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Abstract

To reduce greenhouse gas emissions and energy consumption in urban areas,

understanding buildings energy performance and consumption patterns is essential

for implanting effective energy management and efficiency strategies at a city scale.

Such plans’ implementation at large scale requires information on how the energy

demands may change under specific interventions. Urban Building Energy Models

(UBEM) are proposed tools to estimate current and future building’s energy demand.

These models rely on a bottom-up approach, combining both statistical techniques

and physics-based methods.

This study aims at providing an enhanced modeling approach that simulates

buildings’ energy demand at high spatial and temporal resolution, which can help in

evaluating energy management strategies and decision-making energy policies. The

methodology is applied for the city of Beirut, representative of the Mediterranean

region where the similarity of buildings technologies and climatic concerns among its

cities is pronounced. The main objectives of the thesis are to develop, investigate and

adjust a bottom-up energy modeling tool at urban scale; to provide evidence of the

tool’s suitability to support guidelines for future interventions; and finally to

investigate the impact of the city’s compactness on daylight availability and thus

citizens’ well-being.

In this case study based on two different districts within the city, a near-city-scale

building energy model, BEirut Energy Model BEEM, is generated to estimate the

building’s stock electricity consumption. To reduce the modeling and computation

time, an archetypal classification of the buildings based on their types and periods

of construction is adopted. The additional information required to generate the 3D
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model of the buildings are the number of floors, buildings’ areas and a topographic

map of the study areas. By coupling the models to the hourly weather conditions, the

thermodynamic model of 3,630 buildings is simulated in EnergyPlus.

Adapting the model to Beirut’s occupancy and users’ behaviors is crucial to

enhance the reliability of BEEM. The availability of metered electricity data allows

the model calibration, which is based on buildings’ clustering and finding the clusters’

coefficients representative of specific energy patterns. After the training phase, the

model’s accuracy in predicting electricity consumption is improved. Comparing the

actual consumption and the calibrated results, the averaged absolute percentage error

of the electricity consumption was reduced from 310% to 41% in district A and from

326% to 39% in district B.

The calibrated model is combined with Geographic Information System (GIS) for

a spatiotemporal distribution of energy demand patterns, which can help in assessing

the most suitable intervention technologies. An analysis of the spatial distribution of

electricity use demonstrates a spatial clustering that underlies urban energy demand

which can be used for smart grid zoning.

The urban morphology affects the solar potential in an urban setting, which is a

major driver in building’s energy demand. Particularly, the daylight availability is

examined by investigating its link with urban metrics such the buildings’ orientation

and heights. Revealing how sensitive such links are helps in optimizing urban design

and structure, and informs retrofitting intervention strategies.

Keywords— Urban energy modeling, energy model calibration, decision support system,

building energy performance, archetype classification, daylight accessibility
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Résumé

Pour réduire les émissions de gaz à effet de serre et la consommation d’énergie dans les

zones urbaines, il est essentiel de comprendre les performances énergétiques et les modes de

consommation des bâtiments pour pouvoir mettre en œuvre des stratégies efficaces de gestion

de l’énergie et d’efficacité énergétique à l’échelle de la ville. La mise en œuvre à grande échelle

de tels plans nécessite des informations sur la manière dont les demandes en énergie peuvent

changer dans le cadre d’interventions spécifiques. Les modèles énergétiques de bâtiments

à l’échelle urbaine (UBEM) sont des outils proposés pour estimer la demande énergétique

actuelle et future des bâtiments. Ces modèles reposent sur une approche ascendante (bottom-

up approach) combinant à la fois des techniques statistiques et des méthodes basées sur la

physique thermodynamique.

Cette étude vise à fournir une approche de modélisation améliorée simulant la demande

énergétique des bâtiments à haute résolution spatiale et temporelle, ce qui peut aider à

évaluer les stratégies de gestion de l’énergie et les politiques énergétiques décisionnelles. La

méthodologie est appliquée pour la ville de Beyrouth, représentative de la région

méditerranéenne, où la similarité des technologies de construction et des préoccupations

climatiques de ses villes est prononcée. Les objectifs principaux de la thèse sont de

développer, étudier et calibrer un outil de modélisation énergétique ascendante à l’échelle

urbaine ; fournir des preuves de la pertinence de l’outil pour soutenir les directives pour les

interventions futures ; et enfin, étudier l’impact de la compacité de la ville sur la

disponibilité de la lumière du jour et donc sur le bien-être des citoyens.

Dans cette étude de cas basée sur deux quartiers différents de la ville, un modèle

énergétique de bâtiment à échelle urbaine approximativement, applé BEirut Energy Model

BEEM, est généré pour estimer la consommation d’électricité du stock de bâtiment. Afin de

réduire le temps de modélisation et de calcul, une classification archétypale des bâtiments
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basée sur leurs types et leurs périodes de construction est adoptée. Les informations

supplémentaires requises pour générer le mod̀le 3D des bâtiments sont le nombre d’étages,

la superficie des bâtiments et une carte topographique des zones d’étude. En couplant les

modèles aux conditions météorologiques horaires, le modèle thermodynamique de 3,630

bâtiments est simulé dans EnergyPlus.

L’adaptation du modèle à l’occupation de Beyrouth et aux comportements des

utilisateurs est cruciale pour renforcer la fiabilité de BEEM. La disponibilité des données

d’électricité actuelles permet la calibration du modèle, qui repose sur le regroupement des

bâtiments et la recherche des coefficients des regroupements représentatifs de modèles

d’énergie spécifiques. Après la phase de formation, la précision du modèle en matière de

prévision de la consommation d’électricité est améliorée. En comparant la consommation

réelle et les résultats calibrés, le pourcentage de l’erreur absolue moyenne de la

consommation d’électricité a été réduite de 310% à 41% dans le quartier A et de 326% à

39% dans le quartier B.

Le modèle calibré est combiné au système d’information géographique (GIS) pour une

distribution spatio-temporelle des modèles de demande d’énergie, ce qui peut aider à évaluer

les technologies d’intervention les plus appropriées. Une analyse de la distribution spatiale

de la consommation d’électricité met en évidence un regroupement spatial qui sous-tend la

demande énergétique urbaine et qui peut être utilisé pour le zonage d’un réseau intelligent.

La morphologie urbaine influence le potentiel solaire en milieu urbain, qui est un facteur

majeur de la demande énergétique du bâtiment. En particulier, la disponibilité de la

lumière du jour est examinée en étudiant son lien avec des métriques urbaines telles que

l’orientation et les élévations des bâtiments. Révéler à quel point ces liens sont sensibles

permet d’optimiser la conception et la structure urbaines et de renseigner des stratégies de

rénovation.

Mots Clefs— Modélisation énergétique urbaine, calibration de modèle d’énergie,

système d’aide à la décision, performance énergétique de bâtiment, classification

d’archétype, accessibilité à la lumière du jour
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MAPE Mean Absolute Percentage Error

MdAPE Median Absolute Percentage Error

MA Mid Atmosphere

MLP Multi Layer Perceptron

MLRA Multi-Linear Regression Analysis

NOAA National Oceanic and Atmospheric Administration

OFF Office building

RB Radiative Budget

RES Residential building

RPV Rahman-Pinty-Verstraete

SCH School building

SVF Sky View Factor

TABULA Typology Approach for Building Stock Energy Assessment
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TOA Top Of the Atmosphere

UBEM Urban Building Energy Model

UHI Uban Heat Island

USJ University of Saint-Joseph

VAV Variable Air Volume

WWR Window to Wall Ratio
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List of Nomenclature

A Area m2

C Circuity −

Cz Air capacitance KJ/m3

Cp Specific heat capacity of air KJ/Kg/K

D Pairwise Distance m

De Euclidean Distance m

E Irradiance W/m2/µm

h Convective heat transfer coefficient W/m2/K

h Enthalpy of the air J/Kg

H Height m

H̄S Mean height of surrounding buidlings m

I Irradiance W/m2

L Radiance W/sr/m2

ṁ Flow rate m3/s

N Number of bins −

ŌS Mean orientation of surrounding buidlings ◦

p Probability −

q′′ Heat flux W/m2

Rf Roughness coefficient −

T Temperature ◦C,◦K

Q̇ Heat load J

X Building x coordinate m
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Y Building y coordinate m

α Extinction coefficient −

∆ Sky brightness factor −

ε Longwave emissivity of the surface −

ε Sky clearness factor −

λ Wavelength nm

φ Tilt angle of the surface ◦ or radians

φV Luminous flux W

φe,λ Spectral radiant flux W/nm

ȳ(λ) Luminosity function −

Ωi Angular direction sr

µ Mean [−]

ρ Reflectance −

σ Stephan-Boltzmann constant −

σHS
Standard deviation of surrounding buildings’ heights m

σOS
Standard deviation of surrounding buildings’ orientations ◦

θs Sun zenith angle ◦

Θ Neural Network parameters −

ζ, η and µ Cosine angles −
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1. Introduction

1.1 General context

In 2016, 54.5% of world’s population lived in urban areas. By 2030, cities are projected to

house 60% of the global population [2]. Urban area are encountering unprecedented growth

because of rural exodus due to socioeconomic factors such as seeking better job

opportunities or higher education levels. Additionally, the development of the economy

along with the concentrated industrialization in some areas at the expense of others,

together with migration from poor countries suffering from economic problems, or asylum

of citizens escaping from wars and political crisis zones are all contributing factors to the

increase in urban population. Urbanization has the potential to make cities more

prosperous and countries more developed, by creating wealth, generating employment and

driving human progress. However, many cities around the world are suffering from

persisting issues: increased residency in slums and informal settlements, challenges in

providing urban services, climate change, exclusion and rising inequality, insecurity upsurge

in international migration [3]. Among the climate challenges in urban environments is the

urban warming measured in numerous cities across the world in addition to the Green

House Gas (GHG) emissions [4]. One factor of the increased urban temperatures is the

dominance of the artificial character of the cities at the expense of the natural green

fractions. Another aspect of the urbanization is the economical structural change of the

country. The concentration of the economic activities in the cities drives the labor force to

shift from the agriculture sector to the industrial or services sectors in the city, phenomenon

well-known as tertiarization. This transfer that accompanies the rural-urban migration,

contributes indirectly in the increase in the energy consumption. First, due to lack in labor

force, agriculture products have to be mechanized and transported from areas of production
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to cities. Secondly, the needed transport services increase, leading to an increase in fossil

fuels demand and hence, in its impacts on the urban climate. Last but not least, the

economic growth in cities affects the behaviors and lifestyles of residents who tend to

purchase commercial products and services, for example electrical appliances and

accessories, increasing the energy consumption [5]. The city being a major energy consumer

and GHG emissions contributor, a relevant understanding of its metabolism is pivotal in

developing energy efficient strategies [6]. In order to ensure the optimization and the

prioritizing of the energy conservation measures (ECM) to be applied, programmatic

decision making or energy management is required. It consists of planning, implementing

and monitoring energy supply, distribution and use in effective and efficient manners to

reduce its waste and consumption. Furthermore, it studies the alternative and environment

friendly resources, technical organization, cost effectiveness, and behavioral shifting to

improve energy quality, availability and impacts on environment and nature [7]. However,

understanding how a city’s energy system changes over space and time under these

interventions is crucial to support the decision making process. The building sector has

been identified as responsible of 30%-70% of primary energy consumption in cities [8] and

30% of the gas emissions [9]. Therefore, developing Building Energy Models (BEM) at city

scale are essential for energy supply management. These models have been developed and

served as design enabler tools at individual building level [10]. They are typically used at

the early design stage and throughout the design process to evaluate various design options

and optimize the overall performance of building systems. Extending the energy modeling

scope to the urban scale allows the assessment of building to building interactions (shading,

heat exchange,etc.), and of building to other urban components interactions such as the

urban heat island and traffic. City scale energy balance models [11, 12, 13] based on

top-down approaches are used for climatic modeling but they do not provide the needed

details to test innovative scenarios at building scale. On the other hand, bottom-up

physical simulation models were introduced as effective simulation tools to model the

impact of the urban context on buildings energy demand [14, 15, 16, 17]. In this context,

Reinhart and Davila [18] introduced the Urban Building Energy Models (UBEM),

bottom-up physical simulation models as effective simulation tools to simulate the impact of

urban context on buildings energy demand.

BEM and UBEM need to be reliable and adaptable in that they should provide accurate
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estimates of the buildings energy performance. However, discrepancies often occur between

the predicted model and the actual metered building energy use, mainly due to inputs’

inaccuracy/uncertainty in model parametrisation and structure [19]. Hence, the calibration

of energy models is critical to achieve a confidence level in model predictions and encourage

their adoption. They range from deterministic manual iterative tuning [19, 20] to automatic

calibration process using optimization techniques, machine learning algorithms or Bayesian

calibration [21]. Once calibrated, UBEM can be useful to estimate impacts of new

technologies and policies where no measured data is available and to reveal unknown

occupant patterns.

Among the sources of energy consumption in buildings, solar irradiance and illuminance

are considered renewable resources to increase buildings’ energy efficiency through active and

passive techniques and use of daylighting. The latter, combined with artificial lighting, has

been investigated in numerous studies as part of a sustainable development strategy to insure

the visual comfort, energy optimization and architecture aspect of the buildings [22, 23, 24].

Daylight and outdoor comfort are indicators for resident comfort and well-being [25]. The

amount of solar energy and daylight reaching an urban environment is highly linked to the

urban compactness, among its indicators the geometry of the urban canyon and the urban

blocks, the streets and buildings’ orientation. Evaluating the effects of these indicators on

solar energy potential and daylight provide guidelines for urban form optimization in relation

to retrofitting interventions on building envelopes and solar-energy applications in dense

urban areas [26].

Of particular interest in this study is Beirut administrative district of Greater Beirut,

Lebanon’s capital. The city witnessed a horizontal and vertical expansion over the years

(figure 1.1). This densification brought enormous challenges related mainly to the provision

of urban services such as energy and to alleviating the impacts of climate change. The city

held 50.7% of the urban population of the country and 44.6% of the total population in

2016 [2], and consumes 12% of the total national energy produced while it only covers 0.2%

of the country’s total area. Its tertiary sector (commercial sector, public offices, hotels and

hospitals) and residential sector account for 73% and 26% of its electricity consumption

respectively. These represent 39% and 14% of the electrification GHG emissions

respectively [27]. While the energy demand is inflating, Lebanon has been suffering since

many years, from a crisis in the energy sector. The country relies on oil products
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importation to meet its energy needs, putting the country in a state of high vulnerability.

Figure 1.2 shows the development of the Total Primary Energy Supply in Lebanon between

1971 and 2014. The net imports increased from 5.45 million of toe (tons of oil equivalent) in

2008 to 7.61 million of toe in 2014, of which 43% were used for electricity generation in 2014

[1]. The available capacity for electricity generation is 2670 MW [28], of which only 1500

MW to a maximum of 2000 MW are insured by EDL (Electricity of Lebanon) [29], the only

public institution responsible of the generation, transmission, and distribution of electrical

energy in Lebanon [30]. In other words, a maximum of 65% of the power generated is issued

by the State and the rest by back-up private generators. Even though Beirut is subjected to

the least rationing period (only 3 hours while it is up to 12 hours in some parts of the

country), reducing its energy demand can alleviate the daily blackouts in the other regions.

This situation challenges Lebanon’s pledge to reduce its GHG by 30% by 2030 with 2015

being the base year. The country is then facing a significant challenge to manage its energy

sector and integrate renewable energy. Therefore, developing an urban scale energy model is

essential to Beirut’s resources and energy supply management. The model serves as a

decision support system by estimating energy consumption patterns and identifying grid

peak demands with a spatiotemporal distribution. The latter, integrated with the potential

solar production findings [31], helps in estimating the savings and recommending targeted

energy-use policies to alleviate peaks and ensure an efficient resources distribution. Another

feature of the energy model for Beirut is its capability to project the energy consumption

under normal conditions. Currently, estimates of demands do not account for the

suppressed amount of electricity, since during outages, occupants modify their behaviors

and alter their energy consumption patterns and preferences.

1Lebanese army, Elbeyrouthy [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]
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Figure 1.1: Aerial photos of Beirut in different years from multiple sources.

Figure 1.2: Total Primary Energy Supply evolution between 1971 and 2014 [1].

1.2 Thesis Outline

The thesis starts with an overview of the scope of this study and its motivation. Chapter 2

introduces the traditional and recent urban building energy modeling approaches and

identifies their limitations and strengths.

Chapter 3 discusses the data requirements, sources and quality. Methods for data
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management and preprocessing such as remote sensing and machine learning techniques are

described. The archetype approach for urban massing models is applied and the algorithm

that automatically creates the building multi-zone 3D model is introduced.

Chapter 4 presents the urban daylight potential and its relation to urban morphology.

The selected simulation engine DART and its characteristics are presented. DART is used

to approximate results of radiative budget in a more efficient manner. Further, results are

processed so they represent the daylight potential within the city. Urban metrics are

computed and their impact on the daylight access is studied.

Chapter 5 represents the energy implementation of the model. The theoretical

background of the energy simulation engine EnergyPlus is included. The calibration

methodology is discussed and results of the simulation are reported at high temporal and

spatial resolution. The policy implications of the study are presented and were published as

an energy policy brief available in the appendix B.

Chapter 6 summarizes the results of this dissertation and discusses the possible future

work.
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2. State of the art

2.1 Overview of urban building energy models

The building sector is responsible of a great part of the global energy consumption. Hence,

it has a great potential in reducing GHG emissions and improving energy efficiency, by the

mean of retrofitting and the use of high-efficient energy technologies in the demand side [32].

Moreover, it can contribute in the energy supply management by the integration of renewable

energy production in buildings such as solar PVs. Hence, building energy modeling at city

scale plays an important role as decision-making tools to plan strategies for the both demand

and supply management of the energy sector. The main purposes of building energy models

can be summarized as follows [33, 34]:

� predict present and future energy consumption, disaggregated by the factor of interest

(e.g., building type, income, etc.) by quantifying the energy use as function of different

input parameters.

� predict the technical and economic effects of different policy measures and energy

consumption reduction strategies.

However, urban energy modeling is facing challenges among which the rarely accessible high

level of detail (LoD) data, the systematic uncertainties, the heavy required computational

resources, its sensitivity to urban microclimate and human behaviors [35]. The review section

below starts with a brief introduction of urban building energy modeling approaches, then

dive into the subcategories of each one to end with the chosen technique for this research, its

benefits and challenges.
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2.2 Modeling approaches: Top-down and Bottom-

up models

Based on the literature review, there is no unique classification of the urban energy models.

Even though, many approaches can be considered the same with different terminologies. For

example, the forward approach proposed by 2009 ASHRAE Handbook relies on detailed

physical description of the buildings and their systems as the engineering method discussed

by Swan et al. [36] and the physical models suggested by Foucquier et al. [37] . In the

following, a summary classification is discussed. Two main approaches have been used to

model energy use patterns in urban context: top-down and bottom-up models [33].

2.2.1 Top-down models

Top-down models are mainly applied to explore the inter-relations between the energy

sector and the socio-economic factors [33]. The main stream of top-down models is going

from national or regional sector to individual buildings sector. They simply use the total

energy consumption estimate and disaggregate it by attributing the energy consumption to

buildings components without technical details. This workflow is easy since the required

data (aggregated energy consumption data) is widely available. By using historical data,

top-down models extrapolate from the status quo to predict near future energy patterns.

However, if paradigm shifts in the energy sector are encountered, top-down models fail,

which make them unsuitable for interventions and technological studies. Moreover, the

identification of possible improvements such retrofitting or demolition is inhibited due to

lack of details. The top-down models can be divided into two categories: econometric and

technological. Econometric models study the energy consumption as function of economic

variables such as gross domestic product (GDP), income, energy price and may include

climatic conditions. As they rely on the past energy-economy interactions to predict current

and future consumption, they lack technical details and are not suitable for climatic change

impact evaluation as the latter may dramatically affect the pillars of a sustainable

development: society, environment and economy. On the other hand, the technological

models include other factors that affect the energy use such saturation effects, technological

progress, structural change and so on [33]. An example of top-down models was developed
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for the residential stock in Jordan [38]. A multivariate regression model with a time series

analysis was adopted to predict future energy consumption and potential energy savings by

correlating macroeconomic indicators such as income level, electricity and fuel unit prices,

social indicators such as population and the weather conditions. Authors claimed that their

approach might not be accurate but can inform about the future.

2.2.2 Bottom-up models

The first intuition of bottom-up models was to identify future energy efficiency measures

capable to reclaim wasted energy resources. The impacts of these measures implementation,

costs and doubts can be evaluated by developing different scenarios making bottom-up

analysis a more realistic approach to specify energy reduction potentials and thereby GHG

emissions [39]. Bottom-up models estimate individual end-uses, aggregate results according

to their impacts on energy use, then extrapolate to regional or national level. This detailed

approach allows for improvements and technological studies. By relating end-use energy

consumption to macro-economic indicators, bottom-up models can gain some of top-down

models strengths. Behavioral factors such as occupancy behavior, heating and cooling

systems uses and energy gains may be incorporated in energy assumption increasing the

accuracy of the model. However, due to the complexity of these occupant dependent

variables, they are often assumed. This assumption level is a major drawback of some

bottom-up models. In addition, large amount of data is required to efficiently describe each

component contribution, which is limited in many countries. In addition, the sensitivity of

input parameters is inappropriately described. Calculation and simulation techniques are in

many cases time consuming, high costly and seek high level of expertise. According to

Harish et al. [40], bottom-up models are based on two approaches:

� Forward approach: it involves the input of detailed parameters of the buildings to

predict the outputs. Models based on this approach are highly accurate as

thermodynamics and heat transfer equations are applied. In addition, building energy

simulation software tools are widely developed incorporating complex equations for

better prediction.

� Data driven approach: the inputs and the outputs of the model are known or have

been measured. The data can be intrusive in case the experiments to gather
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information are performed under normal system operation. When controlled

experiments are limited by the building operation, nonintrusive data is collected. The

energy consumption is estimated using regression analysis relating it to various

parameters. Artificial algorithms such as Neural Networks and Support Vector

Machines are applied when long-term energy estimation is requested to reduce the

amount of performance data to be collected and the number of parameters to be

identified when repeated operations such occupancy and set points schedules are

encountered.

A more sophisticated and branched classification is proposed by Swan et al. [36], where the

bottom-up models are classified into statistical and engineering models. Though, as the use

of statistical learning algorithms is spreading widely, Zhao et al. [41] presented them in a

separate group named Artificial Intelligence methods. Each of the aforementioned groups can

be further sub-divided as studies and modeling techniques are in the process of development

and growth.

Statistical models

Statistical models, also called inverse models [42], are primary used to identify building

parameters by using existing data such as billing data and surveys information. They are

particularly adopted to:

� Detect energy consumption abnormalities or malfunctioned systems

� Analyze impacts of retrofitting measures

Statistical models embed the strengths of top-down models as they use macroeconomic and

socioeconomic variables such as energy price and income. They incorporate occupant

behavior by attributing energy consumption to end-uses. In general, they are easy to

develop and use. Regression and conditional demand analysis (CDA) are well-documented

techniques and widely used [36]. As examples, linear regression models have been used to

assess the electricity and fuel consumption of New York City [43] and correlate the energy

performance for heating with the Surface area to Voume ratio S/V in the city of Carugate,

Italy [44]. However, as they dont provide a detailed description of energy end-uses, they

lack of flexibility and are limited when assessing new energy measures [33]. Large amount of

data is required to correlate energy consumption with end-uses and to achieve an
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acceptable accuracy level. In addition, when based on annual metered data, they are unable

to predict energy use in monthly or hourly time steps or to simulate the combined impact of

several energy efficiency measures in buildings [14].

Engineering models

Engineering models (EM) complex equations are widely incorporated in building energy

simulation programs to overcome their complexity [40, 45], like EnergyPlus [46] and

TRNSYS [47]. However, a detailed physical description of building properties and systems

and precise weather characteristics are essential for these programs [48].

By applying engineering models, end-uses energy consumption are determined based on

their physical functions and thermodynamics relations. Accordingly, a detailed description

of their impacts on the aggregated energy consumption is provided. The model does not rely

on previous data so it is more suitable to test new technologies and effectively estimate the

low-cost energy efficiency opportunities and their appropriate combinations. Although EM

are considered high accurate, occupant behavior and preferences are difficult to be included

and are rather assumed. In consequence, the socio-economic factors are excluded [49]. In

addition, large amount of inputs and high level of expertise are required to develop the

models and solve the equations. To reduce EM complexity, some modelers proposed some

alternatives to simplify the analytical approach, either by applying steady-state methods

such as degree-day method and its optimization techniques [50], or by simplifying the building

characteristics inputs by applying easy equations or using average values from statistical data.

Filogamo et al. [51] assigned to their buildings average geometrical properties obtained from

statistical data such as number of floors, number of inhabitants, floor dimensions (width,

height and depth), shape ratio S/V, glazing surfaces, even Domestic Hot Water (DHW) and

cooking energy intensities. Heating demands were assumed by classical calculation methods

due to well-known behavior. Mata et al. [52] created an engineering bottom-up model called

Energy, Carbon and Cost Assessment for Building Stocks (ECCABS). It is based on a physical

approach by applying thermodynamic and transfer heat equations to estimate the net energy

demand, assess energy savings measures ESM and CO2 emissions reductionsin residential

building stocks in Sweden. In addition, the model is capable to calculate the costs savings

from applying the ESM. The model applies its equations on representative buildings from
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the studied stocks, then multiply the results by weighting coefficients, each one representing

the fraction of buildings in the entire stock that belong to each building category. However,

simplified models integrate a wide range of assumptions to the calculation procedures, hence,

increase model uncertainty.

Dynamic simulation

Dynamic simulation consists of using energy performance software tools, like EnergyPlus

[46] and TRNSYS [47], to overcome the complexity of EM. It is suitable for large buildings

with complex systems simulation and are capable to involve control strategies [42]. Energy

simulation programs are often based on two modeling techniques [45]: the analytical

method and the numerical method. The first one solves linear differential equations with

time independent parameters, while the second one uses a nodal network representation of

the building and applies for each node a system of nonlinear and time dependent equations.

The nodal network is then simulated simultaneously (e+). As the numerical method

handles more complexity in the nodes interactions, it is more preferred. In general, a

detailed physical description of building properties and systems and precise weather

characteristics are essential for the software. Additionally, simulation relies on simplified

inputs and assumed values related to behavioral parameters reducing the accuracy of the

model [48]. In addition, it is still expensive in terms of expertise, time and costs. Harish et

al. [40] provided a recuperative overview of energy simulation programs, their applications

and limitations.

Archetypes

The classification of “reference building”is a commonly used concept to represent certain

categories within a stock identified based on specified criteria. Then, the energy consumption

of each category is calculated using EM methods. Results are aggregated to estimate the

regional or national housing stock energy consumption. Three approaches are proposed to

define building typologies:

� Real example building approach that selects, by experts, a real building as the most

representative of specific parameters when statistical data is not available;

� Real average building approach that finds a real building which characteristics are
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similar to the mean features of a statistical sample;

� Synthetical average building or Archetype approach that defines a virtual building

attributed the mean features statistically detected from a sample.

These approaches were applied in the TABULA project (Typology Approach for Building

Stock Energy Assessment). The aim of this project is to create a harmonized structure for

European Building Typologies by the identification of reference buildings, to assess the

actual energy performance and to study the impact of retrofits applied to existent buildings

in terms of energy savings and CO2 emissions reductions [53]. The reference building

selection is performed based on a categorization process where a building sample is split

into categories according to climatic area, age and geometry. Then buildings were selected

as references with geometrical and thermal characteristics. In another study, this procedure

is compared to a cluster analysis, a technique to partition a set of houses into clusters with

similar profiles [54]. However, the generation of archetypes seems to be a more reliable and

applied technique. According to Swan et al. [36], archetypes are classified as engineering

models. Their generation is achieved through two steps [55]:

� Segmentation: Key parameters that will be used to distinguish the archetypes can be

identified from previous work, surveys, statistical algorithms or measured data. For

example, Famuyibo et al. [56] ranked nine key independent variables (wall, roof, floor

and window U-values, air change rate, heating system efficiency, dwelling type, floor

area, DHW tank insulation) depending on their influence on energy use based on

international literature and the available data sample. Then, to identify the most

important variables, multi-linear regression analysis (MLRA) followed by clustering

were performed. Attia et al. [57] determine parameters average values through

surveys and literature review. A walk-through survey was conducted to identify

schedules and users patterns. The archetypal data-tree is another approach to

identify the representativeness of a parameter [58]. Each tier of detail represents the

level of disaggregation of the selected parameter and each node represents the

corresponding archetype. When comparing the results at each level, urban modelers

can quantify the impact of the parameter and hence proceed to further subdivision or

not. In general, it was found that building use (e.g., residence, office, etc.), age of

construction, floor area and shape are the most used parameters for segmentation.
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� Characterization: Each archetype is identified by its non-geometrical properties such

as construction materials, occupancy rate, DHW, cooling and heating set points.

Deterministic parameters can be assigned to archetypes gathered from buildings

audits or existing database. Parekh [59] generated 56 archetypes based on age and

location for the house stock in Canada. The archetypes representation included

geometric configurations, thermal characteristics and operating parameter. With

information gathered from surveys and previous data, the author defined average

values that were used as default values for simulation program inputs. The main

objective of the archetype libraries is to provide guidance to the house evaluator who

must check values before any energy analysis. In a similar study, Heiple et al. [60]

generated 30 archetypes for residential and commercial stocks in Houston city based

on surveys and previous data. Building prototypes were then simulated using eQuest

and results were visualized in GIS and spatially distributed for a better analysis of

energy consumption spatial and temporal variation. Still, with the finer parameters,

the model is not able to address the variety in energy consumption among the

buildings of the same archetype. Furthermore, the available information determines

the degree of confidence of the parameters. Among the high-uncertainty parameters

are the occupant dependent variables, infiltration rates, thermal losses from

distribution systems [61]. However, many approaches have been developed for a more

realistic and robust representation of the occupant behavior.

Grey models or Hybrid models

Grey models are defined as models used when the information about a system are not very

well known. For example, if the variables influencing a system are known but how exactly

they affect the system is not clear, the system is considered a grey system [7, 41]. According to

Fumo [62], they are hybrid models that first physically determine the building characteristics

and systems contributing in the energy consumption, then involve a statistical analysis to

identify the key parameters for a satisfactory energy prediction. Fonseca et al. [63] combined

statistical data (archetypes databases) with analytical methods to develop a model that

provides detailed qualitative and quantitative description of the energy supply. The model

generates a spatiotemporal energy distribution for scenarios investigations and visualizes

results via GIS platform. Potential wasted energy resources and building retrofits as well as
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urban zoning analysis and distributed schemes integration were all examined and studied.

2.3 Urban building energy models

Urban Building Energy Model is a new bottom-up engineering model introduced by

Reinhart and Cerezo [18], to combining the capabilities of statistical and engineering

models to provide hourly energy assumptions, estimate the impacts of new technologies

interventions, and incorporate occupant behaviors [14]. Another feature of UBEMs is the

possibility to combine them with GIS platform. The resulting energy maps are then used

for results analysis and comparison with measured data or surveys to help designers and

policy makers.

UBEM apply heat transfer equations in and around the buildings that are represented each

one as an individual 3D dynamic thermal model. UBEM are hence able to support complex

scenario development. Furthermore, they can be combined with energy simulation

programs. The energy modeling workflow of an UBEM requires high effort and time

resources given the massive amount of data for potentially thousands of buildings.

Assembling, managing, and automating the workflow is essential. For this purpose, the

building stock is divided into archetypes to reduce complexity and computation

requirements [14].

An illustrative case of UBEM is the Boston model developed by the MIT Sustainable Lab

[55].The model was accomplished using a set of tools comprising GIS [64] for buildings’

footprints importation, Rhinoceros 3D [65] as the CAD environment, and EnergyPlus as

the thermal simulation engine. The workflow consists of generating the archetypes based on

the year of construction and buildings’ types, extruding the building’s footprint to create

the three-dimensional form, dividing it into floors, generating windows and assigning the

specific thermal properties based on the building’s archetype. Shading surfaces were

determined and each building was then represented by a thermal model and its energy

performance was simulated in EnergyPlus. A following study, where the same workflow was

applied for a neighborhood of Boston, explored different ECM that can be applied to reduce

the energy consumption [15]. Another example is the CityBES in the US, an open

interactive web-based platform to automatically generate UBEMs based on city GIS dataset

[16]. It provides results of energy end-uses on annual, monthly and hourly timescales with a
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3D visualization of the city and its urban modules.

3DStock is another 3D model for the British building stock, which breaks buildings to floors

with different activities, and floors to zones with different sub-activities. Geometrical data,

electricity and gas consumption are attached to each Self-Contained Unit. 3DStock is

capable of making projections of future consumption, or testing the impact of possible

abatement measures and new technologies [17].

In the previous paragraphs, we discussed the recent trends of cities, the urbanization issues

and challenges, and the climate change threats. Urgent interventions and feasible actions

are required. In this context, energy management for urban policies rises with a particular

importance, to reduce the energy consumption, improve its quality, increase its availability

and reduce the GHG emissions resulting from its production. Urban models have been

introduced to assist these objectives. An overview of traditional and recent modeling

techniques was presented to explore the limitations and the strengths of each technique.

When managing the integration of renewable energy or application of retrofit measures

at city level, scaling down to hourly energy consumption patterns is crucial. This high

resolution temporal energy demand is determined by occupant activities, lifestyles and

economic status. Hence, UBEM calibration concentrates on integrating the significant

weight of occupant behaviors into the urban model. To encompass these aspects,

probabilistic approaches are applied. In this context, Cerezo et al. [66] proposed a Monte

Carlo simulation with probabilistic distributions method to characterize uncertain

parameters related to building occupancy. The method was then validated by comparing it

to two others deterministic methods for a district in Kuwait City. The probabilistic method

showed less error in terms of average Energy Use Intensity (EUI) and standard deviation.

Richardson et al. [67] developed a Markov-Chain Monte Carlo technique for stochastic

occupancy model generation based on a time-series data. The data set consisted of 24-hour

diaries, completed at ten-minutes time step by thousands of participants. It was used to

derive transition probabilities matrices to predict the probability of the current state

(resident is active or not) to change in the next time step. The model showed similar

profiles as the data set, revealing its accuracy. As the model is freely available, He et al.

[68] applied it to generate heating patterns of English houses. In order to validate their

findings, they coupled the stochastic model to EnergyPlus and compared the results to
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another set of simulations with a deterministic occupancy model. It has been obvious that

the hourly thermal demands with the stochastic model are more realistic and representative

for the dwellings. UBEM approach is the most useful and reliable one to estimate hourly

energy consumption at urban level, and then explore the impacts of ECM and/or renewable

energy technologies, it will be used in this study. However, since we have selected Beirut, it

is important to point out that there is substantial work done for modeling energy

consumption of buildings in the city. For example, Annan et al. [69] simulated the impact

of natural ventilation on energy use in buildings by simulating one typical residential

building in Beirut. Ghaddar et al. [70] have simulated the impact of air conditioning use on

UHI and energy use in buildings in Beirut by adopting a top-down model approach. The

authors found that the temperature in urban areas could increase by 0.8◦C during the day

and 4.7◦C during the night due to the extensive use of air conditioning systems. A

bottom-up approach was used to assess Lebanon’s energy budget from 2010 to 2015 [71].

For the building sector, the calculations were based on the constructed area per building

type, the climatic zone, the occupancy rates and the energy demands per end-uses per

building type defined by a previous study A roadmap for developing energy indicators for

buildings in Lebanon [72]. The latter study results were obtained after simplified

calculations conducted for a business as usual case (BAU) under coastal climate and with

assumptions of the boundary conditions based on expertise. However, both studies did not

account for the different properties of buildings envelope. All the above studies can be

complemented by an archetypal classification of the buildings and more detailed BEM for

more accuracy and applicability.

2.4 Conclusion

This chapter provides an overview of the urban energy modeling techniques applied for

energy assessment at urban scale. Top-down models are easy to use models but lack the

essential details for interventions and technological details. On the other hand, bottom-up

models estimate energy consumption at individual buildings which makes them suitable for

assessing feasibility of strategies and action plans. Advantages and drawbacks of statistical

and engineering models are provided. To benefit from both models’ advantages, UBEM are
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introduced as a combination of a statistical approach (in archetypes generation) and an

engineering approach (in the physical-based equations of the energy budget). Hence, it is

decided to adopt the UBEModeling technique in this study, as it can help in achieving the

thesis objectives.
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3. Data management and 3D model

generation

3.1 Introduction

Data preprocessing is an inevitable technique in data mining, especially if the available data

is incomplete, inconsistent, noisy or contains out-of-range or unreliable values. When a

large dataset needs to be cleaned, detecting anomalies becomes a difficult task. Instant

interventions to adjust or modify it are time consuming in this case. Preprocessing algorithms

are hence implemented and used. In this context, remote sensing and GIS are helpful in image

processing to detect buildings, extract their information, and to create digital elevation profile

of the city. Moreover, recent trends focus on integrating machine learning in remote sensing

processes and in data management. The goal of this chapter is to provide an overview of

the application of remote sensing and machine learning in urban environment. In the next

sections, an archetypal classification of the buildings in Beirut is provided, followed by a

detailed description of the 3D model generation steps.

3.2 Remote sensing for data preprocessing

Remote sensing techniques are widely used for many applications such as mapping crops

practice [73], snow monitoring [74], determination of clouds and precipitation properties [75],

and environmental policy support [76]. In urban environment, they can inform about the

optical and thermal properties of the materials in the urban canopy [77]. In this study, remote

sensing was applied in urban context for data preparation and cleaning, as will be discussed

in the next sections.
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Buildings detection and segmentation

Identifying the geometrical properties of buildings in the city is a crucial step to create the 3D

model. Buildings in Beirut were digitized from a 2008 aerial photo of 15cm resolution. The

resulting shapefile was checked using a 2016 Pleaides image of 1.5m resolution, to identify

new and reconstructed buildings. This process led to identify 17,572 buildings in Beirut

administrative area, with their latitude and longitude coordinates, as well as their areas and

perimeters. The data was stored in a shapefile ”Beirut buildings’ shapefile”. Information

about 7,122 buildings in different areas within Beirut were surveyed by the University of

Saint Joseph USJ. The dataset, associated to the GIS in the form of attribute tables, labels

each building by its footprint and a certain number of entry fields summarized in table 3.1.

However, when cross-checking these data with the Pleaides satellite image, the buildings’

footprints did not reside over their actual positions. By joining buildings from USJ with

those digitized from the aerial photo by their centroids, 1, 289 buildings were not identifiable

and therefore were excluded. Further inspection of the data revealed that 5.44% of the

buildings from USJ have incorrect information as follows:

� 8 buildings with incorrect number of floors and construction year

� 266 buildings with incorrect number of floors

� 62 buildings with incorrect construction year

Manual intervention was applied when possible by checking each building on Google earth

to correct the number of floors, and by comparing different images of Beirut from Google

Earth historical imagery 1. For the urban energy model, information such as the type and

year of construction of the buildings are indispensable. Therefore, buildings with

incomplete information were excluded. This reduced the number of buildings from 7,122 to

3,630 distributed as follows (figure 3.1): 818 buildings in district A and 2,814 in district B.

Bi-monthly electricity consumption from 2015 of a set of buildings was provided by EDL

and added to the updated dataset. Buildings near the shore (up to 1Km inland) have in

general their facades face west and/or north with large windows overlooking the sea. To

take into consideration this feature, we labeled these buildings. Moreover, a comprehensive

survey was used to label glazed buildings as “glazed”. These buildings were represented by

1https://www.google.com/earth/
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3D thermal models as will be discussed in chapter 5.

The previous intervention led to a discontinuity in the urban layout. However, for the

daylight and solar access analysis, all buildings in the zones of interest were retained.

Buildings with missing function were considered residential. When no year of construction

was available, it was assumed that the buildings were built after 1991.

0 1 20.5

Km

District A

District B

Modeled 
Buildings

·

Figure 3.1: Buildings’ distibution over Beirut.

Data Origin Form Type Original field name Designation

USJ survey Shapefile Polygon Building footprint -

Enquete ID Building ID

Annee Year of construction

Fonction Function

NbreEtage Number of floors

area Area of a floor

perimeter Perimeter of a floor

EDL Shapefile Numeric values Mois 2 Electricity consumption in January and February

Mois 4 Electricity consumption in March and April

Mois 6 Electricity consumption in May and July

Mois 8 Electricity consumption in June and August

Mois 10 Electricity consumption in September and October

Mois 12 Electricity consumption in November and December

Table 3.1: Original variables datasets and the selected variables for BEEM.
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Construction of the DSM and buildings’ heights identification

In 2018, the Lebanese Army identifies the buildings heights in Beirut by attributing each one

an elevation point. The ”Army heights” shapefile was joined to Beirut buildings shapefile.

17, 632 points were identified, with an increase of 60 buildings compared to Beirut buildings

shapefile. The analysis of the data shows that this difference is due to the following:

� 2,920 polygons had no corresponding elevation points

� 13,270 polygons had one elevation point

� 1,380 polygons had more than one elevation point

Three reasons were identified responsible of buildings with no elevation points:

1. Beirut buildings shapefile account for all buildings constructed until 2016 while the

Army field work was achieved in 2018. Many buildings were built between these two

years. Note that in some cases. the elevation point resided outside the polygon, so

manual intervention was applied to link each point to its nearest building. Otherwise,

the buildings were not attributed any height.

2. Some buildings were attributed more than one elevation point, for example on the roof

and the rooftop. In this case, the lowest point was kept. However, sometimes the

multiple points were considered and the building was split into many buildings with

the same properties. This assumption is accepted especially for the radiative budget

study where the height is critical.

3. Some points had unreliable values, for example negative values, and were therefore

excluded.

The army heights were compared to the Digital Surface Model (DSM) obtained from the

processing of Tristereo Pleiades images (figure 3.2 ). Figure 3.3 shows a high accuracy

concerning the (x,y) geolocation of the two images. A high correlation was revealed between

the elevation points and the DSM pixels values, as shown in figure 3.4. It was found that

50% of the differences between the elevation points and the DSM fall within the range of

[0, 3m].

The buildings’ heights were then obtained by subtracting the Digital Terrain Model (DTM)

provided by the National Council for Scientific Research (CNRS) from the DSM.
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Figure 3.2: Elevation points of buildings (left) and DSM profile (right)

(a) Aerial image (b) DSM profile (c) Matching aerial image and

DSM

Figure 3.3: a) Digitizing buildings using aerial image. b) Generation of Beirut DSM using Pleiades

images. c) Matching of the digitized buildings with the DSM shows high accuracy of the DSM results.
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Figure 3.4: Correlation between elevation points from the Army field work and the DSM raster image

obtained from processing Pleaides images. R2 = 0.866
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3.3 Machine learning for oultier detection

The problem of outliers is that they have the effect of misclassification of data and affect the

outputs attributes [78]. An ”outlier is an observation, which deviates so much from other

observations as to arouse suspicions that it was generated by a different mechanism” [79].

Outlier detection is applied in many fields such as intrusion and fraud detection, medical

diagnosis, sensor networks, image processing and many other domains. Outlier detection

techniques can operate under supervised mode (when training data for both normal and

outliers classes is available), semi-supervised mode (when training data is only available for

normal or abnormal class instances), and unsupervised mode [80, 81]. Some prominent

categories of outlier detection techniques in the unsupervised outlier detection setting are

proximity-based methods [82], which treat outliers as points which are isolated from the

remaining data [83]. They rely on notions of distance (how far the instance is from the

majority of other instances in the dataset) or density (how similar is the density around the

instance to the density around its neighbors). Density-Based Spatial Clustering of

Applications with Noise DBSCAN is a fairly used unsupervised clustering method. It has

the ability to find non-linear clusters based on density. The DBSCAN algorithm works by

going through all data points, and find neighbors that are closer to each other than a

certain parameter ε and therefore considered to be in a same cluster.

Autoencoders are another method used for outliers detection. They are unsupervised

multi-layer neural networks, with symmetric architecture. The number of nodes in the

input layer is the same as in the output, and the number of nodes in the middle layers is

small. The objective of an autoencoder is to train the output to reconstruct the input as

close as possible, with low dimension representation. This reduced representation of the

data is a natural approach for discovering outliers, which are harder to be represented in

this form, and therefore their error score will be large [82]. The use of DBSCAN and

autoencoders before the calibration process will be discussed further in section 5.4.2.
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3.4 Generation of the 3D model

3.4.1 Archetypes generation

To overcome the complexity of dealing with a large dataset of distinct buildings, archetypes

were generated. An archetype is a set of geometrical and non-geometrical properties that

characterize a building’s thermal performance. Non-geometrical properties include the

thermal resistance of the construction materials, occupancy schedules and appliances

densities [15]. As previously mentioned, archetypes generation consists of two steps [14]:

the segmentation of buildings with similar properties based on key parameters such as the

type, age, shape [56, 84, 53, 61], and the characterization of the thermal properties for each

archetype. This information was gathered from buildings audits [57], existing database

[51, 59, 66] or local expertise and previous literature [56]. In this study, the buildings were

grouped based on two parameters: the building’s type and the year of construction based

on a historical architectural analysis of the buildings. The building type helps in setting a

building’s occupancy patterns and determining its internal heat loads, while its year of

construction informs about construction material and methods. For the specific case of

Beirut, five distinguished construction periods were identified in the literature: 1900-1923,

1924-1940, 1941-1960, 1961-1990, and 1991 and on [85]. Regarding the type, the buildings

were grouped in five classes: residential, mixed, hospitals, schools and governmental

buildings. In total, 5× 5 = 25 archetypes were generated. Thermal properties were acquired

from the Technical Guide for the application of the Thermal Standard for Buildings in

Lebanon [86], published in 2005. Missing information was obtained from ArchSim default

library [87] and online libraries [88]. A priori, non-geometrical properties, including light

and equipment loads intensities and usage schedules were set by referring to ASHRAE

standards [89]. HVAC systems performance coefficients were obtained from reference [72].

Finally, ArchSim library was updated with the missing properties as inputs for the

simulations. Figure 3.5 summarizes the adopted workflow.
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Figure 3.5: Beirut Energy Model BEEM methodology flowchart.

3.4.2 3D model

After preparing the data, buildings were divided into floors and each was assigned an

archetype. The geometry modeling process is shown in figure 3.6. The buildings footprints

and the topographic map contours were imported to Grasshopper, a free plugin of

Rhinoceros 3D (which is not a free software tool but with a 3 months trial) [65]. After

generating the Digital Terrain Model (DTM) using Delaunay triangulation, buildings

footprints are projected on the DTM surface. The polygons were then extruded to the

buildings heights. Then, using the ArchSim tool, each building was divided into its number

of floors, each represented by a single thermal zone. No further zoning was applied in this

study. Next, windows were generated on free facades, which resulted from excluding

adjacent walls and those whose neighboring wall is less than 3m apart. To have a more

realistic representation of the buildings, the number of windows per facade was restricted by

its width and the Window to Wall Ratio WWR given by orientation and year of

construction. In this respect, windows were generated with a spacing of 5m for residential

buildings and 4m for non-residential buildings. The WWR was primarily identified

according to the year of construction. Values ranged between 0.15 in 1900-1923 and up to

0.7 after the 1990s. However, if the building overlooks the sea, the WWR was increased to
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0.7 to take into account the north and west highly glazed facades. In addition, fully glazed

buildings and first floors of mixed buildings, considered as retail shops, were assigned a 0.95

and 0.8 WWR respectively. Another feature of BEEM is the possibility to include balconies,

which are added to free walls of residential floors having an area greater than 15m2.

Potential shading surfaces from neighboring buildings were determined in the 3D model

based on a two-step process. In general, a building will shade another one at a certain time

of the day if the length of its shadow is greater than the distance between the two buildings

at this time. However, the shadow length varies over the day in function of the sun angle.

The longest shadow is provided with the smallest angle, but this will lead to a great number

of shadows on one building. To overcome this issue, each building (of height H) that is

3.78H away from the target building within a radius of 300m is considered as a building

that casts a shadow. The multiplicative coefficient 3.78 was calculated as in [8], based on a

sun angle of 14.8◦, corresponding to 80% of the time between 5:30 am to 8 pm in Beirut.

We chose this interval to include all the time when the sun is shining, in winter and

summer. To accomplish this task, we used the equations provided by the NOAA solar

calculator 2. To further reduce the number of shading surfaces, a ray tracing algorithm was

used to detect only the neighborhood buildings’ surfaces that obscure the solar radiation.

Once the 3D model was completed, each thermal zone was assigned the simulation

parameters from the buildings database.

(a) (b) (c) (d) (e)

Figure 3.6: Fig. (a) shows the DTM creation, followed by a simple extrusion shown in Fig. (b), then

windows and balconies generation in (c) and (d) respectively, and finally the adjacency and shading

are shown in (e).

2https://www.esrl.noaa.gov/gmd/grad/solcalc/
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3.5 Conclusion

This chapter shows how remote sensing is applied in urban environment for urban components

detection, such as buildings. It also stresses its effectiveness for data preprocessing. However,

combining it with machine learning algorithms would enhance its applicability and feasibility.

In this context, machine learning application is becoming an inevitable requirement in data

management and in results processing as will be shown in next chapters.

A statistical approach to create archetypes for buildings characterization is introduced. The

results of these processes are fed to the automated generator of 3D massive models that will

be used for the daylight assessment and energy modeling.
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4. Urban daylight model

4.1 Introduction

The radiation budget is an important component of the energy budget of buildings. It

contributes directly by the solar gains by exterior surfaces, and indirectly by the energy

savings achieved by replacing artificial lighting with daylight. This chapter focuses on daylight

accessibility in the urban context by simulating first the luminous energy in two different

zones, using DART. Then, the importance of a high LoD 3D model in daylight assessment

is investigated, as well as the variation of the daylight along the buildings’ elevations. A

neural-network approach linking urban morphology to daylight accessibility is presented.

4.2 Presentation of DART model

To estimate the intercepted solar radiation, we simulate the radiative budget of the different

urban geometries (walls, roofs, glazed surfaces, ground) using DART. DART, a free

software tool, is a 3D model that computes the radiation propagation through the

earth-atmosphere system, over the entire optical domain, ranging from visible to thermal

infrared wavelengths [90]. It works with any experimental and instrumental configuration

(altitude and spatial/temporal/spectral sensor resolution, sun and view directions,

atmosphere, ...). It provides two major types of products for natural and urban landscapes:

• Satellite/plane/in-situ spectrometric and LiDAR acquisitions: These are useful

for sensitivity studies, for procedures that invert satellite images. Figures 4.5 and 4.2

represent exemples of these products results. Terms BOA (Bottom of the

Atmosphere), Sensor and TOA (Top of the Atmosphere) indicate that the images are

simulated for a sensor at the bottom, within and top of the atmosphere.
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• Radiative budget RB: It corresponds to the budget of the incident, intercepted,

absorbed, scattered and thermally emitted radiation. It can be computed per scene

element and per type of scene element such as ”roofs”, ”walls”, ”trees”, etc.

Vegetation fluorescent RB can be also simulated. The radiative budget is computed

based on a ray tracing approach detailed in section 4.2.3. Different scattering orders

are simulated:

1. Direct illumination (Illudir): radiative budget of direct sun illumination. At this

step, scattering and absorption are null.

2. Direct and diffuse illumination (Illudif).

3. Multiple iteration steps (Iter1, Iter2,...).

4. Infinite extrapolation (IterX): corresponds to the actual observed radiative

budget.

(a) (b)

Figure 4.1: DART simulation of Chris sensor. Howland forest, USA. a) Image. b) TOA VIS-NIR

spectra.

DART is composed of four executable modules to parametrize the simulation:

� Direction: it calculates the directions of propagation of the radiation in the space 4π.

� Phase : it computes the optical properties of the surfaces (i.e. opaque surfaces and

earth scene), the atmosphere and the vegetation.

� Maket : it simulates the 3D architecture of the scene.

� Dart : it simulates the radiative budget.
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Figure 4.2: DART images of St. Sernin basilique (Toulouse). Radiometer: a) BOA, b) TOA, c)

Airborne LIDAR (display with SpdLib software). Atmosphere: mid-latitude summer. Visibility =

23Km.

4.2.1 Earth-Atmosphere scene

General introduction

The scene to model is contained in a rectangular parallelepiped divided into parallelepiped

cells (voxels) (figure 4.3). The cells size, defined by the user and used to simulate the earth

scene are in general smaller than those used to simulate the atmosphere. In DART, a scene

element is either a volume or plane surface. The former is a 3D juxtaposition of cells filled

with turbid material used to simulate fluids (air, water...) and vegetation. The latter is a

juxtaposition of triangles or parallelograms used generally to simulate urban elements and

topography [91]. In addition, DART scene can contain empty cells (i.e. without interaction

with the radiation) or mixed cells (i.e. contains turbid matter and surface elements).
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Figure 4.3: Earth-atmosphere representation

Boundary conditions

Even though the scene in DART is represented as a finite parallepiped, infinite landscapes

can be also simulated as the juxtaposition of a given pattern.

� Isolated scene: a ray that exists the scene is eliminated.

� Repetitive scene: the scene and topography (DEM: Digital Elevation Model) are

duplicated for simulating an infinite landscape. To get a spatially continuous scene

and avoid that a ray is reintroduced under the ground, the DEM is regularized so

that altitudes of the opposite faces of the scene are equal. A ray that exits the scene

through a vertical scene side enters the scene through the symmetric vertical scene

side, with the same direction and at the same altitude.

� Infinite slope: the scene is repeated by ensuring continuous slopes. For that, the

altitudes of the edges of the scene are shifted by a constant value at each edge. a

ray that exists the scene through a vertical scene side enters the scene through the

symmetric vertical scene side, with the same direction and the constant vertical shift.

3D objects

Objects in DART can be generated having simple geometrical forms. In this study, the CAD

environment of DART is used to create plots or quadrilaterals containing turbid matter to
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simulate vegetation. It is also used to create schematic trees. Each tree specie is defined by

many characteristics [77]:

1. The height of the trunk under and in the crown.

2. The diameter of the trunk under the crown.

3. The shape of the crown (trapezoid, truncated cone, compound cone, ellipsoid,

compound ellipsoid), and associated parameters (e.g. diameter, height).

4. The azimuth rotation around the vertical axis of the tree.

5. The presence or absence of branches.

6. The crown levels, and for each defined level, the horizontal and vertical distributions of

H, the diameter of the trunk, the optical properties of the leaves, trunk and branches.

The position and the size factors of the trees can be defined by three ways:

� Exact position and dimensions of the trees.

� Exact position and semi-random size of the trees.

� Semi-random positions and sized of the trees.

The trees trunks are represented by triangles while the crown can be represented by turbid

cells or a cloud of triangles the density and distribution of which are defined by the user.

DART can also generate buildings of four walls and complex roof forms, roads and aquatic

surfaces, and landforms derived from a terrain model imported as a raster image.

DART has also the possibility to import 3D objects generated by 3D CAD software tools

such as Rhinoceros, Blender, etc. These objects are represented by triangles (or

parallelograms), classified into groups based on their corresponding materials. Therefore, a

building is composed of a minimum of three groups of triangles: ”walls”, ”windows” and

”roof”. Each 3D object can be treated as a set of triangles or mixed or totally transformed

into turbid cells. This can be used for the vegetation. The transformation from “triangles”

to “turbid cells” reduces significantly the computational time. During this transformation,

the properties of the turbid matter is either calculated by DART given the triangles

properties, or set by the user himself.

Atmosphere

The atmosphere has a major role in the radiative budget, via the absorption, emission and

diffusion of the radiation. Its impact depends on its state (pressure, temperature), spatial
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distribution of its components (gases and aerosols) and the wavelength considered. DART

simulates the effect of the atmosphere by meshing it into cells the size of which is inversely

proportional to the density of the component particles of the atmosphere. The atmosphere

is simulated as the superposition of three matrices of cells ”air”:

� Bottom atmosphere (BA): cells ”air” at Earth landscape level, i.e. below landscape

top altitude.

� Mid atmosphere (MA): from BA up to HA. It is made of cells that are usually larger

than BA cells.

� Higher atmosphere (HA): above MA. It is made of superimposed layers.

The atmospheric cells are characterized by the spectral properties of the gases and aerosols

they contain. The profiles of these particles are stocked in the database of DART, but they

can be modified or imported by the user.

4.2.2 Elements optical properties

The optical properties define how the surfaces and volumes of the scene elements intercept,

absorb and scatter the radiation. They depend on the chemical composition and structure

of these elements.

Properties of surfaces

The transfer functions of surfaces are characterized by a reflectance, direct transmittance

and diffuse transmittance. These spectral properties depend on the spectral band

considered. They are either read in DART’s internal databases, entered by the user, or

generated by DART built-in models. These properties allow the calculation of the

absorptance and the directional emissivity of the surfaces.

A surface’s reflectance can be isotropic, constant independently of the direction (i.e

lambertian) or anisotropic (analytic model: Hapke, RPV,) with possible specular term.

� Lambertian reflectance:

ρ(ΩS ,ΩV ) = ρlamb + ρspec(ΩS ,ΩV ) (4.1)
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The specular reflectance depends on the refractive indices of the incident medium and

of the medium radiation heads to, a multiplicative factor and the angular widths of

the cones where specular radiation propagates.

� Reflectance Hapke and specular:

ρ(ΩS ,ΩV ) = ρHapke(ΩS ,ΩV ) + ρspec(ΩS ,ΩV ) (4.2)

In the Hapke model, the ground is simulated as a plane medium containing particles,

randomly distributed and large compared to the wavelengths. It is associated to a

phase function that simulated backscattering and forward scattering.

� Rahman-Pinty-Verstraete reflectance (RPV) This model easier to use than that of

Hapke, reproduces well the standard bidirectional reflectance distribution function

BRDFs of terrestrial surfaces, even asymmetrical, and the hotspot effect.

ρ(ΩS ,ΩV ) = ρ0.MI(K).FHG(Θ).H(ρc) (4.3)

MI is the Minnaert function, FHG is based on Henyey-Greenstein functions and H is a

function that simulates the hotspot.

Properties of turbid cells of vegetation

The optical properties of vegetation cells filled with turbid matter are characterized by phase

functions defined by:

� The spectral optical properties of the leaf: transmittance and reflectance, and

descriptive parameters of foliar specular behavior (roughness, refractive index),

calculated by implemented models in DART PROSPECT-5 and PROSPECT-D,

given the leaf biochemical input parameters, such as the water content and

chlorophyll concentration to list few.

� Leaf dimension for hot spot

� Leaf angular distribution

� Leaf clumping or leaf agglomeration at certain points

� Temperature property for thermal emission calculation
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4.2.3 Earth-atmosphere radiative transfer

The earth-atmosphere radiative transfer is simulated in five stages as shown in figure 4.4:

� Stage 1 or Illumination stage: the earth is illuminated by the sun radiation and

atmosphere scattering. In case mode T is used, the thermal emission form the

atmosphere is added. This stage gives the downward BOA radiance LBOA (Ω ↓),

upward TOA radiance LTOA (Ω ↑) and the upward and downward sensor radiance.

� Stage 2: landscape RT with/without thermal emission, by tracking the LBOA (Ω ↓)

computed in stage 1. This stage gives the landscape radiative budget, albedo and

upward BOA radiance LBOA (Ω ↑).

� Stage 3 atmosphere backscattering down to the landscape by tracking the upward BOA

radiance computed in stage 2.

� Stage 4 landscape RT of the radiation that the atmosphere backscatters at stage 3.

� Stage 5 Transfer of the upward fluxes of stage 2 and 4. This stage provides the radiance

at sensor and the upward TOA radiance LTOA (Ω ↑).

Figure 4.4: Earth-atmosphere representation
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General information on radiative transfer

Radiative transfer corresponds to the propagation of radiation in a medium. Using the exact

kernel and discrete ordinate methods, radiation is restricted to propagate in a finite number

of directions (Ωi) with an angular sector width (∆Ωi) (sr), in such way to always have∑
∆Ωi = 4π ([92]). Any radiation that propagates along direction (Ωi) at a position r is

called source vector W (r,Ωi). The radiative transfer equation gives the rate of variation of the

radiance L(r,Ω) at position r along path dr along direction Ω of a stationary monochromatic

wave. It can be written in the Cartesian coordinate system as:

[ζd/dx+ ηd/dy + µd/dz].L(r,Ωn) = −αe(r,Ωn).L(r,Ωn) + αa(r,Ωn).LB(r,Ωn)

+

N∑
m=1

αd(r,Ωn).P (r,Ωm → Ωn)/4π.L(r,Ωn).∆Ωn (4.4)

where:

� ζ, η and µ = cosine angles of the direction of propagation (Ω) wave along x, y and z.

� αe(r,Ωn), αa(r,Ωn) and αd(r,Ωn) = extinction coefficients (total, absorption and

scattering), αe = αa + αd

� LB(r,Ωn) = radiance emitted by a black body

� P (r,Ωm → Ωn)/4π = normalized phase function of the medium. It is the fraction of

radiation that is intercepted along direction m that is scattered per unit solid angle

along direction Ωn.

The terms of right-hand side of the equation give the variation of L(r,Ω) per path unit

dr(Ω):

� 1st term: attenuation (absorption + scattering “Ω → 4π”) of a wave during its

propagation dr(Ω).

� 2nd term: scattering along (Ω) due to scattering at point r of radiation incident from

all directions of space.

� 3trd term: thermal emission.

At the top of the earth scene BOA (Refer to section Earth-Atmosphere scene), we have two

components that form the irradiance: the direct sun and the atmosphere. The source vector

of both components are computed as follows:
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� Direct sun source vector W (Ωs) = Es(Ωs).|µs|.∆x.∆y

� Es(Ωs) is the direct sun irradiance at the top of the scene (W/m2/m)

� µs = cosθs with θs the sun zenith angle

� ∆x.∆y is the cell face area

� Atmosphere source vector Wa(Ωs) = La(Ωn).|µn|.∆x.∆y.∆Ωn due to atmosphere

scattering and/or thermal emission

� La(Ωn) is the atmospheric radiance (W/m2/sr/m) along direction Ωn

� n ∈ [1, N ′] with N ′ the number of downward discrete directions

Ray tracing approach

Ray tracing method solves numerically the above equation: N rays along N directions are

traced from each source. During its propagation, a ray has its intensity that decreases by

interception (absorption/scattering) and increases by thermal emission. Scattering

generates, along Ndir directions, new rays W1(r,Ωn), the further scattering of which gives

new rays Wk(r,Ωn), and so on. With an iterative and convergent approach, the radiation

intercepted by scene elements at iteration i is scattered during the following iteration i + 1.

A radiation is processed until it reaches a specified threshold or is totally absorbed and

scattered. The iteration process stops when the difference in scene exitance between two

consecutive iterations is less than a certain value. The iteration process is a powerful

feature of DART, especially when simulating urban areas, where reflections from

surroundings are a major player in the total intercepted radiation by the urban forms. The

ray tracing approach has three simulation modes: reflectance (R), temperature (T) and

combined (R + T). In the R mode, the sun is the primary source of radiation and the

atmosphere the second source. Only the shortwave optical domain is considered. In the T

mode, the sun radiation is neglected and the atmosphere brightness temperature is

computed. The R + T mode combines both approaches. In our case, we are only interested

in computing the visible shortwave radiation as will be discussed later. Therefore, we will

use the mode R in our simulations.

Simplified examples of DART radiative budget

Figure 4.5 illustrates the 3D RB at 0.56µm of a schematic building. The building is made of 4

walls with 2 windows each one, and a roof with a swimming pool. All surfaces are lambertian,
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except the swimming pool that has a specular component. Sun angles are θsun = 30◦ and

φsun = 225◦. Scene irradiance (EBOA = 1347W/m2/µm) is simulated with a 2mm grid.

Cell size is 5cm. 3 remote sensing images are shown for 3 viewing directions (θv, φv): nadir

(θv = 0◦), oblique (30◦, 135◦) and ”specular” (30◦, 45◦). Reflectance and RB have a spatial

variability that depends on the illumination grid and the size of triangles used to simulate

the scene. For example, in the nadir image, ρroof is between 5.77 and 5.83 with an average

of 5.77.

3D RB is shown at triangle level (Figure 4.5b) and cell level (Figure 4.5c) for interception

at direct sun illumination (i.e., Illudir), total illumination (i.e., Illudif), and infinite scattering

order (i.e., IterX). As in remote sensing images, extreme RBtriangle values appear due to a

few extremely small triangles that are illuminated or not. For example, %fint,IterX reaches

1.61 for a few extremely small triangles, whereas its ”real” maximum is equal to 1; it occurs

for the roofs. Such extreme values do not occur for RBcell since all cells have the same

size. Compared to walls, windows have the same irradiance, larger absorption and smaller

scattering. Figure 4.5d shows RB images for the scene and the roof. It shows also 2 vertical

sections of the 3D RBcell that corresponds to a sunlit wall (x = 20) and a shadowed wall

(x = 60).
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(a) Building mock-up and Remote sensing images for 3 viewing directions (v,v): nadir (v =0), (30,135) and ”specular”

(30,45).

(b) 3D RB for triangles RBtriangle and for cells RBcell.

(c) intercepted radiation at Illudir, Illudif and IterX, with absorption and scattering at IterX.

(d) RBabs images: absorption by the total scene, the roof, a sunlit wall and a shadowed wall.

Figure 4.5: Radiative budget and remote sensing images of a schematic building.

Figure 4.6 shows the 3D view of the Beirut radiative budget component ”triangle
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irradiance” (W/m2/µm) by triangles. The RB is simulated at 425nm, on June 21 at 17h.

The illumination grid is 1cm. At 17h, sun zenith angle is 81.1◦, which explains the presence

of many shadows in the radiative budget for direct sun illumination only (Figure 4.6a).

Indeed, the DART simulation is conducted with the ”repetitive scene” option. In that case,

the shadows are due to the neighboring districts of the simulated Beirut district. This effect

due to neighboring districts can be removed if needed, using either the ”isolated scene”

option, or by setting the irradiance on one or several faces of the 3D cell array of the

simulated urban scene. This latter option was introduced in DART in order to simulate the

districts on the sea side. It is not used here. The large sun zenith angle (81.1◦) explains

that the SKYL is very large, which in turn explains that maximal direct sun irradiance is

much smaller than sky irradiance. We have: Edirectsun = 3.7W/m2/µm. Hence, the

irradiance of the roofs is 3.7W/m2/µm. The irradiance of the walls on the west side of the

buildings is much larger; it is around 23.7W/m2/µm. The rectangular shapes of the ground

are due to the discretization scheme that is used to simulate the digital elevation model.

(a) Direct Illumination (b) Infinite extrapolation

Figure 4.6: 3D view of Beirut intercepted energy (W/m2/µm) by triangles for two different orders,

on June 21 2017 at 17h (Band: 425nm).

4.3 Impact of urban development on energy budget

In the last decades, Beirut has experienced a random urban growth and the rise of high

buildings above 10 floors. This wave of urbanism led to the reduction of the distances between

the buildings and to their adhesion. This chaos in construction has resulted in the decrease

of the incoming daylight into the apartments. The purpose of applying DART in this section

is to estimate the impact of urbanization on the daylight accessibility of buildings. For this

purpose, the radiative budget of windows for a small number of mixed buildings in the last
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decade will be compared with that of the same district in the 1980s. Having the year of

construction of each building, buildings built after 1985 were removed to represent the scene

of the 1980s (see Figures 4.7 and 4.8).

Figure 4.7: Side view of the 3D model of the district case study

Figure 4.8: Top view figures representing the district in the 1980s (left) and recently (right).

Another exercise with DART is to assess the influence of buildings features (windows,

balconies...) on the radiative budget simulation. Quantifying the influence of integrating

different aspects in the 3D model is important since most of urban daylight model rely on

simplification of the buildings models, without assessing the consequences of such assumption.
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The intercepted energy at 3 bands is simulated each time a new feature is added to the

3D model. The increasing complexity of the model is presented in figure 4.9. Figure 4.10

represents the mean incoming radiation on the buildings facades (including walls and windows

when exist) for the different models. The results of the models 0 and 1 are almost the same

as shown in the figure. However, when the balconies are added in model 2, a significant

decrease of the intercepted energy is noticed. The inclusion of the DEM reduces even more

the intercepted energy by the facades. It is important to point that the topography of the

district we are studying is not too rough, reducing its impact in our case.

In most studies, when no windows are added, the results presented are those of the facades

as in model 0. To be more accurate, the intercepted energy by the windows in models 1,

2 and 3 is compared to the intercepted energy by the walls in model 0, as shown in Figure

4.11. A further decrease of the intercepted radiation is detected, especially at the middle and

highest floors, since the windows surfaces’ area is less than that of the walls (not all walls

have windows). At lower floors, the intercepted energy is almost unchangeable because all

the buildings are mixed, which means that the windows of the first floors are in fact glazed

facades for shops which cover all the walls, i.e. the area of the windows is almost equal to

that of the walls.
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(a) Model 0, simply extruded

buildings

(b) Model 1, buildings with

windows

(c) Model 2, buildings with

windows and balconies

(d) Model 3, final 3D model with DEM generation

Figure 4.9: Different 3D models of the urban area used in the simulation of the radiative budget in

DART. The models represent different Level of Details (LoD).

Figure 4.10: Elevation profile of mean incoming radiation along the buildings’ facades, at 7am on 21

June (Band [470nm, 620nm].
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Figure 4.11: Elevation profile of windows mean incoming radiation along the buildings’ heights, at

7am on 21 June (Band [470nm, 620nm].

4.4 Effect of urban morphology on daylight

accessibility

4.4.1 Urban morphology metrics

Compact city as a sustainable urban form is a famous trend among urban planners.

Burgess defined the compact city approach as ”to increase built area and residential

population densities; to intensify urban economic, social and cultural activities and to

manipulate urban size, form and structure and settlement systems in pursuit of the

environmental, social and global sustainability benefits derived from the concentration of

urban functions” [93]. Hence, planners have recognized the economic and environmental

benefits of dense urban environments, such the optimal use of infrastructure and land, easy

access to services and social interactions. However, the increased urban density leads to a

conflict between space-use efficiency on one hand, and daylight access and walkability on

the other [94, 95]. Many researchers argued about an experienced sense of compactness or

compression influenced by the configuration of the urban zone. The qualification of an

urban space, especially at the street level, based on this experienced compactness sense can

be achieved through a range of urban design qualities [94] such as the imageability,

legibility, human scale, and many others. To quantify these perceptual qualities, indicators
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are implemented such as the sky view factor SVF, the aspect ratio, maximum view length,

solid angle of view to list a few [96, 97, 98, 99, 100]. On the other hand, daylight is linked

to buildings energy use and citizens’ health. Many studies have been carried out to measure

the solar access and the daylight availability in urban context [101, 102, 103] and assess its

impact on the urban energy use [104]. Urban canyon geometries impact the solar access and

were the subject of many studies to assess these relations [105, 26]. It was found that the

location, the sky components, the width and orientation of the streets, the architecture and

roof shapes of the buildings, the urban density and the optical properties of the materials of

the ground and the surrounding facades are key parameters that affect the solar access

[105, 26, 22, 106, 107].

In this study, focus is given to buildings’ heights, orientations and the scene complexity. We

also calculated the entropy of buildings and streets’ orientations and the roads network’s

circuitry to compare the two zones.

Entropy of buildings and streets’ orientations

The orientation entropies quantify the dispersal in the buildings and streets angles [105].

ρstreetorientation = −
N∑
i

pilogpi (4.5)

ρbuildingorientation = −
N∑
i

pilogpi (4.6)

where pi is the probability that a street or a building is oriented along a direction i with

respect to the North with i going from 0 to pi in steps of pi/15 and i from 1 to N with N = 25

is the number of bins.

Circuitry

The circuitry is defined as the ratio of the sum of all network’s pairwise distances D to the

Euclidean or straight-line distances De [105, 108]. It is also possible to use the great-circle

distance instead of the Euclidean distance as suggested by [109]. The circuitry measures the

tortuousity or the deviation from straightness of a road joining two points [105]. The average

circuitry of the nework in each study area is given as below:

C =
D

De
(4.7)
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Vertical daylight profile

The vertical daylight profile corresponds to the profile of the intercepted energy by an urban

component (in our case the windows) along the buildings’ height. The analysis of this metric

helps assessing the impact of urbanization on the daylight access on buildings’ floors.

4.4.2 Radiative Budget computation - DART

Daylight Radiative Budget

For every band in the simulation, DART generates a RadiativeBudgetFigures file, that gives

the radiative budget per triangle. We retrieved the information in the form of a list, where

each element has the following format:

[surfacetype, [x1, y1, z1, x2, y2, z2, x3, y3, z3], [energybudgetvalues, area]] (4.8)

� Surface type: we have many types of triangles: Ground, Walls, Windows, Roofs,

Balconies and Slabs. A number that is stored in the dart.typ file represents each type.

� The coordinates are those of the triangle vertices.

� Energy budget values: three types of energy: intercepted energy, absorbed energy and

scattered energy.

� Area of each single triangle.

Since we are looking to represent the daylight, we use the standard illuminant D65 defined

by the Commission Internationale de l’Eclairage (CIE) to convert the radiant energy into

luminous (i.e., visible) energy. An illuminant is a mathematical representation of the light

source based on human visual model, in this case the daylight. The average spectral sensitivity

of human visual perception is also presented, called luminosity function. The CIE distributes

standard tables with luminosity function values at 5nm intervals from 380nm to 780nm

(the interval can be reduced to 400nm to 700nm since the values of the luminosity function

becomes negligible at the wavelengths outside this interval). The following equation calculates

the total luminous flux in a source of light:

φV =

∫ ∞
0

ȳ(λ)φe,λ(λ)dλ (4.9)

Where
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� φV is the luminous flux, in watts.

� φe,λ is the spectral radiant flux, in watts per nanometer.

� ȳ(λ), also known as V (λ), is the luminosity function, dimensionless.

� λ is the wavelength, in nanometers.

Formally, the integral is the inner product of the luminosity function with the power

spectral density. In practice, the integral is replaced by a sum over discrete wavelengths for

which tabulated values of the luminosity function are available. However, in our case, we

divided the interval between 400nm and 700nm into 6 adjacent spectral bands as shown in

table 4.1. Then, we calculated the mean of the luminosity function values for each spectral

band as shown in the same table. Note that mean luminosity values must be divided by 100

since the relative value is 100 (for λ). Equation 4.9 becomes [110, 111]:

φV =
6∑
i=1

ȳ(∆λi)φe,λ(∆λi) (4.10)

Spectral band number Central wavelength [nm] Spectral bandwidth [nm] Mean Luminosity function [-]

1 425 50 93.55659

2 475 50 114.5002

3 525 50 106.5425

4 575 50 96.26877

5 625 50 86.35938

6 675 50 77.131782

Table 4.1: Central wavelength, spectral bandwidth and mean luminosity function of the 6 spectral

bands of the visible spectrum defined in this study.

Description of the case study

Two zones (shown in figure 4.12) were arbitrary chosen for this study, having different urban

complexity. The radiative budget on the external surfaces of 433 buildings in zone 1 and

414 buildings in B was simulated. Due to limited computational resources, the zones were

subdivided into zones (6 subzones in zone1 and 3 subzones in zone 2) . The zones’ boundaries
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were overlapping to account for the effect of shadows from neighboring buildings. Buildings

with missing function were considered residential. When no year of construction is available,

it was assumed that the buildings were built after 1991.

0 1 20.5
Km

Zone 1

Zone 2

Modeled 
Buildings

·

Figure 4.12: Buildings distribution in zones 1 and 2.

3D model generation

3D models of the buildings in the areas of interest were generated. Buildings were represented

as flat roof models, divided into floors with windows and balconies. The window to wall ratio

WWR and the optical properties of the windows, walls and roofs were identified based on the

buildings’periods of construction. The latter gives insights on the construction materials and

methods. A historical study of Beirut’s buildings architectural aspects was achieved for this

purpose. Five distinguished construction periods were identified. Spaces between buildings

were assumed to be all roads, so the ground was attributed asphalt properties.
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Materials’ optical properties

Different types of materials characterize the buildings’ components in Beirut. In the same

period of construction, different materials can be encountered. For example, the roofs in

1900-1923 may be constructed of roof tiles or earth roofing recently covered by asphalt, or

walls are either painted with white or beige color. Since no data regarding the materials’

distribution, buildings were randomly selected and assigned the materials corresponding to

their period of construction. Once the materials of the buildings components were identified,

their optical properties were set. DART has an embedded library ’Lambertian database’ with

a large number of available materials and it was used in our case. However, the material’s

color is an important factor that should be considered. Therefore, the properties should be

updated. A simple proportionality rule was applied based on the color’s RGB for each of the

six spectral bands of our simulations. Note that two dominating colors (beige and white)

characterize the buildings’ walls in Beirut. A python script was written to automatically

assign properties to the large number of groups of the obj files.

4.5 Results and discussion

4.5.1 Zones’ Urban morphology

The urban morphology of the zones is described by a set of urban metrics defined in section

4.4.1. Values of these metrics are reported in table 4.2. The two zones display similar

morphology in terms of buildings and streets orientations entropies and road network

circuitry. The buildings’ heights distribution in Figures 4.13 and 4.14 shows that 50.5% of

buildings in zone 1 have their heights between 20m and 30m while 40% of the buildings in

zone 2 have their heights between 10m and 20m. The rose diagrams in figure 4.15 show that

the buildings in both districts are mainly oriented north-south or east-west.
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Zone 1 Zone 2

Buildings’ orientations entropy 1.06 1.08

Streets’ orientations entropy 1.53 1.866

Road network circuitry 1.013 1.039

Table 4.2: Urban metrics characterizing the two zones.

Height [m]
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(a) Zone 1

0 18090 Meters

(b) Zone 2

Figure 4.13: Spatial distribution of the buildings heights in zone 1 and 2. The driving network is also

shown.
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Figure 4.14: Buildings’ heights distribution in both zones.
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Figure 4.15: Buildings’ orientations distribution in both zones.

4.5.2 Daylight availability and variability spatially and

temporally

The mapping of the solar radiation in the subzones of zone 1 is presented in figures 4.16

at 9 am on March 21, for the spectral band 400nm − 450nm. The 3D surface radiative

budget results reveal the impact of the complex urban morphology. Walls without balconies

receive higher energy compared to walls with balconies. Lower floors are less exposed to solar

radiation than higher floors. These effects are more pronounced in figure 4.17.
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Figure 4.16: 3D surface radiative budget of the intercepted energy by buildings in the 6 subzones of

zone 1, at 9am on March 21 (Band [400nm, 475nm], Illumination grid = 10cm).

To better quantify the variation of the daylight accessibility over the facades, the profiles

of the windows’ intercepted energy for daylight along the height of the buildings’ facades are

shown in figures 4.18 and 4.19 for zone 1 and 2 respectively. Their analysis demonstrates

how much of the daylight accessibility is lost at the lower floors in each zone. The losses are

quantified between the highest floors and the lowest ones at different hours and days of the

year; the minimum loss among the simulated dates is of 74.3% at 12pm on June 21, while the

maximum is of 87.8% at 9am on December 21 in zone 1. The losses are less dramatic, still

high in zone 2, and ranged between 46.8% at 9am on September 21 and 58.5% at 3pm on the

same day. The sudden increase at the end of each graph can be explained by the buildings

having the maximum height in each zone (75m in zone 1 and 127m in zone2), as can be see in

figure 4.14. These two buildings are both residential, having balconies on their floors acting
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Figure 4.17: A top view of the 3D surface radiative budget of the intercepted energy by buildings in

zone 1, at 5pm on September 21 (Band [400nm, 475nm], Illumination grid = 1cm).

as shading surfaces on the windows, except those of the last floors, of which the intercepted

energy and therefore the daylight accessibility are not obstructed external or self-shading.

Another interesting characteristic of the graphs in zone 2 is the almost steady variation of

energy between 80m and 120m in zone 2, which are in fact the energy intercepted by the

windows of the highest building in the scene, of 122m while the second highest building is of

87m.
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(c) 21 September
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Figure 4.18: Vertical profile of the intercepted daylight energy on the buildings’ windows in zone 1,

at different hours of fours days of the year.

68



0 200 400 600 800 1000 1200 1400
Windows mean incoming radiation in W/m2

20

40

60

80

100

120

E
le

va
tio

n 
[m

]

At 9:00
At 12:00
At 15:00

(a) 21 March

0 200 400 600 800 1000 1200 1400
Windows mean incoming radiation in W/m2

20

40

60

80

100

120

E
le

va
tio

n 
[m

]

At 9:00
At 12:00
At 15:00

(b) 21 June

0 200 400 600 800 1000 1200 1400
Windows mean incoming radiation in W/m2

20

40

60

80

100

120

E
le

va
tio

n 
[m

]

At 9:00
At 12:00
At 15:00

(c) 21 September

0 200 400 600 800 1000 1200 1400
Windows mean incoming radiation in W/m2

20

40

60

80

100

120

E
le

va
tio

n 
[m

]

At 9:00
At 12:00
At 15:00

(d) 21 December

Figure 4.19: Vertical profile of the intercepted energy on the buildings’ windows in zone 2, at different

hours of fours days of the year.

4.5.3 Daylight potential and urban forms: Neural networks

approach

Many studies have proved the impact of buildings’ orientations on solar potential and daylight

access [112]. The analysis of the results in the study hereby exhibits a difference of the

intercepted energy of maximum 26.3% at 9am on March 21 between buildings oriented 105◦

from north and buildings oriented 45◦ from north (clockwise), for example. Figures 4.20 and

4.21 show that the variations of the daylight as function of the buildings’ orientation in both

districts.

Non-linear multivariate regression was performed to predict the daylight availability by

correlating it to urban related variables. Neural Network NN was employed to achieve this

task. It was trained an tested using Python. The first step to create a NN is to identify its

input variables. In this study, quantitative variables were only used, and presented as follows:

� H̄S : mean height of surrounding buildings

� ŌS : mean orientation of surrounding buildings
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� σHS
: standard deviation of surrounding buildings’ heights

� σOS
: standard deviation of surrounding buildings’ orientations

� H: building height

� X: building x coordinate

� Y : building y coordinate

Surrounding buildings were identified as were the shading surfaces in section 3.4.2. Briefly, a

surrounding building (of height h) is a building that is 3.78h away from the target building

within a radius of 300m.

Due to different ranges of values of the NN features, scaling of the features was essential to

bring values to the same ranges. The values of the features were standardized by removing the

mean and scaling to unit variance using StandardScaler() from sklearn library, that calculates

the standard score of a sample x by applying the following equation:

z =
x− µ
s

(4.11)

where µ is the mean of the training samples, and s is the standard deviation of the training

samples. In this study, the multilayer perceptron (MLP) regressor neural network was

adopted. The number of hidden layers was identified through an optimization process to

reduce the mean absolute percentage error (MAPE). Figure 4.22 shows the variation of the

MAPE as function of the number of hidden layers. The optimum number of hidden layers is

one. The number of nodes of this layer is 5, representing 2/3 of the input layer nodes. The

sigmoid function was chosen and the following parameters were set: the number of

iterations (20 iter) and the learning rate (0.0001).

The data set was divided into a training set and a test set of 70% and 30% respectively.

Simulation were carried out on the training set. Figure 4.23 illustrates the weights matrices

of one of the generated neural network. By predicting the output of the test set using the

generated NNs, the MAPE varied between a minimum of 18% and a maximum of 42%

depending on the date on which the daylight is to assess and the representative area to

study.
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Figure 4.20: Mean facade intercepted daylight energy variation in function of buildings’ orientation

in zone 1.
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Figure 4.21: Facades intercepted energy variation in function of buildings’ orientation in zone 2.
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Figure 4.22: Mean absolute percentage error of the trained neural networks for each simulation.

The simulation index represents the number in sequence representing different dates. For example,

simulation index 1 refers to the simulation of the radiative budget at 12pm on March 21.
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Figure 4.23: Neural Network architecture
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Θ(1) =



0.53174389 0.06667163 0.23882406 0.64810746 0.01487057

0.94182258 0.5728948 0.86777523 0.98591874 0.31308534

-0.21180356 0.35333526 0.16929564 -0.40462198 0.30163634

-1.03993562 -0.34045903 -0.59007595 -1.12594992 -0.06314182

-0.89162078 0.0739178 0.27388839 -1.12847296 -0.22033479

3.26297866 0.96255204 1.57066297 3.44757584 0.04346199

-2.01832956 -0.93335633 -1.1382644 -2.1280587 -0.17493549



Θ(2) =



30.05716245

30.84769588

31.52834707

29.10211967

28.61908975


Figure 4.23: Weights matrices of the neural network hidden and output layer, for estimating daylight

at 3pm on 21December.

a(1) =



H̄S

ŌS

σHS

σOS

H

X

Y



� H̄S : mean height of surrounding buildings

� ŌS : mean orientation of surrounding buildings

� σHS
: standard deviation of surrounding buildings’ heights

� σOS
: standard deviation of surrounding buildings’

orientations

� H: building height

� X: building x coordinate

� Y : building y coordinate

4.5.4 Relation between daylight and electricity consumption

Daylight contributes in the energy loads of a building by its capability to reduce electricity

consumption by acting as a complement to artificial lighting [23]. In this section, we try to
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find the relation between daylight accessibility and electricity consumption in the two zones

of interest. For this purpose, we simulated the electricity consumption of buildings in both

zone as described in chapter 5. Buildings with metered data were included in the calibration

process of the energy model results and in the rest of the analysis, while non-metered buildings

were excluded. This reduced the number of buildings from 433 to 237 in zone 1 and from

413 to 242 in zone 2. Each value of the electricity consumption of the remaining building

was multiplied by its cluster average multiplicative factor to adjust it (more details in section

5.3.3 and 5.4.2). The daylight range was divided into bins, of which the mean electricity

consumption was computed. Results were plotted in figures 4.24 and 4.25. The analysis of

the graph showed that relation between daylight accessibility and electricity consumption is

not enough clear, with a general trend of increase of electricity consumption when daylight

availability increases. Two reasons can be thought of as possible explanations of these results.

First, the calibration process was applied at the bimonthly level, so caution should be taken

when using the calibration coefficients at the hourly level. Second, as the day progresses and

therefore the daylight increases, the human activities and their cooling and heating needs

increase. Anyhow, further analysis is required to understand the results and conclude the

relation between daylight and electricity consumption.
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At 9am
At 12pm
At 3pm

(d) 21 December

Figure 4.24: Mean electricity consumption as function of the daylight potential, normalized by floor

area, in zone 1.
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At 9am
At 12pm
At 3pm

(d) 21 December

Figure 4.25: Mean electricity consumption as function of the daylight potential, normalized by floor

area, in zone 2.
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4.6 Conclusion

In this chapter, the radiative budget module in DART is presented, revealing its accuracy and

advanced algorithms to simulate solar radiation in urban areas. Simulations of the radiative

budget then its conversion to present daylight is introduced. The results of the 3D radiative

budget shows the impact of the urban context and the buildings features on the assessed

daylight. The vertical elevation profiles of the windows intercepted energy illustrated the

expected reduction in daylight accessibility at lower floors. Moreover, neural networks are

developed to link daylight to urban morphology such as buildings heights, orientations and

location. The algorithm have an MAPE ranging between 17% and 40% depending on the

zone and the day of study.
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5. BEirut Energy Model BEEM

5.1 Introduction

This chapter introduces BEirut Energy Model BEEM, an UBEM developed for the city of

Beirut. It is an automated model applied in two districts within the city due to limited

input data. The chapter starts with the equations of the heat transfer and thermodynamics

embedded in EnergyPlus and applied to compute the energy budget of the buildings. It is

then followed by the methodology overview, which includes data preparation, parameters set-

up, model execution and calibration. Results of loads profiles and the electricity consumption

spatiotemporal distribution are shown to demonstrate the capabilities of the model.

5.2 Mathematical formulation

EnergyPlus, a free software tool, is a collection of modules that work together to calculate

the heating and cooling loads of a building under different environmental and operational

conditions. Through an integrated solution manager, EnergyPlus assures a physically

realistic simulation by linking and solving the building, system, and plant simultaneously

and by substitution iteration based on Gauss-Seidell numerical method [113]. The program

is presented as a series of integrated elements connected by fluid loops. In our project, we

tend to calculate the cooling and heating loads of our buildings, plus the electricity

consumption from equipment and appliances. For this reason, the zone-system connection is

only of interest and will be presented in the following section.
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5.2.1 Zone and Air system integration

The heat balance equation on the zone air is the following:

Cz
dTz
dt

=

Nsi∑
i=1

Q̇i+

Nsurfaces∑
i=1

hiAi(Tsi−Tz)+
Nzones∑
i=1

ṁiCp(Tzi−Tz)+ṁinfCp(T∞−Tz)+ṁsysCp(Tsup−Tz)

(5.1)

where:

� Cz
dTz
dt = energy stored in the air

�

∑Nsi
i=1 Q̇i = sum of the convective internal loads

�

∑Nsurfaces

i=1 hiAi(Tsi − Tz) = convective heat transfers from the zone surfaces

�

∑Nzones
i=1 ṁiCp(Tzi − Tz) = heat transfer due to interzone air mixing

� ṁinfCp(T∞ − Tz) = heat transfer due to infiltration and ventilation

� ṁsysCp(Tsup−Tz) = system energy provided to the zone formulated from the difference

between the supply air enthalpy and the enthalpy of the air leaving the zone through

the system return air plenum.

Energy Plus applies a Predictor-Corrector scheme to adjust the zone temperature at each

time step. The scheme is presented below:

� The load of the zone is used as a starting point since it drives the entire process. By

neglecting the capacitance of the air, and by assuming that the air system has sufficient

capacity to meet the zone loads requirements (i.e. Q̇sys = Q̇load), the equation becomes:

Q̇load =

Nsl∑
i=1

Q̇i+

Nsurfaces∑
i=1

hiAi(Tsi−Tz)+

Nzones∑
i=1

ṁiCp(Tzi−Tz)+ṁinfCp(T∞−Tz) (5.2)

In this case, Tz is the desired temperature of the zone defined by the control system

setpoints.

� The air system is simulated to determine its actual capability. In EnergyPlus, the air

system is a variable air system.

� By applying a third order backward difference algorithm to equation 3.1 , EnergyPlus

then updates the actual zone temperature based on the air system calculated

capabilities:
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T tz =(

Nsl∑
i=1

Q̇i +

Nsurfaces∑
i=1

hiAiTsi +

Nzones∑
i=1

ṁiCpTzi + ṁinfCpT∞ + ṁsysCpTsupply

− (
Cz
t

)(−3T t−tz +
3

2
T t−2tz − 1

3
T t−3tz ))

/(
11

6

Cz
t

+

Nsurfaces∑
i=1

hiA+

Nzones∑
i=1

ṁiCp + ṁinfCp + ṁsysC)

(5.3)

By this method, the zone temperature depends on the three previous time steps. The

next paragraphs present all modules and equations used by EnergyPlus to identify the

different parameters of the previous equation, such the surfaces temperatures Tsi and

convective coefficients hi, the infiltration and ventilation flow rates ṁinf and ṁvent in order

to balance the equation with the zone air temperature equal to the setpoint temperature.

However, it is important to present a brief overview of the air system model used in our

study that allows to calculate the supply conditions (air mass flow rate, temperature and

humidity).

5.2.2 Ideal Loads Air System

An ideal HVAC system model is applied to simulate the energy loads of the zones. It

corresponds to an ideal VAV terminal unit with variable supply temperature and humidity,

and it is not connected to a centralized source. The unit supplies cooling or heating air in

sufficient quantity to meet the zone load and other constraints such the humidity if

specified. The calculation procedure is presented below:

� Calculate the minimum outdoor air mass flow rate based on the specifications in the

DesignSpecification: OutdoorAir Object, if specified.

� Calculate the sensible and latent impact of the outdoor air flow relative to the zone

conditions.

� Determine if the unit needs to heat or cool by comparing the outdoor air sensible

impact and the zone load.

� Calculate the supply air mass flow rate based on the supply temperature limit and

humidification setpoint.

� Set the entering air conditions equal to the outside air conditions in case there is no

economizer either heat recovery.

79



� Calculate the supply air temperature as function of the zone loads, entering air flow

rate and temperature, but limit to the applicable temperature limit.

� Calculate the supply humidity ratio, but limit to the applicable humidity limit.

� Set the zone inlet node conditions to the supply air conditions.

� Calculate the unit output and load components.

5.2.3 Outside Surface Heat Balance

The outside surface heat balance is:

q′′asol + q′′LWR + q′′conv − q′′KO = 0 (5.4)

where:

� q′′asol = absorbed direct and diffuse solar short wavelength radiation heat flux

� q′′LWR = net long wavelength radiation flux exchange

� q′′conv = convective flux exchange

� q′′KO = conduction heat flux

Conduction through the walls (Exterior/External Conduction)

EnergyPlus presents three different modules to model the conduction through walls q′′KO:

� Conduction Transfer Function module CTF (default module used in our project)

� Combined Heat and Moisture Transfer module HAMT

� Effective Moisture Penetration Depth module EMPD

Conduction transfer functions are time series solution that linearly relates the heat flux

at either face of the surface of any generic building element to the current and some of

the previous temperatures at both the interior and exterior surfaces as well as some of the

previous flux values at the interior surface. To solve the CTFs, a state-space formulation is

used. After calculating the coefficient matrices of the state space system, Leveriers algorithm

[114] is applied to obtain the CTFs [115].
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Outdoor/Exterior Convection

The heat transfer from surface convection is calculated by applying the following equation:

Qc = hc,extA(Tsurf − Tair) (5.5)

where:

� Qc = rate of exterior convective heat transfer

� hc,ext = exterior convection coefficient

� A = surface area

� Tsurf and Tair = surface temperature and outdoor air temperature

The modeler can specify the values of the exterior convection coefficient for the surfaces,

even use schedules to encounter the values variations over time. However, EnergyPlus offers

a range of model equations to estimate this coefficient without the modeler intervention. The

options include:

� Simple Combined

� TARP

� MoWiTT

� DOE-2

� Adaptive Convection Algorithm

The algorithms are arranged by complexity and they differ by the depending parameters

they use to estimate the convection coefficient. In our model, we used the DOE-2 algorithm,

which is a combination of MoWiTT and BLAST Detailed models. For very smooth surfaces,

the following equation is applied:

hc,glass =
√
h2n + [aV b

2 ]2 (5.6)

where:

� hc,glass = convective heat transfer coefficient for very smooth surfaces

� hn = natural convective heat transfer coefficient

� a and b = constants

� Tsurf and Tair = surface temperature and outdoor air temperature
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hn is correlated to the surface orientation and the difference between the air and the surface

temperatures. For less smooth surfaces, the coefficient is calculated as follow:

hc = hn +Rf (hc,glass − hn) (5.7)

where Rf is the roughness coefficient. All the constants can be found in tables in the

Engineering Reference, in addition to the details of the remaining algorithms. Note that

when the outside environment indicates that it is raining, the exterior surfaces (exposed to

wind) are assumed to be wet. The convection coefficient is set to a very high number

(1,000) and the outside temperature used for the surface will be the wet-bulb temperature.

(If you choose to report this variable, you will see 1,000 as its value.)

Longwave radiation heat flux

It is a flux exchange between the surface, the sky, and the ground. The following assumptions

are adopted:

� each surface emits or reflects diffusely and is gray and opaque (α = ε, τ = 0 and

ρ = 1− ε)

� each surface is at a uniform temperature

� energy flux leaving a surface is evenly distributed across the surface,

� the medium within the enclosure is non-participating

The enclosure consists of building exterior surface, surrounding ground surface, and sky.

The longwave radiation heat flux is given by the following equation:

q′′LWR = q′′sky + q′′ground + q′′air (5.8)

By applying the Stephan-Boltzmann law, the equation becomes:

q′′LWR = εσFsky(T
4
sky−T 4

surface)+εσFground(T
4
ground−T 4

surface)+εσFair(T
4
air−T 4

surface) (5.9)

where:

� ε = longwave emissivity of the surface

� σ = Stephan-Boltzmann constant

� Fground = 0.5(1− cosφ) =angle factor between the surface and the ground

� Fsky = 0.5(1− cosφ) = angle factor between the surface and the sky
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� Fair = Fsky(1− β) = view factor of wall surface to air temperature

� φ = tilt angle of the surface

� β =
√

0.5(1 + cosφ)

The ground surface temperature is assumed to be the same as the air temperature. The sky

temperature is calculated as follows:

Tsky = (
Horizontal Infrared radiation Intensity

σ
)0.25 − 273.5 (5.10)

The horizontal infrared radiation intensity is available in the weather file. Notes: EnergyPlus

takes into consideration the variation of the temperature and the wind speed with respect to

the height above ground (in the case of high buildings). For this purpose, it calculates for

each floor the local air temperature and wind speed by identifying its centroid.

Shortwave radiation heat flux through surfaces

The shortwave radiation includes both direct and diffuse incident solar radiation absorbed

by a surface.

Sky Radiance Model

EnergyPlus calculates the diffuse solar radiation incident on an exterior surface, taking into

account, the anisotropic radiance distribution of the sky, the surface orientation and the

effects of shading of sky diffuse radiation by shadowing surfaces such as overhangs. It does

not account for reflection of sky diffuse radiation from shadowing surfaces or from the ground

[116]. The sky diffuse irradiance on a surface is given by:

Isky = AnisoSkyMulti×DiffuseSkyRadiation on the ground (5.11)

The sky radiance distribution is determined by three distributions:

1. An isotropic distribution that covers the entire sky dome

2. A circumsolar brightening centered at the position of the sun;

3. A horizon brightening
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The proportion of each component depends on the sky condition, characterized by the

clearness factor and the brightness factor.

Isky = RhorizonIhorizon +RdomeIdome +RcircumsolarIcircumsolar (5.12)

Where:

� Ihorizon = IhF2sinS = irradiance on surface from the sky horizon

� Idome = Ih(1− F2)(1 + cosS)/2 = irradiance on surface from the sky dome

� Icircumsolar = IhF1a/b = irradiance on surface from circumsolar region

where:

� Ih = horizontal solar irradiance (W/m2)

� S = surface tilt (radians)

� a = max(0, cosα)

� b = max(0.087, cosZ)

� α = incidence angle of sun on the surface (radians)

� Z = solar zenith angle (radians)

� F1 = f(ε,∆, Z) = circumsolar brightening coefficient

� F2 = f(ε,∆, Z) = horizon brightening coefficient

� ε = (Ih + I)Ih + kZ3(1 + kZ3) = sky clearness factor (0 value means an overcast sky,

2-3 means intermediate to clear)

� ∆ = (Ihm)I0 = sky brightness factor

� I = direct normal solar irradiance (available in the weather file)

� k = 1.041

� m = relative optic air mass

� I0 = 1353 W/m2 = extraterrestrial irradiance
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ε category lower bound upper bound

1 (overcast) 1 1.065

2 1.065 1.23

3 1.23 1.5

4 1.5 1.9

5 1.95 2.8

6 2.8 4.5

7 4.5 6.2

8 (clear) 6.2 –

Table 5.1: Discrete sky clearness categories

Rhorizon = Rdome = Rcircumsolar = 1 in case there is no shadowing; otherwise they are

the ratio of the irradiance with obstructions over the irradiance without obstructions (the

horizon is divided into intervals and the sum of the irradiance is calculated on each interval

as function of the angle and incidence angle).

Reflected Sky Long-Wave Radiation

The sky long-wave radiance distribution is assumed isotropic and in case of obstructions, it

is multiplied by a shading factor, Rdome. The long-wave radiation from these obstructions is

added to the long-wave radiation from the ground; in this calculation, both obstructions and

ground are assumed to be at the outside air temperature and to have an emissivity of 0.9.

Shading module

The aim of the shading module is to determine the sunlit area of a surface. The user can

set the shadowing calculations frequency. The default frequency value is 20 days, which

means that the solar position is averaged over twenty days to reduce runtime. Then, after

determining the sun position, surfaces that sun is behind are identified as shadowing surfaces.

The surfaces are then projected along the suns rays direction to the receiving surfaces. The

overlap between the shadows and the receiving surfaces are determined so the sunlit area can

be deduced.
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Solar Gains

The combination of direct and diffuse solar radiation gives the total solar gain of an exterior

surface:

Qsol = α(Ibcos
Ss
S

+ IskyFsky + IgFground) (5.13)

where:

� α = solar absorptance of the surface

� θ = angle of incidence of the suns rays

� S = area of the surface

� Ss = sunlit area

� Ib = intensity of direct radiation

� Isky = intensity of sky diffuse radiation

� Ig = intensity of ground reflected diffuse radiation (See Ground Reflectance section)

� Fsky = (1 + cosφ)/2 = angle factor between the surface and the sky

� Fsky = (1− cosφ)/2 = angle factor between the surface and the ground

5.2.4 Reflections

Ground Reflectance

The diffuse radiation accounts for ground reflection even if the reflection option

(WithReflection) is not used. However, if this option is turned off, shadowing of the ground

by the building surfaces and neighboring buildings are ignored.

GroundReflectedSolar = (BeamSolarcosθ + Id) × ρground where Id = diffuse solar

radiation (available in the weather file)

Solar radiation reflected from exterior surfaces

In case the reflections from exterior surfaces are taken into consideration, the WithReflection

option is used. Surfaces are categorized as follow:

� Shadowing surfaces: such as surrounding buildings or overhangs They are attributed

diffuse and/or specular reflectance values.
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� Exterior building surfaces: when a section of the building reflects solar radiation onto

another section. The program considers opaque surfaces (such walls) as diffusely

reflecting and calculates the reflectance values from the solar absorptance and visible

absorptance values. In contrast, glazed surfaces are assumed to be specularly

reflecting. Their reflectance values are calculated from the reflectance properties of

the individual glass layers that make up surfaces construction assuming no shading

device is present and taking into account interreflections among the layers.

� The ground surface (See Ground Reflectance Section): Beam solar and sky solar

reflection from the ground is calculated even if withReflections is not used (the

default). In this case, the ground plane is considered unobstructed, i.e., the

shadowing of the ground by the building itself or by obstructions such as neighboring

buildings is ignored. This shadowing is taken into account only if WithReflections is

used in the Solar Distribution field (in Building input object). In this case, the

user-input value of ground view factor is not used.

Note that the exterior solar reflection is done once and no inter-reflection is counted

[116]. To calculate the beam solar and sky solar radiation reflected on the buildings exterior

surfaces, a backward ray tracing method is applied.

Ray tracing method

An n-sided surface is assigned n receiving points with well-determined coordinates. The

radiation received by these points presents that of the whole surface. The ray tracing method

consists of sending out 90 rays into the exterior hemisphere surrounding each receiving point.

The beam solar and the sky solar radiance of the surfaces hit by the rays is calculated by

multiplying the total radiation by a reflection factor. The results at each receiving points are

averaged and the reflected radiation onto the surface is obtained. The radiance of each hit

surface is computed depending on its category.

� Sky solar radiation diffusely reflected from obstructions

� Sky solar radiation diffusely reflected from ground

� Beam solar radiation diffusely reflected from obstructions

� Beam solar radiation diffusely reflected from ground

� Beam solar radiation specularly reflected from windows
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5.2.5 Inside Surface Heat Balance

The inside heat balance is:

q′′LWX + q′′SW + q′′LWS + q′′Ki + q′′sol + q′′conv = 0 (5.14)

Where:

� q′′LWX = longwave radiant exchange flux between zone surfaces

� q′′SW = shortwave radiant flux to surface from lights

� q′′LWS = longwave radiation flux from equipment

� q′′Ki = conduction heat flux through the wall

� q′′sol = transmitted solar radiation flux

� q′′conv = convective heat flux to zone air

Before explaining each term in the equation, it is important to d zone internal gains, comprised

of convective, radiant and latent gains, from lights, people, and equipment.

Zone internal gains

Lights

The radiant gains from lights are divided into visible, thermal and convective portions based

on the light type.

People

By applying a polynomial function, the metabolic heat gain is divided sensible and latent

portions.

SensibleGain = 6.461927+0.946892×M+0.0000255737×M2+7.139322×T−0.0627909×T×M

+0.0000589172×T×M2−0.19855×T 2+0.000940018×T 2×M−0.00000149532×T 2×M2

(5.15)

where M is the metabolic rate (W) and the air temperature (C).

LatentGain = MetabolicRate− SensibleGain
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Interior Longwave Radiation

It includes absorption and emittance of radiation sources, such as other zone surfaces,

equipment, and people.

Internal Shortwave Radiation

Solar distribution of beam solar radiation through exterior windows

There are five modules:

� Minimal shadowing

� FullExterior

� FullInteriorAndExterior

� FullExteriorWithReflections

� FullInteriorAndExteriorWithReflections

In our case, we will use the FullExterior or the FullExteriorWithReflections modules. In

addition to beam solar radiation entering the zone, shadowing by exterior surfaces like

overhangs and exterior surfaces, and by windows and doors reveals are computed.

Assuming that the entering solar radiation falls into the floor, it is then absorbed according

to the floors solar absorptance. In case there is no floor, the absorption is on all interior

surfaces level. The reflected radiation is added to the transmitted diffuse radiation, which is

assumed to be uniformly distributed and the heat balance is applied to each surface. In

addition to the aforementioned computed terms, reflections from exterior surfaces are

considered in the case of FullExteriorWithReflections. However, the simulation is much

slower (See Solar Radiation Reflected from Exterior Surfaces section).

Interior Solar Distribution Calculation

The interior solar radiation consists of the beam solar radiation, diffuse solar radiation, and

short-wave radiation from electric lights. This radiation is apportioned as follows:

� absorbed on the inside face of opaque surfaces

� absorbed in the glass and shading device layers of the zones exterior and interior

windows

� transmitted through the zones interior windows to adjacent zones

� transmitted back out of the exterior windows.
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Interior convection

Many models are available within EnergyPlus to compute the inside convection coefficients

and there is no way to declare one is better than another. In our case, we applied the TARP

algorithm, which applies different equations for different situations depending on the surface

orientation and the difference of surface and zone air temperature.

� For no temperature difference or vertical surface:

h = 1.31|∆T |1/3

� For ∆T < 0 and upward facing surface or ∆T > 0 and downward facing surface:

h = (9.482|∆T |1/3)/(7.283− |cosΣ|)

� For ∆T > 0 and upward facing surface or ∆T < 0 and downward facing surface:

h = (1.81|∆T |1/3)/(1.382 + |cosΣ|)

where Σ is the surface tilt angle.

Interior conduction

It represents the heat transfer to the inside face of the building element and it is calculated

using the CTF formulation presented in section (Conduction through the walls).

5.2.6 Infiltration and ventilation

Infiltration Design flow rate

Infiltration is difficult to accurately model. It is the flow rate entering a zone mainly through

opening and closing of exterior doors and cracks around windows. The basic equation used

in EnergyPlus to calculate the infiltration rate:

QInfiltration = IdesignFschedule[A+B|Tzone−Todb|+C×windspeed+D×windspeed2] (5.16)

where:

� Idesign = Air Changes per Hour × Zone volume in m3/s
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� Fschedule = a value for a user-defined schedule (always 1)

� Todb = Outdoor air dry-bulb temperature

The coefficients A, B, C and D depends on the infiltration situation the user wants to simulate.

A B C D

Constant 1 0 0 0

Wind dependent 0.606 0.036359996 0.1177165 0

Natural ventilation

It is the ventilation caused by wind entering the zone through an open area (an open window

for example). The equation used is:

Qw = CwAopeningFscheduleWindspeed (5.17)

Where:

� Qw = volumetric air flow rate driven by wind

� Cw = opening effectiveness

� Aopening = opening area

� Fschedule = user-defined schedule value

The opening effectiveness is auto calculated in EnergyPlus:

Cw = 0.55− |EffectiveAngle−WindDirection|/180× 0.25 (5.18)

The wind direction is available in the weather file at an hourly scale. The effective angle is

the normal angle of the opening area. It is important to point out that Energy Plus also

takes other parameters that act as the threshold below or above which the natural ventilation

is shut off:

� Minimum and maximum indoor temperature (ArchSim only takes the minimum value

and calls it Setpoint, while the maximum value is put by default at 100◦C)

� Minimum and maximum outdoor temperature

� Maximum relative humidity (40% by default)

The max relative humidity in ArchSim is not used by EnergyPlus.
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Mechanical ventilation (Design Specification Outdoor air)

The mechanical ventilation is used to quantify the controlled air to enter a zone. In ArchSim,

the outdoor airflow per person and the outdoor air flow per zone floor area are summed up

after multiplying them by the occupancy density and floor area respectively. The result is

then multiplied by a fraction schedule. If an economizer is used, the outdoor airflow will be

augmented or reduced depending on limits that the user specifies. Heat recovery option is

also available but not applied in our case.

5.3 Methodology

5.3.1 Data preparation

As discussed in chapter 3, the number of modeled buildings is 3,630 distributed over two

districts in Beirut (figure 3.1). A topographic map was used to create the digital elevation

model. Hourly weather data is obtained from the Beirut International Airport weather

station, which is located along the Mediterranean coast in the southern suburbs of the city

of Beirut. However, when the model had to be calibrated with actual data, many of the

buildings were excluded for the following reasons:

� Null or missing electricity data as obtained from EDL.

� Unreasonable low or high electricity consumption by floor area.

� Unreliable data: the total yearly consumption is not convenient with the sum of the

bimonthly consumptions. In this case, manual intervention was applied where the

bimonthly electricity consumptions were adjusted by dividing the values by 1000, when

it was clear that it is a problem of units.

5.3.2 Parameters Set-up and boundary conditions

The following parameters have been used for the calculations.

We took into consideration the fact that many occupants use electrical heaters during

winter, which have different coefficient of performance than air conditioners, and we assumed

that they represent 70% of the occupants. According to [72], reversibe split units are used

in residential buildings and retail (therefore in mixed buildings). Heating and domestic hot
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Building Type Unit Residential Mixed Governmental Hospital School

Occupant density p/m2 0.03 0.05 0.05 0.054 0.23

Equipment Power density W/m2 12 12 12 21.5 15

Lighting Power density W/m2 7.5 7.5 10.7 12.9 12.9

Heating Setpoint ◦C 21 21 21 21 21

COP1* - 1 or 2.3 1 or 2.3 2.3 − 2.3

Cooling Setpoint ◦C 24 24 24 24 24

SEER2* - 2.9 2.9 2.9 3.3 2.9 or 3.3

DHW demand3* KWh/m2 10 10 − − −

1 Coefficient of Performance, defined as the ratio between the useful heating provided and the electric

energy usage.

2 Seasonal Energy Efficiency Ratio, defined as the ratio between the output cooling energy and the

input electical energy.

3 Domestic Hot Water

* Values are obtained from [72].

Table 5.2: Loads and conditioning parameters used for the electricity consumption calculations.

water are assumed to be provided by diesel biolers in hospitals. Therefore, they were not

considered in the electicity consumption budget. Central chiller is the main cooling system in

hospitals, and we assumed it is also available in recent governmental buildings and schools.

Shading surfaces such as balconies and surrounding buildings, and the ground were set

as boundary conditions.

3D geometric model was generated for each building as described in section 3.4.2. It was

then fed to EnergyPlus via ArchSim tool, which stored the building’s properties in an idf file,

ready to run. The files were distributed on four virtual machines created on Microsoft cloud

service Azure and run by EnergyPlus for the thermal model execution. For the calibration

process, the results were then processed and compared to the EDL data, when available, as

discussed next.

5.3.3 Model Calibration

As previously mentioned, bimonthly EDL data was available for a certain number of

buildings. Outliers were removed using density-based spatial clustering of applications with

noise (DBSCAN) and autoencoders algorithms, based on the buildings’ area, number of
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floors, type, year of construction and EDL consumption. Once outliers were identified, the

remaining buildings were clustered based on their simulated electricity consumption and

actual electricity consumption (EDL). This clustering helps identify buildings with similar

occupancy schedules.

The offset between EDL values and those predicted by the model can be mainly attributed

to behavioral patterns, HVAC systems and systematic errors. Hence, any correction to be

applied must be consistent with the above categorical errors, adaptable to the city’s context

and justified at the same time. For this purpose, the following interventions were

implemented:

� Systematic errors: 3 hours long electricity cutoff in Beirut accounts for a reduction

factor of 1/8, when averaged across the year. Hence, the simulated electricity

consumption was reduced by that amount. In addition, errors related to numerical

algorithms were eliminated. These errors are the results of the Energy Plus scheme to

adjust the zone temperature to meet the desired value defined by the control system

set points.

� HVAC systems architecture: cooling in Beirut relies mostly on unitary cooling units

associated to given areas. The units are rarely running at the same time. To this end,

we assume that only 50% of the floor area is cooled or heated at a given time, so that

the simulated cooling and heating consumption are reduced to the half. In addition,

when the outdoor temperature was less than 20◦C, the cooling loads were nullified.

� Energy use and occupancy profiles: after applying the previous corrections, we assumed

that the remaining discrepancies were caused by occupancy profiles, linearly altering the

total bimonthly electricity consumption by a certain factor. This assumption is justified

in section 5.4.2. Therefore, the calibrated energy consumption for each building was

obtained as the multiplication of model estimated energy consumption and the averaged

multipliers of its cluster.
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5.4 Results

5.4.1 Archetypes distribution and 3D model

The USJ data covered two districts in Beirut as shown in figure 5.1. Attributing archetypes

to buildings shows that residential and mixed buildings are the two main types in the two

districts with 57.9% and 38.4% respectively in district A and 62.7% and 35% respectively in

district B, as shown in figure 5.1. Almost 40% of the buildings in both districts were built

between 1941 and 1960 (the golden period) while 34% and 23% were built between 1961 and

1990 in district A and district B respectively, as shown in figure 5.2. The main difference

between the two districts is the buildings facing the sea in the north and the west of district

A. All of these buildings are residential and mixed. In addition, most schools, hospitals and

governmental buildings are within district B.

The 3D model of a neighborhood in the Bachoura area in district B is shown in figure 5.3.

The figure illustrates the use of archetypes to generate realistic 3D models from the thermal

point of view, including windows and balconies.

5.4.2 Data processing and model calibration results

After generating the thermal model, annual hourly loads from equipment, lighting, domestic

hot water, cooling and heating were aggregated into simulated electricity consumption for

residential and mixed buildings. In hospitals, the electricity consumption does not account

for the heating and hot water demands since they are met by steam boilers. As for schools

and governmental buildings, hot water is not available in general and therefore not

accounted for. The electricity consumption profiles for residential and mixed buildings are

described in section 5.4.3. Note that other building types were excluded from the

calibration process as we will see in the next paragraph.

Following the interventions implemented in section 5.3.3, 31% of the buildings had to be

removed due to missing EDL data entries. Note that all governmental buildings and

hospitals lacked EDL data and were, as such, eliminated at this stage. To ensure

consistency of the calibration process, schools, representing 1.3% of the remaining dataset,

were removed because their schedules are different than those of residential and mixed
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Figure 5.1: Buildings functions distribution in districts A and B
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Figure 5.2: Buildings years of construction distribution in districts A and B
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Figure 5.3: Sample of the generated 3D model of buildings in the Bachoura area, Beirut, Lebanon.
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buildings.

After applying the noise detectors algorithms (dbscan and autoencoders ), 64 buildings in A

and 117 buildings in B were recognized as noises and therefore eliminated. The remaining

data included 481 buildings in A and 1,830 in B, all residential or mixed. The average EDL

electricity consumption per floor area for the final set of buildings was 69 kWh/m2 and 83

kWh/m2 for residential and mixed buildings respectively in district A, and 62 kWh/m2 and

68 kWh/m2 for the same buildings types respectively in district B. The simulated

consumption was greater than the actual consumption by a minimum of 2.5% and a

maximum of 236% in district A, and a minimum of 2.85% and a maximum of 262% in

district B.

Model calibration is done by applying a k-means clustering to the ratio of EDL to predicted

consumptions. This led to the identification of four clusters of buildings in each district, as

shown in figures 5.10a and 5.11a. The number of clusters was defined based on an

optimization procedure for each district. The model overestimated the electricity

consumption in most buildings, mainly grouped in clusters 0 and 1 in both districts.

Clusters 3 grouped buildings with EDL to simulated electricity consumption ratio ranging

between 0.6 and 1.3 in district A and between 0.5 and 1.5 in district B. The consumption of

only 21 and 34 buildings were underestimated in districts A and B respectively.

No specific relation between the clusters distribution and the buildings coordinates

could be concluded. Moreover, the clusters distribution was shown to be independent of the

buildings’ type, year of construction and archetypes, as shown in figures 5.6-5.8.

Thus, energy use and occupancy profiles can be considered as the main source of the

disparities between actual and predicted consumption. More specifically, maximum

occupancy corresponds to buildings whose electricity consumption is the highest compared

to their counterparts with the same number of floors. Figure 5.9 shows a strong correlation

between the maximum actual consumption and the predicted consumption of each building

normalized to its acutal consumption, which validates our hypothesis. As a result, we

assumed that the discrepancies in electricity consumption between EDL and our model

were related to usage profiles and hence, we adjusted the consumption of each building

according to its cluster coefficients representative of specific energy patterns. Table 5.3

summarizes the clusters multipliers for both districts.
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The calibrated results, plotted against EDL data in figures 5.10b and 5.11b, show that the

buildings consumption of each cluster are more grouped around the identity axis.

Outliers

Cluster 0

Cluster 1

Cluster 2

Cluster 3

Near shore0 0.25 0.50.125
Km

Figure 5.4: Distribution of district A buildings based on their clusters
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Figure 5.5: Distribution of district B buildings based on their clusters
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Figure 5.6: Ratio of actual consumption over predicted consumption of buildings in district A,

distributed based on their year of construction (right) and their type (left)
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Figure 5.7: Ratio of actual consumption over predicted consumption of buildings in district B,

distributed based on their year of construction (right) and their function (left)
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Figure 5.8: Clusters distribution as function of archetypes (District A: left, District B: right)
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Figure 5.9: Correlation between the ratio of the maximum EDL consumption by floor to EDL

consumption, and the ratio of the predicted consumption to EDL consumption.
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Jan-Feb Mar-Apr May-Jun Jul-Aug Sep-Oct Nov-Dec

District A Cluster 0 0.35 0.351 0.313 0.271 0.274 0.391

Cluster 1 0.793 0.82 0.743 0.618 0.665 0.933

Cluster 2 1.556 1.618 1.38 1.136 1.165 1.779

Cluster 3 3.18 3.01 2.54 2.07 2.219 3.16

District B Cluster 0 0.326 0.306 0.236 0.199 0.216 0.408

Cluster 1 0.697 0.764 0.689 0.610 0.629 0.945

Cluster 2 1.38 1.483 1.310 1.139 1.187 1.815

Cluster 3 2.307 2.767 2.592 2.186 2.346 3.331

Table 5.3: Multipliers used to equate the bimonthly profile consumption with the cluster average

consumption.
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Figure 5.10: Scatter plots of buildings consumption in District A for (simulated electricity consumption

in kwh/m2) in x axis versus (actual electricity consumption in kwh/m2) in y axis after clustering.

102



0 50 100 150 200 250 300 350
Simulated electricity consumption in KWh/m2

0

50

100

150

200

250

300

350

400

A
ct
ua

l e
le
ct
ric

ity
 c
on

su
m
pt
io
n 
fro

m
 E
D
L 
in
 K
W
h/
m
2

Cluster 0
Cluster 1
Cluster 2
Cluster 3

(a) Default EPlus configuration: full occupancy

with ASHRAE standards

0 50 100 150 200 250 300 350
Simulated electricity consumption in KWh/m2

0

50

100

150

200

250

300

350

400

A
ct
ua

l e
le
ct
ric

ity
 c
on

su
m
pt
io
n 
fro

m
 E
D
L 
in
 K
W
h/
m
2

Cluster 0
Cluster 1
Cluster 2
Cluster 3

(b) Adapted EPlus results to Beirut occupancy
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Figure 5.11: Scatter plots of buildings consumption in District B for (simulated electricity consumption

in kwh/m2) in x axis versus (actual electricity consumption in kwh/m2) in y axis after clustering.

5.4.3 Loads profiles

Comparison of the electricity consumption from EDL data with model predicted and

calibrated output at a bimonthly resolution for the buildings in both districts is shown in

figure 5.12. Table 5.4 illustrates the differences between the model outputs and EDL data

before and after calibration.

The predicted model overestimated the electricity consumption by a minimum of 6,607

MWh in March - April and a maximum of 17,281 MWh in July- August in district A. In

district B, the overestimation was much dramatic ranging between 22,757 MWh in March -

April and 53,614 MWh in July- August. After calibration, the model almost attained the

overall actual bimonthly consumption with an absolute difference between calibrated and

actual values ranging from 33 to 132 MWh in district A and from 25 to 475 MWh in district

B. The average RMSE of the yearly consumption was reduced from 105 kWh/m2 the 25

kWh/m2 in District A and from 112 kWh/m2 to 22 kWh/m2 in District B.

We found out that the monthly variation of the energy consumption predicted by the

model before and after calibration follows a similar trend to that the of actual data: March

and April were the months of least consumption, while peaks were detected during the hot

months (July and August). The figure 5.12 also depicted the overestimation of the electricity

needs variation over the year. The increase in energy demand between the less consumer

months (March and April) and the most consumer months (July and August) was predicted

by 97% and 107% for residential and mixed buildings respectively in district A, while in
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District A Jan-Feb Mar-Apr May-Jun Jul-Aug Sep-Oct Nov-Dec Yearly

EDL (Mwh) 6, 302 5, 675 6, 674 7, 506 6, 650 6, 413 39, 220

Predicted (Mwh) 13, 444 12, 282 18, 144 24, 788 20, 522 13, 289 102, 469

RMSE (Kwh/m2) 15 12.5 18.8 27.5 22 13.1 105.4

Calibrated (Mwh) 6, 250 5, 733 6, 737 7, 473 6, 693 6, 545 39, 433

RMSE (Kwh/m2) 6.5 4 4.6 5.2 4.8 4 23.7

District B Jan-Feb Mar-Apr May-Jun Jul-Aug Sep-Oct Nov-Dec Yearly

EDL (Mwh) 15, 631 14, 017 16, 993 20, 229 17, 702 18, 013 102, 585

Predicted (Mwh) 40, 989 36, 774 53, 977 73, 844 60, 904 39, 632 306, 119

RMSE (Kwh/m2) 17.8 12.5 19.6 29.1 23 13.4 112

Calibrated (Mwh) 15, 156 14, 237 17, 017 19, 913 17, 602 17, 898 101, 823

RMSE (Kwh/m2) 4.7 3.4 4.4 5.1 4.4 4.5 22

Table 5.4: Comparison between the energy model outputs and the actual metered data before and

after calibration.

reality, it was only of 32% for both buildings types in district A. Very similar trends were

found in district B, except that the actual increase was of 42% between the second couple

and the fourth couple of months.
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Figure 5.12: Total electricity demand in districts A and B
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Figures 5.13 and 5.14 show the end-use apportionment of the bimonthly electricity

consumption after calibration for residential and mixed buildings in both districts. Table

5.5 summarizes the percentage of energy consumption for each end-use in the two buildings

types. Electricity consumption for cooling needs was the highest during the period from

May till October, accounting for 43%, 54%, 55% and 74% of the total electricity

consumption during July and August in residential and mixed buildings respectively, in

district A and similarly in district B. Heating, on the other hand, reached its maximum

shares during the first two months of the year with 14% and 16% in residential and mixed

respectively in district A and with 16% and 15% in these buildings in district B. Equipment

had almost fixed energy consumption in both buildings types, with maximum shares of 39%

and 52% during March and April in residential and mixed buildings respectively, in both

districts. Hot water, provided by electrical heaters in residential floors, shared the highest

proportion of the total energy consumption in residential buildings during the last two

months of the year with 40% and shared a lower proportion of 22% during summer in both

districts. In mixed buildings, its share ranged between 10% in hot months and 23% in cold

ones in both districts. Lastly, lighting needs decreased slightly during summer season and

its shares were quite moderate, ranging between 9% and 18% in residential buildings, 8%

and 21% in mixed buildings. However, by calculating the proportion of each component

over the entire year, the equipment and hot water in residential buildings shared 32% and

31% of the total annual electricity consumption, while the cooling revealed to be of 19% in

both districts. Mixed buildings, on the other hand, had 39% of their electricity

consumption for appliances, followed by 31% for cooling in both districts.
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District A Jan-Feb Mar-Apr May-Jun Jul-Aug Sep-Oct Nov-Dec Yearly

Residential Equipment 33 39 32 26 29 37 33

Lighting 16 16 11 9 12 18 13

Heating 15 3 0 0 0 4 4

Cooling 0 4 29 44 34 0 19

Hot water 36 38 28 22 25 40 31

Mixed Equipment 45 53 37 28 32 53 40

Lighting 18 17 10 8 11 21 13

Heating 15 2 0 0 0 5 4

Cooling 0 9 41 56 47 0 28

Hot water 20 20 12 9 11 22 15

District B Jan-Feb Mar-Apr May-Jun Jul-Aug Sep-Oct Nov-Dec Yearly

Residential Equipment 32 39 32 25 29 37 33

Lighting 15 16 11 9 12 18 13

Heating 18 3 0 0 0 5 4

Cooling 0 4 29 44 34 0 19

Hot water 35 38 28 22 25 40 31

Mixed Equipment 47 53 37 28 33 53 41

Lighting 18 17 10 8 11 21 13

Heating 17 2 0 0 0 5 3

Cooling 0 8 41 55 46 0 28

Hot water 19 20 12 9 11 22 15

Table 5.5: Percentage of energy consumption by end-uses for residential and mixed buildings in both

districts.
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Figure 5.13: Bimonthly calibrated electricity consumption by buildings types in District A
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Figure 5.14: Bimonthly predicted electricity consumption by buildings types in District B

By combining the model output with GIS mapping techniques, a spatiotemporal

distribution of the energy consumption is obtained, as shown in figure 5.15. Note that

buildings with the highest consumption were built between 1941 and 1990.
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Figure 5.15: Spatio-temporal distribution of the bimonthly predicted electricity consumption of the

buildings in district B

5.4.4 Spatial autocorrelation

In order to examine the spatial variation of the electricity consumption of residential and

mixed buildings, we used global Moran’s I to evaluate the spatial autocorrelation. Moran’s
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I assesses if the electricity consumption exhibits certain spatial patterns or it is random.

Its values ranges from -1 to +1, where positive values indicate spatial clustering (i.e., large

values are surrounded by other large values) and negative values indicate spatial dispersion

(i.e., large values are surrounded by other small values). To reject the null hypothesis, a

measure of uncertainty is essential with the Moran’s I measure. Z-score and p-value are used

for this purpose.

To determine to which extent a variable is dependent on the values observed at neighboring

locations, we implement an incremental spatial autocorrelation. The analyses were based on

the energy consumption per building. Results are shown in figures 5.16 and 5.17 for district

A and B respectively. By comparing EDL autocorrelation results with the calibrated model

results, they both appeared to be the strongest at 60m in district A. On the other hand,

predicted energy consumption in district B showed similar results as the EDL data with the

strongest correlation being at 40m for all end-uses. The p-value was less than 1% which

indicates that the distribution of the energy consumption is not random.
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Figure 5.16: Autocorrelation analysis of electricity consumption in district A
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Figure 5.17: Autocorrelation analysis of electricity consumption in district B

Figure 5.18 show lumps of buildings with high consumption and other with low

consumption, as proof of concept of the spatial auto-correlation clustering of buildings.
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Figure 5.18: Spatial distribution of buildings energy consumption in district B

5.4.5 Archetypes Spatial correlation

In order to determine if buildings of different archetypes are linearly related in terms of

electricity consumption, the Pearson coefficient was used. The value of the Pearson coefficient

ranges from -1 to 1. When it approaches 0, the correlation of the two variables is weak. If the

correlation factor is near 1 or -1, a strong correlation exists between the two variables. The

Pearson coefficient is used to analyze the relation between a building’s energy consumption

with the neighboring buildings. However, the definition of neighbors buildings can vary.

Therefore, we applied the correlation analysis to a radius of 1500m with a step of 50m.

When no buildings of the corresponding archetype reside within the given distance or no

sufficient information can be deduced, null values were forced. In district A, correlation was

only found between the electricity consumption of mixed buildings from the third period

of construction and residential buildings from the second period on one hand and mixed

buildings from the fourth period on the other hand, as shown in figure 5.19. The correlation
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was quite moderate in both cases and was lost at 200m in the first case and at 100m in the

second. In district B, a significant correlation was found between residential buildings of the

fourth period and mixed buildings from the third period of construction ranging from 0.75

at distances less than 50m to 0.25 at 100m. Furthermore, mixed buildings from the second

period of construction had positive correlation with mixed and residential buildings from the

third and fourth periods of construction.
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Figure 5.19: Spatial correlation between energy use of different buildings types in district A
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Figure 5.20: Spatial correlation between energy use of different buildings types in district B
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5.4.6 Temporal correlation

In order to determine the temporal variation of the electricity consumption, we applied linear

correlation analysis between the energy consumption of the different months by the use of

the Pearson coefficient. The analysis was conducted at the monthly resolution (figures 5.21-

5.24). As in the previous section, null values were forced when there was no consumption of

electricity.

A significant correlation characterized the electricity consumption of cooling equipment in hot

months. For March and April, the correlation factor was around 0.85 and 0.95 respectively

in district A and 0.7 and 0.8 respectively in district B with respect to months between May

and October. The cold months were also highly correlated in terms of heating.
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Figure 5.21: Monthly correlation of cooling loads (District A)

114



0.00

0.25

0.50

0.75

1.00
January February March

0.00

0.25

0.50

0.75

1.00
April May June

0.00

0.25

0.50

0.75

1.00
July August September

1 2 3 4 5 6 7 8 9 10 11 12

0.00

0.25

0.50

0.75

1.00
October

1 2 3 4 5 6 7 8 9 10 11 12

November

1 2 3 4 5 6 7 8 9 10 11 12

Heating

December

Month

C
or

re
la

tio
n 

Fa
ct

or

Figure 5.22: Monthly correlation of heating loads (District A)
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Figure 5.23: Monthly correlation of cooling loads (District B)
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Figure 5.24: Monthly correlation of heating loads (District B)

5.5 Discussion and conclusion

The previous sections have shown how to build, generate and calibrate an UBEM, capable

of predicting the electricity consumption of a city by capturing the buildings behaviors.

The model takes as input, data containing buildings footprints, heights, floor area, number

of floors, the corresponding archetypes as well as a weather file and a topographic map.

Here, an updated weather file, encapsulating the global climate change and the UHI in

Beirut is required for the full-scale energy model of the city, especially with the high density

of diesel generators dispersed over the city and between buildings. Moreover, a

high-resolution topographic map can reduce the complexity of the model when generating

the elevation profile of the city and projecting the buildings onto the inclined plane.

The geometrical properties such the WWR and the construction materials were obtained

from previous studies, while the non-geometrical properties were collected from local

reports when available and existing libraries. Efforts in this regard should be carried out to

create an appropriate database for Beirut that incorporates construction materials and

their thermal properties. The discrepancies between BEEM predictions and actual

116



consumption data can be associated to the number of appliances, and occupancy schedules

related to occupant’s comfort and income level. In this context, most residents in Beirut

tend to reduce their electricity usage for heating in winter. Moreover, during hot seasons,

occupants tend to switch between different modes of cooling, including air conditioners,

electric fans and natural ventilation. The penetration rates of HVAC systems and their

properties should be further examined, especially in buildings built prior to 1945,

characterized by their climate responsive architecture and application of sustainable

concept [117]. These buildings rely on environmental conditions for indoor thermal comfort.

However, these buildings may have lost their intended characteristics with the random

construction and the effect of climate change. Identifying the occupancy patterns and

population densities should be a first basic step to enhance the reliability of UBEMs.

Moreover, extensive periodic audits are required to investigate occupant-related parameters,

such as economic status, internal thermal comfort, appliances usage, daily and seasonal

occupancy schedules and activities.

The main challenge faced during this study was the setup of schedules. As previously

mentioned, the absence of energy use and occupancy profiles led the authors to adopt

standardized schedules. The model exhibited a heavy burden on the energy sector in case

citizens adopt a western expensive and comfort lifestyle. In fact, Lebanon is considered an

economically weak country. Moreover, the electricity rationing already thrusts residents to

modify their behavioral patterns resulting in an amount of suppressed demand. However, in

presence of bimonthly metered data (EDL data), it was possible to inspect the Lebanese

energy use patterns and relate them to socio-economic and political circumstances of the

country. Predicted energy was adjusted by an analytical automated objective process as

shown in section 5.3.3. It was clear that a lower monthly variability characterizes the

electricity consumption of residential and mixed buildings, compared to the simulated one,

mainly attributed to the overestimated cooling demand. This was partially corrected by the

assumption that buildings floors are partially cooled (and heated). The remaining

differences can be explained by the fact that many Lebanese families (up to 15%) own two

or more houses [71] in other regions in the country and leave the city during summer

vacation. Moreover, high numbers of residential units are unsold or vacant, owned by

expatriates or investors. Up-to-date statistics of this regard are needed to correctly estimate

the energy consumption per household and per capita. However, issues related to data
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accessibility and privacy may be raised and should be properly addressed.

The calibration was employed at the temporal scale of the real data and yield

satisfactory accuracies for the overall building energy demand. However, the authors cannot

claim accuracy at hourly level with no metered data for validation and/or calibration.

Efforts should be placed on recording hourly electricity consumption by EDL or by

occupant behavior modeling techniques [118, 119, 120]. The calibrated electricity

consumption showed similar spatial clustering as the metered data from EDL in both

districts, as was found in section 5.4.4. This proves the relevance of our calibration process.

The energy model can be employed to relate the observations of electricity consumption at

one location to those at other locations. The main interest in revealing spatial clustering is

its importance in generating zones for smart grid distribution. It is important to note that

the perimeter of the neighborhood or city divided by the auto-correlation length is

supposed lead to the same number of similarly behaviors clusters of buildings obtained in

section 5.3.3 or the same number of archetypes. However, our district perimeter over the

obtained correlation length did not match the number of clusters neither the number of

archetypes for many reasons: first, our data is incomplete and many buildings were

eliminated before the calibration process. Secondly, on the top of a cluster or archetype,

there may be multiple classes of behaviors, especially since in our model, we are attributing

each floor an archetype. Exemplary, mixed buildings include residential, offices and retail

floors, each with its own schedules. Moreover, their proportions depend on the total number

of floors, so a mixed building with 4 floors differ in terms of occupancy-related parameters

from a mixed building with 8 floors, and so on. In addition, Beirut City represents the

central administrative and commercial area of Lebanon. Human’s mobility in and out the

city needs to be investigated as highly possible influence on the energy demand [121],

especially when extending the scope of the model to the whole city and integrating

commercial and governmental buildings. Therefore, further research are required to improve

the spatial auto-correlation study.

In the generation of an UBEM, each building is represented as an individual 3D thermal

modeling dependent on its urban context, attributed an archetype based on a set of

parameters. Temporal loads profiles are then coupled with GIS mapping techniques to

support urban decision making. Considering these characteristics, no UBEM studies within

the Mediterranean region was previously achieved. Bottom-up studies were mainly focusing
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on defining representative buildings for the building stock and assessing their energy

performance [122, 57]. In Spain, a bottom-up approach combining statistical and

engineering models was used to predict the energy performance and indoor thermal comfort

of a neighborhood of a city located on the Mediterranean coast of the country [123]. The

methodology consisted of correlating covariates such as the urban layout geometry and

solar influence to variables such as the cooling and heating energies, and discomfort heating

and cooling hours. The prediction models were then applied to buildings in a neighborhood

without representing them by 3D architectural thermal models. Other studies were applied

to correlate the urban texture to UHI [124] with a top-down approach and a simplified

representation of the urban morphology. A similar study was applied to Beirut using the

Town Energy Model (TEB) [125]. TEB [11] is a conceptual model that simulates the energy

and water exchanges between the city and the atmosphere by parametrizing the dynamic

and thermodynamics interactions. It is based on the urban-canyon geometric model [12].

These approaches are limited to specific applications. Though they compute fast

simulations, the simplified representation of the urban canyon leads to a lack of necessary

details for the assessment of any future interventions at the building level and end-uses

level. In addition, the model does not incorporate the stochastic occupant behaviors. The

bottom-up approach presented in this paper overcomes all these drawbacks and enriches the

accuracy of the model. Furthermore, its calibration concentrates on integrating the

significant weight of occupant behaviors into the urban model. Its capability to handle the

complexity of an urban area can be used to enhance the findings of the previous studies

within the Mediterranean region. The adopted methodology can be replicated in any other

districts or cities in Lebanon and the region. Its multi-scalability is recognized spatially

when ranging from building to the city level, and temporally when ranging from hourly to

yearly resolution. This allows for a spatiotemporal energy patterns analysis to allocate hot

spots and peak times of energy demands. In this regard, 2D and 3D urban energy maps are

very informative (figure 5.15) and enable critical analysis. Application of energy

conservation or retrofit measures to specified buildings with high energy demands can then

be explored. Moreover, the scaling down to hourly energy consumption patterns is crucial

for the management of the energy distribution by smart rationing of electricity. In this

context, the model may provide insights into the optimal integration strategy of the solar

power on buildings rooftops, as will be studied in future research.
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Policy Implications

To meet the GHG emissions reduction goals, limit the energy demand and achieve security

of energy supply, the country needs to introduce energy policies to manage the energy

sector and resources in the city and that are more social and environmental oriented.

Energy policy can be d.efined as a strategy adopted by a given entity (often the

government) to address issues related to energy development to insure its sustainability,

including energy production, distribution and consumption [126, 127]. Legislation,

international treaties and incentives are among the main outcomes of an energy policy.

The main purpose of UBEM is to act as a decision support tool for architects, urban

planners and energy policymakers to assess the current energy demand patterns and the

future impacts of energy retrofitting programs and energy supply infrastructure changes

[18]. In the previous sections, the generation of an UBEM for Beirut City has been shown.

Due to uncertainties related mainly to human behaviors, the model had to be calibrated for

reliable results compared to metered data so that it can inform energy policies.

Recommendations for the management of the energy in Beirut based on scientific evidence

from this research were published in the policy brief entitled Beirut as a Smart City:

Redefining Urban Energy, in collaboration with Issam Fares Institute for Public Policy and

International Affairs at the American University of Beirut (Appendix B). For Lebanon, a

country with chronic energy sector failings reflected by the widening deficit of power

delivery and quality, this work offers three distinct policy connections that could help with

resolving real and existing challenges:

� First, due to the unrefined and bi-monthly billing of electricity as well as the distorted

electricity market in the country, EDL, the national power utility does not have an

accurate account for consumption loads and their variations spatially and temporally.

The developed model provides a powerful tool to understand better load variations,

and thus plan future strategies and investments accordingly. For example, one of the

main techno-policy challenges lies in estimating Lebanons real demand for electricity

and its growth rate in the future due to the complex interactions between EDL and

operators of private diesel generators, some of which are metered and some remain

largely unregulated; and the existence of suppressed demand that is due to EDLs

failure to provide power around the clock. With the help of smart metering that EDL
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is starting to implement, this model can be used to scientifically calibrate, verify and

estimate growing demand on a national and sub-national scales.

� Second, until EDL can provide electricity without any interruptions, power outages

will continue to occur. Predicting electricity consumption patterns in Beiruts urban

environment, as shown in this work, could ultimately help inform smart rationing of

the electricity that provides an efficient mapping between loads and available supply

capacity.

� Third, the developed model could be utilized to test various policy instruments and

ideas that promote energy savings such as the implementation of building efficiency

codes, installation of water heaters, etc. One particularly useful application is to test

the potential of rooftop solar PV systems to meet demand, or part of it, during certain

daily and yearly peak times. Separately, the authors are working on a PV supply

study that can ultimately be coupled with this work to provide a real assessment of

the potential of rooftop solar PV systems to provide cost savings as well as increase

power coverage in Beirut.
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6. Conclusion and perspectives

The raising concerns regarding cities’ sustainability oriented recent research to focus on

possible demand reduction and clean supply of the energy. Technologies to satisfy the

twofold objective of energy management are available, but the problem is confined on how

to contextualize their implementation for a specific application. This difficulty is mainly

related to lack of information describing the specific demand-supply nexus. Based on the

state of the art overview, urban building energy models have proved to be effective

management tools for present and future energy estimations, and for assessment of possible

technological interventions’ impacts on urban energy, for the purpose of informing policy

and programmatic decision making.

The limited application of such tools is partially explained by the availability of data.

Chapter 3 focuses on the nature of data indispensable to create an urban energy model.

Accordingly, an examination of the availability, completeness and usefulness of the data

sources are required. This leads to an assessment of the required efforts to complete,

pre-process and organize this data, considering its dispersal nature and reliability. Data

management and flexible storage are two key points to facilitate its use and provide

organized and clean inputs for the simulation tools. In order to construct adaptable data,

remote sensing tool and machine learning algorithms were applied. An archetypal

classification of buildings, based on their types and periods of construction, was adopted to

reduce the complexity of dealing with large number of buildings at the urban scale. After

this crucial step of data management, 3D geometrical approach was entirely developed to

automatically generate the 3D thermal buildings and further subdivide them into floors.

Balconies and DTM are added features to the model, and their integration was justified

with a simplified example in chapter 4, as affecting parameters in the radiative budget, and

hence the energy budget of buildings. Given the limited amount of useful data, the study
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was limited to two districts within the city of Beirut.

In chapter 4, a new approach to simulate daylight accessibility in urban areas and thus link

it to urban morphology was presented. The methodology is based on advanced

computational tool to simulate the radiative budget in urban environment. Given the

complexity of the 3D model of the districts involved in this chapter, the simulations were

complex and time consuming. Of course this could be controlled by simplifying input

parameters such as the illumination grid size and geometries meshing, but this intervention

would be at the expense of results accuracy. By adopting a simplified approach, the impact

of urbanization on daylight access was assessed and revealed a significant decrease. Due to

unavailability of satellite images for old Beirut for 3D radiative budget comparison, another

approach was adopted, where urban aspects such as the average height and orientation of

surrounding buildings, their standard deviation, the building’ height and position in space

were associated to daylight availability on buildings’ facades with artificial neural networks

algorithms. With a MAPE error of 17%, the trained algorithm presents a reliable and

consistent method to assess daylight accessibility for urban planning, future buildings’

design and estimate its variation over the years if input features could be obtained. Chapter

5 represents the fundamental core of this thesis. The development of BEirut Energy Model

was represented. The 3D model generated in chapter 3 fed a dynamic energy simulation

engine to calculate the energy loads of 3,360 buildings, and then their electricity

consumption. However, the limited available information and substantial uncertainties

mainly related to simulation tools, energy systems and occupant behaviors should be

addressed to adjust the predictable capacity of the model to study urban energy

interventions and therefore avoid leading to erroneous conclusions. Accordingly, the use of

metered data was indispensable to calibrate the model outputs. The calibration process was

achieved by clustering the buildings based on their actual electricity and predicted

consumptions, and find the multiplicative coefficients of their representative clusters

centroids. These coefficients were used to correct the model outputs, but they also informed

about the compatibility of the model inputs to represent the city under study. The applied

methodology proved to be effective to reach acceptable accuracy in matching predicted

outputs with actual data. Consequently, the analysis was pushed forward for a

spatiotemporal identification of hot spots and peaks of energy demands. These energy maps

are very informative for any intervention planning. Spatial autocorrelation of energy
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demand was also reported, suggesting possibility for smart grid zoning. The results of

BEEM were convenient to provide scientific evidence to inform policy. Recommendations

based on the analysis of BEEM outputs were made and published in a policy brief, enclosed

in chapter ??.

6.1 Perspectives

The work presented in this thesis is the first UBEM at this scale in Lebanon and the region

to the author’s knowledge. While it has proved to present several advances, further work are

still needed to promote its use in urban energy planning and some relevant developments can

be considered.

Large-scale data management

Data availability was a major obstacle that limited the scope of the thesis to the one

represented in this dissertation. Therefore, an inevitable need for databases is raised. Data

repository should include:

� Up-to-date list of materials used in buildings’ construction, along with their thermal

and optical properties, in addition to construction methods such as building

components’ layers.

� Recent and old satellite images for cities of interest that can be used in remote sensing,

not restricted to buildings’ digitizing and vegetation classification, but also for urban

properties’ identification.

� Characteristics of energy end-uses, such as HVAC, appliances and lighting, including

their rates of penetration, their efficacy and their use patterns.

� Occupant related parameters, such as their activities, behaviors and preferences. In

this context, complexity raises due to the stochastic nature of humans patterns.

Data management and organization in a key factor for an efficient and less time-consuming

generation of UBEMs. Common templates of information and the possibility for sharing will

increase the adoption of these tools, enhance their reliability and facilitate their importation

to the models.
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Geometrical and non-geometrical model refinements

Many improvements can be thought of to further enhance the accuracy of the presented model

and to broaden its applications. The geometrical model can be improved by considering

tilted roofs, buildings’ zoning into core and perimeter, trees and parks modeling, roads and

pedestrian walkways, to list a few. These improvements are important for both energy model

and radiative model. The archetypal classification can be improved by adding other key

parameters than the building’s type and year of construction. However, identification of key

parameters should be based on a sensitivity analysis to avoid generation of useless archetypes.

Model functionality

BEEM model presented in chapters 3 and 5 is an automated algorithm to generate the 3D

models and the ready-to-run files for energy simulations. However, the inputs and outputs of

the model require huge effort to use and process. The outputs on the other hand are stored

in excel files that require good programming skills to extract, analyze and visualize results.

In other words, BEEM can be further developed for data management functionalities, and

promoted to an effective and feasible platform for users from different backgrounds. It should

adapted for compatibility with other formats, such as CityGML so it can be used in other

studies. One more barrier is the computational cost of the simulations. This study was

accomplished with cloud computing service. Energy simulations are time consuming unless

powerful computers are in use. Therefore, attention should be taken in this regard.

Improvement of the energy budget assessment

� The radiative budget contributes in the energy budget through surfaces’ solar gain and

energy savings from daylight. The radiative module in EnergyPlus is simple, while

that in DART is more advanced and accurate. Coupling the outputs of DART with

EnergyPlus or any dynamic energy modeling software would be useful.

� Climatic parameters such as UHI, local wind conditions, evaporation near the sea and

released heat from transportation should be taken into account given their influence

on the energy and radiative budgets of buildings and therefore on the electricity

demand. Therefore, the study could be extended to consider the effects of
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microclimatic conditions by linking it to computational fluid dynamics CFD analysis,

or by using urban weather generators to simulate the UHI effect..

Further studies

The presented model allows the assessment of energy demand within a spatiotemporal frame.

It assess the present energy consumption and estimates future energy patterns under certain

technological interventions, such as the implementation of energy conservation measures. In

addition, it allows the estimation of the contribution of urban forms and energy end-uses in

energy demand at building scale and city scale. The results of the energy model, the daylight

model and their relation to urban metrics can be combined for a more holistic analysis

of different designs, energy and low-carbon strategies, and urban planning. We started to

explore these relations in sections 4.5.3 and 4.5.4, proving that the model is suitable for such

analysis. Another important aspect of BEEM, is its capability to manage energy supply

as well. The spatiotemporal energy maps can be coupled with solar irradiation and solar

maps to estimate the potential saving from rooftop PV systems, the optimal distribution of

the produced energy, and grid management to meet energy demand. It can also be used

for network simulations such as district heating. Such capabilities help in informing urban

planners and policy makers about possible scenarios to reduce energy demand, meet the

urban needs and mitigate GHG emissions. Assessing the economical and social impacts of

these interventions must be complementary to the model to provide a full adaptable plan for

urban energy management.
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BEIRUT AS A SMART CITY: REDEFINING 
URBAN ENERGY 

Summary 

Global efforts are exerted to improve energy supply-demand balance in urban environments which are characterized by 
higher population density and levels of energy consumption. Beirut, Lebanon’s capital, is no exception in facing such 
urban challenges, which are compounded by the regular power outages. As such, developing an urban scale energy 
model for energy management is essential to achieve this goal. This policy brief presents a model developed for the 
Bachoura area to determine its buildings energy performance. The results are integrated to report the hourly energy 
use profile spatially distributed over the city, which leads to identifying hotspots and peak hours of energy demands. 
The model can be used to estimate the potential savings from rooftop solar energy production and recommend 
targeted energy-use policies to alleviate peaks and ensure an optimal and efficient distribution of resources. 

Introduction

The expansion of cities worldwide is accompanied by 
socio-economic problems that range from challenges in 
providing services to compounding the impact of climate 
change. One major issue cities face is soaring demand 
for energy. Consequently, designing energy efficient 
cities will go a long way in reducing demand for power 
while also reducing emissions and air pollution. As such, 
energy modeling has been adopted to simulate buildings’ 
energy consumption at early design stage, evaluate 
the efficacy of various design options, and optimize 
the overall performance of building systems in Beirut. 

When extending the scope of the energy performance 
simulation to the urban scale, two main categories of 
urban energy models can be found: top-down models 
and bottom-up models. Top-down models are mainly 
used to explore the interrelations between the energy 
sector and variables like socio-economic indicators, 
energy price, and climate. However, they lack technical 
details and hence fail to study the impacts of new 
technologies and intervention. Bottom-up models, 
on the other hand, estimate individual end-uses then 
aggregate results to get the urban energy consumption.  

Main recommendations

▸ Predicting spatial and temporal peak-loads could 
ultimately help in informing smart rationing of the 
electricity by the power utility company, EDL when 
the grid is strained. Additionally, it could match local 
demand to supply from solar energy through smart 
distribution and optimization of demand management

▸ The developed model could be utilized to test various 
policy instruments that promote energy savings such 
as the implementation of building efficiency codes, 
installation of water heaters, etc. 
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A priori, non-geometrical properties such as the occupancy 
and use schedules were set by referring to The American 
Society of Heating, Refrigerating and Air-Conditioning 
Engineers (ASHRAE) standards and previous studies. The 
apriori values were then modified to take into consideration 
the Beirut context (working hours, occupancy, and heating/
cooling systems)

 
Thermal model generation and calibration 
Each building was represented by a 3D thermal model, 
divided into floors, with windows on facades and balconies 
if residential. 

When simulating the energy consumption of each building, 
discrepancies between the predicted model outputs 
and the actual metered data from EDL were found. They 
can be attributed to three categorical errors as follows:

• Systematic errors resulted from the daily 3 hours of 
blackouts not accounted for during simulations, and from 
the constraints on indoor temperature and humidity that 
need to be met despite them being behaviorally unrealistic, 
such as keeping indoor temperature at 21°C in winter.

• Heating, Ventilation, and Air Conditioning (HVAC) systems 
operating when they are not supposed to, for example 
covering all floor’s area and operating even under 20°C for 
cooling.

•  Variation of equipment use and occupancy profiles.

A Case Study: The City of Beirut

Beirut city, the capital of Lebanon, holds with its suburbs 
50 percent of the urban population. It consumes 12 
percent of the total national energy produced while it 
only covers 0.2 percent of the country’s total area. Its 
building sector accounts for almost all of its electricity 
consumption. The city and its residents suffer from a 
minimum of 3 hours of blackouts per day. These key 
indicators demonstrate that Beirut is an energy-starved city. 

In 2015, during the 2015 United Nations Climate Change 
Conference (COP21), Lebanon pledged to reduce its 
emissions by 30 percent by 2030 within a conditional 
commitment. Four years later, the country is still facing 
a significant challenge to manage its energy sector 
and integrate renewable energy. Therefore, developing 
an urban scale energy model could prove to be a very 
useful tool to assess Beirut’s energy resources and 
provide insights for the management of its energy 
supply. The developed model could serve as a decision 
support system by estimating energy consumption 
patterns and identifying grid peak demands with a 
spatiotemporal distribution. The latter, integrated with 
the potential solar production findings, will offer a great 
potential in estimating the savings and recommending 
targeted energy-use policies to alleviate peaks and 
ensure an efficient and optimal resources distribution. 

Another feature of the energy model for Beirut is its 
capability to project energy consumption under normal 
conditions. Currently, estimates of demand do not 
account for the suppressed amount of electricity, since 
during outages, occupants modify their behaviors and 
alter their energy consumption patterns and preferences. 

They are suitable for improvement and technological 
intervention studies. They can be further subdivided 
into statistical and engineering models. The former 
relies on a large amount of historical dataset to 
estimate energy consumption at the metered data 
scale. Engineering models apply thermodynamic and 
heat transfer equations at the building level, leading 
to high accurate results, and offer the maximum 
flexibility to test end-use energy conservation measures.  

The work presented in this policy brief has been extended 
from the individual building scale to the urban scale,  
allowing for the assessment of building to building 
interactions as well as of buildings to other urban forms 
interactions. 

Methods

Urban Building Energy Model UBEM, which has been 
utilized in this study, combines the bottom-up statistical 
and engineering models and communicates results 
with GIS platform for energy maps generation, used 
for results analysis and comparison with measured 
data or surveys to help designers and policy makers. 

Data collection and processing

The conducted analysis utilized data collected from a 
range of sources to create the model’s dataset, namely:  
• Hourly weather data from Beirut International Airport.

• Topographic map to create the digital elevation profile.

• GIS data incorporating buildings’ footprints, area, number 
of floors, year of construction, function.

Cleaning the data was a crucial step to ensure model’s 
consistency and accuracy. Buildings with the following 
drawbacks were removed from the data set:

• Mismatch of buildings’ footprints with their corresponding 
position in the satellite image.

• Missing entries such as the number of floors, function or 
EDL electricity consumption.

Buildings’ segmentation: Beirut buildings were grouped 
based on two parameters, the building function and the 
year of construction based on a historical architectural 
study of the buildings. Building’s function helps in 
setting a building’s occupancy patterns and determining 
internal heat loads, while its year of construction 
informs about construction materials and methods.

For the specific case of Beirut, five distinguished 
construction periods were identified based on Georges 
Arbid’s study: 1900 to 1923, 1924 to 1940, 1941 to 
1960, 1961 to 1990, and after 1991. Regarding the 
function, the buildings were grouped into six classes 
(residential, mixed, hospitals, schools and governmental 
buildings). In total, 30 archetypes were generated.

Buildings’ Characterization: Thermal properties were 
obtained from the Technical Guide for the application of 
the Thermal Standard for Buildings in Lebanon published 
in 2005, the simulation software’s default library and 
online libraries. 
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Therefore, one of the major advantages of the 
developed model is to provide projected estimates 
for demand, which are currently underestimated.

Results

Data for buildings in the Bachoura area was obtained. After 
the cleaning process and removal of outliers (buildings with 
abnormal EDL electricity consumption), 1830 residential 
and mixed buildings were represented by thermal models. 
Most of these buildings were built between 1940 and 
1990. The difference between the metered data and 
the predicted data was of 203534 MWh, representing 
an overestimation of 200 percent. After eliminating the 
impacts of the systematic errors and the HVAC systems 
related errors, we found that the remaining disparity was 
independent of the buildings position and archetype.

More than 70 percent of mixed buildings’ floors are residential. 
Therefore, the majority of the floors in the Bachoura area 
are residential, sharing similar occupancy schedules. 

Accordingly, we could think about energy use and occupancy 
profiles as the main reason behind the disparities and 
mismatch between actual and predicted consumption. More 
specifically, maximum occupancy corresponds to buildings 
whose electricity consumption is the highest compared to 
their counterparts with the same number of floors. Therefore, 
the ratio of the latter consumptions is an indicator of the 
occupancy level and should explain the aforementioned 
mismatch. Results showed a strong correlation between 
this indicator and the ratio of the model’s predictions to 
the actual consumptions, which validates our hypothesis. 

“The developed model could serve as a 
decision support system by estimating 

energy consumption patterns and 
identifying grid peak demands”

Figure 1: Sample of the generated 3D model of Buildings in the 
Bachoura area, Beirut, Lebanon

Figure 2: Hourly electricity 
consumption accumulated across 
the year during the morning (at 
the top) and at peak time (at the 
bottom) for the buildings in the 
Bachoura area
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In terms of load profiles, the model could replicate 
the overall bimonthly electricity consumption of the 
buildings. March and April are the least consumption-
intensive months while July and August are the highest. 
The equipment and hot water in residential buildings 
shared around a third of the total annual electricity 
consumption, while cooling’s share has been estimated 
to be around 20 percent. Mixed buildings, on the other 
hand, had 39 percent of their electricity consumption 
for appliances, followed by 31 percent for cooling.

The electricity consumption results also showed similar 
spatial clustering as the metered data from EDL with 
the strongest correlation at 40 meters, i.e. the energy 
consumption of two buildings is most similar when 
they are 40 meters apart. Hence, the energy model can 
be employed to relate the observations of electricity 
consumption at one location to those at other locations.

Model Applicability

The model multi-scalability is recognized spatially when 
ranging from building to the city level, and temporally 
when ranging from hourly to yearly resolution. This allows 
for spatiotemporal energy patterns analysis to allocate hot 
spots and peak times of energy demands, as shown in Figure 
2. Therefore, energy measures can be optimized to specified 
buildings with high energy demands. Figure 2 shows peak 
consumptions across the study area in residential and 
mixed buildings constructed between 1941 and 1990. 
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Révéler l'utilisation énergétique spatio-temporelle 
d'une ville côtière méditerranéenne: le cas de 

Beyrouth 

1 Introduction 

En 2016, 54,5% de la population mondiale vivait en zone urbaine. D'ici 2030, les villes 

devraient abrite 60% de la population mondiale [1]. Les zones urbaines connaissent une 

croissance sans précédente raison de l'exode rural dû à des facteurs socio-économiques tels 

que la recherche de meilleures opportunités d'emploi ou niveaux d'enseignement supérieur. 

En outre, le développement de l’économie ainsi que l’industrialisation concentrée dans 

certaines régions au détriment d’autres, avec migration de pays pauvres souffrant de 

problèmes économiques ou asile de citoyens s’échappant des guerres et des zones de crise 

politique sont tous des facteurs contribuant à l’augmentation de la population urbaine. 

L’urbanisation a le potentiel de rendre les villes plus prospères et des pays plus développés, 

en créant de la richesse et des emplois et en stimulant le progrès humain. Cependant, de 

nombreuses villes du monde souffrent de problèmes persistants: l’augmentation du nombre 

de résidents dans les taudis et les quartiers informels, la difficulté d’approvisionnent en 

services urbains, le changement climatique, l'exclusion et la montée des inégalités et de 

l'insécurité durant les migrations internationales [2]. Le réchauffement urbain est l’un des 

défis climatiques en milieu urbain, mesuré dans de nombreuses villes du monde en plus des 

émissions des gaz à effet de serre (GES) [3]. L’un des facteurs de l’augmentation des 

températures urbaines est la prédominance du caractère artificiel des villes aux dépenses des 

fractions vertes naturelles qui s'y trouvent. Un autre aspect de l'urbanisation est le changement 

structurel économique du pays. La concentration des activités économiques dans les villes 
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amène la main-d’œuvre à passer du secteur agricole aux secteurs industriels ou de services de 

la ville, phénomène bien connu comme tertiarisation. Ce transfert qui accompagne l'exode 

rural contribue indirectement à l’augmentation de la consommation d’énergie. Tout d'abord, 

en raison du manque de main-d'œuvre, les produits agricoles doivent être mécanisés et 

transportés des zones de production vers les villes. Deuxièmement, les besoins en services de 

transport augmentent, entraînant une augmentation de la demande des combustibles fossiles 

et donc de ses impacts sur le climat urbain. Dernier point mais non le moindre, le 

développement économique des villes affecte les comportements et les modes de vie des 

habitants qui ont tendance à poursuivre les produits et services commerciaux, par exemple 

appareils électriques et accessoires, augmentant ainsi la consommation d'énergie [4]. La ville 

étant un grand consommateur d’énergie et contributeur aux émissions des GES, une 

compréhension pertinente de son métabolisme est essentielle au développement des stratégies 

d'efficacité énergétique [5]. Afin d'assurer l'optimisation et la priorisation des mesures de 

conservation d'énergie à appliquer, une prise de décision programmatique ou alors la gestion 

de l'énergie est nécessaire. Elle consiste en la planification, la mise en œuvre et le suivi de 

l’approvisionnement en énergie, sa distribution et son utilisation de manière efficace et 

efficiente pour réduire ses pertes et sa consommation. En outre, elle étudie les ressources 

alternatives et environnementales, l’organisation technique, le rapport coût-efficacité et 

changement de comportement pour améliorer la qualité de l'énergie, sa disponibilité et ses 

impacts sur l'environnement et la nature [6]. Cependant, comprendre comment le système 

énergétique d’une ville évolue dans le temps et dans l’espace sous ces interventions est 

cruciale pour soutenir le processus de prise de décision. Le secteur des bâtiments a été 

identifié comme responsables de 30% à 70% de la consommation d'énergie primaire dans les 

villes [7] et de 30% des émissions en GES [8]. Par conséquent, développer des modèles 
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d’énergie des bâtiments (BEM) au niveau de la ville est essentiel pour la gestion de 

l'approvisionnement en énergie. Ces modèles ont été développés et ont servi comme étant des 

outils de conception au niveau des bâtiments [9]. Ils sont généralement utilisés à la phase de 

conception initiale et tout au long du processus de conception pour évaluer diverses options 

de conception et optimiser la performance globale des systèmes de construction. L’extension 

de la portée de la modélisation énergétique à l'échelle urbaine permet d'évaluer les interactions 

entre les bâtiments (ombrage, échange de chaleur, etc.), et d’interactions avec des 

composantes urbaines telles que l'îlot thermique urbain et le trafic. Les modèles de bilan 

énergétique à l’échelle de la ville peuvent être basés sur une approche « top-down » [10]–

[12]. Dans ce cas, ils sont utilisés pour la modélisation climatique, mais ne fournissent pas 

les détails nécessaires pour tester des scénarios innovants à l'échelle du bâtiment. D'autre part, 

les modèles « bottom-up » de simulation physique ont été introduits comme outils de 

simulation efficaces pour modéliser l’impact du contexte urbain sur la demande énergétique 

des bâtiments [13]–[16]. Dans ce contexte, Reinhart et Davila [17] ont présenté les modèles 

énergétiques des bâtiments urbains (UBEM), qui sont des modèles de simulation physique 

ascendant utilisés comme outils de simulation efficaces pour simuler l'impact du contexte 

urbain sur la demande énergétique des bâtiments. Ils permettent de surmonter les lacunes des 

modèles statistiques et techniques en leur capacité à fournir des hypothèses d’énergie horaire, 

à estimer les impacts des nouvelles technologies, et incorporer les comportements des 

occupants [13]. Une autre caractéristique de UBEM est la possibilité de les combiner avec 

une plateforme GIS. Les cartes d'énergie résultantes sont ensuite utilisées pour l'analyse des 

résultats et la comparaison avec des données mesurées ou des enquêtes pour aider les 

concepteurs et les décideurs. UBEM applique des équations de transfert de chaleur dans et 

autour des bâtiments représentés un en tant que modèle thermique dynamique 3D individuel. 
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UBEM est donc capable de supporter développement de scénarios complexes. En outre, ils 

peuvent être combinés avec la simulation énergétique programmes. Le flux de travail de 

modélisation énergétique d'un UBEM nécessite beaucoup d'effort et de temps ressources étant 

donné la quantité massive de données pour potentiellement des milliers de bâtiments. 

Assembler, gérer et automatiser le flux de travail est essentiel. À cette fin, le stock de 

bâtiments est divisé en archétypes pour réduire la complexité et les exigences de calcul [13]. 

Le modèle de Boston développé par le MIT Sustainable Lab est un exemple illustrant UBEM 

[18]. Le modèle a été réalisé à l’aide d’un ensemble d’outils comprenant des systèmes GIS 

pour l’importations des polygones des bâtiments, Rhinoceros 3D [19] en tant 

qu’environnement de CAO et EnergyPlus en tant que le moteur de simulation thermique. Le 

workflow consiste à générer les archétypes à partir de l'année de construction et les types de 

bâtiments, en extrudant l'empreinte du bâtiment pour créer la forme tridimensionnelle, en la 

divisant en étages, en générant des fenêtres et en assignant les propriétés thermiques 

spécifiques en fonction de l’archétype du bâtiment. Les surfaces d'ombrage étaient 

déterminées et chaque bâtiment a ensuite été représenté par un modèle thermique et son 

énergie la performance a été simulée dans EnergyPlus. Une étude suivante, où le même flux 

de travail a été appliqué pour un quartier de Boston, a exploré différents ECM pouvant être 

appliqués à réduire la consommation d'énergie [14].  

BEM et UBEM doivent être fiables et adaptables en ce sens qu'ils doivent fournir des 

estimations de la performance énergétique des bâtiments. Cependant, des divergences se 

produisent souvent entre le modèle prédit et la consommation énergétique réelle mesurée du 

bâtiment, principalement en raison des imprécisions/incertitudes dans la paramétrisation et la 

structure du modèle [20]. Par conséquent, l'étalonnage de modèles énergétiques est essentiel 

pour atteindre un niveau de confiance dans les prévisions des modèles et encourager leur 
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adoption. Ils vont du réglage itératif manuel déterministe [20], [21], au processus d'étalonnage 

automatique utilisant des techniques d'optimisation, des algorithmes d'apprentissage 

automatique ou la calibration bayésienne [22]. Une fois calibré, UBEM peut être utile pour 

estimer les impacts de nouvelles technologies et politiques pour lesquelles aucune donnée 

mesurée n’est disponible et pour révéler modèles d'occupants inconnus. 

Parmi les sources de consommation d'énergie dans les bâtiments, le rayonnement solaire et 

l'éclairement sont considérées comme des ressources renouvelables pour accroître l’efficacité 

énergétique des bâtiments par des techniques passives et l’utilisation de la lumière du jour. 

Ce dernier, associé à un éclairage artificiel, a fait l’objet de nombreuses études dans le cadre 

d’une stratégie de développement durable visant au confort visuel, l'optimisation énergétique 

et l'aspect architectural des bâtiments [23]–[25]. La lumière du jour et le confort en plein air 

sont des indicateurs du confort et du bien-être des résidents [25]. La quantité d’énergie solaire 

et de lumière du jour atteignant un environnement urbain est fortement liée à la compacité 

urbaine, parmi ses indicateurs, la géométrie du canyon urbain et les blocs urbains, l'orientation 

des rues et des bâtiments. Evaluer les effets de ces indicateurs sur le potentiel d'énergie solaire 

et la lumière du jour fournissent des lignes directrices pour l'optimisation de la forme urbaine 

dans relation avec les interventions de modernisation des enveloppes de bâtiment et des 

applications de l’énergie solaire dans zones urbaines denses [26]. 

Le district administratif de Beyrouth, la Capitale du Liban, situé dans le Grand Beyrouth, 

présente un intérêt particulier dans cette étude. La ville a connu une expansion horizontale et 

verticale au fil des ans. Cette densification a entraîné d’énormes défis liés principalement à la 

fourniture des services urbains tels que l'énergie et l’atténuation des effets du changement 

climatique. La ville comptait 50,7% de la population urbaine du pays et 44,6% de la 

population totale en 2016 [1], et consomme 12% de l'énergie nationale totale produite alors 
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qu'elle ne couvre que 0,2% de la superficie totale du pays. Son secteur tertiaire (secteur 

commercial, bureaux publics, hôtels et hôpitaux) et le secteur résidentiel représentent 73% et 

26% de sa consommation d’électricité respectivement. Celles-ci représentent 39% et 14% des 

émissions de GES de l'électrification respectivement [27]. Alors que la demande en énergie 

augmente, le Liban souffre depuis de nombreuses années, d'une crise dans le secteur de 

l'énergie. Le pays compte sur les produits pétroliers importés pour satisfaire ses besoins en 

énergie, ce qui place le pays dans un état de grande vulnérabilité. Les importations nettes sont 

passées de 5,45 millions de tep (tonnes d'équivalent pétrole) en 2008 à 7,61 millions d’euros 

en 2014, dont 43% ont été utilisés pour la production d’électricité en 2014 [28]. La capacité 

disponible pour la production d’électricité est de 2670 MW [29], dont seulement 1500 MW 

jusqu'à un maximum de 2000 MW sont assurés par EDL (Electricité du Liban) [30], la seule 

institution publique responsable de la production, la transmission et la distribution de 

l’énergie électrique au Liban [31]. En d'autres termes, un maximum de 65% de la puissance 

générée est émise par l’État et le reste par des générateurs privés de secours. Même si 

Beyrouth est soumis à la plus faible période de rationnement (seulement 3 heures alors que 

celle-ci dure jusqu'à 12 heures certaines régions du pays), réduire sa demande en énergie peut 

atténuer les coupures de courant quotidiennes dans les autres régions. 

Cette situation remet en cause l'engagement pris par le Liban de réduire ses émissions de gaz 

à effet de serre de 30% d'ici 2030. Le pays est alors confronté à un défi important pour gérer 

son secteur énergétique et intégrer les énergies renouvelables. Il est donc essentiel de 

développer un modèle énergétique à l'échelle urbaine pour la gestion des ressources et de 

l’approvisionnement en énergie à Beyrouth. Un tel modèle sert de système de support de 

décision en estimant les schémas de consommation d’énergie et en identifiant le pic de 

demandes du réseau avec une distribution spatio-temporelle. Ce dernier, intégré aux résultats 
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du potentiel solaire produit [32], aide à estimer les économies et à recommander des politiques 

d’utilisation de l’énergie visant à réduire les pointes et à assurer une distribution efficace des 

ressources. Une autre caractéristique du modèle énergétique de Beyrouth est sa capacité à 

projeter la consommation d'énergie dans des conditions normales. Actuellement, les 

estimations de la demande ne tiennent pas compte la quantité d'électricité supprimée, car lors 

des pannes, les occupants modifient leurs comportements et leurs habitudes et préférences de 

consommation d’énergie. 

2 BEirut Energy Model 

BEEM, BEirut Energy Model, est un modèle énergétique urbain pour Beyrouth, et dont 

l’organigramme est présenté ci-dessous.  

 

Figure 1: Organigramme de la méthodologie de BEEM 

Les informations nécessaires pour créer BEEM sont : 

 Les polygones des bâtiments et leur position dans l’espace. 
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 Leurs types, leurs années de construction, leurs élévations et leurs nombres d’étages. 

 Le profil d’élévation de la ville DEM. 

 Des données météorologiques horaires pour une année.  

Ces données sont collectées de plusieurs sources : 

 Par télédétection et traitement des images satellites pour la segmentation des bâtiments, la 

détermination de leurs élévations et du DEM. 

 Sondage effectué par l’université Saint Joseph pour 7120 bâtiments dont seulement 3630 

avaient des données suffisantes et par la suite utilisés dans les simulations. 

 La station de météo à l’aéroport international de Beyrouth. 

Pour représenter ces bâtiments, une série d'archétypes, ou des bâtiments représentatifs 

devaient être développés. Les archétypes consistent en un ensemble de propriétés 

géométriques caractérisant les performances thermiques d'un bâtiment, telles que la résistance 

thermique des murs, etc. La génération d'archétype comprend deux étapes: la segmentation, 

ou le regroupement de bâtiments ayant des propriétés similaires, et la caractérisation, ou la 

définition de l'ensemble complet des propriétés thermiques pour chaque archétype. Les 

bâtiments de Beyrouth ont été segmentés en fonction de deux paramètres clés: d’une part, le 

type et d’autre part, l’année de construction fondée sur une étude architecturale des bâtiments. 

Le type est un facteur important dans la détermination des charges aux prises et des gains de 

chaleur internes d'un bâtiment, tandis que l'année de construction d'un bâtiment fournit des 

hypothèses sur les méthodes de construction et les matériaux utilisés. Pour identifier les 

propriétés de chaque groupe de bâtiments, nous nous référons tout d’abord au guide technique 

de base publié par le ministère des Travaux publics et des Transports en 2005 (Technical 

Guide for the application of the Thermal Standard for Buildings in Lebanon [33]) avec les 
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propriétés thermiques d’un large éventail de matériaux utilisés dans la construction au Liban. 

Les propriétés manquantes ont été identifiées à partir de la bibliothèque du logiciel utilisé 

comme interface avec EnergyPlus nommé ArchSim. Nous avons également utilisé les sites 

Web de la même bibliothèque. Pour les horaires d'occupation et les chargements de fiche, 

nous avons utilisé ceux définis par ASHRAE et nous les avons mis à jour pour répondre au 

mieux au cas libanais.  

Après la préparation des données, les bâtiments ont été divisés en étages et un archétype a été 

attribué à chacun. Le processus de modélisation de la géométrie est présenté dans la figure 

ci-dessous. 

 

 

Figure 2: La figure (a) montre la création du DTM, suivie d'une extrusion simple illustrée à 
la figure (b), puis de la génération de fenêtres et de balcons respectivement en (c) et (d), et 
enfin, les contours et les ombrages sont illustrés en (e). 
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Figure 3: Exemple du modèle 3D généré de bâtiments dans la région de Bachoura, Beyrouth, 
Liban. 

Une fois le modèle 3D terminé, les paramètres de simulation de la base de données des 

bâtiments ont été attribués à chaque zone thermique et stockés dans des fichiers constituant 

des entrées à EnergyPlus. Le modèle énergétique a été simulé et les résultats obtenus ont été 

ensuite analysés.   

2.1 Calibration du modèle 

Après avoir généré le modèle thermique, les charges horaires annuelles provenant des 

équipements, de l'éclairage, de l'eau chaude sanitaire, du refroidissement et du chauffage ont 

été agrégées dans une consommation électrique simulée pour les bâtiments résidentiels et 

mixtes. En comparant les résultats obtenus aux données réelles bimensuelles de l’Electricité 

du Liban (EDL) disponibles pour un certain nombre d’immeubles, des différences ont été 

identifiés. Ce décalage entre les valeurs EDL et celles prédites par le modèle peut être 

principalement attribué aux modèles de comportement, aux systèmes CVC et aux erreurs 

systématiques. Par conséquent, toute correction à appliquer doit être compatible avec les 

erreurs catégoriques ci-dessus, être adaptable au contexte de la ville et justifiée en même 

temps. À cette fin, les interventions suivantes ont été mises en œuvre: 
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 Erreurs systématiques: une coupure de courant de 3 heures à Beyrouth représente un facteur 

de réduction de 1/8, calculé sur une moyenne annuelle. Par conséquent, la consommation 

d'électricité simulée a été réduite de ce montant. De plus, les erreurs liées aux algorithmes 

numériques ont été éliminées. Ces erreurs sont les résultats du programme EnergyPlus 

permettant d’ajuster la température de la zone afin d’atteindre la valeur souhaitée définie par 

les points de consigne du système de contrôle. 

 Architecture des systèmes HVAC: le refroidissement à Beyrouth repose principalement sur 

des unités de refroidissement unitaires associées à des zones données. Les unités fonctionnent 

rarement en même temps. À cette fin, nous supposons que seulement 50% de la surface du 

sol est refroidie ou chauffée à un moment donné, de sorte que la consommation simulée de 

refroidissement et de chauffage est réduite de moitié. En outre, lorsque la température 

extérieure était inférieure à 20 ° C, les charges de refroidissement étaient annulées. 

 Consommation d’énergie et profil d’occupation: après application des corrections 

précédentes, nous avons réalisé que les écarts restants ont été causés par des profils 

d’occupation, modifiant de manière linéaire la consommation totale bimestrielle d’électricité 

d’un facteur déterminé. Par conséquent, la consommation d’énergie calibrée pour chaque 

bâtiment a été obtenue en multipliant la consommation d’énergie estimée par le modèle et les 

multiplicateurs moyens de sa grappe. 

Les valeurs aberrantes ont été supprimées à l'aide d'un clustering spatial basé sur la densité 

d'applications avec bruit (DBSCAN) et d'auto-encodeurs, en fonction de la superficie des 

bâtiments, du nombre d'étages, du type, de l'année de construction et de la consommation 

EDL. Une fois les valeurs aberrantes identifiées, les bâtiments restants ont été regroupés en 

fonction de leur consommation d'électricité simulée et de leur consommation d'électricité 
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réelle (EDL). Ce regroupement aide à identifier les bâtiments avec des horaires d'occupation 

similaires. 

La calibration du modèle est effectuée en appliquant une classification k-means au rapport 

entre EDL et les consommations prédites. Cela a conduit à l’identification de quatre groupes 

de bâtiments dans chaque district, comme indiqué dans les figures 4 et 5. Le nombre de 

clusters a été défini en fonction d'une procédure d'optimisation pour chaque district. Le 

modèle a surestimé la consommation d'électricité dans la plupart des bâtiments, 

principalement dans les groupes 0 et 1 des deux districts. Les clusters 3 regroupaient les 

bâtiments avec EDL avec un ratio de consommation d'électricité simulé compris entre 0,6 et 

1,3 dans le district A et entre 0,5 et 1,5 dans le district B. La consommation de seulement 21 

et 34 bâtiments a été sous-estimée dans les districts A et B, respectivement. 

 

Figure 4: Configuration EPlus par défaut: occupation complète avec les normes ASHRAE 
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Figure 5: Résultats EPlus adaptés à l'occupation de Beyrouth et au comportement des 
utilisateurs 

En combinant les résultats du modèle avec les techniques de cartographie GIS, on obtient une 

distribution spatiotemporelle de la consommation d'énergie, comme le montre la figure 6. 

Notez que les bâtiments les plus consommateurs ont été construits entre 1941 et 1990. 
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Figure 6: Distribution spatio-temporelle de la consommation d'électricité prédite 
bimestriellement des bâtiments du district B  

2.2  Discussion 

Les sections précédentes ont montré comment construire, générer et calibrer un UBEM, 

capable de de prédire la consommation d'électricité d'une ville en capturant les 

comportements des bâtiments.  Le modèle prend en entrée des données contenant les 

empreintes, les hauteurs, la surface de plancher, le nombre des étages, des archétypes 

correspondants ainsi qu’un fichier météo et une carte topographique. Ici, un fichier météo mis 

à jour, résumant le changement climatique global et l’UHI en Beyrouth est nécessaire pour le 

modèle énergétique à grande échelle de la ville, en particulier avec la densité des générateurs 

diesel dispersés dans la ville et entre les bâtiments. De plus, une carte topographique à haute 

résolution peut réduire la complexité du modèle lors de la génération le profil d’élévation de 

la ville et la projection des bâtiments sur le plan incliné.  

Les propriétés géométriques telles que le WWR et les matériaux de construction ont été 

obtenues d’études antérieures, tandis que les propriétés non géométriques ont été recueillies 

auprès de rapports lorsque disponibles et bibliothèques existantes. Des efforts à cet égard 
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devraient être déployés pour créer pour Beyrouth une base de données appropriée intégrant 

des matériaux de construction et leurs propriétés thermiques. Les taux de pénétration des 

systèmes de HVAC et leurs propriétés doivent être plus examinés, en particulier dans les 

bâtiments construits avant 1945, caractérisés par leur architecture sensible au climat et 

l'application du concept de durabilité [34]. Ces bâtiments dépendent des conditions 

environnementales pour assurer le confort thermique intérieur. Cependant, ces bâtiments 

peuvent avoir perdu leurs caractéristiques prévues avec la construction aléatoire et l'effet du 

changement climatique. De plus, des audits périodiques approfondis sont nécessaires pour 

étudier les paramètres liés aux occupants, tels que le statut économique, le confort thermique 

interne, l'utilisation des appareils, les horaires et les activités d'occupation quotidiens et 

saisonniers. 

Le principal défi rencontré lors de cette étude était la mise en place des calendriers. 

L’absence de profils d’utilisation et d’occupation de l’énergie a conduit les auteurs à adopter 

horaires standardisés. Le modèle représentait un lourd fardeau pour le secteur de l’énergie 

au cas où les citoyens adoptent un style de vie occidental coûteux et confortable. En fait, le 

Liban est considéré comme un pays économiquement faible. De plus, le rationnement de 

l'électricité pousse déjà les habitants à modifier leurs schémas comportementaux entraînant 

à une demande supprimée. Cependant, en présence des données mesurées tous les deux mois 

(données EDL), il était possible d'inspecter les consommations d’énergie des Libanais et de 

les relier aux circonstances socio-économiques et politiques du pays. L'énergie prédite a été 

ajustée par intervention manuelle en fonction d'indices statistiques suivis de graphiques 

comparatifs. Il était clair qu'une variabilité mensuelle plus faible caractérise la 

consommation d’électricité des bâtiments résidentiels et mixtes, par rapport à la 

consommation, principalement attribuable à la demande surestimée de refroidissement. 
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Ceci a été partiellement corrigé en supposant que les sols des bâtiments sont partiellement 

refroidis (et chauffé). Les différences restantes s’expliquent par le fait que beaucoup des 

familles libanaises (jusqu'à 15%) possèdent deux maisons ou plus [35] dans d'autres régions 

du pays, et quittent la ville pendant les vacances d'été. De plus, un grand nombre d’unités 

résidentielles sont invendues ou vacantes, appartenant à des expatriés ou des investisseurs. 

Des statistiques à jour de cet égard sont nécessaires pour estimer correctement la 

consommation d’énergie par ménage et par habitant. Cependant, des problèmes liés à 

l’accessibilité des données et à la confidentialité peuvent être soulevés et doivent être résolus 

et correctement adressés. 

L’étalonnage a été utilisé à l’échelle temporelle des données réelles et a donné des résultats 

satisfaisants de la demande énergétique globale du bâtiment. Cependant, les auteurs ne 

peuvent prétendre précision au niveau horaire sans données mesurées pour la validation et/ou 

le calibrage. Des efforts devraient être placés sur l'enregistrement de la consommation 

d'électricité horaire par EDL ou l’utilisation des techniques de modélisation du comportement 

des occupants [36]–[38]. La consommation d'électricité calibrée a montré une mise en grappe 

spatiale similaire à celle des données mesurées d'EDL dans les deux districts. Cela prouve la 

pertinence de notre processus de calibration. 

Le modèle énergétique peut être utilisé pour relier les observations de la consommation 

d'électricité à un endroit à ceux d'autres endroits. Le principal intérêt à révéler le clustering 

spatial est son importance dans la création de zones pour la distribution intelligente du réseau. 

En outre, la ville de Beyrouth représente le centre zone administrative et commerciale du 

Liban. Mobilité humaine dans et hors de la ville doit être étudié car il pourrait avoir une 

influence sur la demande énergétique [39], en particulier lorsqu’on étend le champ 

d’application du modèle à l’ensemble de la ville et qu’il intègre des bâtiments 
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gouvernementaux. Par conséquent, des recherches supplémentaires sont nécessaires pour 

améliorer l’étude d'auto-corrélation. 

Lors de la génération d’un UBEM, chaque bâtiment est représenté sous la forme d’un modèle 

thermique 3D individuel. La modélisation en fonction de son contexte urbain, attribue un 

archétype basé sur un ensemble de paramètres. Les profils de charges temporelles sont ensuite 

couplés à des techniques de cartographie GIS pour soutenir la prise de décision urbaine. 

Compte tenu de ces caractéristiques, aucune étude UBEM au sein de la région 

méditerranéenne était déjà réalisée. Les études ascendantes ont principalement porté sur la 

définition de bâtiments représentatifs du stock de bâtiments et l'évaluation de leur 

performance en énergie [40]. L’approche ascendante présentée dans ce papier enrichit la 

précision du modèle. En outre, son étalonnage se concentre sur l’intégration du poids 

important des comportements des occupants dans le modèle urbain. Sa capacité à gérer la 

complexité d’une zone urbaine peut être utilisée pour améliorer les résultats des études 

précédentes menées dans la région méditerranéenne. Cette méthodologie adoptée peut être 

reproduite dans n’importe quel autre district ou ville du Liban et de la région. Sa polyvalence 

est reconnue spatialement, qu’il s’agisse du bâtiment ou de la ville, et temporellement quand 

allant de résolution horaire à annuelle. Cela permet une analyse des schémas énergétiques 

spatiotemporels pour allouer les points chauds et les pics d’énergie demandes. À cet égard, 

les cartes énergétiques urbaines 2D et 3D sont très informatives et permettre l'analyse critique. 

Application de mesures d'économie d'énergie ou de modernisation à des bâtiments 

spécifiques à forte consommation d’énergie peuvent ensuite être explorés. De plus, la mise à 

l'échelle de la consommation d’énergie horaire est cruciale pour la gestion de la distribution 

d’énergie par « rationnement intelligent » de l'électricité. Dans ce contexte, le modèle peut 
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fournir un aperçu de la stratégie d’intégration optimale de l’énergie solaire sur les toits des 

bâtiments, comme sera étudié dans les recherches futures.  

2.3 Implications politiques 

Pour le Liban, un pays avec des défaillances chroniques du secteur de l'énergie, reflétant le 

déficit croissant puissance et la qualité, ce travail offre trois liens politiques distincts qui 

pourraient aider à la résolution de défis réels et existants: 

 Tout d’abord, en raison de la facturation non raffinée et bimensuelle de l’électricité ainsi que 

du marché de l’électricité du pays, EDL, la compagnie nationale d’électricité n’a pas de 

compte précis des charges de consommation et de leurs variations dans le temps et dans 

l'espace. Le modèle développé fournit un outil puissant pour comprendre mieux les variations 

de charge, et ainsi planifier les stratégies et les investissements futurs en conséquence. Par 

exemple, l’un des principaux défis de la techno-politique résident dans l'estimation de la 

demande réelle d'électricité des Libanais et son taux de croissance dans le futur en raison des 

interactions complexes entre EDL et exploitants de groupes électrogènes diesel privés, dont 

certains sont dotés de compteurs et d’autres largement non réglementés; et l'existence d'une 

demande supprimée due à l'incapacité des EDL à fournir de l'énergie 24 heures sur 24. Avec 

l'aide du comptage intelligent que EDL commence à mettre en œuvre, ce modèle peut être 

utilisé pour calibrer scientifiquement, vérifier et estimer la demande croissante aux niveaux 

national et sous-national.  

 Deuxièmement, jusqu’à ce que EDL puisse fournir de l’électricité sans interruptions, les 

coupures du courant continueront à se produire. La prédiction des modèles de consommation 

d'électricité dans l'environnement urbain de Beyrouth, illustrée dans ce travail, pourrait à 

terme contribuer à informer le rationnement intelligent de l'électricité, ce qui permet d'établir 

une cartographie efficace entre les charges et la capacité d'approvisionnement disponible.  
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  Troisièmement, le modèle développé pourrait être utilisé pour tester divers instruments de 

politique et des idées qui favorisent les économies d'énergie telles que la mise en œuvre des 

codes d'efficacité énergétique des bâtiments, installation de chauffe-eau, etc. Une application 

particulièrement utile est de tester le potentiel des systèmes photovoltaïques solaires sur les 

toits pour répondre à la demande, ou à une partie de celle-ci, pendant certaines périodes. 

3 Accès à la lumière du jour 

Le bilan radiatif constitue une composante importante du bilan énergétique des bâtiments. Il 

contribue directement en tant de gains solaires par les surfaces extérieures du bâtiment, et 

indirectement par les économies d’énergie atteintes par le remplacement de l’éclairage 

artificiel par la lumière du jour. De nombreuses études ont été réalisées pour mesurer l'accès 

solaire et la disponibilité de la lumière du jour en contexte urbain [44]–[46] et évaluer son 

impact sur la consommation d'énergie en milieu urbain [47]. Dans cette étude, le bilan radiatif 

de deux zones à Beyrouth a été simulé dans DART [48]. Puisque nous cherchons à représenter 

la lumière du jour, nous utilisons l’illuminant standard D65 défini par la Commission 

internationale de l’éclairage (CIE) pour convertir l’énergie rayonnante en énergie lumineuse 

(c’est-à-dire visible). Un illuminant est une représentation mathématique de la source de 

lumière basée sur un modèle visuel humain, dans ce cas la lumière du jour. La sensibilité 

spectrale moyenne de la perception visuelle humaine est également présentée, appelée 

fonction de luminosité. La CIE distribue des tableaux standard avec des valeurs de fonction 

de luminosité à des intervalles de 5 nm allant de 380 à 780 nm (l’intervalle peut être réduit à 

400 nm à 700 nm, car les valeurs de la fonction de luminosité deviennent négligeables aux 

longueurs d’onde en dehors de cet intervalle).  
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3.1 Description de l'étude de cas et résultats 

Deux zones ont été choisies arbitrairement pour cette étude, ayant une complexité urbaine 

différente. Le budget radiatif sur les surfaces extérieures de 433 bâtiments de la zone 1 et de 

414 bâtiments de la zone B a été simulé. En raison de ressources de calcul limitées, les districts 

ont été subdivisés en zones (6 zones dans le district A et 3 zones dans le district B). Les limites 

des zones se chevauchaient pour tenir compte de l’effet des ombres des bâtiments voisins. 

Les bâtiments avec une fonction manquante étaient considérés comme résidentiels. Lorsque 

l’année de construction n’est pas disponible, il a été supposé que les bâtiments ont été 

construits après 1991. 

Le profil vertical de la lumière du jour correspond au profil de l'énergie interceptée par une 

composante urbaine (dans notre cas, les fenêtres) tout au long de la hauteur des bâtiments. 

L’analyse de cette métrique montre à quel point l’accessibilité à la lumière du jour est en 

grande partie perdue aux étages inférieurs de chaque zone. Les pertes sont quantifiées entre 

les étages les plus hauts et les plus bas à des heures et des jours différents de l'année. Les 

résultats de la zone 1 sont présentées dans la figure 7. 
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Figure 7: Profil vertical de l'énergie interceptée sur les fenêtres des bâtiments de la zone 1, à 
différentes heures sur quatre jours de l'année. 
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Figure 8:  Bilan radiatif 3d de l'énergie interceptée par les surfaces des bâtiments dans les 6 
sous-zones de la zone 1, à 9 h le 21 mars (bande [400 nm; 475 nm], grille d'éclairage = 10 
cm). 

Des aspects urbains tels que la hauteur moyenne et l'orientation des bâtiments environnants, 

leur niveau déviation, la hauteur du bâtiment et sa position dans l’espace étaient associées à 

la disponibilité de la lumière du jour sur les façades des bâtiments avec des réseaux de 

neurones artificiels algorithmes. Avec une erreur MAPE de 17%, l’algorithme formé présente 

une méthode fiable et cohérente pour évaluer l'accessibilité de la lumière du jour pour les 

zones urbaines planification, la conception des futurs bâtiments et d’estimer sa variation sur 

l’année si les caractéristiques d'entrée pourraient être obtenues. 
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4 Conclusion et perspectives 

Le travail présenté dans cette thèse est le premier UBEM à cette échelle au Liban et la région 

à la connaissance de l’auteur. Bien qu'il se soit avéré présenter plusieurs avancées, des 

travaux supplémentaires sont encore nécessaires pour promouvoir son utilisation en milieu 

urbain la planification énergétique et certains développements pertinents peuvent être 

envisagés. 

Gestion de données à grande échelle  

La disponibilité des données était un obstacle majeur qui limitait la portée de la thèse à celui 

représenté dans cette thèse. Par conséquent, un besoin inévitable de bases de données est 

soulevé. Le référentiel de données devrait inclure: 

 Liste actualisée des matériaux utilisés dans la construction des bâtiments, avec leurs 

propriétés thermiques et optiques, en plus de la construction des méthodes telles que 

la construction de couches de composants. 

 Images satellitaires récentes et anciennes pour les villes d'intérêt utilisables en 

télédétection, non limitée à la numérisation et à la végétation des bâtiments 

classification, mais aussi pour l'identification des propriétés urbaines. 

  Caractéristiques des utilisations finales de l’énergie, telles que HVAC, appareils 

électroménagers et l’éclairage, y compris leurs taux de pénétration, leur efficacité et 

leur modèles d'utilisation.  

 Paramètres liés aux occupants, tels que leurs activités, leurs comportements et 

préférences. Dans ce contexte, la complexité augmente en raison de la stochastique 

nature des modèles humains. 
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La gestion et l’organisation des données constituent un facteur clé pour une génération 

d’UBEM efficace et prenant moins de temps. Des modèles communs d'informations et 

la possibilité de partage augmenteront l'adoption de ces outils, amélioreront leur fiabilité 

et faciliteront leur importation aux modèles. 

Raffinement des modèles géométriques et non géométriques 

De nombreuses améliorations peuvent être envisagées pour améliorer encore la 

précision du modèle présenté et d’élargir ses applications. Le modèle géomètrique peut 

être amélioré en considérant les toits inclinés, le zonage des bâtiments en noyau et 

périmètre, modélisation d’arbres et de parcs, routes et zones piétonnes assez elles, pour 

en énumérer quelques-uns. Ces améliorations sont importantes à la fois pour le modèle 

énergétique et le modèle radiatif. La classification archétypale peut être améliorée en 

ajoutant d’autres paramètres clés que le type et l’année de construction du bâtiment. 

Cependant, l’identification des paramètres clés doit être basée sur une analyse de 

sensibilité pour éviter la génération d'archétypes inutiles. 

Fonctionnalité de modèle 

Le modèle BEEM présenté aux chapitres 3 et 5 est un algorithme automatisé permettant 

de générer les modèles 3D et les fichiers prêts à être utilisés pour les simulations 

énergétiques. Cependant, les entrées et les sorties du modèle nécessitent des efforts 

considérables pour les utiliser et procéder. En d’autres termes, BEEM peut encore être 

développé pour les fonctionnalités de gestion des données et devenir une plate-forme 

efficace et réalisable pour des utilisateurs de différents horizons. Il devrait être adapté 

pour être compatible avec d’autres formats, tels que CityGML afin qu’il puisse être 

utilisé dans d’autres études. Un de plus La barrière est le coût de calcul des simulations. 
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Un autre obstacle est le coût de calcul des simulations. Cette étude a été réalisée avec 

un service de cloud computing. Les simulations d'énergie prennent du temps, à moins 

que des ordinateurs puissants ne soient utilisés. Par conséquent, une attention devrait 

être prise à cet égard. 

Amélioration de l'évaluation du bilan énergétique 

 Le budget radiatif contribue au budget énergétique grâce au gain solaire des surfaces 

et aux économies d'énergie résultant de la lumière du jour. Le module radiatif dans 

EnergyPlus est simple, tandis que celui dans DART est plus avancé et plus précis. Il 

serait utile de coupler les sorties de DART à EnergyPlus ou à n’importe quel logiciel 

de modélisation énergétique dynamique. 

 Des paramètres climatiques tels que UHI, les conditions de vent locales, 

l’évaporation près de la mer et la chaleur dégagée par les transports doivent être 

prises en compte, compte tenu de leur influence sur les bilans énergétique et radiatif 

des bâtiments et donc sur la demande en électricité. Par conséquent, l'étude pourrait 

être étendue pour prendre en compte les effets des conditions microclimatiques en 

en le reliant à une analyse CFD de la dynamique des fluides numérique, ou en 

utilisant des générateurs de temps urbains pour simuler l’effet UHI. 

Autres études 

Le modèle présenté permet d’évaluer la demande en énergie dans un cadre spatio-

temporel. Il évalue la consommation d'énergie actuelle et estime les schémas 

énergétiques futurs dans le cadre de certaines interventions technologiques, telles que la 

mise en œuvre de mesures d'économie d'énergie. De plus, il permet d'estimer la 

contribution des formes urbaines et de l'énergie utilisations finales de la demande 
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d'énergie à l'échelle du bâtiment et de la ville. Les résultats du modèle énergétique, du 

modèle de lumière du jour et leur relation avec les métriques urbaines peuvent être 

combinés pour une analyse plus holistique de différents modèles, énergie et stratégies à 

faibles émissions de carbone et planification urbaine. Nous avons commencé à explorer 

ces relations cette étude, prouvant que le modèle convient à une tel analyse. Un autre 

aspect important de BEEM est sa capacité à gérer l’approvisionnement en énergie. Les 

cartes d'énergie spatio-temporelles peuvent être couplées à l'irradiation solaire et aux 

cartes solaires pour estimer les économies potentielles réalisées par les systèmes 

photovoltaïques sur les toits, la répartition optimale de l'énergie produite et la gestion 

du réseau pour répondre à la demande énergétique. Il peut également être utilisé pour 

des simulations de réseau telles que le chauffage urbain. Ces capacités aident à informer 

les urbanistes et les décideurs politiques sur des scénarios possibles pour réduire la 

demande en énergie, répondre aux besoins urbains et réduire les émissions de GES. 

Évaluer les impacts économiques et sociaux de ces interventions doivent être 

complémentaires su modèle pour fournir un plan complet adaptable pour l'énergie 

urbaine la gestion. 
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