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ABSTRACT

This paper addresses the problem of worst-case timing anal-
ysis in wormhole Networks-On-Chip (NoCs). We consider
our previous work [5] for computing maximum delay bounds
using Network Calculus, called the Buffer-Aware Worst-case
Timing Analysis (BATA). The latter allows the computation
of delay bounds for a large panel of wormhole NoCs, e.g.,
handling priority-sharing, Virtual Channel Sharing and buffer
backpressure.

In this paper, we provide further insights into the tightness
and computation issues of the worst-case delay bounds yielded
by BATA. Our assessment shows that the gap between the
computed delay bounds and the worst-case simulation results
is reasonably small (70% tighness on average). Furthermore,
BATA provides good delay bounds for medium-scale con-
figurations within less than one hour. Finally, we evaluate
the yielded improvements with BATA for a realistic use-case
against a recent state-of-the-art approach. This evaluation
shows the applicability of BATA under more general assump-
tions and the impact of such a feature on the tightness and
computation time.
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1 CONTEXT AND RELATED WORK

Networks-on-chip (NoCs) have become the standard inter-
connect for manycore architectures because of their high
throughput and low latency capabilities. Most NoCs use
wormhole routing [10, 11] to transmit packets over the net-
work: the packet is split in constant length words called flits.
Each flit is then forwarded from router to router, without
having to wait for the remaining flits. This routing technique
drastically reduces the storage buffer within routers, never-
theless it complicates the congestion patterns due to buffer
backpressure. The latter is a flow control mechanism, which
ensures a lossless transmission and avoids buffer overflow.
Hence, when congestion occurs, a packet waiting for an input
port to be freed can occupy several buffers of routers along
its path; thus blocking in its turn other packets. This fact
causes sophisticated blocking patterns between flows making
the worst-case analysis of end-to-end delays a challenging
issue.

Various timing approaches of NoCs have been proposed in
the literature. The most relevant ones can broadly be catego-
rized under several main classes: Scheduling Theory-based
([8, 12, 13, 17, 18, 21]), Compositional Performance Analy-
sis (CPA)-based ([15, 19]), Recursive Calculus (RC)-based
([1, 4]) and Network Calculus-based ([6, 9, 14]). However,
these existing approaches suffer from some limitations, which
are mainly due to:

∙ considering specific assumptions, such as: (i) distinct
priorities and unique virtual channel assignment for
each traffic flow in a router [17] [13, 21]; (ii) a priori-
ty-share policy, but with a number of Virtual Channels
(VC) at least equal to the number of traffic priority
levels like in [18] [8][14] [19] or the maximum number
of contentions along the NoC [12]; (iii) no support for
Virtual Channels [1, 4];
∙ ignoring the buffer backpressure phenomena, such as in
[15] [6] [9];
∙ ignoring the flows serialization phenomena1 along the
flow path by conducting an iterative response time
computation, i.e. commonly used in Scheduling Theory
and CPA, which generally leads to pessimistic delay
bounds;

An overview of these approaches has been presented in our
previous work [5]. We have shown that there is no existing

1The pipelined behavior of networks infers that the interference be-
tween flows along their shared subpaths should be counted only once,
i.e., at their first convergence point.

https://doi.org/10.1145/3356401.3356408
https://doi.org/10.1145/3356401.3356408
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timing analysis approach covering all the technical character-
istics of wormhole NoC routers while supporting the buffer
size and flows serialization phenomena.

Hence, to cope with these identified limitations, we have
proposed in [5] a timing analysis using Network Calculus [7]
and referred as Buffer-Aware Worst-case Timing Analysis
(BATA) from this point on. The main idea of BATA consists
in enhancing the delay bounds accuracy in wormhole NoCs
through considering: (i) the flows serialization phenomena
along the path of a flow of interest ( foi), through considering
the impact of interfering flows only at the first convergence
point; (ii) refined interference patterns for the foi accounting
for the limited buffer size, through quantifying the way a
packet can spread on a NoC with small buffers.

Moreover, BATA is applicable for a large panel of wormhole
NoCs: (i) routers implement a fixed priority arbitration of
VCs; (ii) a VC can be assigned to an arbitrary number of
traffic classes with different priority levels (VC sharing);
(iii) each traffic class may contain an arbitrary number of
flows (priority sharing).

There are currently some issues related to BATA, which
are assessed in this paper:

∙ The first issue is the tightness: we have shown in [5] that
BATA yields tighter bounds with respect to per-hop
analysis used in CPA and Scheduling Theory for some
use-cases, but it is still unknown in the general case how
close the derived bounds are to the (unknown) exact
worst-case delay. Thus, we are going to investigate this
point through first conducting a sensitivity analysis of
BATA when varying different configuration parameters,
i.e., buffer size, flows packet length and flow rate. This
sensitivity analysis enables the identification of the
configuration parameters having the highest impact
on the delay bounds. Afterwards, since there is no
existing method for computing the exact worst-case
delay in wormhole NoCs, we estimate the tightness of
the delay bounds in comparison to simulation results,
when varying the identified configuration parameters;
∙ The second issue is the computation effort of BATA
since it does not provide a closed-form solution for
delay bounds but a recursive computation algorithm;
thus we provide further insights into the impact of the
number of flows on the computation time;
∙ The third one is the efficiency of BATA for a realis-
tic case study; thus we assess the tightness and com-
putation time of our approach for a use-case of an
autonomous driving vehicle application [2] and we eval-
uate the yielded improvements against the most recent
approach based on Scheduling theory [13].

Contributions: In this paper, we provide further insights
into the tightness and computation issues of the worst-case
delay bounds yielded by BATA. Our assessment shows that
the derived delay bounds are more sensitive to flow rate and
buffer size, but increasing the buffer size does not yield further
improvements after a certain point. This finding confirms
that increasing buffer size is of limited efficiency for NoC

performance. Moreover, BATA leads to tight delay bounds
where the gap between the computed ones and the worst-
case simulation results is reasonably small in general (70% of
tightness on average). BATA provides also good delay bounds
for medium-scale configurations within less than one hour.
Finally, we highlight noticeable improvements with BATA for
a realistic use-case, compared to the state-of-the-art approach
[13]. This evaluation shows particularly the applicability of
BATA under more general assumptions, e.g. VC-sharing.

The rest of the paper is organized as follows. Section 2
introduces the system model and the main notations that are
used throughout the paper. In Section 3, we describe BATA
methodology and detail its main steps on a toy example. In
Section 4, we conduct a sensitivity analysis of BATA and
thereupon assess the tightness of the yielded delay bounds,
with reference to worst-case simulation results. Section 5
describes the computation time of BATA for various configu-
ration sizes and addresses the scalability issue of BATA. In
Section 6, we assess the tightness and computation time of
BATA for a realistic case study of an autonomous driving
vehicle application [2], in comparison to the state-of-the-
art approach [13]. Finally, we report conclusions and give a
glimpse of our future work in Section 7.

2 SYSTEM MODEL

Our model can apply to an arbitrary NoC topology as long as
the flows are routed in a deterministic, deadlock-free way (see
[11]), and in such a way that flows that interfere on their path
do not interfere again after they diverge. Nonetheless, we
consider herein the widely used 2D-mesh topology with input-
buffered routers and XY-routing (e.g. [20]), known for their
simplicity and high scalability. The common input-buffered
2D-mesh routers have 5 pairs of input-output, namely North
(N), South (S), West (W), East (E) and Local (L), as shown
on Figure 1 (top right). Each output of a router is connected
to one input of another router. Moreover, as illustrated in
Figure 1 (top left), the considered routers support Virtual
Channels (VCs), i.e. separated channels with dedicated buffer
space in the router that are multiplexed on the same inter-
router links, and implement a Fixed Priority (FP) arbitration
of VCs with flit-level preemption. Each VC may support many
traffic classes, i.e., VCs sharing, and many traffic flows may
be mapped on the same priority-level, i.e., priority sharing.
Finally, we consider a blind (arbitrary) service policy to
serve flows belonging to the same VC within the router. This
assumption allows us to cover the worst-case behaviors of
different service policies, such as FIFO and Round Robin
(RR) policies.

Hence, we model such a wormhole NoC router as a set
of independent hierarchical multiplexers, where each one
represents an output port as shown in Figure 1 (bottom). The
first arbitration level is based on a blind service policy to serve
all the flows mapped on the same VC level and coming from
different geographical inputs. The second level implements a
preemptive FP policy to serve the flows mapped on different
VCs levels and going out from the same output port. It is
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Figure 1: Router architecture and output multiplex-
ing

worth noticing that the independence of the different output
ports is guaranteed in our model, due to the integration of the
flows serialization phenomena. The latter induces ignoring
the interference between the flows entering a router through
the same input and exiting through different outputs, since
these flows have necessarily arrived through the same output
of the previous router, where we have already taken into
account their interference. Consequently, each output port is
modeled independently from the other output ports.

We use Network Calculus [7] to model routers and traffic
through service and arrival curves, respectively. Therefore,
each router-output pair 𝑟, referred to as a node, is modeled
as a rate-latency service curve:

𝛽𝑟(𝑡) = 𝑅𝑟(𝑡− 𝑇 𝑟)+ ,

where 𝑅𝑟 represents the processing capacity of the router in
flits per cycle and 𝑇 𝑟 corresponds to the processing delay
(the delay a flit experiences when it is processed).

Each flow 𝑓 is modeled with a leaky-bucket arrival curve:

𝛼𝑓 (𝑡) = 𝜎𝑓 + 𝜌𝑓 𝑡 ,

where 𝜎𝑓 and 𝜌𝑓 are the maximum burst and rate of the flow
𝑓 , respectively. These parameters depend on the maximal
packet length 𝐿𝑓 (payload and header in flits), the period
or minimal inter-arrival time 𝑃𝑓 (in cycles), and the release

jitter 𝐽𝑓 (in cycles) in the following way :

𝜌𝑓 =
𝐿𝑓

𝑃𝑓

𝜎𝑓 = 𝐿𝑓 + 𝐽𝑓 · 𝜌𝑓

For each flow 𝑓 , its path P𝑓 is the list of nodes crossed by 𝑓
from source to destination. Moreover, for any 𝑘 in appropriate
range, P𝑓 [𝑘] denotes the 𝑘𝑡ℎ node of flow 𝑓 path. Therefore,
for any 𝑟 ∈ P𝑓 , the input arrival curve of flow 𝑓 at node 𝑟 is
denoted:

𝛼𝑟
𝑓 (𝑡) = 𝜎𝑟

𝑓 + 𝜌𝑟𝑓 · 𝑡

3 BUFFER-AWARE TIMING
ANALYSIS

In this section, we describe briefly the main idea of BATA
and illustrate it through an example. More details can be
found in [5].

To compute end-to-end delay bounds for a foi 𝑓 along its
path P𝑓 , based on BATA, we follow three main steps.

1) Buffer-aware analysis of the indirect blocking
set: To account for the impact of flows that do not physically
share any resource with the foi 𝑓 , but can delay it because
they impact at least one flow directly blocking 𝑓 , we introduce
the Indirect Blocking set of 𝑓 , abbreviated IB set and denoted
IB𝑓 . It consists of a set of pairs {𝑘, S𝑘} where 𝑘 is the flow
involved in indirect blocking and S𝑘 is the subpath of 𝑘 where
a packet of 𝑘 can cause blocking that can backpropagate to
𝑓 . This step takes into account the impact of the limited
buffer size on the way a packet can spread on the NoC; thus
on IB𝑓 .

To better understand the impact of the buffer size on IB𝑓 ,
we consider the illustrative example in Figure 2 assuming
that: (i) each buffer can store only one flit; (ii) all flows have
3-flit-long packets; (iii) all flows are mapped to the same
VC; (iv) the foi is flow 1; (v) all flows have an initial arrival
curve 𝛼(𝑡) = 𝜎 + 𝜌𝑡 and all routers have a service curve
𝛽(𝑡) = 𝑅(𝑡− 𝑇 )+.

1 2 3

R1 R2 R3 R4 R5 R6

R7

R8

R9

R10

R11

1 2
3

packet B of flow 2 waiting

packet C of flow 1 waiting

packet A of flow 3 moving

R1 R2 R3 R4 R5 R6

R7

R8

R9

R10

R11

Figure 2: Example configuration (left) and packet
stalling (right)

Consider a packet A of flow 3 that has just been injected
into the NoC and granted the use of the North output port
of R6. Simultaneously, a packet B of flow 2 is requesting the
same output, but as A is already using it, so B has to wait.
B is stored in input buffers of R6, R5 and R4. Finally, a
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packet C of flow 1 has reached R3 and now requests output
port East of R3. However, the West input buffer of R4 is
occupied by the tail flit of B. Hence, C has to wait. In that
case, A indirectly blocks C, which means flow 3 can indirectly
block flow 1 even though they do not share resources; Thus,
IB1 = {{3, [𝑅7, 𝑅8, 𝑅9]}}.

2) End-to-end service curve computation to get a
bound on the end-to-end delay for a foi 𝑓 , we need to compute
its end-to-end service curve along its path P𝑓 taking direct
blocking and indirect blocking delays into account. This
step integrates the flows serialization effects using the Pay
Multiplex Only Once (PMOO) principle [16]. This service
curve is denoted :

𝛽𝑓 (𝑡) = 𝑅𝑓 (𝑡− 𝑇𝑓 )+ ,

where 𝑅𝑓 represents the bottleneck rate along the flow path,
accounting for directly interfering flows of same and higher
priority than 𝑓 , and latency 𝑇𝑓 consists of several parts :

𝑅𝑓 = min
𝑟∈P𝑓

𝑅𝑟
𝑓

𝑇𝑓 = 𝑇𝐷𝐵 + 𝑇𝐼𝐵 + 𝑇P𝑓

where:

∙ 𝑇P𝑓 is the “base latency”, that any flit of 𝑓 experiences
along its path due only to the technological latencies
of the crossed routers;
∙ 𝑇𝐷𝐵 is the maximum direct latency, due to interference
by flows sharing resources with the flow of interest (foi).
We denote the set of such interfering flows 𝐷𝐵𝑓 ;
∙ 𝑇𝐼𝐵 is the maximum indirect blocking latency, due to
flows that can indirectly block 𝑓 through the buffer
backpressure phenomenon, IB𝑓 .

To compute such a service curve, we proceed according to
Algorithm 1 :

∙ We compute 𝑅𝑓 . It is the minimum of the residual
rates granted to 𝑓 along its path. The residual rate
granted to 𝑓 at node 𝑟 is the left system capacity after
taking into account the consumed one by flows of same
and higher priority than 𝑓 at node 𝑟.
∙ We compute 𝑇P𝑓 (line 2), then 𝑇𝐷𝐵 (lines 4 to 10);
∙ We run our indirect blocking analysis and extract the
IB set (line 11);
∙ We compute 𝑇𝐼𝐵 (lines 12 to 18).

The detailed analytical expression of 𝑇𝑓 is in [5]. Hence, we
just point out here this computation for the same example
in Fig. 2.

The only flow directly contending with foi 1 on its path is
flow 2 at router R3 (East output); thus 𝐷𝐵1 = {2} and the
rate of 𝛽1 is 𝑅− 𝜌. The arrival curve of flow 2 at this node
is its initial arrival curve; thus:

𝑇P1 = 4𝑇

𝑇𝐷𝐵 =
𝜎 + 𝜌(𝑇 + 𝐿

𝑅
)

𝑅− 𝜌

Algorithm 1 Computing the end-to-end service curve for a
flow 𝑓 : endToEndServiceCurve(𝑓,P𝑓 )

1: Compute 𝑅𝑓

2: Compute 𝑇P𝑓
// Compute 𝑇𝐷𝐵:

3: 𝑇𝐷𝐵 ← 0
4: for 𝑘 ∈ 𝐷𝐵𝑓 do
5: 𝑟0 ← cv(𝑘, 𝑓) // Get convergence point of 𝑓 and 𝑘
6: 𝛽𝑘 ← endToEndServiceCurve(𝑘, [P𝑘[0], · · · , 𝑟0])
7: 𝛼0

𝑘 ← initial arrival curve of 𝑘
8: 𝛼𝑟0

𝑘 ← computeArrivalCurve(𝛼0
𝑘, 𝛽𝑘)

9: 𝑇𝐷𝐵 ← directBlocking(𝛼𝑟0
𝑘 )

10: end for
// Compute 𝑇𝐼𝐵:

11: IB𝑓 ← indirectBlockingSet(𝑓)
12: 𝑇𝐼𝐵 ← 0
13: for {𝑘, 𝑆} ∈ IB𝑓 do

14: ̃︀𝛽𝑘 ← VC-service curve of 𝑘 on 𝑆
// Compute the service curve of 𝑘 from its first node
to the beginning of 𝑆:

15: 𝛽𝑘 ← endToEndServiceCurve(𝑘, [P𝑘[0], · · · , 𝑆[0]])
16: 𝛼

𝑆[0]
𝑘 ← computeArrivalCurve(𝛼0

𝑘, 𝛽𝑘) // Now add the
delay over the subpath to 𝑇𝐼𝐵 :

17: 𝑇𝐼𝐵 ← 𝑇𝐼𝐵+ delayBound(𝛼𝑘, ̃︀𝛽𝑆[0]
𝑘 )

18: end for
19: return 𝑅𝑓 (𝑡− (𝑇P𝑓 + 𝑇𝐷𝐵 + 𝑇𝐼𝐵))

+

Knowing that 𝐼𝐵1 = {{3, [𝑅7, 𝑅8, 𝑅9]}} and the burst of
this flow at the input of R7; thus:

𝑇𝐼𝐵 = 3𝑇 +
𝜎𝑅7
3

𝑅

It’s worth noticing that computing 𝜎𝑅7
3 needs recursive calls

to the function endToEndServiceCurve. We will discuss the
impact of such calls on the computation time in Section 5.

3) End-to-end delay bound computation once the
end-to-end service curve for the foi 𝑓 , 𝛽𝑓 , is known, an upper

bound on the end-to-end delay of 𝑓 , 𝐷
P𝑓
𝑓 can be computed as

the maximum horizontal distance between 𝛽𝑓 and the initial
arrival curve of 𝑓 :

𝐷
P𝑓
𝑓 =

𝜎𝑓

𝑅𝑓
+ 𝑇P𝑓 + 𝑇𝐷𝐵 + 𝑇𝐼𝐵 (1)

We can now compute the end-to-end delay bound of foi 1
of the example in Fig. 2

𝐷P1
1 =

𝜎

𝑅− 𝜌
+ 4𝑇 +

𝜎 + 𝜌(𝑇 + 𝐿
𝑅
)

𝑅− 𝜌
+ 3𝑇 +

𝜎𝑅7
3

𝑅

4 TIGHTNESS ANALYSIS

In this section, we assess the tightness of the delay bounds
yielded by BATA. First, we conduct a sensitivity analysis of
BATA to identify the configuration parameters that have the
highest impact on the delay bounds. Then, we evaluate the
tightness of the delay bounds using simulation, for different
values of the identified parameters.

For the sensitivity analysis, we will analyze the end-to-end
delay bounds when varying the following parameters:
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∙ buffer size for values 1, 2, 3, 4, 6, 8, 12, 16, 32, 48, 64
flits;
∙ total payload (including header) for values 2, 4, 8, 16,
64, 96, 128 flits;
∙ flow rate for values between 1% and 40% of the total
link capacity (so that the total utilization rate on any
link remains below 100%).

0 1 2 3 4 5

0

1

2

3

4

5

other flows

flow of interest

Figure 3: Flow configuration on a 6×6 mesh NoC

To achieve this aim, we consider the configuration de-
scribed on Table 1 and Figure 3. This configuration remains
quite simple but exhibits sophisticated indirect blocking pat-
terns. We assume periodic flows with no jitter having the
same period and packet length. We also assume each router
can handle one flit per cycle and it takes one cycle for one
flit to be forwarded from the input of a router to the input
of the next router, i.e., for any node 𝑟, 𝑇 𝑟 = 1 cycle and
𝑅𝑟 = 1 flit/cycle. Finally, to maximize indirect blocking, we
consider that all the flows are mapped on the same VC. Our
flow of interest is flow 1, because it is one of the flows that is
most likely to undergo indirect blocking.

Figure 4 illustrates the end-to-end delay bounds of the foi
when varying buffer size. For the top graph, we keep each
flow rate constant at 4% of the total bandwidth; whereas for
the bottom graph, we keep each flow payload at 16 flits.

We notice on both graphs that end-to-end delay bounds
decrease with buffer size, with occasional stalling from one
value to another. This is something we could expect because
at a given packet length, the greater the buffer, the less a
packet can spread in the network. Consequently, the IB set
tends to be smaller, or to contain smaller subpaths. We notice
that past a certain buffer size, the end-to-end delay bounds
stay constant with larger buffers. This results from the fact
that the IB set remains the same once buffers are big enough
to hold an entire packet. Therefore, adding buffer space after
a certain point does not improve end-to-end delay bounds.
Hence, over-dimensioning the buffers within routers is not
efficient to enhance NoC performance.

Next, we focus on the packet length impact on the end-to-
end delay bound, as illustrated in Figure 5. The top graph
presents results when the buffer size is constant (4 flits) and
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Figure 4: Buffer size impact on end-to-end delay
bounds

the bottom one when the rate of each flow is constant (4%
of the link capacity).

The first observation we can make from both graphs is
that the delay bounds evolve in an almost linear manner with
the packet length. For instance, on the top graph, with 8 flits
of buffer size and payload equal to 16, 64, 96 and 128 flits,
the ratio of payload and end-to-end delay bound is 17.2, 19.9,
19.8, 19.7.

On the top graph, we observe further interesting aspects:

∙ At a given payload, the buffer size has a limited im-
pact on the end-to-end delay bounds. For instance, for
payload 64 flits, the delay bounds increase with less
than 25% when the buffer size increases with 480%;
∙ For payloads that are significantly larger than buffer
size, the delay bound remains constant regardless of
the buffer size, e.g., it is the case for payload 128 flits.

Finally, we study the impact of the flow rate on the end-to-
end delay bounds, as illustrated on Figure 6. The buffer size
is fixed to 4 flits on the top graph and the payload to 16 flits
on the bottom one. We can see on both graphs that the delay
bounds increase with the rate. From the top graph, one can
notice that at a constant rate, increasing the payload usually
causes the end-to-end delay bound increase. On the other
hand, from bottom graph, we confirm the conclusion drawn
from Figure 4: increasing buffer size does not improve delay
bounds after a certain value. Moreover, delay bounds seem
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Flow 1 2 3 4 5 6 7 8 9 10 11 12

SRC (0, 5) (1, 5) (2, 5) (3, 5) (5, 5) (2, 4) (2, 2) (3, 4) (3, 3) (4, 4) (4, 2) (5, 2)
DST (5, 4) (2, 3) (3, 2) (4, 3) (5, 1) (2, 1) (2, 0) (3, 1) (3, 0) (4, 1) (4, 0) (5, 0)

Table 1: Flow characteristics
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Figure 5: Payload impact on end-to-end delay
bounds

more sensitive to the rate variation for small buffer sizes. For
instance, for buffer size equal to 1 flit, delay bounds are 321
cycles and 1178 cycles (×3.7) for rates equal to 1% and 40%
(×40), respectively. Whereas, for buffer size equal to 32 flits,
the delay bounds are multiplied by only 1.6 when considering
the same rate values.

The conducted sensitivity analysis reveals two main inter-
esting conclusions:

∙ The configuration parameters having the highest im-
pact on the derived delay bounds are the buffer size and
the flow rate; Thus, both parameters will be considered
for the tightness analysis;
∙ Increasing the buffer size within routers after a certain
point does not improve the NoC performance; Thus,
over-dimensioning the buffers is not considered as an
efficient solution to decrease the delay bounds.

To assess the tightness of the delay bounds yielded by
BATA, we consider herein a simulation using Noxim simulator
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Figure 6: Rate impact on end-to-end delay bounds

engine [3]. Knowing no method to compute the exact worst-
case for wormhole NoCs, we derive an achievable worst-case
delay through simulation, that we compare to the analytical
end-to-end delay bounds.

In order to approach the worst-case scenario, we run each
flow configuration many times while varying the flows offsets
and we consider the maximum worst-case delay over all the
simulated configurations. Afterwards, we compute the ”tight-
ness ratio” for each flow, that is the ratio of the achievable
worst-case delay and the worst-case delay bound. A tight-
ness ratio of 100% means the worst-case delay bound is the
exact worst-case delay. However, it is worth noticing that a
tightness ratio below 100% does not necessarily mean that
the worst-case delay bound is inaccurate, but it can simply
reveals that the worst-case scenario has not been reached by
the simulation. Therefore, the determined tightness ratio is
a lower bound on the exact tightness ratio.

To perform simulations, we have configured Noxim simula-
tor engine [3] to control the traffic pattern using the provided
traffic pattern file option. For each flow, we have specified:
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∙ the source and destination cores;
∙ 𝑝𝑖𝑟, packet injection rate, i.e. the rate at which packets
are sent when the flow is active;
∙ 𝑝𝑜𝑟, probability of retransmission, i.e. the probability
one packet will be retransmitted (in our context, this
parameter is always 0);
∙ 𝑡on, the time the flow wakes up, i.e. starts transmitting
packets with the packet injection rate;
∙ 𝑡off , the time the flow goes to sleep, i.e. stops transmit-
ting;
∙ 𝑃 , the period of the flow.

Moreover, since we want to simulate a deterministic flow
behavior to approach the worst-case scenario, we use the
following parameters for each flow:

∙ Maximal packet injection rate : 1.0;
∙ Minimal probability of retransmission : 0.0;

To create different contention scenarios and try approach-
ing the worst-case of end-to-end delays, we chose randomly
the offset of each flow and perform simulations with uniformly
distributed values of offsets for each flow. We generate 40000
different traffic configurations with random offsets for each
set of parameters and simulate each of them for an amount
of time allowing at least 5 packets to be transmitted.

We simulate the configuration of Figure 3, when varying
buffer sizes in 4, 8 and 16 flits, and flow rates in 8% and
32% of the total available bandwidth. We extract the worst-
case end-to-end delay found by the simulator and compute
the tightness ratio for each flow. The obtained results are
gathered in Table 2. As we can see, tightness ratio is always
above 20%, while average tightness ratio is above roughly 50%.
We also notice the average tightness ratio improves when the
buffer size increases. For 8% rate, the average tightness ratio
varies between 70.1% and 80.8%. For 32% rate, the average
tightness ratio varies between 49.7% and 79.8%.

According to our sensitivity analysis, the indirect block-
ing patterns covered by our model tend to become simpler
when the buffer size increases, making the IB latency smaller.
Moreover, we can expect a correlation between the tightness
ratio and the IB set size:

∙ first, for each {flow index, subpath} pair in the IB set,
the analysis may introduce a slight pessimism in the
IB latency computation;
∙ second, the more complex the potential blocking sce-
narios are, the harder it is to reach or approach the
worst-case delay by simulations: it requires a precise
synchronization between flows to achieve those sce-
narios, and the greater the IB set, the less such a
synchronization statistically happens over random off-
sets.

Therefore, we can infer that the greater the buffer size, the
easier it is to approach the worst-case delay by simulating the
configuration. This is confirmed by the general trend of the
average tightness ratio. It is also backed up by the following
fact: in our analysis, flows 1 and 2 have the largest IB sets
and are the most likely to undergo indirect blocking. We
notice that at 8% rate (resp. 32% rate), their delay bounds

tightness rises from 44% to 79% (resp. 44% to 87%) and 41%
to 79% (resp. 24% to 97%) when the buffer size increases
from 4 flits to 16 flits.

5 COMPUTATION ANALYSIS

We now assess how well BATA scales on larger configurations
through evaluating the computation time. To achieve this
aim, we consider a larger NoC than the one considered for
tightness analysis, while varying the number of flows. We
particularly consider a 8× 8 NoC with 4, 8, 16, 32, 48, 64,
80, 96 and 128 flows and generate 20 configurations for each
fixed number of flows 𝑁 . To do so, we randomly pick 2𝑁
(𝑥-coordinate, 𝑦-coordinate)-couples, where each coordinate
is uniformly chosen in the specified range (here, from 0 to 7).
We use 𝑁 of these couples for source cores and the other 𝑁
for destination cores. All other parameters (flow rate, packet
length, buffer size, router latencies) are kept constant.

For each considered configuration, we focus on the following
metrics:

∙ ∆𝑡, the total analysis runtime (computation time);
∙ ∆𝑡𝐼𝐵 , the duration of the IB set analysis;
∙ ∆𝑡𝑒2𝑒, the duration of all end-to-end service curves
computations.

The derived results are illustrated in Figure 7: the top
graph for ∆𝑡, the middle one for ∆𝑡𝐼𝐵 and the bottom one
for ∆𝑡𝑒2𝑒. For each flow number, we have plotted the average
runtime for all the configurations with this number of flows,
as well as the computed metric for each configuration (one
dot per configuration). Only configurations with runtime up
to 104 s have been considered, but the IB analysis, much
faster, was performed for all configurations.

The top graph shows that the runtime grows rapidly with
the number of flows (we are using a logarithmic scale on the
Y-axis). Moreover, we notice that the runtimes may vary a
lot for the same number of flows. For instance, for 32 flows,
they range between 67ms and 110s. For 48 flows, they go
from 1.5s to more than 1h10min.

To further assess what impacts the scalability of BATA,
we plot the contributions to the total runtime of the IB set
analysis and the end-to-end service curve computation. We
notice that the IB set analysis alone (middle graph) runs in
less than 8 seconds for all tested configurations. This shows
that BATA approach complexity is mostly due to the end-to-
end service curve computation as shown in the bottom graph.
This fact is mainly due to the recursive call to end-to-end
service curve function in Algorithm 1.

Computing the end-to-end service curve actually needs the
computation of other service curves in two cases:

(1) when computing 𝑇𝐷𝐵 , we need to know the burst of the
contending flow at the convergence point with the foi.
Thus, we compute the service curve for the contending
flow from its source to the convergence point with the
foi (Algorithm 1, line 6);

(2) when computing 𝑇𝐼𝐵 , we need to know the arrival
curve of each flow in the IB set at the beginning of its
subpath. Thus, we compute the service curve of this
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Rate Buffer Tightness statistics Per-flow tightness ratio
Average Max Min 1 2 3 4 5 6 7 8 9 10 11 12

8% 4 70.1% 91.7% 40.6% 44% 41% 64% 68% 77% 75% 89% 68% 47% 88% 92% 89%
8 72.1% 92.0% 38.1% 46% 38% 69% 71% 80% 79% 90% 70% 49% 90% 92% 90%

16 80.8% 88.3% 48.9% 79% 79% 85% 86% 85% 86% 87% 70% 49% 88% 88% 87%

32% 4 49.7% 95.6% 20.8% 44% 24% 51% 64% 46% 21% 44% 46% 24% 70% 96% 66%
8 64.2% 88.9% 33.3% 66% 47% 59% 81% 53% 46% 69% 65% 33% 88% 79% 85%

16 79.8% 97.3% 43.8% 87% 97% 54% 87% 64% 86% 97% 71% 44% 88% 96% 88%

Table 2: Tightness ratio results for the tested configuration
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Figure 7: Results of the scalability analysis

flow from its source to the beginning of the appropriate
subpath (Algorithm 1, line 15).

To highlight this aspect, we measured the number of calls
to the function computing a service curve during the analy-
sis. The results displayed on Figure 8 and clearly show the
expected trend.
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Figure 8: Number of calls to the function endToEnd-
ServiceCurve()

We can also notice that when all flows are mapped on
different VCs (no VC-sharing), no indirect blocking is possible,
i.e. IB𝑓 = ∅ for any flow 𝑓 . Hence, there is no computation

to be done for 𝑇𝐼𝐵 , which drastically reduces the complexity
of the approach in this case. In Algorithm 1, this means that
lines 12 to 18 are not executed.

The derived results show that BATA gives good delay
bounds for medium-scale configurations in less than one hour.
However, the complexity of BATA increases with the number
of flows due to the recursive calls to end-to-end service curve
function. This fact is inherent to the large panel of NoCs,
i.e., priority-sharing, VC-sharing and buffer backpressure,
covered by BATA

6 AUTOMOTIVE CASE STUDY

In this section, we confront our model to a realistic automotive
case study. This case study was used in several previous works
to test NoC real-time analysis models, and recently in [13].
It consists of 38 flows on a 4 × 4 manycore platform with
a 2D-mesh NoC. The parameters of the flows can be found
in [2]. For convenience reasons, we reordered the flows as
in [13]. We also conducted a comparative analysis with the
state-of-the-art method detailed in [13] in terms of derived
delay bounds tightness.

The NoC parameters used in [13] are the following:

∙ The duration of a cycle is 0.5 ns;
∙ All routers have a technological latency of 3 cycles;
∙ The link capacity is one flit per cycle;
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Figure 9: Worst-case end-to-end delay bounds comparison for different buffer sizes (2, 100 and ∞)

𝐵 = 2 𝐵 = 100 𝐵 =∞

Average tightness 64% 67% 71%

Average tightness difference +0.07% +0.08% -0.03%
Maximum tightness difference +3.70% +3.49% +0.01%
Minimum tightness difference -0.10% -0.10% -0.10%

Table 3: Tightness differences for various buffer sizes
between BATA and state-of-the-art approach

∙ Flows’ priority assignment follows a rate monotonic
policy;
∙ Each router supports 4 Virtual Channels with no
priority-sharing and no VC-sharing, i.e., one flow per
VC;
∙ To compare our results to the ones in [13], we per-
formed the analysis for different buffer sizes (2, 100
and 1000000 flits, the latest being large enough to
assume buffer size is infinite).

We then plotted comparative graphs on Figure 9 and we
notice that our approach gives similar results to [13]. To
further quantify the similarity of the results, we introduce
the “tightness difference” for a given flow:

∆𝜏 = 𝜏BATA − 𝜏ST ,

where 𝜏𝐵𝐴𝑇𝐴 is the tightness ratio of the bound yielded by
BATA, and 𝜏𝑆𝑇 is the tightness ratio of the bound yielded
by the method of [13]. ∆𝜏 is positive when BATA gives the
tighter bound and negative otherwise. We synthesized the
differences in Table 3. We computed the minimum, maximum
and average tightness difference.

As we can notice, both approaches give very close results,
giving credit to both models.

Authors in [13] have shown that only 4 VCs are sufficient
to find a mapping of flows to VCs that ensures each flow has
exclusive use of the VC within each router, which greatly
simplifies the computation. However, having only one flow
per VC at each node can raise scalability problems: with
larger and/or less favorable configurations, ensuring each

flow has the exclusive use of a VC within each router would
require a number of different VCs that is not reasonable any
more.

In that respect, we want to stress out that our model allows
priority sharing and VC sharing (several flows sharing prior-
ity levels and VCs). Therefore, we have performed another
analysis on the same configuration using only 2 VCs, with
the following priority mapping:

∙ Flows 1 to 19 have the higher priority and are mapped
to VC0;
∙ Flows 20 to 38 have the lower priority and are mapped
to VC1.

We also analyze a configuration with only 1 shared VC.
We have plotted the results with the different VC config-

urations on Figure 10. We only displayed the results for a
buffer size of 2 flits, but the trend is similar with other sizes.
To get an insight into the impact of reducing the number of
VCs on delay bounds computed with BATA, we also com-
puted, for each flow and for each 𝑛 VC configuration, the
relative increase of the worst-case delay bounds compared to
the delay bound with 4 VCs, as follows:

𝑖𝑛𝑐𝑛 =
delay with 𝑛 VCs− delay with 4 VCs

delay with 4VCs

The results are on Table 4.
First, as we can notice from Fig. 10, all flows have delay

bounds less than their periods (the shortest period is 40 ms);
thus remain schedulable. More particularly, when we reduce
the number of VCs, the computed delay bound for each flow
increases (respectively 34 and 32 times out of 38) or remains
the same (respectively 4 and 1 time out of 38). However, for
5 flows cases with one VC, the computed bound decreases
compared to the original configuration with no shared VC (4
VCs). The concerned flows are among the flows that have the
lowest priorities in the original configuration. Mapping all
flows to the same priority allows more fairness. Consequently,
it tends to increase the delay bounds of the flows that had
the highest priorities in the original mapping, and conversely
to decrease the waiting time of lower priority flows.
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Figure 10: Delay bounds with 4, 2 and 1 VC with
buffer size = 2 flits for BATA

2 VCs 1 VC

Average bound increase 101.11% 145.13%
Minimal bound increase 0.00% -95.05%
Maximal bound increase 464.16% 2293.01%

Table 4: Relative increase of the worst-case end-to-
end delay bounds for 𝐵 = 2 with BATA

Moreover, in Table 4, we compute the average increase of
the worst-case delay bounds computed with BATA when we
reduce the number of VCs, compared to the bound with 4
VCs. The average bound increase stays reasonable (up to
150 %) when the number of available VCs is divided by 2
or 4. In comparison to the state-of the-art method in [13],
BATA does not need the non-shared VCs assumption; thus,
BATA enables the delay bounds computation with shared
VCs. In this particular case study, we are able to show that
decreasing the number of Virtual Channels (and consequently
the platform complexity) can be done while maintaining the
schedulability of all flows and complying with the timing
constraints.

Finally, we provide some insights into the runtime of our
method. For each buffer size and number of VCs, we measured
the runtime of our analysis and summarized our results in
Table 5. We notice that runtimes with non-shared VCs are in
the order of 10 times lower than runtimes with 1 and 2 VCs.
This confirms our conclusions in Section 5 concerning the
inherent complexity of BATA to handle the priority-sharing
and VC-sharing assumptions.

Actually, when no VC is shared between several flows, the
IB latency is zero. However, when VCs are shared, there are
additional recursive calls to end-to-end service curve function
needed to compute the IB latency; thus we can expect an
increase in the analysis duration.

7 CONCLUSION

In this paper, we proposed an extensive evaluation of the
tightness and computation time of our previously published

4 VCs 2 VCs 1 VC

Runtime (ms) 𝐵 = 2 6.36 55.4 84.6
𝐵 = 100 6.30 125.0 144.4
𝐵 =∞ 6.20 62.4 84.4

Table 5: Runtimes of BATA for different NoC con-
figurations when sharing VCs

buffer-aware worst-case timing analysis (BATA) for wormhole
NoCs [5]. To evaluate the tightness, we first studied how the
various system parameters impact the computed end-to-end
delay bounds. We found our model to be most sensitive to
rate and buffer size. Consequently, we proceeded the tightness
analysis with a set of different buffer sizes and flow rates. We
were able to achieve a tightness ratio up to 80% on average,
with reference to simulation.

We then estimated the scalability of our approach in terms
of computation time when increasing the number of flows.
We found that the main complexity of the analysis lies in
the indirect blocking latency computation, as it leads to
additional recursive calls to the function computing the end-
to-end service curve. However, this complexity comes from
the fact that the model is able to cover configurations with
shared priority and shared VCs. If no VCs are shared, the
analysis is much less complex.

Finally, we compared our results to those of [13] on an au-
tomotive case study. We have shown that the results are very
similar, with tightness ratios differing by less than 0.1% on
average. Moreover, since our model is not limited by the as-
sumptions of no priority-sharing and no VC-sharing, we have
analyzed other configurations with reduced number of VCs
(thus lower complexity) while maintaining the schedulability
of all flows.

Our next focus will be to rethink the indirect blocking
analysis in order to decrease the computational cost of BATA
while covering a large panel of NoC configurations.
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