
�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/25484

Thomas, Ludovic and Le Boudec, Jean-Yves and Mifdaoui, Ahlem On Cyclic Dependencies and Regulators in Time-

Sensitive Networks. (2019) In: 40th IEEE Real-Time Systems Symposium, 3 December 2019 - 6 December 2019 (York,

United Kingdom).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/287740901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Non-definitive version – Final version to appear in the 40th IEEE Real-Time Systems Symposium (RTSS)

On Cyclic Dependencies and Regulators in
Time-Sensitive Networks

Ludovic Thomas
I&C
EPFL

Lausanne, Switzerland
ludovic.thomas@epfl.ch

Jean-Yves Le Boudec
I&C
EPFL

Lausanne, Switzerland
jean-yves.leboudec@epfl.ch

Ahlem Mifdaoui
ISAE-Supaéro

Université de Toulouse
Toulouse, France

ahlem.mifdaoui@isae-supaero.fr

Abstract—For time-sensitive networks, as in the context of
IEEE TSN and IETF Detnet, cyclic dependencies are associated
with certain fundamental properties such as improving avail-
ability and decreasing reconfiguration effort. Nevertheless, the
existence of cyclic dependencies can cause very large latency
bounds or even global instability, thus making the proof of the
timing predictability of such networks a much more challeng-
ing issue. Cyclic dependencies can be removed by reshaping
flows inside the network, by means of regulators. We consider
FIFO-per-class networks with two types of regulators: per-
flow regulators and interleaved regulators (the latter reshape
entire flow aggregates). Such regulators come with a hardware
cost that is less for an interleaved regulator than for a per-
flow regulator; both can affect the latency bounds in different
ways. We analyze the benefits of both types of regulators in
partial and full deployments in terms of latency. First, we
propose Low-Cost Acyclic Network (LCAN), a new algorithm
for finding the optimum number of regulators for breaking all
cyclic dependencies. Then, we provide another algorithm, Fixed-
Point Total Flow Analysis (FP-TFA), for computing end-to-end
delay bounds for general topologies, i.e., with and without cyclic
dependencies. An extensive analysis of these proposed algorithms
was conducted on generic grid topologies. For these test networks,
we find that FP-TFA computes small latency bounds; but, at
a medium to high utilization, the benefit of regulators becomes
apparent. At high utilization or for high line transmission-rates, a
small number of per-flow regulators has an effect on the latency
bound larger than a small number of interleaved regulators.
Moreover, interleaved regulators need to be placed everywhere
in the network to provide noticeable improvements. We validate
the applicability of our approaches on a realistic industrial time-
sensitive network.

I. INTRODUCTION

During the last decade, the significance of time-sensitive
networks has increased in many real-time application areas
such as automotive industry [1], avionics [2] [3], and industrial
automation [4]. Such networks strive to support, through traffic
synchronization [5], scheduling [6] and control [7], determinis-
tic worst-case delay bounds and jitter. The overall architecture
of time-sensitive networks [8], [9] enables seamless network
configuration and multi-path forwarding to guarantee high re-
liability and availability levels. But mapping mixed-criticality
flows, such as control, audio and best-effort traffic, on these
general topologies can induce cyclic dependencies, i.e., the

graph of interferences between flow paths can have cycles.
The existence of such cyclic dependencies makes the proof of
determinism a much more challenging issue and can lead to
system instability, i.e., unbounded delays [10], [11].

In this paper, our main concern is guaranteeing deterministic
worst-case delay bounds in time-sensitive networks with cyclic
dependencies, while minimizing the deployment costs and
keeping high-scalability architectures.

Among analytical methods for conducting worst-case per-
formance analysis of networks with cyclic dependencies, only
a few techniques have been proposed in the literature, mainly
based on network calculus [12]. The high modularity and
scalability of such a framework make it particularly efficient
for complex communication networks [13]. It has been actu-
ally used for the certification of safety-critical networks, such
as in avionics [14] [15] and space [16]. The most relevant
solutions in this area can broadly be categorized in two main
classes: coping with cyclic dependencies [17] [18] or breaking
cyclic dependencies [19]–[21]. The former consists mainly in
solving a fixed-point problem to compute deterministic delay
bounds when satisfying a given system stability condition.
This class of solutions offers low deployment costs, but gener-
ally leads to overly pessimistic delay bounds, thus limiting the
network scalability (size) and resource efficiency (utilization
rate). The latter guarantees cycle-free networks by relying on
either specific traffic-routing algorithms [19] that add further
constraints on the network design, or a full deployment of
traffic regulators within all network devices [20], [21] that
are more expensive to deploy. Traffic regulators reshape flows
by removing the increased burstiness due to interference with
other flows, thus a full deployment in every node removes
cyclic dependencies in a radical way. These regulators come
in two types: per-flow regulator (PFR) (also called “per-flow
shaper”) and interleaved regulator (IR) (see Section II-B for
details). The latter reshapes entire flow aggregates, whereas
the former acts on individual flows hence requires per-flow
queues. Both types of regulators enable higher scalability and
efficiency for such networks but are more complex to deploy
than solutions that do not use them or cope solely with cyclic
dependencies.

1

Non-definitive version – Final version to appear in the 40th IEEE Real-Time Systems Symposium (RTSS)

A variant would be to deploy regulators only within a subset
of nodes (partial deployment). This solution positively affects
the scalability and efficiency of the network, in comparison to
existing solutions coping with cyclic dependencies. Moreover,
it incurs lower deployment costs and complexity than full
deployment. In this paper, we analyze the benefits of both
types of regulators in partial or full deployments, in terms of
latency. For partial deployment, we also research how to select
a subset of nodes where regulators are to be placed.

Contributions: Our main contributions are as follows:
• We propose low-cost acyclic network (LCAN), an algo-

rithm that finds the optimum number of regulators for
breaking all cyclic dependencies;

• We provide another algorithm, fixed-point total-flow anal-
ysis (FP-TFA), for computing small end-to-end delay
bounds for general topologies, i.e., with and without
cyclic dependencies. This algorithm is based on the most
recent work in network calculus [22] and takes advantage
of our improved bound for the burstiness increase within
packetizers.

• We conduct an extensive analysis on a generic grid
topology and conclude that partial-deployment schemes
achieve a good compromise between cost and perfor-
mance. If the utilization or the transmission rate is high,
we find that a small number of per-flow regulators has an
effect on latency larger than a small number of interleaved
regulators. Moreover, interleaved regulators need to be
placed everywhere in the network to provide noticeable
improvements;

• We validate the applicability of partial-deployment ap-
proaches on a realistic industrial time-sensitive network.

The rest of the paper is organized as follows. In Sections
II and III, we present the problem statement and existing
solutions in the literature respectively. We detail the main
system assumptions and the model in Section IV. We introduce
the new algorithm LCAN in Section V and the new analysis
approach FP-TFA in Section VI. We evaluate our proposal
in comparison to existing solutions in Section VII. Finally,
we validate our solution on a realistic industrial time-sensitive
network in Section VIII.

II. PROBLEM STATEMENT

We begin this paper by defining the issue of cyclic depen-
dencies and how they represent a challenge.

A. Cyclic Dependencies

Consider a network where flows have fixed paths and are
bounded at sources by leaky buckets; such a constraint, with
parameters r (the rate) and b (the burstiness, also called
“bucket size” or “burst size” [23]), means that the number
of bits that the flow can send over a window of duration t is
upper bounded by rt+ b. Whenever such a flow is subject to
a bounded but variable delay, the jitter it suffers (difference
between the best- and the worst-case delay) increases its
burstiness, that is then propagated to the next element in
the flow path. This burstiness-propagation effect can lead to

A B

C

DE

F

G

H

I

f

g

f ′

g′

C = 2

L
=

1

Fig. 1. Toy example of several cyclic dependencies

situations in which the burstiness of the flows have a cyclic
dependency on each other. Consider the theoretical session-
oriented network presented in Figure 1 where boxes A to I
are switches and flows f ,g,f ′ and g′ are bounded by leaky-
buckets.

When exiting switch A, f suffers a variable delay due to
the contention at the output port: f and g interfere, as they
both compete to exit A in the direction of B. The worst-
case delay depends both on the burstiness of f and g, before
A. This worst-case delay implies an increase of the worst-
case burstiness of flow f at A’s output. The new burstiness is
propagated to switch B, where f suffers a delay that increases
again its burstiness. At D, the propagated burstiness of f
competes with the fresh flow g, thus creating a delay and
a burstiness increase for both g and f . From D to A, g
continues to have an increased burstiness at each hop. We
reach a dependency because the burstiness of g before A
depends on the delay within A, and this delay depends on
the burstiness of g before A.

A formal definition of cyclic dependencies can be found in
[11, Chapter 12], quoted here:

Definition. For a given network, consider its underlying di-
rected graph G = (V,E) defined by: V , the set of vertexes, is
the set of output ports in the network. For a, b two output ports
in V , (a, b) is a directed edge in E if at least one flow crosses
output port a and just after output port b. A cyclic dependency
in the network is defined as a cycle in its underlying graph.

When there is no cyclic dependency, we say that the network
is “feed-forward”. The definition highlights that we do not
consider cyclic data-dependencies commonly viewed in the
real-time community but rather cyclic dependencies that are
induced by the paths of the flows.

The underlying graph of the network in Figure 1 is given
in Figure 2 (For any switch, we use the cardinal points for
distinguishing its output ports). For example, (Enorth, Fnorth) is
an edge in the underlying graph because flow g satisfies the
above condition. The graph is not acyclic and the network is
not feed-forward.

Cyclic dependencies can lead to the global instability of a
network. In [10], Andrews proved that for any utilization ratio
(even as close to 0 as desired), there exists a first in, first out
(FIFO) network with cyclic dependencies in which the delays
of the flows are not bounded.

2

Non-definitive version – Final version to appear in the 40th IEEE Real-Time Systems Symposium (RTSS)

Bsouth

Csouth

Dwest Deast InorthEnorth

Fnorth Hnorth

Aeast Gwest

Fig. 2. Underlying graph (defined in Section II-A) of the toy example

PFR
FIFO systemrf , bf

rf , b
∗
f > bf

rf , bf

Df
1

Df
2 = Df

1

FIFO systemrg, bg rg, bg
Dg

1 Dg
2 = Dg

1

Fig. 3. Shaping-for-free principle (defined in Section II-B) with a PFR

B. Regulators

To prevent cyclic dependencies and the instability they can
cause, burst propagation can be blocked by using hardware
components called regulators. Regulators are placed just be-
fore an output port and reduce the burstiness of the flows by
delaying some packets.

Regulators come in two flavours: per-flow regulators (PFRs)
and interleaved regulators (IRs). A PFR, with parameter (r, b)
for the flow of interest, buffers the data of the flow in a
FIFO queue (one per flow) and releases packets as early as
possible while ensuring that the output of this flow never has
more than rt + b bits over any period of duration t. A well-
known implementation is Linux’s Token Bucket Filter [23].
The PFR can delay some packets, however, it does not increase
the worst-case delay [21], [24] (“shaping for free” property).
This is illustrated in Figure 3. Any regulated flow is treated
differently from the PFR perspective and can come from a
different FIFO system. If the PFR is configured so that it
resets the burstiness of each flow back to its value at the FIFO-
system’s input, then the shaping-for-free property holds: the
overall worst-case delay Df

2 for flow f equals its worst-case
delay Df

1 in the FIFO system (and Dg
2 = Dg

1 as well).
Interleaved Regulators were introduced by [25] (under the

name of “Urgency Based Scheduler”, also called “Asyn-
chronous Traffic Shaping” by IEEE TSN) in an effort to reduce
the required hardware. An IR has a single FIFO queue for all
the flows it regulates (but every flow f has its own regulation
parameter (rf , bf)). The IR examines only the packet at the
head of its FIFO queue and releases it as soon as so doing does
not violate the constraint of this flow. Packets of other flows
can thus be delayed by the packet at the head of the queue.

FIFO system IR
rf1 , bf1 rf1 , bf1
rfn , bfn rfn , bfn

D1 D2 = D1

. . .

Fig. 4. Shaping-for-free principle with an IR

Nonetheless, an IR that is placed after a FIFO system does not
increase the worst-case delay of the FIFO system, as illustrated
in Figure 4. Note that this “shaping-for-free” property of the
IR holds only if all the flows in the FIFO queue of the IR
come from the same previous FIFO system. Also observe that
the IR can increase the worst-case delay of a flow when this
worst-case delay is less than the worst-case delay across all
flows at the node of interest.

Interleaved regulators and per-flow regulators are two be-
havioral models. Their specific implementation within a net-
work element is still an open discussion among the TSN
task group. The ongoing draft IEEE802.1Qcr Asynchronous
Traffic Shaping (ATS) specifies the functional requirements
for a bridge to behave as per the IR model and, with slight
modifications, as per the PFR model. At the time of this
writing, this functional description is not yet published and
does not imply any corresponding hardware requirement, as
several solutions can be envisioned to achieve a same network
function. Even if these hardware requirements will probably
have a given cost, we keep an abstract definition of costs and
focus on the behavioral models.

C. Network Calculus

Network calculus is a mathematical framework initiated
by Cruz [26], [27] and then extended in [12], [28]. It uses
cumulative arrival functions R(t) [resp R∗(t)] which count the
amount of bits that have entered [resp. exited] a node between
0 and t. Then the delay and backlog at a node at any time are
obtained from the horizontal and vertical distances between R
and R∗.

In a real system, R and R∗ are unknown, so the framework
uses an upper bound on the traffic: α is an arrival curve if
∀t, s ≥ 0, R(t + s) − R(t) ≤ α(s). Similarly, it uses a lower
bound on the service provided by a node to the traffic: β is a
service curve is ∀t, R∗(t) ≥ infs≤t(R(s) + β(t− s)).

With these abstractions, network calculus defines an algebra
based on the (min,plus) convolution and nodes can then be
represented as in traditional system theory, with an input, an
output and a transfer function. For instance, if a flow of arrival
curve α is serialized on a medium of transmission rate c, the
resulting bit stream has an arrival curve α ⊗ λc where λc :
t 7→ ct and ⊗ is the (min,plus) convolution: α ⊗ λc(t) =
infs≤t α(s) + λc(t− s).

One fundamental result of network calculus is the “three
bounds theorem” [12], that provides deterministic bounds on
the delay and the backlog at a node, together with an upper
bound on the burstiness-propagation effect. It can thus be used
for providing end-to-end (ETE)-delay bounds if the network
is globally stable. Finally, network calculus can be used for
studying the effect of regulation on delays.

D. Full and Partial Deployments of Regulators

Regulators (both PFRs and IRs) can be deployed at every
node just before an output port [29]. In such a full deployment,
the burstiness of every flow remains the same along its path;
there is no burstiness propagation and the problems caused

3

Non-definitive version – Final version to appear in the 40th IEEE Real-Time Systems Symposium (RTSS)

by cyclic dependencies are eliminated. Worst-case latencies
can be computed using the “shaping-for-free” property and
other network calculus results. Note that regulators have a
beneficial effect as they avoid burstiness increases, however
they have other properties that can negatively affect the
latency. Specifically, they affect the serialization and the peak-
rate limitation benefits for the aggregate of all flows they serve.
For example, if a collection of flows is known to arrive on
the same link, then the peak rate limitation imposed by the
link can be exploited to compute smaller latency bounds, an
effect known as the “line shaping”. Such a limitation is no
longer true at the output of a PFR or an IR. We expect the
effect on latency to be very similar for full deployment of
PFR versus IR (but PFRs are more complex than IRs). Our
first objective is to evaluate the benefit of full deployments of
PFRs or IRs on latency. To this end, we developed FP-TFA, a
novel algorithm for computing delay bounds in networks with
cyclic dependencies.

As regulators break the propagation of burstiness, an al-
ternative approach is to install a few regulators within the
network, such that cyclic dependencies are removed (partial
deployment). The computation of latency bounds is hence
facilitated and can be performed using network calculus.
Observe that, here, there is a significant difference between
PFRs and IRs. If an IR is used at a point, say B, in the network
to restore the burstiness that exists for a set of flows at some
point, say A, the entire path from A to B must be globally
FIFO for the aggregate traffic of the set of flows. In practice,
this requires that A be an upstream neighbour of B. Such a
limitation does not exist for a PFR. The partial deployment
approach1 has not yet been studied and raises questions. Is
there any benefit on latency ? How can it be quantified in terms
of costs, performance, sensitivity ? Is there a significant effect
on latency if PFRs are used instead of IRs ? How to select
the nodes that should implement regulation ? These questions
constitute the second set of objectives of this paper.

III. RELATED WORK

Several proposals have been made to handle the problem of
cyclic dependencies described in Section II-A.

Mathematical adaptations of the network-calculus frame-
work were proposed to enable the analysis of networks that
already have cyclic dependencies. This situation occurs on
existing networks with an existing flow mapping. A first
space of solution is the fixed-point problem formulation [11,
Chapter 12]. More complex approaches rely on global inter-
ference equations. We can cite the Charny condition or the pay
multiplexing only at convergence points (PMOC) framework
[30], [31].

Mathematical approaches take advantage of serialization
effects [31], [32] but suffer from the burst-propagation phe-
nomenon that creates cyclic dependencies. They cannot guar-

1We consider only partial deployments of PFRs or partial deployments of
IRs. We leave partial deployments of mixtures of PFRs and IRs for further
study.

TABLE I
APPROACHES STUDIED IN THIS PAPER AND METHODS OF ANALYSIS

Total deployment Partial deployment No regulator
PFR [24] + [22] LCAN and FP-TFA FP-TFAIR [21] + [22] LCAN and FP-TFA

antee the stability of the network a priori and usually provide
pessimistic delay bounds [31].

If cyclic dependencies are anticipated in a network under
design, then the designer could chose to avoid them at the first
place. This could be done in several ways:

a) By adding routing constraints: Commonly used in
industrial networks, this approach benefits from the research
on deadlock prohibition in networks on chip (NoC) [33]; turn
prohibition is an example for heterogeneous networks [19].
Routing constraints give, however, little latitude to the network
architect on the mapping of the flows and face configuration
issues in the context of large-scale networks that are at the
core of IEEE time-sensitive networking (TSN) and Internet
Engineering Task Force (IETF) Detnet working groups. They
can also lead to both the surcharge of some resources and
to the waste of others [19]. We do not consider this class of
solutions.

b) By using regulators: If adding routing constraints is
not possible, the designer could choose to add the regula-
tors described in Section II-B. Regulators break the burst
propagation hence remove cyclic dependencies. Two types of
regulators are considered in this paper: the per-flow regulator
(PFR) [24] and the interleaved regulator (IR) [21]. Previous
work consider regulators as elements deployed at each hop
within the network [29].

Regulators are powerful tools, as they provide some level
of control on the arrival curves at their output. However
this control is interesting only if the delay they incur can
be computed and bounded. In Section II-B, we present the
shaping-for-free principle, a fundamental property of regu-
lators. Compared to mathematical approaches, they do not
suffer from the burst-propagation phenomenon but do not take
advantage of serialization effects, as the burst of each flow is
paid at each node.

The right and left columns of Table I were the only two
options considered in the previous work on cyclic dependen-
cies and regulators. In both cases, stability requirements, cost
requirements and scalability requirements are only met par-
tially. Partial-deployment schemes have not yet been studied
and might represent an opportunity for a good compromise
between cost, scalability and performance.

IV. SYSTEM MODEL

We consider an asynchronous switched network with full-
duplex links. We assume that there is one or several classes of
traffic and that traffic flows are statically assigned to a class.
At every node, all packets of all flows of a given class are
processed according to some unspecified scheduling method,
in order of arrival (FIFO-per-class). We focus on one of the
classes. Notations are presented in Table II.

4

Non-definitive version – Final version to appear in the 40th IEEE Real-Time Systems Symposium (RTSS)

TABLE II
NOTATIONS

N The set of all the output ports in the network
n ∈ N An output port
I The set of all the input ports in the network
I(n) The subset of I containing the input ports located

on the same device as the output port n
ci Transmission rate of the line at the input port i
cn Transmission rate of the line at the output port n
tprop Minimum propagation time in any link of the network
f A flow
f 3 n Flow f is crossing the port n
f 3 (i, n) Flow f is entering via the input i and exiting via the output n
αf (n) Arrival curve of the flow f before entering

the device that contains the port n
rf Rate of the flow f
bf (n) Burst of the flow f before entering

the device that contains the port n
α∗
f (n) Arrival curve of the flow f at the output of the scheduler n
b∗f (n) Burst of the flow f at the output of port n
α0
f Initial arrival curve of the flow f ,

α0
f (t) = rf t+ bf for some rf , bf

αR
f (i, n) Regulated arrival curve for f enforced by the regulator (i, n)
βn Service curve of the scheduler in port n
γr,b γr,b(t) = (rt+ b)1t>0, Leaky Bucket arrival curve

with rate r and burst b
βR,L βR,L(t) = R(t− T)+, Rate-Latency service curve

with rate R and latency L
δT Variable delay service curve with a maximum delay T
λR λR(t) = Rt, Service curve with a rate R and no latency

Switch fabric

Output port n

cn
Scheduler

Regulator (i, n)

Input i

Packetizerci

Input j

Packetizercj

Output port h
ch

Fig. 5. Device model

A. Device Model

In Figure 5, we present the model of any device in the
network. It is made of input ports, output ports, and a switch
fabric. We assume that all input ports I and all output ports
N in the network can be listed. Hence, port indexes i, j, n and
h are not relative to the device, but absolute in the network.
We assume that the propagation times from device to device
are non zero, and denote by tprop the minimum among all such
propagation times across the entire network.

Any packet enters the device via one of its input ports, say
i. Its bits are received at rate ci where ci is the transmission
rate of the line connected to input port i. The packet is then
stored entirely in a packetizer, i.e. a network element that
releases the data only once the whole packet has been received.
Table lookup and transmission through the switch fabric are
then performed and we assume that these two last steps are
instantaneous.

Depending on the routing table, the packet might then be
transmitted to output port n. If a regulator has been installed
for input i and output n (regulator (i, n) in Figure 5), the
packet is then processed by the regulator before being made
available for the scheduler. If no regulator is installed for
that tuple (case of tuple (j, n) in Figure 5), the packet is

Formulate
MFAS problem

N
et

w
or

k
w

ith
cy

cl
ic

de
pe

nd
en

ci
es

w
ith

ou
t

re
gu

la
to

rs

R
eg

ul
at

or
co

st
de

fin
iti

on

Solve MFAS
using Baharev’s algorithm

W
ei

gh
te

d
M

FA
S

pr
ob

le
m

Configure
the regulators

B
es

t
po

si
tio

ns
fo

r
re

gu
la

to
rs

Cost

Fe
ed

-f
or

w
ar

d
ne

tw
or

k
w

ith
re

gu
la

to
rs

Construct the
underlying graph

Construct the arrival
curves dependency graph

PFR

IR Transform
the problem

Weighted
MFVS

C
yc

lic
gr

ap
h

W
ei

gh
te

d
M

FA
S

pr
ob

le
m

Fig. 6. Overview of the LCAN algorithm

immediately transmitted to the scheduler.
The scheduler implements a FIFO-per-class policy, and we

assume its minimum service for the considered class can be
lower-bounded by a rate-latency service curve βRn,Ln , also
denoted with βn. For all n ∈ N , we assume Rn ≤ cn and
∀i ∈ I(n), Rn ≤ ci: the service rate is always lower than all
the line transmission rates on the device. When a packet is
selected by the scheduler for transmission, it is serialized on
the transmission line at rate cn.

B. Flows and Regulators

For any flow f and any output port n, αf (n) represents
the arrival curve of f before entering the device that contains
output port n and α∗f (n) represents its arrival curve at the
output of port n. α0

f is the initial arrival curve of flow f (at
the source). Whenever the flow is processed by a regulator
installed at tuple (i, n), we note αRf (i, n) the regulated output
arrival curve of this regulator for flow f . For a PFR, this arrival
curve is the initial arrival curve; for an IR it is the arrival
curve computed at the previous hop – see Section V-A for
details. The initial arrival curve for any flow f is of the leaky
bucket type, i.e of the form α0

f (t) = rf t+ bf for some rf , bf .
We assume that every output port n meets its local-stability
requirement as described in [11], i.e.

∑
f3n rf < Rn.

V. LCAN: CONFIGURING AND POSITIONING
REGULATORS WITHIN A NETWORK

In this section, we describe LCAN, an algorithm that
computes a partial deployment of either PFRs or IRs with
minimal cost, subject to the constraint of breaking all cyclic
dependencies. The cost is the sum of the costs of every
regulator. The cost of one regulator is configurable and is given
by an external function specified by the user. For instance, the
cost can be defined according to:
• the number of flows a regulator has to process,
• the properties of the flows a regulator has to process (e.g.,

rate, burst),
• the size of the device on which the regulator is imple-

mented.
Additionally, constraints can be added to the algorithm to
account for industrial requirements. For instance, a device
could be out of the operator’s control and thus could not
implement any regulator; or a device could host a maximum

5

Non-definitive version – Final version to appear in the 40th IEEE Real-Time Systems Symposium (RTSS)

Scheduler
Port Csouth

+

PFR

From
Bsouth

αf (Csouth)
f

α0
f

αf ′(Csouth)
f ′

α0
f ′

Fig. 7. Output port Csouth of the network example with a PFR

. . .PortPort Port Bsouth

FIFO system

PFRSource
α0
f

αRf (Bsouth, Csouth) = α0
f

Fig. 8. Meeting of the requirements for the shaping-for-free property with
a PFR

number of regulators, etc. As described in Section II-B, these
aspects are still under discussion in the real-time community.
To anticipate any potential outcome of this discussion, LCAN
takes the cost definition as an input. However, in this paper,
we are using unitary costs, and if a PFR is placed for a given
(input, output) pair, we count it as one regulator, regardless of
the number of flows.

An overview of LCAN is presented in Figure 6. It operates
in three steps (Figure 6). First, it creates a minimum feedback
arc set (MFAS) problem, a well-known graph-theory problem
that represents the objective. The output of this step is a
directed weighted graph with cycles, the weights representing
the configurable costs of the regulators. Second, it uses a state-
of-the-art algorithm to solve the MFAS problem. In the last
step (not presented hereafter), the network is configured and
made ready to be analyzed by any feed-forward method.

A. Graph Construction

To explain how graphs are built by LCAN, we consider
again the toy example in Figure 1. Figure 2 presents the
underlying graph of this network, as described in Section II-A.

As discussed in the mentioned section, the underlying graph
is actually a representation of the burst-propagation effect
throughout the network. If the graph is acyclic, the network is
feed-forward.

a) LCAN Operations with per-flow regulators: Assume
output port Csouth implements a PFR that regulates the flows
coming from Bsouth. We configure it with αRf (Bsouth, Csouth) =

α0
f and αRf ′(Bsouth, Csouth) = α0

f ′ : the arrival curves of f and
f ′ at the output of the PFR equal their initial arrival curves at
their respective sources. Figure 7 presents the inside of port
Csouth. The flows competing for the scheduler are f and f ′ with
regulated arrival curves α0

f and α0
f ′ . Hence, the computation

of the delay within the scheduler of port Csouth neither depends
on αf (Csouth) nor on αf ′(Csouth). The burst propagation from
Bsouth to Csouth is blocked. This corresponds to removing edge
(Bsouth, Csouth) from the graph in Figure 2.

The shaping-for-free property described in Section II-B is
kept. For the flow f regulated by the PFR (Bsouth, Csouth), the
FIFO system associated with the regulator is the entire suite
of ports from the ingress node of f up to and including the
output port Bsouth (Figure 8).

Scheduler
Port Csouth

+

IR

From
Bsouth

αf (Csouth)
f

αf (Bsouth) + lmax
rf
cAeast

αf ′(Csouth)
f ′

αf ′(Bsouth) + lmax
rf′

cGwest

Fig. 9. Output port Csouth of the network example with an IR

(Bsouth, Csouth)

αf (Csouth)

αf ′(Csouth)

αf (Bsouth)

αf ′(Bsouth)

Fig. 10. Fraction of the arrival curve dependency graph (defined in
Section V-A) for the network example

Finding the optimal positions for the PFRs is now translated
into a MFAS problem: the objective is to remove the cycles
from the underlying graph by removing the edges with the
fewest weight sum. Each removed edge corresponds to a PFR.
The weights are equal to the costs of the regulators. In the case
of the toy example in Figure 1, if the weights all equal 1, then
removing edge (Bsouth, Csouth) from the underlying graph in
Figure 2 is the optimal solution to make it acyclic.

b) LCAN Operations with interleaved regulators: As-
sume that we implement an IR in place of the PFR (Fig-
ure 9). We configure the IR such that αRf (Bsouth, Csouth) =

αf (Bsouth)+ lmax
rf
cAeast

and αRf ′(Bsouth, Csouth) = αf ′(Bsouth)+

lmax
rf′

cGwest
. The flows f and f ′ exiting the regulator do not

retrieve their fresh arrival curves α0
f and α0

f ′ rather they
retrieve those they had after the packetizers that precede the
previous output port (Figure 11). The packetization effect is
computed as per Section VI-A. The regulator removed the
effect of the last output port scheduler (port Bsouth) on the
arrival curves of f and f ′.
αRf (Bsouth, Csouth) and αRf ′(Bsouth, Csouth) are not entirely

independent from the past ports, which means the action of
the IR on the network cannot be modeled by removing edge
(Bsouth, Csouth) from the graph Figure 2. We need to define a
new graph that we call the arrival curve dependency graph.
A fraction of it is given for the example in Figure 10, where
we focus on the link between B and C. The graph is made
of two types of nodes:

• The state nodes: Node αf (Bsouth) represents the arrival
curve of flow f before entering the device that holds
output port Bsouth, i.e. before entering device B.

• The contention nodes: Node (Bsouth, Csouth) represents the

Scheduler
Port Bsouth

+

Packetizer
From Aeast

Rate cAeast

Packetizer
From Gwest

Rate cGwest

Scheduler
Port Csouth

+Packetizer IR

FIFO system

αf (Bsouth)

αf (Bsouth) + lmaxrf/cAeast

Fig. 11. Meeting of the requirements for the shaping-for-free property with
an IR

6

Non-definitive version – Final version to appear in the 40th IEEE Real-Time Systems Symposium (RTSS)

propagation of the burst due to the contention on the
scheduler Bsouth to the next port in the path of the flows,
i.e. port Csouth.

It also includes three types of edges:
• The dashed edges: αf (Bsouth) → αf (Csouth) represents

the propagation of the arrival curve of f from Bsouth to
Csouth.

• The edge αf (Bsouth) → (Bsouth, Csouth) represents the
contention that takes place in Bsouth, in which f partici-
pates, and the propagation of the effects of this contention
in terms of burstiness increase to the next output port:
Csouth.

• Finally, edge (Bsouth, Csouth)→ αf (Csouth) represents the
propagation of these effects on the arrival curve of f
before port Csouth.

Placing an IR between ports Bsouth and Csouth removes the
influence of the contention in the scheduler of port Bsouth
on all the arrival curves, before the scheduler of port Csouth.
This corresponds to removing node (Bsouth, Csouth) (and all its
edges) from the graph in Figure 10. The arrival curves of f
and f ′ at the output of the IR continue to depend on their
previous arrival curves: this is captured by not removing the
state nodes and dashed edges in Figure 10.

The shaping-for-free property described in Section II-B
is kept. For the flow aggregate regulated by the IR
(Bsouth, Csouth), the FIFO system associated with the regulator
in the direct previous scheduler at output port Bsouth, after the
packetizers (Figure 11). This system is FIFO for the aggregate
{f, f ′}.

Finding the optimal positions for the IRs is now translated
into a minimum feedback vertex set (MFVS) problem: the
objective is to remove the cycles from the arrival curve depen-
dency graph by removing the contention nodes with the fewest
total weight. Each removed contention node corresponds to an
IR.

In graph theory, MFVS and MFAS are equivalent problems
[34] and MFVS can easily be transformed into a MFAS
with minor graph manipulations. This step is captured in the
Transform the problem box in Figure 6.

B. Solving the MFAS Problem

Finding a MFAS is a well-known NP-hard problem in
graph theory [35]. We use Baharev’s algorithm [34]: it relies
on a cover-set problem formulation with a lazy constraints
generation. It provides an optimum and is well suited for
graphs containing up to one million cycles, a reasonable limit
for industrial cases. LCAN invokes Baharev’s algorithm to
remove the cycles in the graphs computed in the previous sub-
section. Lastly, LCAN configures the regulators and updates
the network representation.

VI. FP-TFA: A NOVEL ALGORITHM FOR SMALL DELAY
BOUNDS IN NETWORKS WITH CYCLIC DEPENDENCIES

LCAN can be used to achieve partial deployment of regu-
lators. To compare its performance against the no-deployment
approach (right column of Table I), we need an algorithm for

Perform
cuts

N
et

w
or

k
w

ith
cy

cl
ic

de
pe

nd
en

ci
es

Compute
Feed-forward

FF

Fe
ed

-f
or

w
ar

d
N

et
w

or
k

Check
Fixed Point

D
el

ay
bo

un
ds

O
ut

pu
t

bu
rs

ts

fix
ed

Po
in

tR
ea

ch
ed

?

[fi
xe

dP
oi

nt
R

ea
ch

ed
,

ve
ct

or
of

bu
rs

ts
]

Compute
ETE delays

Fi
xe

d-
po

in
t

so
lu

tio
n

True

E
T

E
de

la
y

bo
un

ds

0
Initial vector

FalseNew vector of
input bursts

FP-TFA (overlayer presented in Section VI-C):

Pick a node
not yet computed

Fe
ed

-f
or

w
ar

d
ne

tw
or

k

Check
inputs

N
ot

co
m

pu
te

d
no

de

Compute
node state

N
od

e
re

ad
y

fo
r

co
m

pu
ta

tio
n

In
pu

t
ar

riv
al

cu
rv

es

All known
Propagate

arrival curves

O
ut

pu
t

ar
riv

al
cu

rv
es

Updated network sateOne unknown

Fe
ed

-f
or

w
ar

d
de

la
y

bo
un

ds
O

ut
pu

t
bu

rs
ts

All
done

Detail of the Compute Feed-forward step (intermediate layer from [32]):

Compute effect of
input line shaping

In
pu

t
ar

riv
al

cu
rv

es

Compute effect
of packetization

Section VI-A

Sh
ap

ed
in

pu
t

ar
riv

al
cu

rv
es

Compute effect
of regulators

Pa
ck

et
iz

ed
in

pu
t

ar
riv

al
cu

rv
es

Compute
NC delay

In
pu

t
an

d
re

gu
la

te
d

ar
riv

al
cu

rv
es

Compute Mohammadpour et al’s
delay improvement

NC delay
bound

Compute output arrival
curves with line shaping

Delay
bound

D
el

ay
bo

un
d

O
ut

pu
t

ar
riv

al
cu

rv
es

Detail of the Compute node state step (lower layer described in Section VI-B):

Fig. 12. Overview of the FP-TFA algorithm

PL
Transmission rate c

γb,r γb∗,r
Fig. 13. A packetizer serving a leaky-bucket constrained flow aggregate with
an input transmission line of rate c

providing small delay bounds in the latter case. We present
fixed-point total-flow analysis (FP-TFA), a novel algorithm for
computing delay bounds in networks with cyclic dependencies.
Up to Subsection VI-D, we assume that no regulator has been
deployed in the network.

An overview of FP-TFA is available in Figure 12. FP-TFA
is primary based on TFA++ [32] and provides
• a new result on the effect of packetizers,
• the computation of a tighter delay bound within nodes by

implementing the aforementioned result, as well as recent
work in network calculus [22], and

• an extension of the algorithm to topologies with cyclic
dependencies by using an iterative fixed point described
in [11, Chap. 12].

A. A Novel Result on Packetizers

The input ports in our model contain packetizers (Figure 5).
To compute delays within nodes, we need to assess both their
delay and their effect on the aggregate arrival curves.

Previous results on packetizers [12] concluded that they do
not directly participate in the ETE-delay bound of flows, but
that they can increase the burstiness of the flow aggregate. This
burstiness increase is bounded by lmax, the maximum packet
size of all the flows. In this subsection, we provide a tighter
bound when the packetizer is connected to an input line of
fixed transmission rate.

Theorem 1. If a packetizer PL is placed on a line of fixed
transmission rate c and if it serves a leaky-bucket constrained

7

Non-definitive version – Final version to appear in the 40th IEEE Real-Time Systems Symposium (RTSS)

Time

Aq Dq As Ds

Fig. 14. Timeline of the reception of several packets at packetizer’s input

Scheduler

βn

+ Line shaping

λcn

Output n

PacketizerLine shaping
Aj

Input j

PacketizerLine shaping

λcj′

Aj′
Input j′

αAj

Fig. 15. Detailed model for the computation of the delay bound within a
node

flow aggregate γb,r, then an arrival curve for the aggregate
at its output is the leaky-bucket arrival curve γb∗,r with b∗ =
b + r

c lmax, where lmax is the maximum packet length of the
flow aggregate.

Proof. We note R the cumulative arrival function of the
aggregate at packetizer’s input. For a given packet q, we
note Aq the arrival time of the first bit of the packet in PL.
We note Dq the arrival time of the last bit of packet q and
the subsequent release of the entire packet q from PL. The
transmission rate of the medium is c, therefore Dq−Aq = lq/c,
with lq the size of packet q.

Let us take any two packet indices q ≤ s (Figure 14). By
definition of the maximum arrival curve γb,r for the input
aggregate, the amount of bits received during time interval
Ds −Aq is bounded by γb,r(Ds −Aq), i.e.

lq + . . .+ ls ≤ r · (Ds −Aq) + b

Using the previous relation for Dq −Aq , we obtain:

lq + . . .+ ls ≤ (Ds −Dq)r + b+ rlmax/c (1)

Equation (1) is the max-plus representation of a packetized
flow aggregate constrained by an arrival curve γb∗,r with b∗ =
b+ r lmax

c [12].

B. Delay within a Node

In this subsection, we combine the aforementioned bursti-
ness improvement with recent work in network calculus [22]
and present the delay computations within the lowest layer
in Figure 12. We are interested in the delay suffered by the
flows within output port n of the device model in Figure 5.
The computational model associated is presented in Figure 15,
where j and j′ are two of several input ports without any
regulator.

According to the total-flow analysis (TFA)++ model [32],
neither the input shaping nor the output shaping participate
in the ETE delay, under the assumption that the medium
transmission-rate is higher than the service rate of the sched-
uler (cn ≥ Rn). We also mention, in Section VI-A, that
packetizers do not directly participate in the ETE delay but
they can increase the burstiness.

In conclusion, only the scheduler in Figure 15 participates in
the ETE-delay bound of the flows. To compute a delay bound,

ra
te
c j

lmax

rate rj

bj +
lmax· rjcj

θj time interval t

arrival curve αAj

Fig. 16. Arrival curve αAj for one unregulated input j

we need to obtain the arrival curve of the flow aggregate at
its input.

A flow aggregate of arrival curve
∑
f3(j,n) αf (n) enters

input port j and is first submitted to the shaping created by the
input transmission line, as stated in TFA++ [32]. The pack-
etizer input arrival-curve hence equals λcj⊗

∑
f3(j,n) αf (n)

and is the convolution of two leaky-bucket arrival curves. We
apply to each component the impact of the packetizer as in
Therorem 1. The aggregate arrival curve at location Aj in
Figure 15 equals

αAj =
(
λcj + lmax

)
⊗

 ∑
f3(j,n)

αf (n) + lmax

∑
f3(j,n) rf

cj

where ⊗ represents the min-plus convolution [12].

If we sum the incoming aggregate arrival curves from all the
input ports, an arrival curve of the aggregate that the scheduler
has to serve is

αsched. n=
∑

j∈I(n)

(
λcj + lmax

)
⊗

 ∑
f3(j,n)

αf (n) + lmax

∑
f3(j,n) rf

cj

︸ ︷︷ ︸

αAj

(2)

With the aggregate, we compute the network calculus delay-
bound as the maximal horizontal distance between αsched. n
and βn. In the following part of the subsection, we address
where and how this horizontal distance is computed. Because
the flows have leaky-bucket initial arrival curves, all the arrival
curves αf (n) are leaky-bucket arrival curves.

Figure 16 presents the shape of αAj , a piecewise linear func-
tion with bj =

∑
f3(j,n) bf (n) [resp rj =

∑
f3(j,n) rf (n)] the

total burstiness [resp. the total rate] of the flows f 3 (j, n). We
note θj =

bj+lmax(rj/cj−1)
cj−rj the time value of the intersection

of both slopes.
Next step of the algorithm is to add all the Aj terms for

all input j such that {f 3 (j, n)} is non-empty. Call #J the
number of such inputs. The sum outputs the piecewise-linear
function presented in Figure 17, with m the input index such
that θm = maxj θj , rtot =

∑
j rj , the total rate of the inputs

and btot =
∑
j bj , the total burstiness of the inputs, without

the line shaping or the packetization effects.
The network calculus delay is finally computed. The highest

horizontal distance is reached on θm because rtot ≤ Rn (local-
stability assumption), whereas rtot − rm + cm ≥ cm ≥ Rn

8

Non-definitive version – Final version to appear in the 40th IEEE Real-Time Systems Symposium (RTSS)

∑ j
c j

lmax ·#J

. . .btot−bm+

lmax·
(∑

j 6=m
rj
cj

+1
) r tot

−
rm

+
cm

btot +
lmax ·

∑
j
rj
cj

rtot

θm

time interval t

arrival curve αsched.n

Fig. 17. Arrival curve
∑

j αAj for all unregulated inputs {j}

(assumption that the service rate is lower than all transmission
rates). With the above notations, an upper bound on the delay
of the flows in output port n equals

Dn =
btot + lmax ·

∑
j
rj
cj

Rn
+ Tn + θm ·

(
rtot

Rn
− 1

)
(3)

with Rn the service rate of the scheduler n and Tn its latency.
The algorithm then applies the delay bound improvement

of Mohammadpour et al., achieved when an output port
n is followed by a line with transmission rate cn [22]:
D∗n = Dn − lmin

(
1
Rn
− 1

cn

)
is also a bound on the delay

suffered by the flows within port n, where lmin is the minimal
packet size of the flows.

The last step of the algorithm consists in computing the
output arrival curve for each individual flow by taking into
account the shaping effect of the output transmission rate cn.
This step is performed following the results in [32]: for a given
flow f , its output arrival curve α∗f (n) equals

α∗f (n) = (αf (n)⊗ λcn)� δD∗n (4)

where � represents the min-plus deconvolution [12], δD∗n is
the service curve with no minimum service before D∗n and
infinite service after. The retrieved arrival curves are leaky-
bucket functions, with same rates as at the sources, but with
larger bursts. Before propagation, we apply a ceiling function
to the bursts. Hence, they are expressed by integer values of
bits.

C. Delay Bounds in Networks with Cyclic Dependencies

Combining the two low layers of FP-TFA provides an
analysis tool for feed-forward networks. For a network with
cyclic dependencies, the main idea is to virtually perform cuts
in the topology so as to make it acyclic [11]. A cut is here a
separation between two output ports.

Cuts can be selected freely as long as the remaining net-
work is feed-forward. However, to keep the following steps
tractable, having as few cuts as possible is an interesting
strategy. Hence, the identification of cuts of Figure 12 can
be performed using LCAN. In the toy example (Figure 2), a
cut between Bsouth and Csouth, splitting f and f ′, is sufficient.

The resulting virtual network is feed-forward. Given
the knowledge of the bursts after the cuts (vector
[bf (Csouth), bf ′(Csouth)] in the toy example), the iterative ap-
plication of the method in the previous subsection provides an

algorithm, FF , to compute a bound for the bursts before the
cuts (vector [b∗f (Bsouth), b

∗
f ′(Bsouth)]).

If the real network, with no cut, is stable, then for every
cut tuple (n, h) and every split flow f there exists a lowest
possible bound on the burstiness of f after the cut (before h).
Thus, the vector b of these lowest burst bounds must verify
FF(b) ≥ b. By Tarski’s fixed-point theorem [36] and the
monotonicity of FF , it follows that b is upper-bounded by the
(possibly infinite) largest fixed point of FF . In Theorem 2, we
prove a stronger result: for any non-negative and finite fixed
point b of FF (i.e., FF(b) = b) and if the real network is
initially empty, then the real network is stable and b ≤ b, i.e.,
the fixed point b is a valid bound for the bursts of the flows
at the cuts.

To find such a fixed point, FP-TFA iterates the feed-forward
algorithm FF , starting with the empty vector 0 (Figure 12).
By Tarski’s fixed-point theorem [36], this gives the smallest
fixed point. After each call to FF , Algorithm 1 is called to
check if the fixed point is reached for the current iteration.
This algorithm compares the input and output vectors. For the
fixed point to be reached, strict equality must be achieved for
each term of the vectors, since burst values are integer (in
bits). Algorithm 1 outputs a boolean and the tentative fixed
point. The boolean is used in Figure 12 to decide if another
iteration must be taken. If so, the output bursts are used as
input to a new call to FF .

Algorithm 1 Detail of the “Check Fixed Point” block in
Figure 12
Require: bin is the input vector of FF . It contains the burst

after each cut, for each flow. n is its size. bout is the result
FF(bin).

1: procedure CHECKFIXEDPOINT(bin, bout)
2: bnew ← empty vector size n.
3: fixedPointReached ← True
4: for i = 1, . . . , n do
5: fixedPointReached ← fixedPointReached and

bin,i = bout,i
6: bnew,i ← bout,i
7: end for
8: return [fixedPointReached, bnew]
9: end procedure

Theorem 2. If the network with cyclic dependencies is empty
at t = 0, then any nonnegative fixed point, i.e. a vector b such
that FF(b) = b, is a valid burst bound for the network with
cyclic dependencies at the cuts. If FF has a finite nonnegative
fixed point, then the network is stable.

Proof. Consider the view of the cyclic network in Figure 18
where points U and W are located respectively after and
before the cuts. The network between U and W is feed-
forward. We fix some θ such that 0 < θ < tprop and we
consider V , the point that is exactly θ seconds before W . This
point is on the same link as W because tprop is the minimal
propagation delay of links. We consider the true network, i.e.

9

Non-definitive version – Final version to appear in the 40th IEEE Real-Time Systems Symposium (RTSS)

Feed-forward network

.
Constant delay θ

Constant delay θ

U WV

Fig. 18. Illustration of the proof principle. The network is feed-forward
between U and W , and V is exactly θ seconds before W .

with U and W connected together. In the rest of the proof,
take any τ ≥ 0.

For M = U, V,W call RM [resp. Rτ
M (t)] the vector

of cumulative arrival functions [resp. stopped at time τ i.e.,
Rτ
M (t) = min(RM (t),RM (τ))]. Also for M = V,W

call R′τM the vector of cumulative arrival functions that are
obtained at points V,W when the inputs at U are stopped
at time τ , i.e. R′τM (t) = min(RM (t),RU (τ)). Last, call bτM
and b′τM the corresponding best burst bounds. For example, for
any component i of vector b′τM , b′τM,i = supt′≥t(R

′τ
M,i(t

′) −
R′τM,i(t) − r(t′ − t)), where r is the leaky-bucket rate of the
flow corresponding to component i.
Lemma 1. At point V , bτV ≤ b′τV

Proof of Lemma 1. Note that for t ≤ τ,Rτ
M (t) = R′τM (t) and

for t > τ,Rτ
M (t) is a constant. The result is thus obtained by

splitting the sup of the definition of b′τV , bτV into the three
options: either t, t′ ≤ τ , or t ≤ τ, t′ > τ or t, t′ > τ .

As FF computes a bound on the output bursts for a given
input, we know that b′τW ≤ FF(bτU). As the delay between V
and W is constant equal to θ, a change of variable (s, s′)←
(t + θ, t′ + θ) in the definition of b′τV gives b′τV = b′τW ≤
FF(bτU). Using Lemma 1, we get:

∀τ ≥ 0, bτV ≤ FF(bτU) (5)

Using RW (t+τ) = RV (t) for any t ≥ 0, we obtain bτ+θW =
bτV . Also, as W and U are connected together, Equation 5
gives bτ+θU = bτ+θW = bτV ≤ FF(bτU). Apply this to τ = kθ
for k ∈ N and obtain:

∀k ∈ N, b(k+1)θ
U ≤ FF(bkθU) (6)

The network is empty at t = 0 so b0U = 0 ≤ b. Now
FF can be assumed to be wide-sense increasing as per [11,
Chap. 12]. By monotonicity of FF , the fact that FF(b) = b
and a simple induction argument, it follows that bkθU ≤ b for
all k ∈ N. For any τ ∈ [0,+∞), we have bτU ≤ bkθU with
k = d τθ e, thus bτU ≤ b for all τ ≥ 0. Now bU = supτ≥0 b

τ
U ,

thus b is a finite bound for bU and the network is stable.

D. FP-TFA Adaptations for Networks with Regulators

We group LCAN and FP-TFA together. Our objective is to
use FP-TFA on topologies with a partial regulator deployment.

If the deployment has been performed based on LCAN
recommendations, the network will be feed-forward and the
upper stage of FP-TFA will not be required. In all cases, slight
modifications of the lowest stage have to be carried out to
account for the presence of regulators.

Scheduler

βn

+
Line
shaping

λcn

Output n

RegulatorPacketizer
Line
shaping Bi

Regulated
input i

Packetizer
Line
shaping

λcj

Aj

Unregulated
input j

αAj

∑
f3(i,n) α

R
f (i, n)

Fig. 19. Detailed model for the computation of the delay bound within a
node with partial regulator deployment

Figure 19 presents the modified computational model when
some inputs (i in the Figure) hold a regulator placed after the
packetizer (as per the device model presented in Figure 5).
The regulator element in the model does not participate in
the ETE-delay bound, as LCAN ensures the shaping-for-free
property is kept (Section V).

An aggregate arrival curve at location Bi, the output of the
regulator for regulated input i, can directly be obtained by
summing all the configured arrival curves αRf (i, n) for any
flow f 3 (i, n). Each individual arrival curve being a leaky-
bucket arrival curve, the sum is also a leaky-bucket arrival
curve. Call ri its rate and bi its burstiness.

With the same previous notations, we redefine btot and
rtot by btot =

∑
j unregulated bj +

∑
i regulated bi and rtot =∑

j unregulated rj +
∑
i regulated ri. Then, the delay within a node

with partial regulator deployment equals

Dn =
btot + lmax ·

∑
j unregulated

rj
cj

Rn

+ Tn + θm ·
(
rtot

Rn
− 1

) (7)

The remaining steps of the algorithm are performed as per
Figure 12.

VII. SYNTHETIC USE-CASE

We evaluate the performance of the five approaches: the
no-deployment approach, the partial-deployment approaches
using either PFRs or IRs with a cost of 1 for every regulator,
and the full-deployment approaches using either IRs or PFRs.

A. The Grid Topology

We consider the toy example, in Figure 1, to be two columns
and one line of a basic cell. By operating axial symmetries on
axes (G, I) or (E, I), we can control the size of the network.
We keep the same path length for all flows. We note L [resp.
C] the number of rows [resp. columns].

We consider high-priority flows with the same leaky-bucket
initial arrival curve γb0,r and constant packet size l. The
network is homogeneous, each port provides the same rate-
latency service curve βR,L. For any L ≥ 2, the maximum
number of flows per link equals 4, we thus note a = 4r/R
the network load; c is the transmission rate of the lines.

10

Non-definitive version – Final version to appear in the 40th IEEE Real-Time Systems Symposium (RTSS)

0 25 50 75 100 125 150 175
Number of switches

0

100

200

300

400

Re
gu

la
to

rc
ou

nt

0.0x+0.0

0.4x-4.1

0.2x-1.3

2.2x-18.1No deployment
Partial IRs deployment (using LCAN)
Partial PFRs deployment (using LCAN)
Total deployment (both IRs or PFRs)

Fig. 20. Number of regulators versus the grid network size for the different
approaches.

0.0 0.2 0.4 0.6 0.8
Network load

0.20

0.25

0.30

0.35

0.40

De
lay

(m
s)

No deployment (using FP-TFA)
Partial IRs deployment (using LCAN and FP-TFA)
Partial PFRs deployment (using LCAN and FP-TFA)
Total IRs deployment
Total PFRs deployment

Fig. 21. ETE delay bound of the flows on the grid versus the network load.
Size L = C =8, initial burstiness b0 = 12E3bits, service rate R = 1E9bits/s,
service latency T = 1.2E-5s, packet length l = 12E3bits, line shaping
c/R = 1.

B. Number of Placed Regulators

Figure 20 presents the number of regulators used versus
the number of switches in the network. Compared to the full
deployment approach, the IR partial deployment reduces the
number of required regulators by 81% and the PFR partial
deployment by 89%. Figure 20 shows that cyclic dependencies
can be removed with very few regulators within the network.

C. Latency Bounds with Respect to the Utilization

We evaluate the delay bounds versus the network load. To
do so, we use the (C = 8,L = 8) grid configuration (corre-
sponding to 153 switches). ETE delay bounds are presented
in Figure 21.

The full-deployment scheme shows a performance penalty
compare to the other approaches when the utilization is low.
Up to a utilization threshold a ≈ 15%, the best results are
obtained without any regulator. At high utilization, the best
bound is obtained with the full-deployment schemes, either
with PFRs or IRs and both obtain the same delay bound.

Partial-deployment approaches are never the best ones.

D. Effect of the Network Size

Figure 22 presents the ETE delay bound of the flows as a
function of the network size. We observe that each approach
obtains a delay bound independent from the network size after
approximately 60 switches. Note that the lengths of flow paths

25 50 75 100 125 150 175
Number of switches

0.18

0.20

0.22

0.24

0.26

0.28

0.30

De
la

y
(m

s)

No deployment (using FP-TFA)
Partial IRs deployment (using LCAN and FP-TFA)
Partial PFRs deployment (using LCAN and FP-TFA)
Total IRs deployment
Total PFRs deployment

Fig. 22. ETE delay bound of the flows versus the grid size. Initial burstiness
b0 = 12E3bits, utilization a = 0.7, service rate R = 1E9bits/s, service
latency T = 1.2E-5s, packet size l = 12E3bits, line shaping c/R = 1.

0.0 0.2 0.4 0.6 0.8 1.0
Network load

0.20

0.25

0.30

0.35

0.40

De
lay

(m
s)

No deployment (using FP-TFA)
Partial IRs deployment (using LCAN and FP-TFA)
Partial PFRs deployment (using LCAN and FP-TFA)
Total IRs deployment
Total PFRs deployment

Fig. 23. ETE delay bound of the flows versus the network load with line
shaping c/R = 2. Size L = C =8, initial burstiness b0 = 12E3bits,
service rate R = 1E9bits/s, service latency T = 1.2E-5s, packet length
l = 12E3bits.

do not depend on the network size. The network complexity
does not influence the bound obtained by FP-TFA. The values
obtained for large sizes is consistent with the ones obtained
for a = 0.7 in Figure 21. It emphasizes that the previous
observations are independent from the network size.

E. Effect of the Line Shaping

In Figure 23 we set the ratio line rate / scheduler guaranteed
rate to c/R = 2. This diminishes “line shaping”, which is the
beneficial effect on latency of the bit-by-bit serialization of the
packets when transmitted on the line.

The value of the utilization threshold is reduced (down to
a ≈ 5%) due to the combination of two effects: On one hand,
all partial- and no-deployment approaches have a performance
worse than with c/R = 1. On the other hand, the delay
bound of the full-deployment approach is decreased because
it is only affected by Mohammadpour et al.’s delay-bound
improvement. This improvement has a more positive effect
when the transmission rate c is higher.

We also noted that the no-deployment approaches show
some instability. Complementary tests showed that, without
regulators, FP-TFA is no longer able to obtain finite latency
bounds for the whole utilization spectrum (from 0 to 1) when
c/R ≥ 3.

Stability is retrieved for any partial deployment. However,
the partial deployment of IRs shows very large bounds, even

11

Non-definitive version – Final version to appear in the 40th IEEE Real-Time Systems Symposium (RTSS)

TABLE III
TRADE-OFF OF THE APPROACHES

Criteria
+ = good properties, - = bad properties

Total
(IR or PFR)

Partial
PFR

Partial
IR

No
deployment

Regulator count - + ∼ ++
Delay bound at low utilization - ∼ + ++
Delay bound at high utilization ++ ∼ ∼ -
Sensitivity w/r utilization ++ ∼ ∼ -
Sensitivity w/r trans. rate ++ - ∼ - -

SW7

SW31

SW32SW22

SW21

SW12
SBAND1

SBAND2

SW13MIMU3

MIMU2

MIMU1

StarTr1

StarTr2

SW14

DU1 DU2

BFCU

CMRIU2
LCM2FCM2 RCM2 SW42

CM2CBCM2CA

SW52

SM2CA SM2CB

LCM1FCM1 RCM1 SW41

CM1CBCM1CA

SW51

SM1CA SM1CB

SW8 SW6

SMRIU1

SMRIU2

SW11

DU2DU1 DU3

CMRIU1

Legend: . . .

End system

. . .

Switch
Physical link

Fig. 24. Physical topology of the Orion CEV network. From [37].

though LCAN places more IRs than PFRs. With fewer PFRs,
we achieve a better performance. At a high utilization or for
a high transmission rate, IRs need to be placed everywhere to
provide noticeable improvements.

F. Conclusions of Synthetic Use-Case

Partial deployments never provide the best delay bounds.
However, as summarized in Table III, they provide an interest-
ing compromise between performance, stability, and number
of hardware elements.

The partial deployment of IRs is an interesting option
only at low utilization and transmission rates. When one of
these values increases, this approach shows performance worse
than partial deployment of PFRs, and IRs need to be placed
everywhere to provide noticeable improvements.

VIII. REPRESENTATIVE INDUSTRIAL USE-CASE

We show the applicability of the different approaches and
our algorithms on a representative industrial case. We consider
the Orion crew exploration vehicule (CEV) network. Its ar-
chitecture is detailed in [38, p.328] and relies on TT-Ethernet.

0.0 0.2 0.4 0.6 0.8 1.0
Network load

0.8

1.0

1.2

1.4

1.6

De
lay

(m
s)

No deployment (using FP-TFA)
Partial IRs deployment (using LCAN and FP-TFA)
Partial PFRs deployment (using LCAN and FP-TFA)
Total IRs deployment
Total PFRs deployment

Fig. 25. Highest ETE delay bound of the flows within Orion versus the
network usage. Initial burstiness b0 = 12E3bits, service rate R = 1E9bits/s,
service latency T = 1.2E-5s, packet length l = 12E3bits, line shaping
c/R = 1.

We study it, however, in an asynchronous setting.The physical
topology presented in Figure 24 is retrieved from [37]. We map
on it 119 multicast flows of the TSN control-data traffic (CDT)
class by using an algorithm that optimizes link utilization.
This mapping creates a total of 293′912 cyclic dependencies
in the network. We assume that each output port provides
the same rate-latency service curve and, as we consider the
highest priority, we can assume that the service rate equals
the transmission rate (case c/R = 1).

In this industrial case, a full-deployment approach would re-
quire a total of 249 regulators within the network. Our LCAN
algorithm, configured with a cost of 1 for each regulator, is
able to remove all cyclic dependencies with only either 14 IRs
or 9 PFRs. This highlights that substantial cost savings could
be achieved in a real industrial case.

Figure 25 shows the highest delay bound among all flows.
We note that the no-regulator approach FP-TFA is no longer
the best one at low utilization. This emphasizes the potential
benefit of regulators in heterogeneous networks. Partial de-
ployment is here an attractive solution up to a utilization of
40%.

IX. CONCLUSION AND FUTURE WORK

We have developed a tool, FP-TFA, for computing latency
bounds in time sensitive networks with cyclic dependencies.
We have also developed an algorithm, LCAN, for placing
a set of PFRs [resp. IRs] of minimal cost such that cyclic
dependencies are removed. The combination of FP-TFA and
LCAN has been used in synthetic and industrial settings to
evaluate the effect on latency of partial or full deployments
of either type of regulator. Our analysis shows that when
the effect of line shaping is large, FP-TFA computes low
latency bounds for the configurations without shapers for a
small utilization, after which there is a benefit in deploying
regulators. Partial deployment of PFRs improves the latency
bounds in the region of medium utilization or at high line
transmission-rates while decreasing the deployment costs, with
reference to full deployment solutions.

These conclusions, however, do not take into account the
hardware-cost difference between a PFR and a IR. The latter
probably uses fewer queues than the former. We plan to discuss
with manufacturers to create a representative cost function able
to capture these differences. Such a cost function could then
be used to support deployments of mix of per-flow and inter-
leaved regulators. Testing LCAN on other type of topologies
constitutes another field of future work. We plan to discuss
with industrials to create representative yet flexible topologies.
LCAN’s behavior relies mostly on cyclic dependencies, whose
patterns might not be trivial even for simple configurations.
Understanding how cyclic dependencies are generated is a key
step to better understand our partial deployment approach.
Lastly, sensitivity analyses of our approach with respects to
other parameters such as the flows’ characteristics represent
another axis of future work.

12

Non-definitive version – Final version to appear in the 40th IEEE Real-Time Systems Symposium (RTSS)

REFERENCES

[1] “Time-Sensitive Networking (TSN) Task Group —.” https://1.ieee802.
org/tsn/.

[2] A. Committee et al., “Aircraft Data Network Part 7, Avionics Full
Duplex Switched Ethernet (AFDX) Network, ARINC Specification
664,” Annapolis, Maryland: Aeronautical Radio, 2002.

[3] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The Time-
Triggered Ethernet (TTE) Design,” in Object-Oriented Real-Time Dis-
tributed Computing, 2005. ISORC 2005. Eighth IEEE International
Symposium on, pp. 22–33, IEEE, 2005.

[4] “IEC/IEEE 60802 TSN Profile for Industrial Automation —.” https://1.
ieee802.org/tsn/iec-ieee-60802/.

[5] “IEEE Standard for Local and Metropolitan Area Networks - Timing
and Synchronization for Time-Sensitive Applications in Bridged Local
Area Networks,” IEEE Std 802.1AS-2011, pp. 1–292, Mar. 2011. http:
//doi.org/10.1109/IEEESTD.2011.5741898.

[6] “IEEE Standard for Local and metropolitan area networks–Bridges
and Bridged Networks–Amendment 29: Cyclic Queuing and Forward-
ing,” IEEE 802.1Qch-2017 (Amendment to IEEE Std 802.1Q-2014 as
amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd(TM)-2015,
IEEE Std 802.1Q-2014/Cor 1-2015, IEEE Std 802.1Qbv-2015, IEEE
Std 802.1Qbu-2016, IEEE Std 802.1Qbz-2016, and IEEE Std 802.1Qci-
2017), pp. 1–30, June 2017. http://doi.org/10.1109/IEEESTD.2017.
7961303.

[7] “IEEE Standard for Local and metropolitan area networks— Bridges
and Bridged Networks - Amendment 24: Path Control and Reservation,”
IEEE Std 802.1Qca-2015 (Amendment to IEEE Std 802.1Q-2014 as
amended by IEEE Std 802.1Qcd-2015 and IEEE Std 802.1Q-2014/Cor
1-2015), pp. 1–120, Mar. 2016. http://doi.org/10.1109/IEEESTD.2016.
7434544.

[8] IEC 62439-3, Industrial Communication Networks - High Availability
Automation Networks - Part 3: Parallel Redundancy Protocol (PRP) and
High-availability Seamless Redundancy (HSR). 2016.

[9] IEC 62439: High Availability Automation Networks : High Availability
Automation Networks. 2012.

[10] M. Andrews, “Instability of FIFO in the Permanent Sessions Model
at Arbitrarily Small Network Loads,” ACM Trans. Algorithms, vol. 5,
pp. 33:1–33:29, July 2009. http://doi.acm.org/10.1145/1541885.
1541894.

[11] A. Bouillard, M. Boyer, and E. Corronc, Deterministic Network Calcu-
lus: From Theory to Practical Implementation. Networks and Telecom-
munications, Wiley, 2018. http://doi.org/10.1002/9781119440284.

[12] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Lecture Notes in Computer
Science, Lect.Notes Computer. Tutorial, Berlin Heidelberg: Springer-
Verlag, 2001. https://www.springer.com/us/book/9783540421849.

[13] S. Perathoner, E. Wandeler, and et al., “Influence of Different Ab-
stractions on the Performance Analysis of Distributed Hard Real-Time
Systems,” Design Automation for Embedded Systems, 2009.

[14] J. Grieu, Analyse et évaluation de techniques de commutation Ethernet
pour l’interconnexion des systèmes avioniques. phd, Sept. 2004. http:
//ethesis.inp-toulouse.fr/archive/00000084/.

[15] A. Mifdaoui, F. Frances, and C. Fraboul, “Performance analysis of a
Master/Slave switched Ethernet for military embedded applications,”
IEEE Transactions on Industrial Informatics, vol. 6, no. 4, pp. 534–
547, 2010.

[16] T. Ferrandiz, F. Frances, and C. Fraboul, “A Network Calculus Model
for SpaceWire Networks,” RTCSA, 2011.

[17] B. Jonsson, S. Perathoner, L. Thiele, and W. Yi, “Cyclic Dependencies
in Modular Performance Analysis,” in Proceedings of the 8th ACM
International Conference on Embedded Software, EMSOFT ’08, (New
York, NY, USA), pp. 179–188, ACM, 2008. http://doi.acm.org/10.1145/
1450058.1450083.

[18] H. Schiøler, J. J. Jessen, J. D. Nielsen, and K. G. Larsen, “Network
Calculus for Real Time Analysis of Embedded Systems with Cyclic
Task Dependencies,” in Computers and Their Applications, pp. 326–
332, 2005.

[19] D. Starobinski, M. Karpovsky, and L. A. Zakrevski, “Application of net-
work calculus to general topologies using turn-prohibition,” IEEE/ACM
Transactions on Networking, vol. 11, pp. 411–421, June 2003. http:
//doi.org/10.1109/TNET.2003.813040.

[20] E. Wandeler, A. Maxiaguine, and L. Thiele, “Performance analysis of
greedy shapers in real-time systems,” in Proceedings of the Design
Automation Test in Europe Conference, vol. 1, pp. 6 pp.–, Mar. 2006.
http://doi.org/10.1109/DATE.2006.243801.

[21] J.-Y. Le Boudec, “A Theory of Traffic Regulators for Determinis-
tic Networks With Application to Interleaved Regulators,” IEEE/ACM
Transactions on Networking, vol. 26, pp. 2721–2733, Dec. 2018. http:
//doi.org/10.1109/TNET.2018.2875191.

[22] E. Mohammadpour, E. Stai, and J. L. Boudec, “Improved Delay Bound
for a Service Curve Element with Known Transmission Rate,” IEEE
Networking Letters, pp. 1–1, 2019. http://doi.org/10.1109/LNET.2019.
2927143.

[23] K. Wagner, “Short evaluation of linux’s
token-bucket-filter (tbf) queuing discipline,”
http://www.docum.org/stef.coene/qos/docs/other/tbf02 kw.ps, 2001.

[24] H. Ayed, A. Mifdaoui, and C. Fraboul, “Hierarchical traffic shaping
and frame packing to reduce bandwidth utilization in the AFDX,” in
Proceedings of the 9th IEEE International Symposium on Industrial
Embedded Systems (SIES 2014), pp. 77–86, June 2014. http://doi.org/
10.1109/SIES.2014.6871190.

[25] J. Specht and S. Samii, “Urgency-based scheduler for time-sensitive
switched ethernet networks,” in Real-Time Systems (ECRTS), 2016 28th
Euromicro Conference on, pp. 75–85, IEEE, 2016.

[26] R. L. Cruz, “A calculus for network delay. I. Network elements in
isolation,” IEEE Transactions on Information Theory, vol. 37, pp. 114–
131, Jan. 1991. http://doi.org/10.1109/18.61109.

[27] R. L. Cruz, “A calculus for network delay. II. Network analysis,” IEEE
Transactions on Information Theory, vol. 37, pp. 132–141, Jan. 1991.
http://doi.org/10.1109/18.61110.

[28] C.-S. Chang, Performance Guarantees in Communication Net-
works. Telecommunication Networks and Computer Systems,
London: Springer-Verlag, 2000. https://www.springer.com/gp/book/
9781852332266.

[29] E. Mohammadpour, E. Stai, M. Mohiuddin, and J. Le Boudec, “Latency
and Backlog Bounds in Time-Sensitive Networking with Credit Based
Shapers and Asynchronous Traffic Shaping,” in 2018 30th International
Teletraffic Congress (ITC 30), vol. 02, pp. 1–6, Sept. 2018. http://doi.
org/10.1109/ITC30.2018.10053.

[30] A. Charny and J.-Y. Le Boudec, “Delay Bounds in a Network with Ag-
gregate Scheduling,” in Quality of Future Internet Services (J. Crowcroft,
J. Roberts, and M. I. Smirnov, eds.), Lecture Notes in Computer Science,
pp. 1–13, Springer Berlin Heidelberg, 2000. https://link.springer.com/
chapter/10.1007/3-540-39939-9 1.

[31] A. Amari and A. Mifdaoui, “Worst-case timing analysis of ring net-
works with cyclic dependencies using network calculus,” in 2017 IEEE
23rd International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pp. 1–10, Aug. 2017. http://doi.org/
10.1109/RTCSA.2017.8046319.

[32] A. Mifdaoui and T. Leydier, “Beyond the Accuracy-Complexity Trade-
offs of CompositionalAnalyses using Network Calculus for Complex
Networks,” in 10th International Workshop on Compositional Theory
and Technology for Real-Time Embedded Systems (Co-Located with
RTSS 2017), (Paris, France), pp. pp. 1–8, Dec. 2017. https://hal.
archives-ouvertes.fr/hal-01690096.

[33] Y. Li and H. Gu, “XY-turn model for deadlock free routing in hon-
eycomb networks-on-chip,” in 2009 15th Asia-Pacific Conference on
Communications, pp. 900–903, Oct. 2009. http://doi.org/10.1109/APCC.
2009.5375521.

[34] A. Baharev, H. Schichl, and A. Neumaier, “An exact method for the min-
imum feedback arc set problem,” Fakultät für Mathematik, Universität
Wien, 2015. https://www.mat.univie.ac.at/∼neum/papers.html.

[35] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman
& Co., 1990.

[36] A. Tarski et al., “A lattice-theoretical fixpoint theorem and its appli-
cations.,” Pacific journal of Mathematics, vol. 5, no. 2, pp. 285–309,
1955.

[37] L. Zhao, P. Pop, Z. Zheng, and Q. Li, “Timing Analysis of AVB Traffic
in TSN Networks Using Network Calculus,” in 2018 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pp. 25–
36, Apr. 2018. http://doi.org/10.1109/RTAS.2018.00009.

[38] R. Obermaisser, Time-Triggered Communication. Boca Raton, FL, USA:
CRC Press, Inc., 1st ed., 2011.

13

https://1.ieee802.org/tsn/
https://1.ieee802.org/tsn/
https://1.ieee802.org/tsn/iec-ieee-60802/
https://1.ieee802.org/tsn/iec-ieee-60802/
http://doi.org/10.1109/IEEESTD.2011.5741898
http://doi.org/10.1109/IEEESTD.2011.5741898
http://doi.org/10.1109/IEEESTD.2017.7961303
http://doi.org/10.1109/IEEESTD.2017.7961303
http://doi.org/10.1109/IEEESTD.2016.7434544
http://doi.org/10.1109/IEEESTD.2016.7434544
http://doi.acm.org/10.1145/1541885.1541894
http://doi.acm.org/10.1145/1541885.1541894
http://doi.org/10.1002/9781119440284
https://www.springer.com/us/book/9783540421849
http://ethesis.inp-toulouse.fr/archive/00000084/
http://ethesis.inp-toulouse.fr/archive/00000084/
http://doi.acm.org/10.1145/1450058.1450083
http://doi.acm.org/10.1145/1450058.1450083
http://doi.org/10.1109/TNET.2003.813040
http://doi.org/10.1109/TNET.2003.813040
http://doi.org/10.1109/DATE.2006.243801
http://doi.org/10.1109/TNET.2018.2875191
http://doi.org/10.1109/TNET.2018.2875191
http://doi.org/10.1109/LNET.2019.2927143
http://doi.org/10.1109/LNET.2019.2927143
http://doi.org/10.1109/SIES.2014.6871190
http://doi.org/10.1109/SIES.2014.6871190
http://doi.org/10.1109/18.61109
http://doi.org/10.1109/18.61110
https://www.springer.com/gp/book/9781852332266
https://www.springer.com/gp/book/9781852332266
http://doi.org/10.1109/ITC30.2018.10053
http://doi.org/10.1109/ITC30.2018.10053
https://link.springer.com/chapter/10.1007/3-540-39939-9_1
https://link.springer.com/chapter/10.1007/3-540-39939-9_1
http://doi.org/10.1109/RTCSA.2017.8046319
http://doi.org/10.1109/RTCSA.2017.8046319
https://hal.archives-ouvertes.fr/hal-01690096
https://hal.archives-ouvertes.fr/hal-01690096
http://doi.org/10.1109/APCC.2009.5375521
http://doi.org/10.1109/APCC.2009.5375521
https://www.mat.univie.ac.at/~neum/papers.html
http://doi.org/10.1109/RTAS.2018.00009

