chapter 8 Bibliography

[200] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. Con-
textualized word representations for document re-ranking. arXiv preprint
arXiv:1904.07094, 2019.

[201] Zhuyun Dai and Jamie Callan. Deeper text understanding for ir with
contextual neural language modeling. arXiv preprint arXiv:1905.09217,
2019.

[202] Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak,
R Thomas McCoy, Najoung Kim, Benjamin Van Durme, Samuel R Bow-
man, Dipanjan Das, et al. What do you learn from context? probing for
sentence structure in contextualized word representations. arXiv preprint
arXiv:1905.06316, 2019.

[203] Yifan Qiao, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. Understand-
ing the behaviors of bert in ranking. arXiv preprint arXiv:1904.07531,
2019.

[204] Dwaipayan Roy, Debasis Ganguly, Sumit Bhatia, Srikanta Bedathur, and
Mandar Mitra. Using word embeddings for information retrieval: How col-
lection and term normalization choices affect performance. In Proceedings
of the 27th ACM International Conference on Information and Knowledge
Management, pages 1835–1838. ACM, 2018.

[205] Hang Li. Learning to rank for information retrieval and natural language
processing. Synthesis Lectures on Human Language Technologies, 4(1):1–
113, 2011.

[206] Sally Jo Cunningham, James Littin, and Ian H Witten. Applications of
machine learning in information retrieval. 1997.

[207] Tie-Yan Liu. Learning to rank for information retrieval. Springer Science
& Business Media, 2011.

[208] Kevin Duh and Katrin Kirchhoff. Learning to rank with partially-labeled
data. In Proceedings of the 31st annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages 251–
258. ACM, 2008.

[209] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the
24th international conference on Machine learning, pages 129–136. ACM,
2007.

[210] Christopher Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds,
Nicole Hamilton, and Gregory N Hullender. Learning to rank using gra-
dient descent. In Proceedings of the 22nd International Conference on
Machine learning (ICML-05), pages 89–96, 2005.

[211] Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhi-Ming Ma, and Hang Li. Ranking
measures and loss functions in learning to rank. In Advances in Neural
Information Processing Systems, pages 315–323, 2009.

138

Chapter 8 Bibliography

[212] Martin Szummer and Emine Yilmaz. Semi-supervised learning to rank
with preference regularization. In Proceedings of the 20th ACM inter-
national conference on Information and knowledge management, pages
269–278. ACM, 2011.

[213] Tao Qin and Tie-Yan Liu. Introducing letor 4.0 datasets. arXiv preprint
arXiv:1306.2597, 2013.

[214] Wei Chu and Zoubin Ghahramani. Gaussian processes for ordinal regres-
sion. Journal of machine learning research, 6(Jul):1019–1041, 2005.

[215] Wei Chu and S Sathiya Keerthi. New approaches to support vector ordinal
regression. In Proceedings of the 22nd international conference on Machine
learning, pages 145–152. ACM, 2005.

[216] William S Cooper, Fredric C Gey, and Daniel P Dabney. Probabilistic
retrieval based on staged logistic regression. In Proceedings of the 15th
annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 198–210. ACM, 1992.

[217] Brian Bartell, Garrison W Cottrell, and Richard Belew. Learning to re-
trieve information. In Proceedings of the Swedish Conference on Connec-
tionism, page 27. Citeseer, 1995.

[218] Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, and Hsiao-
Wuen Hon. Adapting ranking svm to document retrieval. In Proceedings
of the 29th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 186–193. ACM, 2006.

[219] Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, Xu-Dong Zhang, and Hang Li.
Learning to search web pages with query-level loss functions. Technical
Report, 156, 2006.

[220] Tao Qin, Xu-Dong Zhang, Ming-Feng Tsai, De-Sheng Wang, Tie-Yan Liu,
and Hang Li. Query-level loss functions for information retrieval. Infor-
mation Processing & Management, 44(2):838–855, 2008.

[221] Xiubo Geng, Tie-Yan Liu, Tao Qin, and Hang Li. Feature selection for
ranking. In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, pages
407–414. ACM, 2007.

[222] Hua-Liang Wei and Stephen A Billings. Feature subset selection and
ranking for data dimensionality reduction. IEEE transactions on pattern
analysis and machine intelligence, 29(1):162–166, 2006.

[223] Yoav Goldberg. Neural network methods for natural language processing.
Synthesis Lectures on Human Language Technologies, 10(1):1–309, 2017.

[224] Bhaskar Mitra, Nick Craswell, et al. An introduction to neural information
retrieval. Foundations and Trends R© in Information Retrieval, 13(1):1–
126, 2018.

139

Chapter 8 Bibliography

[225] Nick Craswell, W Bruce Croft, Jiafeng Guo, Bhaskar Mitra, and Maarten
de Rijke. Report on the sigir 2016 workshop on neural information retrieval
(neu-ir). In ACM Sigir forum, volume 50, pages 96–103. ACM, 2017.

[226] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. Learning to match
using local and distributed representations of text for web search. In
Proceedings of the 26th International Conference on World Wide Web,
pages 1291–1299. International World Wide Web Conferences Steering
Committee, 2017.

[227] Hang Li and Zhengdong Lu. Deep learning for information retrieval. In
Proceedings of the 39th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’16, pages 1203–1206,
New York, NY, USA, 2016. ACM.

[228] Kezban Dilek Onal, Ye Zhang, Ismail Sengor Altingovde, Md Mustafizur
Rahman, Pinar Karagoz, Alex Braylan, Brandon Dang, Heng-Lu Chang,
Henna Kim, Quinten McNamara, Aaron Angert, Edward Banner, Vivek
Khetan, Tyler McDonnell, An Thanh Nguyen, Dan Xu, Byron C. Wallace,
Maarten de Rijke, and Matthew Lease. Neural information retrieval: at
the end of the early years. Information Retrieval Journal, 21(2):111–182,
Jun 2018.

[229] Rudolf Schneider, Sebastian Arnold, Tom Oberhauser, Tobias Klatt,
Thomas Steffek, and Alexander Löser. Smart-md: Neural paragraph re-
trieval of medical topics. In Companion Proceedings of the The Web Con-
ference 2018, pages 203–206. International World Wide Web Conferences
Steering Committee, 2018.

[230] Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pulman. Deep
learning for answer sentence selection. arXiv preprint arXiv:1412.1632,
2014.

[231] Jinfeng Rao, Hua He, and Jimmy Lin. Noise-contrastive estimation for an-
swer selection with deep neural networks. In Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management,
CIKM ’16, pages 1913–1916, New York, NY, USA, 2016. ACM.

[232] Bingning Wang, Kang Liu, and Jun Zhao. Inner attention based recurrent
neural networks for answer selection. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 1288–1297, 2016.

[233] Xipeng Qiu and Xuanjing Huang. Convolutional neural tensor network
architecture for community-based question answering. In Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[234] Xiaoqiang Zhou, Baotian Hu, Qingcai Chen, Buzhou Tang, and Xiaolong
Wang. Answer sequence learning with neural networks for answer selec-
tion in community question answering. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Processing (Volume 2:
Short Papers), pages 713–718, 2015.

140

Chapter 8 Bibliography

[235] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional
neural networks for text classification. In Twenty-ninth AAAI conference
on artificial intelligence, 2015.

[236] Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. Abcnn:
Attention-based convolutional neural network for modeling sentence pairs.
Transactions of the Association for Computational Linguistics, 4:259–272,
2016.

[237] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil.
A latent semantic model with convolutional-pooling structure for informa-
tion retrieval. In Proceedings of the 23rd ACM international conference
on conference on information and knowledge management, pages 101–110.
ACM, 2014.

[238] Aliaksei Severyn and Alessandro Moschitti. Learning to rank short text
pairs with convolutional deep neural networks. In Proceedings of the 38th
international ACM SIGIR conference on research and development in in-
formation retrieval, pages 373–382. ACM, 2015.

[239] Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jian-
shu Chen, Xinying Song, and Rabab Ward. Deep sentence embedding
using long short-term memory networks: Analysis and application to in-
formation retrieval. IEEE/ACM Transactions on Audio, Speech and Lan-
guage Processing (TASLP), 24(4):694–707, 2016.

[240] Peixin Chen, Wu Guo, Zhi Chen, Jian Sun, and Lanhua You. Gated
convolutional neural network for sentence matching. Proc. Interspeech
2018, pages 2853–2857, 2018.

[241] Seonhoon Kim, Inho Kang, and Nojun Kwak. Semantic sentence match-
ing with densely-connected recurrent and co-attentive information. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 6586–6593, 2019.

[242] Zhengdong Lu and Hang Li. A deep architecture for matching short texts.
In Advances in neural information processing systems, pages 1367–1375,
2013.

[243] Sanjay Kamath, Brigitte Grau, and Yue Ma. Predicting and Integrat-
ing Expected Answer Types into a Simple Recurrent Neural Network
Model for Answer Sentence Selection. In 20th International Conference on
Computational Linguistics and Intelligent Text Processing, La Rochelle,
France, April 2019.

[244] Xiaoqiang Zhou, Baotian Hu, Qingcai Chen, and Xiaolong Wang. Re-
current convolutional neural network for answer selection in community
question answering. Neurocomputing, 274:8–18, 2018.

[245] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell
Power. End-to-end neural ad-hoc ranking with kernel pooling. In Pro-
ceedings of the 40th International ACM SIGIR conference on research and
development in information retrieval, pages 55–64. ACM, 2017.

141

Chapter 8 Bibliography

[246] Shengxian Wan, Yanyan Lan, Jun Xu, Jiafeng Guo, Liang Pang, and
Xueqi Cheng. Match-srnn: Modeling the recursive matching structure
with spatial rnn. arXiv preprint arXiv:1604.04378, 2016.

[247] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. Position-
aware representations for relevance matching in neural information re-
trieval. In Proceedings of the 26th International Conference on World
Wide Web Companion, WWW ’17 Companion, pages 799–800, Republic
and Canton of Geneva, Switzerland, 2017. International World Wide Web
Conferences Steering Committee.

[248] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolu-
tional neural network for modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), volume 1, pages 655–665, 2014.

[249] Daniel Cohen, Qingyao Ai, and W Bruce Croft. Adaptability of neural
networks on varying granularity ir tasks. arXiv preprint arXiv:1606.07565,
2016.

[250] Liu Tieyan, Qin Tao, Xu Jun, et al. Letor: Benchmark dataset for re-
search on learning to rank for information retrieval. In Proceedings of the
Workshop on Learning to Rank for Information Retrieval, pages 137–145,
2007.

[251] Hamed Zamani, Bhaskar Mitra, Xia Song, Nick Craswell, and Saurabh
Tiwary. Neural ranking models with multiple document fields. In Pro-
ceedings of the eleventh ACM international conference on web search and
data mining, pages 700–708. ACM, 2018.

[252] Thiziri Belkacem, Jose G Moreno, Taoufiq Dkaki, and Mohand
Boughanem. Asymmetry sensitive architecture for neural text matching.
In European Conference on Information Retrieval, pages 62–69. Springer,
2019.

[253] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-
Beaulieu, Mike Gatford, et al. Okapi at trec-3. Nist Special Publication
Sp, 109:109, 1995.

[254] Trevor Strohman, Donald Metzler, Howard Turtle, and W Bruce Croft.
Indri: A language model-based search engine for complex queries. In Pro-
ceedings of the International Conference on Intelligent Analysis, volume 2,
pages 2–6. Citeseer, 2005.

[255] Christophe Van Gysel, Evangelos Kanoulas, and Maarten de Rijke. Pyn-
dri: a python interface to the indri search engine. In European Conference
on Information Retrieval, pages 744–748. Springer, 2017.

[256] C Buckley. trec eval program, march 1999. Available from ftp. cs. cornell,
edu/pub/smart, 1975.

[257] Hamed Zamani and W Bruce Croft. Embedding-based query language
models. In Proceedings of the 2016 ACM international conference on the
theory of information retrieval, pages 147–156. ACM, 2016.

142

Chapter 8 Bibliography

[258] Yuanhua Lv and ChengXiang Zhai. Lower-bounding term frequency nor-
malization. In Proceedings of the 20th ACM international conference on
Information and knowledge management, pages 7–16. ACM, 2011.

[259] Thiziri Belkacem, Taoufiq Dkaki, José G. Moreno, and Mohand
Boughanem. Impact de la présence/absence des termes de la requête
dans le document sur le processus d’appariement document-requête en
utilisant word2vec. In COnférence en Recherche d’Informations et Ap-
plications - CORIA 2018, 15th French Information Retrieval Conference,
Rennes, France, May 16-18, 2018. Proceedings., 2018.

[260] Dwaipayan Roy, Debasis Ganguly, Mandar Mitra, and Gareth JF Jones.
Representing documents and queries as sets of word embedded vectors for
information retrieval. 2016.

[261] Navid Rekabsaz, Mihai Lupu, and Allan Hanbury. Exploration of a thresh-
old for similarity based on uncertainty in word embedding. In Joemon M
Jose, Claudia Hauff, Ismail Sengor Altıngovde, Dawei Song, Dyaa Al-
bakour, Stuart Watt, and John Tait, editors, Advances in Information
Retrieval, pages 396–409, Cham, 2017. Springer International Publishing.

[262] Geoffrey Zweig, John C. Platt, Christopher Meek, Christopher J. C.
Burges, Ainur Yessenalina, and Qiang Liu. Computational approaches
to sentence completion. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long Papers - Volume 1,
ACL ’12, pages 601–610, Stroudsburg, PA, USA, 2012. Association for
Computational Linguistics.

[263] Yoon Kim. Convolutional neural networks for sentence classification.
pages 1746–1751, 2014.

[264] K Abishek, Basuthkar Rajaram Hariharan, and C Valliyammai. An en-
hanced deep learning model for duplicate question pairs recognition. In
Soft Computing in Data Analytics, pages 769–777. Springer, 2019.

[265] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognis-
ing textual entailment challenge. In Machine Learning Challenges Work-
shop, pages 177–190. Springer, 2005.

[266] Till Haug, Octavian-Eugen Ganea, and Paulina Grnarova. Neural multi-
step reasoning for question answering on semi-structured tables. In Euro-
pean Conference on Information Retrieval, pages 611–617. Springer, 2018.

[267] Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao, and
Bo Xu. Text classification improved by integrating bidirectional lstm with
two-dimensional max pooling. arXiv preprint arXiv:1611.06639, 2016.

[268] Kateryna Tymoshenko and Alessandro Moschitti. Cross-pair text rep-
resentations for answer sentence selection. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages
2162–2173, 2018.

143

Chapter 8 Bibliography

[269] James Allan, Jay Aslam, Nicholas Belkin, Chris Buckley, Jamie Callan,
Bruce Croft, Sue Dumais, Norbert Fuhr, Donna Harman, David J Harper,
et al. Challenges in information retrieval and language modeling: report
of a workshop held at the center for intelligent information retrieval, uni-
versity of massachusetts amherst, september 2002. In ACM SIGIR Forum,
volume 37, pages 31–47. ACM, 2003.

[270] Andreas Zell. Simulation neuronaler netze, volume 1. Addison-Wesley
Bonn, 1994.

[271] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[272] Thiziri Belkacem, Taoufiq Dkaki, Jose G Moreno, and Mohand
Boughanem. amv-lstm: an attention-based model with multiple positional
text matching. In Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, pages 788–795. ACM, 2019.

[273] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
Squad: 100,000+ questions for machine comprehension of text. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 2383–2392, 2016.

[274] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary,
Rangan Majumder, and Li Deng. Ms marco: A human-generated machine
reading comprehension dataset. 2016.

144

	Contents
	List of figures
	List of tables
	Part I Preface
	Introduction
	Thesis Context
	Research Issues
	Main Contributions
	Thesis Overview and Organization

	Part II Background
	Chapter 1 Basic Concepts in Information Retrieval
	1.1 Introduction
	1.2 Definitions
	1.2.1 Sequence
	1.2.2 Document
	1.2.3 Query
	1.2.4 Relevance

	1.3 Text Representation
	1.3.1 Bag-of-Words (BoW) Representations
	1.3.2 Semantic-based Representations

	1.4 Text Matching Process
	1.5 Evaluation in IR
	1.5.1 Evaluation Measures
	1.5.2 Benchmarks and Campaigns

	1.6 Text Matching Issues
	1.7 Conclusion

	Chapter 2 Basic Concepts in Neural Networks and Deep Learning
	2.1 Introduction
	2.2 Main Concepts and Definitions
	2.2.1 Notations
	2.2.2 Artificial Neurons
	2.2.3 The Activation Function
	2.2.4 Artificial Neural Networks

	2.3 Some NN Architectures
	2.3.1 Convolution Neural Networks (CNN)
	2.3.2 Recurrent Neural Networks (RNN)
	2.3.3 Transformers

	2.4 Neural Models Training
	2.4.1 Supervised Training
	2.4.2 Weakly-Supervised and Unsupervised Training
	2.4.3 Unsupervised Training

	2.5 Training Algorithms
	2.5.1 Backpropagation
	2.5.2 Gradient Descent

	2.6 Over-fitting and Regularization
	2.7 Conclusion

	Part III State of The Art Overview
	Chapter 3 Text representation models
	3.1 Introduction
	3.2 Distributed representations of words
	3.2.1 Matrix Factorization Methods
	3.2.2 Local Context Window Methods

	3.3 Distributed Representations of Sentences
	3.3.1 Aggregated Representations
	3.3.2 Non-Aggregated Representations

	3.4 Text Matching Using Distributed Representations
	3.4.1 Direct Matching
	3.4.2 Query Expansion

	3.5 Issues Related to Distributed Representations
	3.6 Discussion
	3.7 Conclusion

	Chapter 4 Deep Learning in Text Matching Applications
	4.1 Introduction
	4.2 Machine Learning for Information Retrieval
	4.2.1 LTR Algorithms
	4.2.2 Related Issues

	4.3 Deep Learning for Text Matching
	4.3.1 Unified Model Formulation
	4.3.2 Representation-focused vs Interaction-focused
	4.3.3 Attention-based vs Position-based

	4.4 Discussion
	4.5 Conclusion

	Part IV Contributions
	Chapter 5 Experimental setup
	5.1 Introduction
	5.2 Datasets
	5.2.1 WikiQA
	5.2.2 QuoraQP
	5.2.3 Ad-hoc Document Ranking Datasets

	5.3 Evaluation metrics
	5.4 Baseline models
	5.4.1 Classical models
	5.4.2 Classical models with word embeddings
	5.4.3 Neural models

	5.5 Tools and frameworks
	5.6 Conclusion

	Chapter 6 Query words impact in document ranking using word embeddings
	6.1 Introduction
	6.2 Motivation
	6.3 Classical Query-Document Matching
	6.4 Matching Strategies Using Semantic Word Similarities
	6.4.1 Presence/Absence Split
	6.4.2 Exact/Semantic Matching Split
	6.4.3 Relations Between the Different Matching Strategies

	6.5 Experiments
	6.5.1 Evaluation methodology
	6.5.2 Parameter Setting and Impact Analysis
	6.5.3 Results and discussion

	6.6 Conclusion

	Chapter 7 Neural models for short text matching using attention-based models
	7.1 Introduction
	7.2 An asymmetry sensitive approach for neural texts matching
	7.2.1 The Asymmetry Aspect
	7.2.2 The Asymmetry Sensitive Matching Architecture

	7.3 Models training
	7.3.1 Rank Hinge Loss
	7.3.2 Categorical Cross Entropy

	7.4 Experiments
	7.5 Results and Analysis
	7.5.1 The Asymmetry Sensitive Approach Analysis
	7.5.2 Position VS Attention

	7.6 Conclusion

	Chapter 8 Attention-based Multi-level Relevance Assessment
	8.1 Introduction
	8.2 A Multi-level Attention-based Architecture
	8.2.1 Passage-based Document Representation
	8.2.2 The Multi-level Attention

	8.3 AM3: An Attention-based Multi-level Matching Model
	8.3.1 Word Level
	8.3.2 Passage level
	8.3.3 Document level

	8.4 Experiments
	8.4.1 Evaluation Setup
	8.4.2 Models Configuration
	8.4.3 Results and Discussion

	8.5 Conclusion

	Part V Overall Conclusion
	Conclusion
	Contributions Overview
	Perspectives and Future Work

	Bibliography

