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Résumé

Dans le réservoir d’un satellite, le carburant cryogénique peut se transformer en vapeur à cause

de la présence d’un gradient de température à la paroi, induit par le rayonnement solaire ou la

diffusion thermique résiduelle des moteurs du lanceur. La quantité de vapeur transformée peut

fortement augmenter la pression à l’intérieur du réservoir. En raison d’une connaissance incom-

plète des ces phénomènes, aujourd’hui, les opérations faites pour régulariser la pression interne

entraînent une perte de carburant. Il est donc très important d’étudier le changement de phase

liquide/vapeur et les processus physiques mis en jeu au niveau de l’interface. C’est dans ce contexte

que se situe cette thèse, dont l’objectif est d’obtenir une meilleure compréhension des phénomènes

susmentionnés au moyen de la Simulation Numérique Directe (DNS). Le travail est divisé en trois

parties : l’interaction entre un liquide à température de saturation et un écoulement externe de

vapeur sous-refroidie ou surchauffée, en régime laminaire et turbulent, et l’interaction entre des

mouvements de convection naturelle et le changement de phase liquide/vapeur.

Tout d’abord, le régime laminaire est étudié. Dans ce cadre, une étude paramétrique est menée

dont l’objectif est de trouver des lois de comportements pour le transfert thermique et le coefficient

de frottement à l’interface entre un liquide statique à température de saturation et un écoulement

de couche limite de vapeur. Nous étudions à la fois la vaporisation et la condensation.

La seconde partie de cette thèse est dédiée à la simulation numérique d’un écoulement de

couche limite turbulente d’une vapeur surchauffée en interaction avec un champ de vitesse induit

par de la vaporisation. Pour cela, un injecteur de turbulence est implémenté dans le code et validé

pour la configuration de l’évolution spatiale d’une couche limite turbulente sur une plaque plane

avec transfert thermique. Ensuite, une étude sur l’influence du champ de vitesse induit par la

vaporisation sur le nombre de Nusselt, le coefficient de frottement, le nombre de Stanton et les

différentes quantités turbulentes est réalisée.

Enfin, nous menons une étude numérique préliminaire sur une configuration décrivant l’écoulement

convectif dans un réservoir cryogénique. Un nouveau solveur est implémenté dans le code utilisé

afin de prendre en compte les variations de la densité. Des résultats préliminaires sont obtenus sur

l’influence du nombre de Grashof sur le flux thermique à l’interface liquide/vapeur.

Mots-clés : vaporisation, condensation, nombre de Nusselt, couche limite turbulente, convection

naturelle
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Abstract

In a launcher tank, the cryogenic fuel can suffer a liquid/vapor phase change due to a thermal

gradient induced by solar radiation or by engines residual thermal diffusion. The quantity of vapor

released by the phase change process can highly increase the internal pressure. Due to a poor

knowledge of these phenomena, at present, the operations led to regulate the internal pressure

induce fuel loss. It is therefore of great importance to investigate the liquid/vapor phase and the

physical processes taking place at the interface. This is the context of the present thesis, that

takes place in an effort to extract better understanding of the above underlined phenomena by

means of Direct Numerical Simulation (DNS). The work is split into three studies : the interaction

between a liquid pool at saturation and an external flow of subcooled or superheated vapor, both in

laminar and turbulent regime flows, and the interaction between natural convection mouvements

and liquid/vapor phase change.

Firstly, the laminar regime flow is investigated. In this framework, a parametric study is con-

ducted with the objective of finding behaviour laws for the heat transfer and the friction coefficient

at the interface between a static liquid pool at saturation temperature and a laminar boundary

layer flow of vapor. Both vaporization and condensation are studied.

The second project was on the numerical simulation of a turbulent boundary layer flow of

superheated vapor interacting with the velocity field induced by vaporization. To this extent,

a turbulent fluctuations injector is implemented and validated for the spatial development of a

boundary layer flow over a flat plate with heat transfer. A study on the influence of the velocity

field induced by vaporization on the Nusselt number, the friction coefficient, the Stanton number

and the turbulent quantities is conducted.

Finally, we lead a preliminary numerical study on a configuration describing the interaction

between natural convection flow and liquid/vapor phase change in a cryogenic tank. A new solver

is implemented in the in house code to account for the density variations in the liquid. Preliminary

results are obtained on the influence of the Grashof number on the thermal flux at the liquid/vapor

interface.

Keywords : vaporization, condensation, Nusselt number, turbulent boundary layer, natural

convection
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Introduction

Industrial context

The interaction between liquid/vapor phase change and an external flow plays an important role in

various fields, such as in combustion applications, weather forecasting, heat exchangers or climate

modeling. The study of such a phenomena represents, first of all, a theoretical and a scientific

challenge. In addition, having a better understanding of the heat and mass transfers in such a

configuration could allow a performance enhancement of numerous industrial devices.

In particular, the space sector is also concerned by this field in the case of a space launcher,

and this, at different steps of the mission: launching phase, ballistic flight, orbit insertion, etc.

When launching a space rocket, a part of the embedded liquid propellant (ergol) is stored in

cryogenic tanks for later employement, during space manoeuvres. However, the tanks are heated

through solar radiation or engines thermal dissipation. Thus, the temperature of the tank wall is

highly increased. The thermal gradient between the tank wall and the contained ergol generates

liquid/vapor phase change. The presence of vapor increases the internal pressure of the tank,

which, in the context of the tank pressurization, leads to fuel loss. Hence, a better understanding

of the liquid/vapor phase change and its interaction with the induced flows in a cryogenic tank

could allow an optimisation of the embarked liquid propellant.

It is in this industrial context that the present thesis is placed. The tool used to tackle this

subject is direct numerical simulation (DNS). The DNS of the entire cryogenic tank, together

with all the involved physical phenomena, is, of course, out of reach, for computational costs

and complexity reasons. Industrial codes are already employed for the simulation of a cryogenic

tank. However, the lack of a good resolution of the interface between liquid and vapor phases

prevents an accurate computation of the mass and heat transfers induced by the phase change.

The intended concept would be to determine, by means of DNS, behaviour laws for the thermal and

mass transfers at the liquid/vapor interface, laws that will further be used to model the interface

in the industrial codes.

The main objective of this thesis has therefore been to simulate configurations describing the

interaction between the liquid/vapor phase change and the internal cryogenic tank flows, with the

focus on the interface thermal transfer.

Numerical approach

The choice of the computational configuration was not straightforward. Depending on the various

phases of the flight mission, the involved physical phenomena differ. These changes are driven,

inter alia, by the presence or the absence of gravitational accelerations. These two configurations

are described in what follows, begining with the microgravity regime.

1
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superheated vapor

subcooled liquid

pressurization

  solar radiation

Figure 1: Schematics of the cryogenic tank subjected to microgravity, during the presurrization

of the subcooled liquid by a superheated vapor. The tank wall is heated through solar radiation.

The red rectangle represents the zone where the DNS will be used to characterize the vapor flow

and the phase change at the liquid/vapor interface.

In space, the ergol is drained from the cryogenic tank for different manoeuvres, such as the

orbit insertion or change of position. In order to maintain a certain internal pressure, the subcooled

liquid is pressurized by a superheated vapor or a non-condensable gas. Considering the absence

of the gravitational field, this procedure also allows to pack the liquid propellant. A schematic

of this configuration is showed in figure 1. The approach employed for the simulation of such a

configuration in microgravity has been to consider only a narrow zone at the liquid/vapor interface

where the vapor flow can be modeled by a boundary layer flow, schematized by a red rectangle in

figure 1. The liquid phase is considered to be static and at saturation temperature while a thermal

gradient is imposed in the vapor phase. Both laminar and turbulent regimes are investigated.

The influence of the liquid/vapor phase change on the interface thermal flux evolution and on the

development of the laminar or turbulent boundary layer are studied.

On the other hand, during the launching phase, the tank is subjected to high gravitational

accelerations, while heated through engines thermal diffusion. Residual gravitational accelerations

can also be generated in space, when the engines are reignited for the orbit insertion of the satellite.

Figure 2 illustrates a schematic of the tank under these conditions. The gravitational field induces

a thermal stratification in the liquid, while phase change occurs at the liquid/vapor interface.

Convective motions are generated in the liquid phase, that will interact with the liquid/vapor

phase change. Note that, for this industrial application, the regime is turbulent, with values

of the Grashof number of order „ 1010. The DNS of turbulent natural convection is complex

and have a high computational cost. For these reasons, the numerical approach is to consider

a 2D laminar configuration of a two phase flow containing a subcooled liquid and a vapor flow

initially at saturation temperature. The solar radiation heat flux is modeled by imposing a wall

conduction heat flux. Laminar natural convection flow, defined by a Grashof number of „ 106,

is induced in the liquid. Even if, in terms of flow regime, the studied configuration is different

from the industrial configuration, this can be seen as a first step before pursuing with more precise

studies. Additionally, the preliminary results obtained with the 2D configuration will allow a better

understanding of the physical phenomena involved when natural convection mouvements interact

with liquid/vapor phase change.
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superheated vapor

subcooled liquid

   solar radiation

 engines thermal diffusion

convective motions

Figure 2: Schematics of the cryogenic tank subjected to gravitational accelerations, containing a

subcooled liquid pressurized by a superheated vapor. The tank wall is heated through solar radi-

ation or/and engines thermal diffusion. The red rectangle represents the numerical configuration

studied in the present thesis.

Before describing the outline of the thesis, it is important to stress that, often, the studied con-

figurations, both by numerical or experimental approaches, differ from the very complex industrial

problems. However, this does not diminish, in any way, their scientific and theoretical importance.

Moreover, the interlock of decoupled physical phenomena or of simplistic configurations, allows in

the end the comprenhension of more complex industrial processus.

Outline of the Thesis

The work carried out during the course of this thesis is presented as follows.

Chapter 1 is dedicated to the description of the in house code, DIVA, used for the direct nu-

merical simulation of the above described configurations. The numerical methods implemented to

solve the physical model translating the behaviour of two-phase flows with phase change are pre-

sented: the Level-Set method for the interface capture, the projection method for the Navier-Stokes

equations, and the Ghost Fluid Thermal Solver for Boiling used to solve the energy conservation

equation.

In chapter 2, we present a numerical study to characterize the interaction between a superheated

or subcooled external laminar vapor flow shearing a static and plane liquid pool at saturation

temperature. Our purpose was to find, for this configuration, correlations on the Nusselt number

accounting for the modification of the local thermal gradient on the interface due to the vaporization

or condensation induced flow. As the local structure of the flow is also modified in the vicinity of

the liquid-vapor interface, our study includes an analysis on the interfacial viscous friction when

phase change occurs.

In practical applications, most flows which occur are turbulent. Therefore, the subsequent topic

of our work concerns the interaction between a turbulent boundary layer flow and the velocity

field induced by liquid/vapor phase change. To this extent, the spatial evolution of a turbulent

boundary layer flow on a flat plate has first to be simulated. This work is described in chapter

3. After a thorough overview of the existing numerical methods for the generation of turbulent

fluctuations, the chosen method is described and validated. Next, the results obtained are presented
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and discussed. A particular attention is also paid to the computational constraints related to the

simulation of turbulent boundary layer flows.

In chapter 4, we investigate the interaction between a spatially developing turbulent bound-

ary layer flow and a normal velocity field induced by liquid/vapor phase change. This is first

conducted qualitatively, by analysing the normal velocity field, the vorticity magnitude field and

the isosurfaces of the Q criterion. Next, a study on the influence of the phase change onto the

turbulent quantities is presented. Several Jakob numbers are studied and a preliminary physical

analysis is proposed for the obtained profiles. Additionally, we take interest on the impact of the

phase change onto the Nusselt number evolution. This is given in the continuity of the work on

the laminar regime where correlations on the Nusselt number are proposed.

In chapter 5, the focus is on the liquid phase where natural convection motions develop and

interact with the liquid/vapor phase change. A 2D computational configuration is considered,

where the density variations in the liquid phase are treated using the low-Mach approximation

while the vapor phase is incompressible. The vapor is initially at saturation temperature and the

liquid is subcooled. Wall conduction is considered for the boundary conditions on the vertical walls.

A natural convection flow is induced in the liquid and its interaction with the liquid/vapor phase

change is investigated. Different values of the Grashof number are studied and a discussion on its

influence on the thermal flux is given. The study is in progress and opens to many perspectives.

Finally, the work ends with conclusions together with recommendations for future work.
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The numerical study of the interaction between an external flow and the liquid/vapor

phase change has been conducted using the in house code, DIVA. The code DIVA, that

states for Interfacial Dynamics for Atomization and Vaporization, allows for direct nu-

merical simulation of two-phase flows with phase change. In this chapter, this numerical

tool is described.

5
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1.1 Introduction

In this chapter we try to provide a comprehensive overview of two-phase flows numerical simula-

tion. To this extent, the first section tackles the three major aspects of two-phase flows simulation,

i.e. the interface localization, the formalism to solve the corresponding physical equations and the

treatment of the interface discontinuities. In the second part of this chapter, the code DIVA is

described. First, the methods for interface localization are described, then the physical equations

translating the behaviour of two-phase flows with phase change are presented. Finally, the numer-

ical methods implemented to solve this physical model are expounded: the Level-Set method for

the interface capture, the projection method for the Navier-Stokes equations, and the Ghost Fluid

Thermal Solver for Boiling used to solve the energy conservation equation.

1.2 General background on two-phase flows numerical simu-

lation

Two-phase flows simulations entail the use of a numerical model allowing above all to locate the

interface between the two phases. Additionally, algorithms for solving the physical equations as

well as treating the discontinuities across the interface are needed. A general background on these

aspects is given in what follows.

1.2.1 Interface localization

The notion of interface is inherent in the context of two-phase flows. A large amount of literature

relevant to interfaces exists. For example, in the classical work of Germain [25], the interface

separating two immiscible fluids is defined as a geometric surface at which a discontinuity in

properties occurs. Jump conditions through the interface are derived from the classical balance

laws for mass, momentum and energy.

To numerically simulate two-phase flows, each phase distribution as well as the interface position

have to be known at all times. Two approaches describing the time evolution of an interface can

be distinguished: the Lagrangian or Interface-Tracking methods and the Eulerian or Interface-

Capturing methods.

The Lagrangian approach implies the use of markers or particles without mass whereas in the

Eulerian approach a scalar field defining the presence of a fluid or of the interface is used. Both the

markers and the scalar field are convected by the local velocity field throughout the entire domain.

In what follows, a survey of the existing methods is given.

1.2.1.1 Lagrangian methods

Numerous Lagrangian methods exist. One of the first is the Mark and Cell method (MAC) proposed

by Harlow and Welch [30] where lagrangian markers are placed only in the region of one of the

phases. The major drawback of this method is the large number of markers needed to correctly

model the fluids distribution (figure 1.1a). To adress this, Daly [17] proposes a slighthly different

method where markers are dispersed only on the interface. Nevertheless, to obtain an accurate

position of the interface, the distance between two consecutive points has to remain small enough

and regular. This leads us to the Front Tracking methods, introduced by Glimm et al. [14, 28].

The markers are regularly distributed along the interface, forming segments in 2D and triangles

in 3D (figure 1.1b). The most common version of this method was proposed by Unverdi and
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Tryggvason [105]. This type of approach is not the most appropriate to the simulation of the

interaction between several interfaces, in the case of rupture or coalescence.

Markers

fluid 1

fluid 2

Interface

(a) MAC

Markers

fluid 1

Interface

fluid 2

(b) Front Tracking

Figure 1.1: Illustration of Lagrangian methods.

The Boundary Fitted methods, another Lagrangian approach, involves that the mesh grid is

adapted to the interface shape. This allows modeling the interface jump conditions as classical

boundary conditions. Since the mesh grid is aligned with the interface, the accuracy is greatly

improved. Nevertheless, the main drawback is that the mesh grid is evolving with the interface

and has to be reconstructed at each time step. The computation time is therefore greatly increased.

This type of approach has particularly be used for bubble rising simulations [18, 89].

1.2.1.2 Eulerian methods

The Eulerian methods are based on the definition of a particular scalar field within the global fixed

mesh grid. This scalar field is advected by the local velocity at each time iteration. It allows in this

way to compute the localization of the two fluids as well as the interface position. The Eulerian

methods can be divided into two major categories: the Volume of Fluid (VOF) and the Level-Set

methods.
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(c) VOF SPLIC

Figure 1.2: Different VOF methods: initial form and C values (a), interface reconstruction with

the SLIC (b) and SPLIC (c) algorithms.

The VOF method, proposed by Hirt and Nichols [33], uses a scalar function C characterizing

the volume fraction of one of the two fluids present in the cell grid (figure 1.2a). Thus, if the fluid

occupies the entire cell, C “ 1 whereas if the cell is filled only with the second fluid, C “ 0. It
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follows naturally that the cell crossed by the interface contains the two fluids and 0 ă C ă 1. The

scalar field C is advected by the local velocity field u,

BC
Bt ` u ¨ ∇C “ 0. (1.1)

The scalar field C is constant in each fluid region and varies greatly across the interface. Con-

sequently, a very accurate discretization is needed for the computation of the convective term from

equation (1.1). The advantage of the VOF method is its mass conservation in time. Nonetheless,

the computation of the geometric properties, such as the interface curvature and the normal vec-

tor, is not straightforward. This is caused by the fact that the precise location of the interface is

unknown. Indeed, a reconstruction algorithm is necessary at each time step in order to reconstitute

the interface using the discrete values of the function C. Noh and Woodward [68] introduced the

first reconstruction algorithm, the SLIC (Simple Line Interface Calculation) where the interface is

formed by line segments aligned with the mesh principal directions (figure 1.2b). An improvement

of the SLIC method is proposed by Youngs [110] where the interface is now approximated by a

line segment non-aligned with the mesh (figure 1.2c). This method, named PLIC (Piecewise Line

Interface Calculation) uses the values of the field C at the grid neighbouring points to calculate the

line segment orientation in the corresponding cell. Since the introduction of the VOF methods, nu-

merous modifications have been done in order to improve the accuracy of the temporal evolution of

the interface, as well as the calculation of its geometric properties (see [7, 9, 29, 51, 78, 80, 85, 91]).

The second category of Eulerian approaches is represented by the Level-Set method, introduced

by Osher and Sethian [69]. A scalar field φ corresponding to the signed distance to the interface is

defined in the entire computational domain Ω. The latter is decomposed into two regions Ω` and

Ω´, representatives of the two respective fluids,

Ω` “ tx P Ω | φpxq ą 0u , (1.2)

Ω´ “ tx P Ω | φpxq ă 0u , (1.3)

whereas the interface is characterised by the level 0 of the φ function

Γ “ tx P Ω | φpxq “ 0u . (1.4)

It is therefore possible to define, by extension, a level lines ensemble Γk in the computational

domain Ω, located at a distance |dk| from the interface (figure 1.3),

Γk “ tx P Ω | φpxq “ |dk|u . (1.5)

Figure 1.3: Level set function corresponding to a circular interface.

As a result, the computation of the physical properties of each fluid, such as the density ρ and

the dynamic viscosity µ, is direct.
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The temporal evolution of the interface is done by the use of the following advection equation,

Bφ
Bt ` u ¨ ∇φ “ 0. (1.6)

This type of equation is known to develop discontinuous solutions even if the initial field is contin-

uous. Hence, a robust scheme has to be employed to deal with possible singularities.

Compared to others Interface-Capturing methods, the Level-Set method allows a simple and

accurate computation of the interface geometric properties. The normal vector to the interface is

calculated with

n “ ∇φ

||∇φ|| , (1.7)

and the interface curvature can be deduced with

κ “ ∇ ¨ n “ ∇ ¨
ˆ

∇φ

||∇φ||

˙
. (1.8)

On the other hand, this method has two major drawbacks. Firstly, the existence of high

shearing or streching zones in the velocity field can considerably spread or tighten the level lines,

degrading therefore the geometric properties of the Level Set function. Indeed, the advection

equation (1.6) is solved for all the level lignes Γk, whereas the displacement speed is known only

for the interface, since their definition is purely mathematical. Sussman et al. [99] proposed to

solve a redistancing equation which forces φ to be a signed distance to the interface for every time

step, without changing the zero level curve location. To this extent, the following equation

Bd
Bτ “ signpφq p1 ´ |∇d|q (1.9)

is iterated for a few fictitious time steps τ . The interface position is conserved by imposing the

initial condition d px, t, τ “ 0q “ φpx, tq.
Secondly, the numerical dissipation of the advection equation (1.6) discretization can cause

mass losses. Additionally, during the redistancing step (1.9), the interface position can be slightly

changed and induces a gain or loss in mass. Nevertheless, the interface perturbation remains low

if the mesh grid is refined enough. As for the numerical dissipation of the advection equation, this

can be adressed, inter alia, by the use of a more accurate discretization scheme.

1.2.2 Modeling two-phase flows

In this section, we present the physical equations and the numerical approach used in the con-

figuration of two-phase flows. All thermodynamic properties are considered to be constant. The

specific case of variable density will be discussed later.

1.2.2.1 Physical equations

An incompressible one-phase fluid flow, in a domain Ω, is described by the Navier-Stokes equations,

∇ ¨ u “ 0, (1.10)

ρ

ˆBu
Bt ` pu ¨ ∇q u

˙
“ ´∇p ` ∇ ¨

´
2µ ¯̄D

¯
` ρg, (1.11)

with t the time, ρ and µ the fluid density and dynamic viscosity, respectively, u “ pu, v, wq the

velocity field, p the pressure field, g the gravitational acceleration and ¯̄D the strain tensor defined

by

¯̄
D “ ∇u ` ∇

Tu

2
. (1.12)
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The thermal field is described by a simplified energy conservation equation, formulated using

the enthalpy primitive variable

ρCp

ˆBT
Bt ` pu ¨ ∇q T

˙
“ ∇ ¨ pk∇T q , (1.13)

where T is the thermal field, Cp is the specific heat at constant pressure and k is the thermal

conductivity.

We now consider that the domain Ω contains two regions Ω` and Ω´, each corresponding to

a different phase. As a result, the two fluids physical properties are employed respective to each

fluid as: (ρ`, µ`, k`, C`
p ) and (ρ´, µ´, k´, C´

p ).

The liquid and the vapor phases are separated by an interface Γ, across which phase change

can occur (i.e. the liquid vaporizes into vapor or the vapor condenses into the liquid). Across

the interface, the continuity of the mass flux, the momentum and enthalpy balances have to be

satisfied.

The interface mass flux, 9m is obtained by applying the mass conservation (1.10) across the

interface,

9m “ ρl pVl ´ VΓq ¨ n “ ρv pVv ´ VΓq ¨ n, (1.14)

where the interface velocity is denoted by VΓ and n is the local unit vector pointing towards the

liquid phase. The subscripts l and v are used to refer to the liquid and vapor phases, respectively.

The jump on the velocity field across the interface can therefore be written as:

rVsΓ “ 9m

„
1

ρ



Γ

n, (1.15)

where the operator r¨sΓ accounts for the jump across the interface and it is defined by: rf sΓ “ fv´fl.

The momentum balance at the interface is imposed by integrating the momentum equation

(1.11) across the interface and by including the effects of the surface tension,
„
p ´ 2µ

BVn

Bn ` ρpV ¨ n ´ VΓ ¨ nq2


Γ

“ σκ, (1.16)

which, by using equation (1.15), is rewritten as

rpsΓ “ σκ ` 2

„
µ

BVn

Bn



Γ

´ 9m2

„
1

ρ



Γ

, (1.17)

where σ is the surface tension, κ is the interface curvature and BVn

Bn is the normal derivative of the

normal velocity component. The first term of the right hand side of this equation is the capillary

pressure from the Laplace-Young law, the second term accounts for the discontinuity of the normal

viscous stress, and the last term is usually referred as the recoil pressure.

According to the second law of thermodynamics and assuming that the local equilibrium

hypothesis is still valid, the interface temperature is imposed to be the saturation temperature

Tl “ Tv “ Tsat. Integrating equation (1.13) across the interface yields

rρh pVl ´ VΓq ¨ nsΓ “ r´k∇T ¨ nsΓ , (1.18)

where h defines the enthalpy. It is assumed that h depends only on the temperature. By using

equation (1.15), the jump condition for the energy conservation writes

9mLv “ r´k∇T ¨ nsΓ , (1.19)

with Lv “ rhsΓ the latent heat of phase change.
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The physical model that has to be solved in two-phase flow simulations is represented by the

Navier-Stokes equations (1.10)-(1.11), the energy conservation equation (1.13), along with the

interface jump conditions (1.15), (1.17), (1.19). Thus, in comparison with single phase flows, the

resolution of two-phase flows presents two issues: the treatment of the discontinuities across the

interface and modeling of the jump conditions. The two points in question will be further discussed.

There are two types of formulations for the Navier-Stokes equations, when incompressible two-

phase flows are concerned: the Whole-Domain formulation [11, 91] and the Jump-Condition for-

mulation. As their names suggest it, the Whole-Domain formulation implies the resolution of the

physical equations in all the domain whereas in the Jump-Condition formulation, the physical

equations are solved in each phase and jump conditions are imposed at the interface.

Concerning the treatment of the discontinuities across the interface, two approaches can be

distinguished:

- the Continuum Surface Force formalism, where the discontinuities are smoothed over 2-3

grid cells with the aid of the Heaviside distribution HΓ; the inconvenient of this approach is

the development of parasitic currents leading to numerical instabilities.

- the Sharp Interface methods, where the discontinuities are treated as jump conditions, pre-

venting the interface thickening and reducing parasitic currents magnitude.

1.2.2.2 Projection method for solving Navier-Stokes equations

The temporal discretization of the Navier-Stokes equations (1.10)-(1.11), with velocity and pressure

fields unknown at the time step tn`1, yields

∇ ¨ un`1 “ 0, (1.20)

ρ

ˆ
un`1 ´ un

∆t
` pun ¨ ∇q un

˙
“ ´∇pn`1 ` ∇ ¨

´
2µ ¯̄Dn

¯
` ρg. (1.21)

The obtained equations are numerically solved by the use of the projection method introduced

by Chorin [15] for single phase flows. The latter is based on the Hodge decomposition of any

vector field into the sum of an irrotational (curl-free) vector field and a solenoidal (divergence-free)

vector field. This method allows to decouple the resolution of the Navier-Stokes equations into the

velocity field u resolution and the pressure field p resolution.

For two-phase flows, the use of this approach is not straightforward. Some modifications have

to be done depending upon the chosen formulation. The method is further described for a Jump-

Condition formalism, since it is implemented in the code DIVA.

The first step, also called the prediction step, is based on the calculation of an intermediate

velocity u˚ as

u˚ “ un ´ ∆t

¨
˝pun ¨ ∇q un ´

∇ ¨
´
2µ ¯̄Dn

¯

ρ
´ g

˛
‚. (1.22)

Replacing this expression into equation (1.21) yields

u˚ “ un`1 ` ∆t
∇pn`1

ρ
, (1.23)

and in this way we obtain the decomposition of the velocity field u˚ into a free divergence com-

ponent un`1 according to eq. (1.20) and a component deriving from the scalar potential p. By
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enforcing the free divergence on this decomposition, the Poisson equation on the pressure is ob-

tained

∇ ¨
ˆ
∇pn`1

ρ

˙
“ ∇ ¨ u˚

∆t
. (1.24)

with at the interface the jump condition on the pressure (1.17). It will be demonstrated in section

1.2.3 that adding a source term in the right hand side of the Poisson equation is equivalent with

imposing a jump condition,

∇ ¨
ˆ
∇pn`1

ρ

˙
“ ∇ ¨ u˚

∆t
` ∇ ¨

ˆ
σκnδΓ

ρ

˙
. (1.25)

Finally, the velocity field un`1 can be directly deduced from the Hodge decomposition, as

un`1 “ u˚ ´ ∆t

ρ

`
∇pn`1 ´ σκnδΓ

˘
. (1.26)

where δΓ is the Dirac delta function, non-zero only at the interface.

1.2.3 Ghost Fluid method

The Ghost Fluid method allows to adress the jump conditions at the interface for a system of

partial differential equations discretized on a cartesian grid. This approach have been introduced

by Fedkiw et al. [23] to compute non-viscous fluid flows with discontinuities at the interface. Later,

it has been extended by Kang et al. to incompressible viscous two-phase flows with surface tension

and gravity [43].

This approach is based on the accurate subgrid localization of the region where the discontinuity

occurs thanks to the interface capture. The differential schemes are modified in order to avoid the

presence of discontinuities related to the jump across the interface. For a better understanding of

this procedure, figure 1.4 shows a 1D exemple. In each fluid region (purple for x ă xΓ or blue for

x ą xΓ) the real values of the function f are known. They are extended by continuity at a certain

number of grid points in the region across the interface by using the known value of the jump. This

so called ghost values are used in the derivation schemes to ensure the continuity while preserving

the f jump value at the interface.

i-1
x i+1

x
i

x
i+2

x

f

[f]
-

Figure 1.4: Schematics of the jump variable for Ghost Fluid method: real values ( ) and ghost

values ( ).

The spatial discretization of the 1D Poisson equation, proposed in [61],

B
Bx

ˆ
β

Bf
Bx

˙
“ Rhs, (1.27)
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using a centered scheme of second order, is expressed as

βi`1{2
fi`1 ´ fi

∆x
´ βi´1{2

fi ´ fi´1

∆x
∆x

“ Rhs|i, (1.28)

where Rhs states for right hand side of the Poisson equation.

Further, the three possible configurations, the jump on the function rf sΓ “ a pxΓq (fig. 1.4),

the jump on the flux
”
β Bf

Bx

ı

Γ
“ b pxΓq and the jump on the diffusion coefficient rβsΓ ‰ 0 are

described. The three conditions can be combined and the extension to 2D or 3D configurations is

straightforward.

1.2.3.1 Variable jump

We first consider the variable jump rf sΓ “ a pxΓq at the interface Γ situated between the grid

points xi and xi`1, as in figure 1.4. The spatial discretization of equation (1.27), with respect to

each fluid region, yields

βi`1{2

f`
i`1 ´ f´

i

∆x
´ βi´1{2

f´
i ´ f´

i´1

∆x
∆x

“ Rhs|i. (1.29)

We recall that the symbols ` and ´ state for the fluid region for which the value is considered:

Ω` or Ω´. The discretization of the first derivative contains a jump on the function f since the

cell rxi, xi`1s is crossed by the interface. To avoid this, the function f`
i`1 is replaced by its ghost

value f
G,´
i`1 defined as

f
G,´
i`1 “ f`

i`1 ´ rf sΓ “ f`
i`1 ´ a pxΓq . (1.30)

The discretization of the Poisson equation, without mixing terms from both fluid regions,

becomes

βi`1{2

f
G,´
i`1 ´ f´

i

∆x
´ βi´1{2

f´
i ´ f´

i´1

∆x
∆x

“ Rhs|i. (1.31)

and, by the use of the ghost value definition (1.30),

βi`1{2

`
f`
i`1 ´ a pxΓq

˘
´ f´

i

∆x
´ βi´1{2

f´
i ´ f´

i´1

∆x
∆x

“ Rhs|i, (1.32)

or

βi`1{2

f`
i`1 ´ f´

i

∆x
´ βi´1{2

f´
i ´ f´

i´1

∆x
∆x

“ Rhs|i ` βi`1{2
a pxΓq
∆x2

. (1.33)

The original discretization of the Poisson equation is obtained with an additional source term

allowing to account for the jump condition between xi and xi`1.

In the same way, the discretization at the grid point xi`1 accounting for the jump condition,

writes

βi`3{2

f`
i`2 ´ f`

i`1

∆x
´ βi`1{2

f`
i`1 ´ f´

i

∆x
∆x

“ Rhs|i`1 ´ βi`1{2
a pxΓq
∆x2

. (1.34)

1.2.3.2 Flux jump

We now consider the configuration where a jump on the flux has to be imposed, defined as
”
β Bf

Bx

ı

Γ
“

bpxΓq. The spatial discretization of the Poisson equation (1.27), at a grid point xi gives:
ˆ
βi`1{2

fi`1 ´ fi

∆x

˙`

´
ˆ
βi´1{2

fi ´ fi´1

∆x

˙´

∆x
“ Rhs|i, (1.35)
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with the symbols ` and ´ corresponding to the regions where the flux is computed. The derivative

between the grid points xi´1{2 and xi`1{2 is not continous as a result of the jump at the interface.

The ghost values of the flux are defined, by continuity, on the grid points across the interface

ˆ
βi`1{2

fi`1 ´ fi

∆x

˙G,´

“
ˆ
βi`1{2

fi`1 ´ fi

∆x

˙`

´
„
β

Bf
Bx



Γ

“
ˆ
βi`1{2

fi`1 ´ fi

∆x

˙`

´ bpxΓq. (1.36)

By using the latter equation, the Poisson equation writes

ˆ
βi`1{2

fi`1 ´ fi

∆x

˙`

´
ˆ
βi´1{2

fi ´ fi´1

∆x

˙´

∆x
“ Rhs|i ` bpxΓq

∆x
. (1.37)

1.2.3.3 Diffusion coefficient jump

The third possible configuration presumes a discontinuity on the diffusion coefficient. Considering

the 1D example from figure 1.4, the discretization of the Poisson equation (1.27) includes the

values βi´1{2 and βi`1{2. As it can be observed in fig. 1.5, the value βi´1{2 “ β´, as both the grid

points xi and xi´1 are located in Ω´. To calculate βi`1{2, we use the continuity of the flux at the

interface, that writes

βi`1{2
fi`1 ´ fi

∆x
“ β´ fΓ ´ fi

p1 ´ θq∆x
“ β` fi`1 ´ fΓ

θ∆x
, (1.38)

where fΓ represents the value of f at the interface.

Figure 1.5: Interface-grid intersection and jump on the diffusion coefficient for Ghost Fluid method.

As a result, from the latter equation, the value of fΓ is expressed as

fΓ “ β´fiθ ` β`fi`1 p1 ´ θq
β´θ ` β` p1 ´ θq , (1.39)

where θ “ |φi`1|
|φi| ` |φi`1| , φ being the Level-Set function known at each grid point.

By replacing this expression in (1.38), the value of the diffusion coefficient yields

βi`1{2 “ β´β`

β´θ ` β` p1 ´ θq . (1.40)

The jump on the diffusion coefficient does not imply the addition of a source term in the right

hand side of the equation. Nevertheless, the coefficients of the linear system matrix are modified.

1.3 Numerical model for two-phase flows - DIVA code

In this section, the numerical solver implemented in the code DIVA is detailed. It allows the

computation of incompressible two-phase flows with a jump condition on the normal velocity at

the interface. Nguyen et al. [67] were the first to use it to capture flame discontinuities. Kang
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et al. [43] and Sussman et al. [100] extended it for the simulation of incompressible two phase

flows without phase change. The approach Ghost Fluid allowing to account for the velocity jump

at the interface, when phase change occurs, was employed in several papers. Gibou et al. [26]

and Tanguy et al. [102] applied it for boiling simulation. For an accurate simulation of drops

evaporation, Tanguy et al. [101] propose an improvement of the method in order to properly

impose the free divergence condition at the interface for the liquid velocity field.

The interface separating the two-phases is located using the Level-Set method, that allows

splitting the computational domain Ω into two regions corresponding to each phase: Ω` for the

liquid phase and Ω´ for the vapor phase (see details on the Level-Set method in section 1.2.1.2).

A global scalar field is defined for each physical property, such as

ρpxq “
#

ρ` if x P Ω`

ρ´ if x P Ω´
. (1.41)

The same goes for the dynamic viscosity µ, the specific heat Cp and the thermal conductivity k.

Their discontinuity across the interface is treated using a Sharp-Interface approach.

The physical model is represented by the mass (1.10), momentum (1.11) and energy (1.13)

conservation equations along with the corresponding interface jump conditions (1.15), (1.17) and

(1.19). Its resolution is done in the framework of Jump-Condition formulation, with the Ghost-

Fluid Method for the jump conditions treatment.

In what follows, the various steps of the solver algorithm, as well as the corresponding spatial

discretizations, are given. For the sake of simplification, the 2D configuration is considered, but

the extension to 3D is straightforward.

In the context of this thesis, we use a cartesian mesh grid of MAC (Marker and Cell) type,

represented in figure 1.6. The formalism of this kind of mesh grid is that the different variables

are not computed on the same grid. The scalar fields (pressure, Level-Set function, ...) are defined

at the center of the cell grid while the velocity components are staggered at the cell face centers.

The spatial discretization follows from a finite-volume approach.

Figure 1.6: Variables definition on the mesh grid.

The different convective terms are discretized with a WENO-Z scheme [10]. The resolution of

the linear systems obtained for the pressure and the thermal fields is carried out with the Black

Box MultiGrid method (BBMG) [22, 63]. The details on the implementation of this solver in the

DIVA code can be found in [56].

1.3.1 Level-Set discretization

The level-set function φpi, jq is defined at the cell center. At each temporal iteration, the interface

is convected using (1.6) while considering the velocity field un from the previous time step tn. The
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resolution is explicit in time, writing

φn`1 “ φn ´ ∆t pun ¨ ∇qφn, (1.42)

with ∆t the time step.

Once the level-set function is computed at the time tn`1, the redistancing algorithm is applied

to adjust the distance between consecutive levels. An explicit scheme is used on the fictitious time

τ and the absolute value of the distance function d is obtained with the WENO-Z scheme,

#
dm`1 “ dm ´ ∆τsign

`
φn`1

˘
p1 ´ ||∇dm||q

dm“0 “ φn`1
, (1.43)

where ∆τ is the fictitious time step. A few temporal iterations are performed to obtain the

algorithm convergence. Thereafter, the distance function replaces the level-set field φn`1. The

fluids physical properties are updated using the novel value of the level-set function, as

ρn`1pφn`1q “ ρ´ ` HΓpφn`1q
`
ρ` ´ ρ´

˘
, (1.44)

µn`1pφn`1q “ µ´ ` HΓpφn`1q
`
µ` ´ µ´

˘
, (1.45)

with the Heaviside distribution expressed as

HΓ

`
Φn`1

˘
“
#

1 if φn`1 ą 0

0 if φn`1 ă 0
. (1.46)

Next, the resolution of the Navier-Stokes equations, performed using the projection method, is

detailed. The following sections are organized as follows: first the general algorithm is given for

two-phase flows, and next, the extensions required to deal with phase change are presented.

1.3.2 Computation of the intermediate velocity

The first step in the projection method is the computation of the intermediate velocity field u˚.

In the code DIVA, the viscous term has an implicit treatment,

ρn`1u˚ ´ ∆t∇ ¨
´
2µn`1 ¯̄D˚

¯
“ ρn`1 pun ´ ∆t ppun ¨ ∇q un ´ gqq . (1.47)

First, the terms of the right-hand side of equation (1.47) are computed,

Rhs “ ρn`1 pun ´ ∆t ppun ¨ ∇q un ´ gqq . (1.48)

Next, the resolution of (1.47) leads to a large linear system where the two velocity components

are coupled. This velocity field does not need an interface jump condition, however, the diffusion

coefficient in the viscous term corresponding to the dynamic viscosity µ, is discountinuous across

the interface. The formalism described in section 1.2.3.3 is therefore used.

The discretization of the viscous term is further detailed [52]. By applying the divergence

operator and by omitting the exponents symbols p.qn`1 and p.q˚, we obtain

∇ ¨
´
2µ ¯̄D

¯
“

¨
˚̊
˚̋

B
Bx

ˆ
2µ

Bu
Bx

˙
` B

By

ˆ
µ

ˆBu
By ` Bv

Bx

˙˙

B
Bx

ˆ
µ

ˆBu
By ` Bv

Bx

˙˙
` B

By

ˆ
2µ

Bv
By

˙

˛
‹‹‹‚. (1.49)
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The projection in the ex direction gives

∇ ¨
´
2µ ¯̄D

¯
¨ ex

ˇ̌
i`1{2,j “ B

Bx

ˆ
2µ

Bu
Bx

˙ ˇ̌
i`1{2,j ` B

By

ˆ
µ

ˆBu
By ` Bv

Bx

˙˙ ˇ̌
i`1{2,j , (1.50)

with, by using a second order finite difference scheme,

B
Bx

ˆ
2µ

Bu
Bx

˙ ˇ̌
i`1{2,j »

2µi`1,j

ui`3{2,j ´ ui`1{2,j

∆x
´ 2µi,j

ui`1{2,j ´ ui´1{2,j

∆x
∆x

, (1.51)

B
By

ˆ
µ

Bu
By

˙ ˇ̌
i`1{2,j »

µi`1{2,j`1{2

ui`1{2,j`1 ´ ui`1{2,j

∆y
´ µi`1{2,j´1{2

ui`1{2,j ´ ui`1{2,j´1

∆y

∆y
, (1.52)

B
By

ˆ
µ

Bv
Bx

˙ ˇ̌
i`1{2,j »

µi`1{2,j`1{2

vi`1,j`1{2 ´ vi,j`1{2

∆x
´ µi`1{2,j´1{2

vi`1,j´1{2 ´ vi,j´1{2

∆x
∆y

. (1.53)

In the same way, the projection in the ey direction yields

∇ ¨
´
2µ ¯̄D

¯
¨ ey

ˇ̌
i,j`1{2 “ B

Bx

ˆ
µ

ˆBu
By ` Bv

Bx

˙˙ ˇ̌
ˇi,j` 1

2

` B
By

ˆ
2µ

Bv
By

˙ ˇ̌
i,j`1{2 , (1.54)

with

B
Bx

ˆ
µ

Bu
By

˙ ˇ̌
i,j`1{2 »

µi`1{2,j`1{2

ui`1{2,j`1 ´ ui`1{2,j

∆y
´ µi´1{2,j`1{2

ui´1{2,j`1 ´ ui´1{2,j

∆y

∆x
,

(1.55)

B
Bx

ˆ
µ

Bv
Bx

˙ ˇ̌
i,j`1{2 »

µi`1{2,j`1{2

vi`1,j`1{2 ´ vi,j`1{2

∆x
q ´ µi´1{2,j`1{2

vi,j`1{2 ´ vi´1,j`1{2

∆x
∆x

,

(1.56)

B
By

ˆ
2µ

Bv
By

˙ ˇ̌
i,j`1{2 »

2µi,j`1

vi,j`3{2 ´ vi,j`1{2

∆y
´ 2µi,j

vi,j`1{2 ´ vi,j´1{2

∆y

∆y
. (1.57)

In order to compute rightfully the viscous term at the intermediate time step, one must solve

a coupled linear system of two matrices with 9 diagonals per velocity components as

a1i`1,ju
˚
i`3{2,j ` a1i,ju

˚
i´1{2,j ` b1i`1{2,j`1{2u

˚
i`1{2,j`1 ` b1i`1{2,j´1{2u

˚
i`1{2,j´1 `αi`1{2,ju

˚
i`1{2,j

` c1i`1{2,j`1{2

´
v˚
i`1,j`1{2 ´ v˚

i,j`1{2

¯
` c1i`1{2,j´1{2

´
v˚
i`1,j´1{2 ´ v˚

i,j´1{2

¯
“ Rhs ¨ ex

ˇ̌
i`1{2,j ,

(1.58)

and

βi,j`1{2v
˚
i,j`1{2 ` b2i,j`1v

˚
i,j`3{2 ` b2i,jv

˚
i,j´1{2 ` a2i`1{2,j`1v

˚
i`1,j`1{2 ` a2i`1{2,j`1v

˚
i´1,j`1{2

` c2i`1{2,j`1{2

´
u˚
i`1{2,j`1 ´ u˚

i`1{2,j

¯
` c2i´1{2,j`1{2

´
u˚
i´1{2,j`1 ´ u˚

i´1{2,j

¯
“ Rhs ¨ ey

ˇ̌
i,j`1{2 .

(1.59)

The matrix coefficients are deduced from equations (1.47), (1.50) and (1.54) as

a1k,l “ ´2µk,l

∆x2
∆t, b1k,l “ ´ µk,l

∆y2
∆t, c1k;l “ ´ µk,l

∆x∆y
∆t, (1.60)

a2k,l “ ´ µk,l

∆x2
∆t, b2k,l “ ´2µk,l

∆y2
∆t, c2k;l “ ´ µk,l

∆x∆y
∆t, (1.61)
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αi`1{2,j “ ρn`1
i`1{2,j ´ a1i`1,j ´ a1i,j ´ b1i`1{2,j`1{2 ´ b1i`1{2,j´1{2, (1.62)

βi,j`1{2 “ ρn`1
i,j`1{2 ´ b2i,j`1 ´ b2i,j ´ a2i`1{2,j`1{2 ´ a2i´1{2,j`1{2. (1.63)

Lepilliez et al. [57] showed that, since the linear system is diagonally dominant, it can be

solved efficiently with a few Gauss–Seidel iterations (ă 20 iterations for typical multiphase flow

configurations). For a 3D system, a third coupled matrix has to be accounted for, resulting in a

15-diagonal matrix per velocity components.

Additional aspects when phase change occurs

When phase change occurs, the jump condition (1.15) on the mass conservation equation has to

be considered. Therefore, the velocity fields correponding to the vapor and the liquid are extended

as it follows

u˚
l “

#
u˚ if φ ą 0

u˚ ´ 9m
”
1
ρ

ı

Γ
n if φ ă 0

, (1.64)

u˚
v “

#
u˚ ´ 9m

”
1
ρ

ı

Γ
n if φ ą 0

u˚ if φ ă 0
. (1.65)

1.3.3 Pressure field resolution

The second step of the projection method implies the resolution of the Poisson equation on the

pressure (1.24). Additionally, the jump condition (1.17) has to be imposed. The formalisms

described in Section 1.2.3.1 and 1.2.3.3 are therefore used. The spatial discretization of the pressure

equation (1.26) is done by using the Ghost Fluid approach,

βi`1{2,j

ˆ
pi`1,j ´ pi,j

∆x

˙
´ βi´1{2,j

ˆ
pi,j ´ pi´1,j

∆x

˙

∆x
(1.66)

`
βi,j`1{2

ˆ
pi,j`1 ´ pi,j

∆y

˙
´ βi,j´1{2

ˆ
pi,j ´ pi,j´1

∆y

˙

∆y
“ Rhs|i,j ` ηi,j , (1.67)

with β “ 1{ρn`1 the diffusion coefficient,

Rhs|i,j “

u˚
i`1{2,j ´ u˚

i´1{2,j

∆x
`

v˚
i,j`1{2 ´ v˚

i,j´1{2

∆y

∆t
, (1.68)

the right hand side of the Poisson equation and ηi,j represents the source terms accounting for the

pressure jump condition.

As explained in section 1.2.3.3, when the cell grid is crossed by the interface, the diffusion

coefficient β is calculated using a harmonic mean. There are two general configurations. If the

interface crosses the segment rxi, xi`1s, the diffusion coefficient is computed with

βi`1{2,j “

$
’’’&
’’’%

β´β`

β´θE ` β` p1 ´ θEq if φi,j ă 0 and φi`1,j ą 0

β´β`

β`θE ` β´ p1 ´ θEq if φi,j ą 0 and φi`1,j ă 0

, (1.69)
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where

θE “ |φi`1,j |
|φi,j | ` |φi`1,j | . (1.70)

If the interface crosses the segment rxi´1, xis, the diffusion coefficient reads

βi´1{2,j “

$
’’’&
’’’%

β´β`

β´θW ` β` p1 ´ θW q if φi,j ă 0 and φi´1,j ą 0

β´β`

β`θW ` β´ p1 ´ θW q if φi,j ą 0 and φi´1,j ă 0

, (1.71)

where

θW “ |φi´1,j |
|φi,j | ` |φi´1,j | . (1.72)

The discretization in the ey is similar. The term ηi,j corresponds to the sum of the jump

conditions for each segment neighbouring the grid point pi, jq crossed by the interface. The latter

are marked with the exponents E, W, N, S corresponding to the segments east, west, north, south,

ηi,j “ ηEi,j ` ηWi,j ` ηNi,j ` ηSi,j . (1.73)

Each one of this terms are calculated using the formalism described in section 1.2.3.1,

ηEi,j “ ˘βi`1{2,ja
E
Γ

∆x2
, ηWi,j “ ˘βi´1{2,ja

W
Γ

∆x2
, ηNi,j “ ˘βi,j`1{2a

N
Γ

∆y2
, ηSi,j “ ˘βi,j´1{2a

S
Γ

∆y2
, (1.74)

with ˘ corresponding to the opposite sign as φi,j and, by definition as the pressure jump aΓ “ σκ,

aEΓ “ σκi,jθ
E ` σκi`1,j

`
1 ´ θE

˘
, aWΓ “ σκi,jθ

W ` σκi´1,j

`
1 ´ θW

˘
, (1.75)

aNΓ “ σκi,jθ
N ` σκi,j`1

`
1 ´ θN

˘
, aSΓ “ σκi,jθ

S ` σκi,j´1

`
1 ´ θS

˘
. (1.76)

Additional aspects when phase change occurs

When phase change occurs, the pressure field is calculated in each phase domain, by considering

the corresponding intermediate velocity field,

∇ ¨
ˆ
∇pn`1

ρn`1

˙
“

$
’’&
’’%

∇ ¨ u˚
l

∆t
if φ ą 0

∇ ¨ u˚
v

∆t
if φ ă 0

, (1.77)

while imposing the following jump condition

rpsΓ “ σκ ´ 9m2

„
1

ρ


. (1.78)

We emphasize that the discontinuity on the normal viscous stress µ BVn

Bn is accounted for in the

intermediate velocity computation and that the recoil pressure 9m2
”
1
ρ

ı

Γ
has little influence in the

present study.

1.3.4 Extension methodology to impose the free divergence onto the

velocity field

Finally, the physical velocity field yields

un`1 “ u˚ ´ ∆t

ρn`1

`
∇pn`1 ´ σκnδΓ

˘
. (1.79)
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In this last correcting step, the approximation of the Dirac δΓ distribution based on Liu et al.

[61] and detailed in Lalanne et al. [52], is used.

In order to correctly compute the next temporal iteration, it is necessary to extend the velocity

field. This will allow to relocate the Level-Set function and to calculate the convective terms at

the interface.

For the extension of the velocity field in the liquid region, Tanguy et al. [101] propose solving

the Poisson equation using a ghost pressure field pg,

∇ ¨
˜
∇pn`1

g

ρn`1

¸
“ ∇ ¨ u˚

l

∆t
. (1.80)

The extrapolated velocity field is then obtained by

un`1
l “

$
’’&
’’%

un`1 if Φ ą 0

un`1
l ´ 9m

∇pn`1
g

ρn`1
if Φ ă 0

. (1.81)

The extension of the velocity fields in the vapor region is equivalent to equation 1.65,

un`1
v “

$
’&
’%

un`1 ´ 9m

„
1

ρ



Γ

n if Φ ą 0

un`1 if Φ ă 0

. (1.82)

So far, the Navier-Stokes equations have been solved ensuing with the computation of the

pressure and the velocity fields. Next, the energy conservation equation (1.13) is treated using the

so called Ghost Fluid Thermal Solver for Boiling.

1.3.5 Ghost Fluid Thermal Solver for Boiling

In the previous sections, the pressure and the velocity fields have been solved by imposing a given

mass flow rate 9m. In what follows, the numerical approach proposed by Gibou et al. [26] allowing

to simulate boiling flows is presented. The configuration supposes pure liquids evaporating in their

own vapor. There is therefore one and the same chemical specie in the liquid and vapor phase.

The authors propose to solve separately the temperature fields corresponding to the liquid and

vapor phases by assuming that the interface temperature is uniform and constant. The fields are

then solved with the saturation temperature Tsat imposed at the interface as a Dirichlet condition,

using the formalism proposed by Gibou et al. [27].

First, we compute the temperature field in the liquid phase, by solving the following linear

system

ρlCpl
Tn`1
l ´ ∆t∇ ¨

`
kl∇Tn`1

l

˘
“ ρlCpl

pTn
l ´ ∆tun

l ¨ ∇Tn
l q , if φ ą 0,

T |Γ “ Tsat. (1.83)

next, we calculate the temperature field in the vapor phase by solving a similar linear system

ρvCpv
Tn`1
v ´ ∆t∇ ¨

`
kv∇Tn`1

v

˘
“ ρvCpv

pTn
v ´ ∆tun

v ¨ ∇Tn
v q , if φ ă 0,

T |Γ “ Tsat. (1.84)

Imposing an immersed Dirichlet boundary condition on an interface, described on a Cartesian

grid, can be done by using the numerical method proposed by Gibou et al. in [27]. This efficient
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method is second order accurate in space and leads to a simple symmetric definite positive linear

system that can be solved with the Black Box MultiGrid solver. Once the temperature field has

been computed, the local mass flow rate can be easily deduced from the difference between the

thermal fluxes,

9m “ rk∇T ¨ nsΓ
Lv

. (1.85)

The above equation contains the thermal gradient on both sides of the interface. The spatial

discretization of a gradient needs a continuous field in the vicinity of the point where it is evaluated.

For this, the ghost fields TG
l and TG

v are introduced. They represent, respectively, the extension of

the real temperature field in the liquid extended in the gas and the extension of the real temperature

field in the gas extended in the liquid domain. To tackle this, the method proposed by Aslam [3],

described in the following section, has been implemented in the code DIVA and validated by

Rueda-Villegas in [88].

1.3.6 Extrapolation techniques for a scalar field

In order to compute the fields onto the ghost grids, an extrapolation technique is necessary. Aslam

proposes in [3] an extrapolation method which requires the resolution of a partial differential

equation inspired from the work of Fedkiw et al. [23].

This method allows obtaining extrapolations of order as high as necessary. With the constant

extrapolation, a continuous field is obtained in the ghost domain, distributed normal to the inter-

face. The linear extrapolation ensures in addition the continuity of the gradient field in the normal

direction. If one increases the order of the extrapolation, the continuity of the corresponding order

derivative is provided. In the code DIVA, the constant, the linear and the quadratic extrapolations

are implemented. In what follows we will only describe the first two.

1.3.6.1 Constant extrapolation

Let us assume the variable ξ “ TG, where TG represents the gas temperature defined in the domain

Ω´. The constant extrapolation of this variable in the liquid domain Ω` is realized by solving the

following partial differential equation

Bξ
Bτ ` Hpφqn ¨ ∇ξ “ 0, (1.86)

where τ is a fictitious time, and Hpφq the Heaviside function.

The temporal discretization of the above equation writes

ξm`1 “ ξm ´ ∆τHpφq
ˆBξm

Bx nx ` Bξm
By ny

˙
. (1.87)

For the spatial derivatives we use an Upwind scheme,

Bξm
Bx

ˇ̌
ˇ
i,j

“

$
’’&
’’%

um
i,j ´ um

i´1,j

∆xi´1

if pnxqi,j ą 0

um
i`1,j ´ um

i,j

∆xi

elsewhere

, (1.88)

and

Bξm
By

ˇ̌
ˇ
i,j

“

$
’’&
’’%

um
i,j ´ um

i,j´1

∆yj´1

if pnyqi,j ą 0

um
i,j`1 ´ um

i,j

∆yj
elsewhere

. (1.89)
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1.3.6.2 Linear extrapolation

The linear extrapolation allows to preserve the continuity of the variable ξ and of its gradient ∇ξ

in the normal n direction. First, the derivative Bnξ “ n ¨ ∇ξ is computed, in the region where the

variable ξ is defined, here Ω´. The first step is to solve the following partial differential equation

BpBnξq
Bτ ` Hpφqn ¨ ∇pBnξq “ 0, (1.90)

allowing to extrapolate the variable derivative in the domain where it is not defined. The algorithm

for a constant extrapolation, described in the previous section, is here used for the variable Bnξ.
Once Bnξ is computed, we need to extrapolate the variable ξ by solving a second partial differential

equation,
Bξ
Bτ ` Hpφqpn ¨ ∇ξ ´ Bnξq “ 0. (1.91)

The temporal discretization of this equation is done in a similar way as for the constant ex-

trapolation. Note that here, a source term is added in the right hand of the obtained equation,

ξm`1 “ ξm ´ ∆τHpφq
ˆBξm

Bx nx ` Bξm
By ny ´ Bnξm

˙
. (1.92)

More details on this extrapolation method can be found in the theses of Rueda-Villegas [88]

and of Alis [1].

1.3.7 Temporal discretization

The temporal derivatives in the Navier-Stokes equations, in the energy equation as well as in the

Level-Set equation of convection are discretized with a second order Runge-Kutta scheme. To

ensure the computation stability, the time step is calculated by taking into account the constraints

of the convection, surface tension and viscosity effects [91, 99, 43].

The convective time step is defined by

∆tconv “ 1

maxp|u|q
∆x

` maxp|v|q
∆y

` maxp|w|q
∆z

, (1.93)

and the surface tension time step is expressed as

∆tsurf_tens “ 1

4

c
maxpρ`, ρ´q

σ
minp∆x∆y∆zq3{2

. (1.94)

If the viscous term is treated explicitly, the corresponding time step writes

∆tvisc “ minpρ`{µ`, ρ´{µ´q
2

min
`
∆x2

˘ ` 2

min
`
∆y2

˘ ` 2

min
`
∆z2

˘
. (1.95)

Throughout this thesis, the viscous term is computed with an implicit treatment, therefore the

latter constraint on the computation time step is not considered. Finally, the global time step has

to respect the following condition in order to ensure the simulation stability:

1

∆t
ą 1

∆tconv
` 1

∆tsurf_tens

. (1.96)
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1.4 Conclusion

The objective of this chapter was, on one side, to provide a general background on two-phase flows

numerical simulation and on the other side, to give a detailed description of the numerical solver

implemented in the code DIVA.

The Navier-Stokes equations are solved using the projection method, with a Jump-Condition

formalism. The thermal field is computed by solving a simplified conservation energy equation.

As the liquid-gas interface is not boundary fitted with computational grid, the suitable jump

conditions can be imposed across the interface following the general guidelines of the Ghost Fluid

Method to maintain the conservation of mass, momentum and energy. That is made possible by

using the subgrid location of the interface with a static Level Set function whose zero level curve

represents the interface. Spatial derivatives are computed with fifth order WENO-Z schemes. A

Black-Box MultiGrid solver is used to solve the pressure Poisson equation and we perform an

implicit temporal discretization of the viscous terms. The system of unsteady equations is solved

until reaching a steady state by using a second order TVD Runge-Kutta scheme for the temporal

integration.

In the next chapter, this numerical solver is used to carry out numerical simulations with

the aim of characterizing the interaction between a laminar boundary layer of a superheated or

subcooled vapor flow and a static liquid pool at saturation temperature.
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Laminar boundary layer
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In the industrial context detailed in the Introduction, thermal laws are needed to pre-

dict the physical phenomena involved in the liquid/vapor phase change in a launcher

cryogenic tank. To this end, the configuration of a laminar boundary layer of a super-

heated or subcooled vapor flow shearing a static liquid pool at saturation temperature

is first considered. The results obtained for this study have been recently published in

International Journal of Thermal Sciences [77].

25
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2.1 Introduction

There is currently little information on how an external flow will modify evaporation or conden-

sation of a liquid pool with a plane surface in spite of its significant interest in various fields, such

as processes in thermal engineering, in combustion applications, weather forecasting or climate

modeling. Most applications cited above involve turbulent flows and gas mixture. Nevertheless,

the simpler configuration where a laminar superheated or subcooled vapor flow is shearing a sat-

urated liquid interface has still never been solved whether theoretical, numerical or experimental

approaches are considered. This would be a significant step forward before considering more com-

plex configurations. The theory of an expanding laminar boundary layer of a fluid above a solid

plate, known as the Blasius theory [8], has been generalized to account for heat transfer between the

fluid and an isothermal plate by Pohlhausen in [75]. Both theories are based on a boundary layer

hypothesis assuming that the velocity component in the streamwise direction is much higher than

the one in the normal direction to the plate. However, when one considers an expanding boundary

layer of a superheated or subcooled vapor flow over a saturated liquid, the latter assumption is no

longer valid due to the phase change vapor flow that will respectively blow or aspirate the boundary

layer, depending on whether vaporization or condensation occurs. The mathematical complexity

of this problem being strongly increased, the resulting flow will exhibit a fully two-dimensional ro-

tational structure for which a classical theoretical analysis can hardly be practiced. Consequently,

using fully resolved numerical simulation is a promising alternative for tackling such a problem in

order to improve our knowledge in the field of heat transfer in liquid-vapor flow with phase change.

Phase change heat transfer, treated using the so-called conception of the two-phase boundary

layer, has been a subject of study in several papers. For example, Koh et al. made an analysis of a

saturated vapor in a forced-convection flow over a flat plate in [47] and a vertical plate in [48]. The

configuration with film boiling was studied for a forced-convection flow by Cess and Sparrow in [12]

and for a free-convection flow by Kaneyasu and Takehiro in [42]. Regarding the interaction between

liquid-vapor phase change and two-phase flows, since the seminal works of Renksizbulut and Yuen

[82, 83], where correlations on Nusselt number and drag coefficient of evaporating droplets have

been designed, a few studies have been dedicated to fully characterize other configurations.

Scriven [94] has proposed 1D theory of bubble growth involving an induced phase change flow

motion (radial and irrotational flow). In the context of bubble growth, Ruckenstein and Davis [87]

have developed a theoretical study where the external flow is approximated by a potential flow.

Nevertheless, rotational effects can have influence both on the viscous friction and the heat flux as

it is the case in the present study.

In this chapter, we present a numerical study to characterize the interaction between a su-

perheated or subcooled external laminar vapor flow shearing a static and plane liquid pool at

saturation temperature. The Blasius-Pohlhausen theory of an expanding laminar boundary layer

over an isothermal plate can be considered as a reference solution. Our purpose is to find, for

this configuration, correlations on the Nusselt number accounting for the modification of the local

thermal gradient on the interface due to the vaporization or condensation induced flow. As the

local structure of the flow is also modified in the vicinity of the liquid-vapor interface, our study

includes an analysis on the interfacial viscous friction when phase change occurs.

2.2 Computational configuration of numerical simulations

We consider here the canonical configuration of an expanding Blasius-Pohlhausen boundary layer

interacting with a saturated and static liquid pool. Our aim is to investigate the influence of
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the external flow on the local heat flux, for an improved knowledge on the interaction between

liquid/vapor phase change and fluid mechanics. Even though each different industrial system would

require a specific quantitative study, there is a strong interest in understanding local mechanisms

in academic configurations. A possible experimental set-up representative of our computations is

illustrated in figure 2.1.

Figure 2.1: Schematics of the expanding Blasius-Pohlhausen boundary layer interacting with a

saturated and static liquid pool.

The actual computational domain implemented in our simulations is the liquid/vapor domain

(for x ě xL). The interface has a plane shape, which corresponds to the asymptotic case of a high

Weber number (high surface tension value). The vapor stream is flowing in the upper part of the

domain over a static saturated liquid pool located in the lower part of the computational domain.

2.2.1 Initialization and boundary conditions

An inflow boundary condition is used on the left of the domain for the injection of the superheated

or subcooled vapor flow. Given that the purpose of this work is to study the influence of the

liquid/vapor phase change on an expanding Blasius-Pohlhausen boundary layer, a boundary layer

thickness δxL
has to be imposed at the inlet of the domain. This boundary layer thickness depends

on the length of the solid plate, defined as xL on the schematics in figure 2.1. It should be

emphasized that the results of the present study will directly depend on the inlet boundary layer

thickness δxL
. Such a dependence on the boundary layer thickness is classical in Fluid Mechanics

and has been observed for various type of flows as reported in [64, 65] in the framework of primary

atomization, for instance.

Velocity and temperature inflow profiles are computed by solving respectively the Prandtl [79]

and the Pohlhausen [75] boundary layer equations:

f
3 pηq ` 1

2
fpηqf 1 pηq “ 0, (2.1)

and

θ
2 pηq ` Pr

2
fpηqθ1 pηq “ 0, (2.2)

where f “ u

U8
and θ “ T ´ Tsat

∆T
are the normalized stream function and the non-dimensional

temperature, respectively; ∆T “ T8 ´ Tsat is the thermal gradient. The boundary conditions are:

η “ 0 : f “ 0, f
1 “ 0; η Ñ 8 : f

1 “ 1 for equation (2.1) and η “ 0 : θ “ 0; η Ñ 8 : θ “ 1 for

equations (2.2). We recall that η „ y

δ
is the dimensionless variable, δ „

c
νx

U8
is the boundary
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layer thickness, Pr “ µCp

k
is the Prandtl number. Equations (2.1) and (2.2) are solved using the

Runge-Kutta fourth-order scheme combined with a recursive algorithm.

Free-boundary conditions are used on top and on the right of the computational domain, in

order to avoid containment effects and to maintain isobaric conditions.

Figure 2.2: Streamlines and temperature profile [K] of a liquid pool evaporating in an superheated

gas flow for Pr “ 0.98, RexL
“ 211, ρl{ρv “ 1623, Javap “ 7.38; left - classic Blasius boundary

layer, right - the boundary layer blown by the vaporization.

As the aim of this work is to characterize a steady solution of the interaction between an

external flow and a static liquid pool, it is considered that the interface position is fixed in time in

order to maintain a constant liquid height in the computational domain. This assumption is fitting

with the schematics of a possible experimental set-up proposed in figure 2.1, if one considers an

additional device that allows maintaining a constant liquid level in the liquid pool. Unlike boiling,

stationary hypothesis is a classical approximation [98] when considering the evaporation of a liquid

(as droplet evaporation for instance) interacting with a superheated vapor since the velocity of the

vapor flow is much higher than the interface speed regression.

Moreover, it has been verified that for viscosity ratios
µliq

µvap

P r2, 56s the liquid motion due

to the shear stress of the vapor flow on the interface can be neglected in our configurations.

Consequently, only the velocity jump condition due to phase change will interact with the external

flow. However, such a configuration is consistent with the static liquid hypothesis only if one

assumes a sufficiently high density ratio, since the ratio between the interface velocity and the

vapor velocity on the interface is close to the density ratio.

The velocity and thermal field are initialized, in the whole domain, with the Blasius-Pohlhausen

dynamic and thermal boundary layer profiles, respectively.

2.2.2 Computational domain and mesh grid

To avoid the thermal singularity on the phase change mass flow rate at the inlet plane, we assume

that the vapor flow has traveled a distance xL over an isothermal solid plate before contacting the

liquid pool (figures 2.2 and 2.3). Consequently, the boundary layer thickness of the vapor inlet flow

depends on this distance xL that can be accounted for in our dimensionless analysis by defining

an inlet Reynolds number RexL
, such as RexL

“ ρvU8xL

µv

.

The dimensions of the computational domain are plx, lyq with lx “ 6.7δxL
, δxL

“ minpδu, δT q
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Figure 2.3: Streamlines and temperature profile [K] of a subcooled gas flow condensating in the

liquid pool. for Pr “ 0.98, RexL
“ 211, ρl{ρv “ 1623, Jacond “ 0.74; left - classic Blasius boundary

layer, right - the boundary layer "aspirated" by the condensation.

where δu “ 4.92
xLa
RexL

and δT “ δuPr´1{3 are the dynamic and the thermal boundary layers,

respectively.

2.2.2.1 Convergence study

A convergence study with different mesh grids is carried out for both configurations, for a couple

of liquid/vapor defined by the following dimensionless numbers: Pr “ 1.022, RexL
“ 85.726,

ρl

ρv
“ 17.746, and two different values for the Jakob number: Javap “ 3.69 and Javap “ 8.87 for

the vaporization and Jacond “ 0.37 and Jacond “ 1.15 for the condensation. The dimensionless

numbers are defined as it follows: Rex “ ρvU8x

µv

, Pr “ µvCpv

kv
, Javap “ Cpv

pT8 ´ Tsatq
L

and

Jacond “ Cpv
pTsat ´ T8q

L
. The subscrit ‘v’ is for vapor and ‘l’ is for liquid, µ is the viscosity, Cpv

is the specific heat, k is the thermal conductivity, T8 ´ Tsat is the thermal gradient, U8 and T8

are the velocity and the temperature in the uniform zone outside the boundary layer.

The local dimensionless coefficient of heat transfer, known also as the local Nusselt number, is

defined as

Nux “ hx

k
“ φIx

k pTI ´ T8q , (2.3)

where h is the convective heat transfer coefficient, φI is the local heat flux at the liquid/vapor

interface and TI is the liquid/vapor interface temperature, equal to the saturation temperature

Tsat.

At first glance, the evolution of the Nusselt number seems to be converged with the grid

256 ˆ 256, for both vaporization (figure 2.4) and condensation (figure 2.5). Nevertheless, the

velocity jump at x “ xL from a single-phase boundary layer flow to a phase change boundary layer

flow has to be captured and well resolved. As one of the objectives of this numerical study is to

define correlations on the Nusselt number, high accuracy is required. Consequently, the mesh grid

1024 ˆ 1024 is chosen to run the present numerical study. At the inlet, this mesh grid allows to

have „ 150 points in the boundary layer.
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(a) Ja “ 3.69 (b) Ja “ 8.87

Figure 2.4: Convergence study for the evolution of the Nusselt number for the vaporization con-

figuration, for the dimensionless numbers: RexL
“ 85.726, Pr “ 1.022, ρl

ρv
“ 17.746.

(a) Ja “ 0.37 (b) Ja “ 1.15

Figure 2.5: Convergence study for the evolution of the Nusselt number for the condensation con-

figuration, for the dimensionless numbers: RexL
“ 85.726, Pr “ 1.022, ρl

ρv
“ 17.746.

2.2.2.2 Containment study

Our interest is to compute the spatial development of the thermal and dynamical boundary layers

over the saturated liquid pool. Therefore, a containment study is conducted to determine the

influence of the computational domain dimensions. In figure 2.6, the containment effects in the

y-direction on the Nusselt number evolution are plotted. For the vaporization configuration, the

dimension in the normal direction has to be ly “ 2lx (figure 2.6a), while, in the condensation

configuration, ly “ lx is sufficient to ensure that the numerical solutions do not depend on the

computational domain size(figure 2.6b). That can be explained considering that the vaporization

has a "blowing" effect on the boundary layer and so a larger domain in the y-direction is needed

to assure that the development of the boundary layer is not affected by the upper boundary
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(a) Vaporization, Ja “ 3.69 (b) Condensation, Ja “ 0.37

Figure 2.6: Confinement study in the y-direction for the evolution of the Nusselt number, for the

dimensionless numbers: RexL
“ 85.726, Pr “ 1.022, ρl

ρv
“ 17.746.

(a) Vaporization, Ja “ 3.69 (b) Condensation, Ja “ 0.37

Figure 2.7: Confinement study in the x-direction for the evolution of the Nusselt number, for the

dimensionless numbers: RexL
“ 85.726, Pr “ 1.022, ρl

ρv
“ 17.746.

condition. Unlike vaporization, condensation aspirates the boundary layer, so containement effects

have smaller influence on its spatial development.

Following, a containment effects study in the streamwise direction is realized. In figures 2.7a

and 2.7b we have plotted the evolution of the Nusselt number for two computational domains:

lx “ ly and lx “ 2ly. In order to have a difference of less than 2% between the two corresponding

curves, only 50% of the streamwise length is retained for the parametric study.

2.2.2.3 Upstream containment effects

Even though the present parametric study has been conducted using the computation configuration

presented in the previous section, some additional verifications are conducted to ensure that the
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(a) Condensation, Ja “ 1.15 (b) Vaporization, Ja “ 8.8

Figure 2.8: The influence of the inflow boundary condition on the evolution of the Nusselt number,

for the dimensionless numbers: RexL
“ 85.726, Pr “ 1.022, ρl

ρv
“ 17.746. The solid line represents

the evolution of the Nusselt number when the upstream spatial evolution of the Prandtl-Pohlhausen

boundary layer is simulated whereas the dashed line represents the Nusselt evolution when the

Prandtl-Pohlhausen boundary layer profile is directly imposed at x “ xL.

upstream containment effects do not have a significant influence on the Nusselt number evolution

(figure 2.8).

A conditioning section is added, where the boundary layer is spatially developing from a certain

point x “ xL0
to x “ xL. The phase change is plugged at xL and we want to investigate the

differences between imposing a Blasius profile at the inlet plane (dashed lines in figure 2.8) and

simulating its development upstream (solid lines in figure 2.8). Even if the computational domain

starts before the point x “ xL, the evolution of the Nusselt number is not affected at all in the far

field and only weakly affected in the inlet vicinity.

To conclude, the computational domain used in our parametric study is defined by ly “ 2lx

for the vaporization and ly “ lx for the condensation configuration, where lx “ 6.7δxL
. The

corresponding mesh grids used are 1024 ˆ 2048 and 1024 ˆ 1024, respective to vaporization or

condensation. Additionally, after the containment study in x-direction, only the rxL, xL ` lx{2s
Nusselt evolution will be considered for the parametric study.

2.3 Results

2.3.1 Spatial evolution of the Nusselt number

The spatial evolution of the Nusselt number along the longitudinal coordinate x is showed in figure

2.9a for vaporization, and in figure 2.9b for condensation, for a couple of liquid/vapor defined by

the following dimensionless numbers: Pr “ 1.022, RexL
“ 85.726, ρl{ρv “ 17.746, and different

values of Jakob number. One can see that the Nusselt number is lower for vaporization and higher

for condensation than the Nusselt number obtained from the Blasius theory. Indeed, as observed

in figure 2.2, when vaporization occurs, the thermal boundary layer being thickened due to the
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(a) Vaporization (b) Condensation

Figure 2.9: Spatial evolution of the Nusselt number for the dimensionless numbers: RexL
“ 85.726,

Pr “ 1.022, ρl{ρv “ 17.746 and different values of the Jakob number.

expansion flow of vapor, the heat transfer coefficient decreases. The same trend was observed by

Yan and Soong in [109], where the convective heat and mass transfers along an inclined heated plate

with film evaporation was studied. On the other hand, the condensation involves an aspirating

flow towards the liquid/vapor interface, as it can be visualized in figure 2.3. As this flow decreases

the thermal boundary layer thickness, the heat transfer coefficient is increased.

For the vaporization, the minimum value observed on the Nusselt number can be related to the

rapid decrease of the heat flux in the vicinity of the inlet flow, figure 2.10a. This can be explained

by the connecting zone between the Blasius-Pohlhausen expanding boundary layer (for x ă xL)

and the established flow in interaction with the phase change (for x ąą xL).

On the other hand, given that the "aspirating" effect of the condensation increases the local

heat flux, it is only natural to observe that the the latter has a maximum value, as it can be

seen in figure 2.10b. The heat flux increases at first due to the boundary layer thinning by the

condensation flow and it is followed by a decrease due to the spatial evolution of the boundary

layer.

Figure 2.9 also illustrates the influence of the Jakob number on the spatial evolution of the

Nusselt number. The increase of the Jakob number implies an increase of the vapor/liquid phase

change and therefore the Nusselt number decreases or increases if vaporization or condensation

is respectively concerned, as expected. Figures 2.9a and 2.9b are now compared in regard to the

influence of the Jakob number on the Nusselt number evolution. If the Jakob number is doubled

and then tripled, in the case of the boundary layer "blown" by the liquid pool vaporization, a

decrease of the intervals between the succesives curves is observed, while if the boundary layer

is "aspirated" by the condensation, the intervals between the succesives curves increase. These

unanticipated results will be further explained, but first, the correlations on the Nusselt number

will be presented.

2.3.2 Correlations on the Nusselt number

A parametric study was conducted to determine how the Nusselt number is varying with the

dimensionless numbers characterizing our configuration. These dimensionless numbers can be
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(a) Vaporization (b) Condensation

Figure 2.10: Evolution of the local heat flux ΦI with the x-axis for the dimensionless numbers:

RexL
“ 85.726, Pr “ 1.022, ρl{ρv “ 17.746 and different values of the Jakob number.

deduced from the physical equations as it follows:

- the Reynolds number Rex from the momentum balance (1.11),

- the Prandtl number Pr from the energy conservation equation (1.13),

- the Jakob number Ja from the balance of energy at the interface (1.19),

- the density ratio
ρl

ρv
from the jump condition on the mass conservation (1.15).

To ensure that when one dimensionless number is varied the other three are constants, the

physical variables varied in this parametric study are the velocity U8 for the Reynolds number,

the thermal conductivity of the vapor k for the Prandtl number, the latent heat L for the Jakob

number and the liquid density ρl for the density ratio.

The range of values for our parametric study was: RexL
“ p15; 1250q, Pr “ p0.6; 8q, Ja “

p0.00037; 8.87q and ρl{ρv “ p10; 5000q, with approximately fifty simulations for each configuration.

By fitting the numerical Nusselt number evolution obtained in all of our simulations, we have

found general correlations that depend on the dimensionless numbers characterizing this configu-

ration. In what follows, the resulting correlations are presented separately for the vaporization and

for the condensation. For the sake of simplicity, the approach to find these correlations is described

in Appendix A. Both correlations are designed by adding correction terms to the Nusselt number

from the Blasius theory which is defined as NuBl
x “ 0.332Pr0.333Re0.5x .

2.3.2.1 Vaporization

The correlation for the Nusselt number with vaporization has the following expression

Nuvap
x “ NuBl

x ´
˜
α

ˆ
x

xL

´ 1

˙n

` β

¸
Hpx ´ xLq, (2.4)
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where Hpx ´ xLq is the Heaviside function who has a non-zero value only for x ą xL, α, β and n

have the following expressions

α “ 0.294Re0.495xL
Pr0.333

¨
˝1 ´ e

´0.0248

˜
Ja

˜
ρl

ρv
´1

¸¸˛
‚,

n “ 0.935Re´0.11
xL

Pr´0.07Ja´0.1 ρl

ρv

´0.12

,

β “ 0.119Re0.477xL
Pr0.237

¨
˝1 ´ e

´0.0043Ja

˜
ρl

ρv
´1

¸˛
‚.

Figure 2.11: Spatial evolution of the Nusselt number for different configurations extracted from

Table 2.1 for the case involving vaporization.

2.3.2.2 Condensation

In the configuration involving condensation, the correlation on the Nusselt number writes as

Nucond
x “ NuBl

x `
˜
γ

ˆ
x

xL

´ 1

˙m

` η

¸
Hpx ´ xLq, (2.5)

where γ, η and m have the following expressions

γ “ 0.0854Re0.483xL
Pr0.356

ˆ
e
0.1018Ja

˜
ρl

ρv
´1

¸

´ 1

˙
,

m “ 0.519Re´0.045
xL

Pr´0.042e
0.02985Ja

ρl

ρv ,

η “ 0.00042Re0.426xL
Pr0.55

ˆ
Ja

ˆ
ρl

ρv
´ 1

˙˙1.25

.
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2.3.3 Validation of the proposed correlations

For the sake of validation of the proposed correlations, we present in Table 2.1, for various configura-

tions, the average relative error ǫ and the maximum relative error ǫmax, between the computed Nus-

selt number and the correlations. The relative error is defined as: ǫ “
`
Nucorrel

x ´ Nunum
x

˘
{Nunum

x .

The average relative error between the Nusselt number from DNS and the correlation is less

than 2% for condensation and less than 5% for vaporization. The higher error in the vaporization

configuration is due to the transition zone near the inlet plane x “ xL (figure 2.9a). A good fit of

this region was not straightforward. If one would search only the evolution of the Nusselt number

far enough from the inlet plane, the correlation would be less complex and more accurate. We add

also that most of the values chosen to be displayed in Table 2.1 are situated at the limits of the

interval range of values studied here.

Figure 2.12: Spatial evolution of the Nusselt number for different configurations extracted from

Table 2.1 for the case involving condensation.

Comparisons between the proposed correlations and numerical results are also plotted in figure

2.11 for the vaporization and in figure 2.12 for the condensation for different configurations from

Table 2.1.

2.3.4 Asymptotic cases

The correlations on the Nusselt number can be simplified when considering asymptotic cases, as it

will be shown in the following paragraphs.
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Table 2.1: The average relative error and the maximum relative error for the Nusselt number for

different couples of dimensionless numbers.

Condensation ǫ r%s ǫmax r%s

C.1
Pr “ 8, RexL

“ 85.726
1.028 1.171

Ja “ 0.37,
ρl

ρv
“ 17.6

C.2
Pr “ 0.98, RexL

“ 1250
0.58 0.75

Ja “ 0.179,
ρl

ρv
“ 1623

C.3
Pr “ 1.022, RexL

“ 85.726
0.65 1.34

Ja “ 0.7,
ρl

ρv
“ 17.6

C.4
Pr “ 0.98, RexL

“ 105.51
0.28 0.32

Ja “ 0.179,
ρl

ρv
“ 5000

C.5
Pr “ 0.98, RexL

“ 30
1.38 1.6

Ja “ 0.179,
ρl

ρv
“ 1623

C.6
Pr “ 6, RexL

“ 105.51
1.69 1.8

Ja “ 0.179,
ρl

ρv
“ 1623

C.7
Pr “ 0.98, RexL

“ 105.51
0.57 0.703

Ja “ 0.29,
ρl

ρv
“ 1623

Vaporization ǫ r%s ǫmax r%s

V.1
Pr “ 8, RexL

“ 85.726
1.56 7

Ja “ 3.69,
ρl

ρv
“ 17.6

V.2
Pr “ 0.98, RexL

“ 1250
1.09 1.45

Ja “ 0.179,
ρl

ρv
“ 1623

V.3
Pr “ 1.022, RexL

“ 85.726
2.13 9.4

Ja “ 8.87,
ρl

ρv
“ 17.6

V.4
Pr “ 0.98, RexL

“ 105.51
2.4 2.8

Ja “ 0.179,
ρl

ρv
“ 3500

V.5
Pr “ 1.022, RexL

“ 30
4.8 6

Ja “ 3.69,
ρl

ρv
“ 17.6

V.6
Pr “ 1.022, RexL

“ 85.726
1.8 2.69

Ja “ 3.69,
ρl

ρv
“ 5

V.7
Pr “ 0.98, RexL

“ 105.51
2.17 2.64

Ja “ 0.3598,
ρl

ρv
“ 1623



38 2. LAMINAR BOUNDARY LAYER

2.3.4.1 Asymptotic cases for the vaporization Nusselt number correlation

If Ja Ñ 0, the approximation of the terms depending on the Jakob number yields simpler expres-

sions for the parameters α and β from equation (2.4),

αpJa Ñ 0q “ 0.0073Ja

ˆ
ρl

ρv
´ 1

˙
Re0.495xL

Pr0.333,

and

βpJa Ñ 0q “ 0.0005Ja

ˆ
ρl

ρv
´ 1

˙
Re0.477xL

Pr0.237.

This asymptotic case brings out a linear evolution of the Nusselt number, both with the Jakob

number and the density ratio, for low vaporization rate.

When Ja “ 0, the correction terms equal to 0 as the jump condition on the velocity field is

zero. Hence, the boundary layers are not modified and the expression of the Nusselt number fits

simply with the one obtained with the Blasius theory.

Considering the asymptotic cases Ja Ñ 8 or ρl{ρv Ñ 8, it can be shown that in the vapor-

ization case, the expression of the Nusselt number tends towards a saturation value:

Nuvap
x pJa Ñ 8q Ñ NuBl

x ´
`
0.294Re0.495xL

Pr0.333 ` 0.119Re0.4777xL
Pr0.2374

˘
.

It can be explained by remarking that an increase of the vapor superheat tends to increase the

local heat flux on the interface, and thus, the jump on the normal velocity. As this jump condition

tends to thicken the thermal boundary layer and thus to decrease the local heat flux, the saturation

effect results from an equilibrium state between these two antagonistic effects.

2.3.4.2 Asymptotic cases for the condensation Nusselt number correlation

The expression of the Nusselt number in the condensation case is now presented for a low Jakob

number.

If Ja Ñ 0, equation (2.5) becomes

Nucond
x » NuBl

x ` γ

ˆ
x

xL

´ 1

˙m

Hpx ´ xLq,

with

γpJa Ñ 0q “ 0.0087Ja

ˆ
ρl

ρv
´ 1

˙
Re0.483xL

Pr0.356,

and

mpJa Ñ 0q “ 0.519Re´0.045
xL

Pr´0.042,

considering

ηpJa Ñ 0q “ 0.

As for the vaporization, when Ja “ 0, the Nusselt number simply fits with the Blasius theory.

Moreover, if Ja Ñ 8 or ρl{ρv Ñ 8, an opposite trend to the one observed for vaporization is

reported. In the case of condensation, the oncoming subcooled flow being aspirated towards the

interface, the thickness of the thermal boundary layer is reduced. This leads to an increase of the

local heat transfer as it can be visualised in figure 2.9b. It is found that in the case of condensation,

no saturation effect on the Nusselt number is observed neither in the numerical simulations, nor in

the expression of the proposed correlation equation (2.5). This can be understood by remarking

that, compared to vaporization, in the case of condensation, the jump condition on the normal

velocity is of opposite direction, favoring the local heat transfer.

These trends have also been observed when figure2.9a and figure2.9b were compared regarding

to the influence of the Jakob number on the evolution of the Nusselt number.
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2.3.5 Normal velocity and thermal flux interdependency

In what follows, we search to explain the Nusselt number evolution by means of an analysis

on the normal velocity evolution when phase change occurs considering only the vaporization

configuration.

Figure 2.13: Evolution of the normal velocity v and the thermal flux Φ for the vaporization study

case for Pr “ 1.022, RexL
“ 85.726, ρl{ρv “ 17.746, Javap “ 3.69: dashed line - Blasius theory,

solid line - vaporization configuration.

Figure 2.13 illustrates the evolution of the normal velocity v
`
xf , y

˘
and the thermal flux

Φ
`
xf , y

˘
“ kv

BT
By

`
xf , y

˘
with the y-axis for a fixed value of x “ xf . The interface between

the liquid and the vapor phase is situated at yI “ ´5 mm. The normal velocity in the liquid phase

can be neglected compared to the vapor phase. At the liquid/vapor interface there is an important

variation of the normal velocity value between the Blasius theory and the vaporization configu-

ration. Following, the change in the evolution of the normal velocity with y when vaporization

occurs is related directly to the mass flow rate.

The thermal flux is non-zero only close to the liquid/vapor interface, as expected. Unlike

the classical Blasius theory, where the thermal flux is induced only by conduction, in the phase

change configuration there is a significant influence of the thermal convection in the transverse

direction.Thereby, it can be understood that the discontinuity on the Nusselt number is induced

by the jump condition on the normal velocity field.

2.3.6 Integrated heat flux

The integrated heat flux exchanged at the liquid/vapor interface can be calculated from the cor-

relations on the Nusselt number (2.4) and (2.5).
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2.3.6.1 Vaporization

Given the expression (2.4) of the Nusselt number when vaporization happens, the heat flux per

unit of width, integrated between xL and x is defined as

Φvappx, xLq “
ż x

xL

φvappxqdx “ k pT8 ´ Tsatq
ż x

xL

Nuvappxq
x

dx

“ k pT8 ´ Tsatq

¨
˝
ż x

xL

NuBlpxq
x

dx ´ α

ż x

xL

´
x
xL

´ 1
¯n

x
dx ´ β

ż x

xL

1

x
dx

˛
‚. (2.6)

The different components of equation (2.6) are calculated as it follows
ż x

xL

NuBlpxq
x

dx “ 2
`
NuBlpxq ´ NuBlpxLq

˘
, (2.7)

ż
x

xL

ˆ
x

xL

´ 1

˙n

x
dx “

ˆ
x

xL

˙n

2F1

´
´n,´n; 1 ´ n,

xL

x

¯

n
´ π cscpπnq, (2.8)

where cscpπnq “ 1{sinpπnq is the cosecant function and 2F1

`
´n,´n; 1 ´ n; xL

x

˘
is the Gauss

hypergeometric function, defined as

2F1 pa, b; c; zq “ Γpcq
ΓpaqΓpbq

8ÿ

k“0

ˆ
Γ pa ` kqΓ pb ` kq

Γ pc ` kq
zk

k!

˙
,

with Γpaq “ pa ´ 1q! the gamma function, and
ż x

xL

1

x
dx “ lnp x

xL

q. (2.9)

Substituting the expressions of equations (2.7), (2.8), (2.9) in equation (2.6) leads to

ż x

xL

Φvappx, xLqdx “ k pT8 ´ Tsatq
#
2
“
NuBlpxq ´ NuBlpxLq

‰
´

´ α

»
——–

ˆ
x

xL

˙n

2F1

´
´n,´n; 1 ´ n,

xL

x

¯

n
´ π cscpπnq

fi
ffiffifl ´ β ln

ˆ
x

xL

˙+
. (2.10)

If we also consider the region x P p0, xLq where the boundary layer is evolving without in-

teracting with the vaporization, the following expression for the heat flux per unit of width is

obtained

Φpx, xLq “
ż xL

0

φBlpxqdx `
ż x

xL

φvappxqdx “ k pT8 ´ Tsatq
#
2NuBlpxq´

´

»
——–α

¨
˚̊
˝

ˆ
x

xL

˙n

2F1

´
´n,´n; 1 ´ n,

xL

x

¯

n
´ π cscpπnq

˛
‹‹‚` β ln

ˆ
x

xL

˙
fi
ffiffiflHpx ´ xLq

+
. (2.11)

The expression (2.11) of the integrated heat flux is plotted in Fig 2.14. The black curve

represents the integrated flux exchanged if the boundary layer evolved without interacting with

the liquid vaporization. The dotted lines depict the x-evolution of the thermal flux exchanged at

the liquid/vapor interface from xL to Lx for different values of the Jakob number. As expected,

the vaporization reduces the exchanged heat flux.
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Φ
→

Figure 2.14: Vaporization configuration - The x-evolution of the integrated exchanged thermal flux

at the interface for Pr “ 1.022, RexL
“ 85.726, ρl{ρv “ 17.746 and different values of the Jakob

number.

2.3.6.2 Condensation

For the configuration with condensation, the approach to calculate the exchanged heat flux is

the same as for the vaporization. Considering the expression (2.5) of the Nusselt number, the

exchanged heat flux per unit of width is expressed as

Φpx, xLq “
ż xL

0

φBlpxqdx `
ż x

xL

φcondpxqdx “ k pT8 ´ Tsatq
#
2NuBlpxq`

`

»
——–γ

¨
˚̊
˝

ˆ
x

xL

˙m

2F1

´
´m,´m; 1 ´ m,

xL

x

¯

m
´ π cscpπmq

˛
‹‹‚` η ln

ˆ
x

xL

˙
fi
ffiffiflHpx ´ xLq

+
. (2.12)

The evolution of the integrated heat flux is plotted in figure 2.15. The black curve represents the

integrated flux exchanged if the boundary layer evolved without interacting with the condensation.

The dotted lines depict the x-evolution of the exchanged heat flux at the liquid/vapor interface

from xL to Lx for different values of the Jakob number. The exchanged heat flux is increased by

the condensation.

2.3.7 Viscous friction

We now examine the influence of the liquid/vapor phase change on the viscous friction. Given the

2D expression of the viscous stress tensor,

¯̄τ “

¨
˚̊
˝

2µ
Bu
Bx µ

ˆBu
By ` Bv

Bx

˙

µ

ˆBu
By ` Bv

Bx

˙
2µ

Bv
By

˛
‹‹‚, (2.13)

at the interface of normal vector ey, the stress vector T “ ¯̄τ ¨ ey has the following normal and

shear components: T ¨ ey “ µ
Bv
By and T ¨ ex “ µ

ˆBu
By ` Bv

Bx

˙
. Their spatial evolution is plotted in
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Φ

Figure 2.15: Condensation configuration - The x-evolution of the integrated exchanged thermal

flux at the interface for Pr “ 1.022, RexL
“ 85.726, ρl{ρv “ 17.746 and different values of the

Jakob number.

figure 2.16 for the configuration with vaporization at a high Jakob number, Javap “ 8.8. Excluding

the zone x “ xL, the normal component of the stress vector is negligible against the tangential

component by a factor of 100. The same result is found for the classical Blasius boundary layer

theory, see for example [92], where only the shear component is accounted for in the viscous friction

analysis. In figure 2.16, the evolution of the shear component of the stress vector with and without

vaporization (Blasius theory) has the same trend, except for the zone close to x “ xL. The

difference in this zone comes from the singularity on the gradient computation.

Figure 2.16: Spatial evolution of the normal and the shear components of the stress vector T for

the dimensionless numbers Pr “ 1.022, RexL
“ 85.726, ρl{ρv “ 17.746 and Javap “ 8.8 .

We now consider the friction coefficient, expressed as the ratio between the interfacial friction

and the dynamic pressure:
Cf

2
“ τI

ρU2
8

, (2.14)

where τI is the shear component of the stress vector at the interface. We recall that for the Blasius
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theory, considering
Bu
By ąą Bv

Bx , the friction coefficient reads

Cf

2
“ dδ2

dx
“ 0.332?

Rex
, (2.15)

as a result of

τI “ µ
Bu
By “ µU8

d
ρU8

µx
f

2 pηq “ µ
U8

x

a
Rexf

2 pηq , (2.16)

and for y “ yI , f
2 pη “ 0q “ 0.332.

In figure 2.17 is plotted the evolution of the friction coefficient for the three configurations, i.e.

Blasius theory, vaporization and condensation. One can see that, surprisingly, the phase change

does not influence the viscous friction at the liquid/vapor interface, despite the modification of the

velocity field in the vicinity of the interface.

Figure 2.17: Evolution of the friction coefficient for: Pr “ 1.022, RexL
“ 85.726, ρl{ρv “ 17.746,

Javap “ 3.69 and Jacond “ 0.369.

Figure 2.18: Evolution of the velocity gradients Bv{Bx and Bu{By for: Pr “ 1.022, RexL
“ 85.726,

ρl{ρv “ 17.746, Javap “ 3.69.
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As it can be seen in figure 2.18, the derivative Bv{Bx influence on the viscous coefficient is

less important than the derivative Bu{By. Therefore, in order to justify the relevance of the result

obtained above, we will further take a look at the normal velocity at the liquid/vapor interface.

For the sake of simplicity we will take only the example of the vaporization.

In figure 2.19, the evolution of the tangential velocity with the y-axis is plotted for x “ lx
2

. It

is noteworthy that the evolution of the tangential velocity profile in the vaporization configuration

is almost identical to the Blasius boundary layer velocity profile, despite the vapor blowing in the

normal direction due to phase change. The liquid motion due to the shear stress of the vapor flow

on the interface is negligible (see the zoom at the bottom left of the figure). Moreover, there is

little modification of the tangential velocity profile at the liquid/vapor interface (for y “ ´0.005

m) (see the zoom situated in the middle right of the graphics). This explains why only marginal

modifications of the interfacial friction coefficient are observed.

Figure 2.19: Evolution of the tangential velocity u for the vaporization study case for Pr “ 1.022,

RexL
“ 85.726, ρl{ρv “ 17.746, Javap “ 3.69: black line - Blasius theory, red dashed line -

vaporization configuration. Zoom on the liquid region (the bottom left) and on the zone close to

the interface (middle right).

2.4 Conclusion

Based on numerical simulations, we obtain correlations on the influence of an external flow on the

vaporization or condensation of a static liquid pool. It is shown that the local flow, induced by the

phase change, decreases or increases, respectively, the local heat flux, depending upon vaporization

or condensation is considered.

For the vaporization configuration it was found that the Nusselt number, and therefore the

heat transfer, decreases exponentially with the Jakob number until reaching a saturation value.

The opposite trend is observed for the condensation, for which the Nusselt number increases as an

exponential function of the Jakob number.

The obtained Nusselt number correlations have allowed to determine the expressions of the

integrated heat flux over the liquid/vapor interface.

Another noteworthy result is about the viscous friction on the interface, or the tangential

component of the viscous tensor, which is weakly affected by the phase change in the case of a

plane interface. Additionally, given the evolution of the normal velocity v with y, the influence of

the phase change on the normal component of the viscous tensor is still very weak in comparison

to the tangential one, as it is the case for the classical Blasius boundary layer. Moreover, even if

the profiles are not superimposed, it can be qualitatively observed that the derivative Bv
By is in the
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same order of magnitude with or without phase change. This is why we can conclude that the

liquid vapor phase change has little influence on the components of the viscous stress vector.

The obtained correlations are difficult to be used for the cryogenic tank applications, considering

the existing turbulent regime flow. Nevertheless, besides its academic interest, the physical analysis

acquired for the laminar regime will be of use when studying the interaction between a turbulent

boundary layer flow and liquid/vapor phase change. To this extent the following chapter treats of

the numerical simulation of the spatial development of a turbulent boundary layer flow with heat

transfer.
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Chapter 3

Turbulent boundary layer modeling
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In the present chapter, the numerical simulation of the spatial development of a bound-

ary layer flow on a flat plate, with heat transfer, is presented. After a thorough overview

of the existing numerical methods for the generation of turbulent fluctuations, the cho-

sen method is described and validated. Next, the results obtained are presented and

discussed. A particular attention is also paid to the computational constraints related

to the used numerical solver.
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In the previous chapter we have described our work on the influence of liquid/vapor phase

change onto the evolution of a laminar boundary layer flow of vapor. In practical applications,

most flows which occur are turbulent. Therefore, the subsequent topic of our work will be the

interaction between a turbulent boundary layer flow and the velocity field induced by liquid/vapor

phase change. To this extent, the spatial evolution of a turbulent boundary layer flow on a flat

plate has first to be simulated. Later on, the influence of the blowing velocity induced by the phase

change onto the turbulent boundary layer evolution will be investigated.

Before discussing the results obtained in the numerical simulation of the spatial development

of a boundary layer on a flat plate with heat transfer, we first give a brief description of some

important aspects of the physics of wall turbulence. Next, we present an exhaustive overview

of the literature on the different existing approaches for the generation of turbulent inflow for

spatially-developing boundary layer simulations. The chosen method to be implemented in the

code DIVA is then thoroughly described. The description of the extension of the corresponding

method in order to impose the thermal boundary layer inflow is afterward presented. Validations

of the implemented method are done and shown, as well as some verifications and discussions on

the statistics obtained for the imposed inflow data. Finally, the numerical simulation of the spatial

development of a boundary layer on a flat plate with heat transfer, for a momentum thickness

Reynolds number Reθ “ 1100 is described.

3.1 Introduction to the physics of wall turbulence

The first section is devoted to the description of some important aspects of the physics of wall

turbulence. Only those aspects which are most relevant to the numerical simulation and modeling

techniques used in this thesis are considered. A detailed introduction to turbulence theory can be

found in the textbooks of Schlichting [92], Hinze [32], Tennekes and Lumley [103] or Pope [76].

As seen in chapter 2, a laminar boundary layer can be reduced to a stationnary two-dimensional

flow, for which Blasius [8] proposed an analytical solution in excellent agreement with experimental

results [92]. When the flow moves more rapidly or occurs on a bigger scale, the motion becomes

unstable and varies more and more significantly and irregularly in space and time. This flow regime

is called turbulent, and irregular fluctuations are superimposed on the main stream (figure 3.1).

Reynolds [84] first defined a non-dimensional number to help predict the transition between

the two flow regimes, the Reynolds number Rex. For the configuration involving a channel flow, he

determined that the transition between the two regimes occurs when Rex reaches a critical value

(Rex „ 2000). Below this value, small perturbations that occur in the flow are damped by the

viscous stresses and the flow does not change with time. Beyond this limit, small perturbations that

occur in the flow amplify exponentially to yield spatially organized large scale coherent structures

(Schlichting [92]). These structures are often referred to as eddies or vortices, since they are

associated with the rotating motions of the fluid flow. At large Reynolds numbers, the energy is

transported from the main flow into the large eddies. However, energy is dissipated preponderantly

by small eddies. For a wall flow, this process occurs in a narrow band inside the boundary layer,

in the neighbourhood of the wall (Schlichting [92]).

So far, the turbulent flow has been inaccessible to mathematical treatment due to its complexity.

The description of these phenomena can nevertheless be led using the classical tools of turbulence

analysis, as for example the decomposition of the flow into a mean motion and into a fluctuation,

correlative or spectral analyses, etc. A detailed presentation of these methods can be found in the

textbook of Chassaing [13].
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Laminar Transition Turbulent

Turbulent
layer

layer

sublayer

buffer

viscous

Figure 3.1: Schematics of the different regimes of a wall flow.

3.1.1 Characteristic quantities of wall turbulent flow

In order to describe a turbulent boundary layer flow, certain quantities are generally used and

are defined in what follows. The mean and fluctuating parts of a variable φ will be hereinafter

denoted by Φ and φ
1 “ φ ´ Φ, respectively, except for the temperature where the mean is T and

the fluctuation is θ1. The average of the fluctuations will be denoted whether by ă ¨ ą or by p¨q.
The boundary layer thickness δ99 is defined as the coordinate at which the velocity value is

equal to 0.99U8. Its calculation is not conventional, therefore two other thicknesses have been in

use,

δ˚ “
ż 8

0

ˆ
1 ´ U

U8

˙
dy, the displacement thickness, and, (3.1)

θ “
ż 8

0

U

U8

ˆ
1 ´ U

U8

˙
dy, the momentum thickness. (3.2)

The displacement thickness δ˚ is a measure of the fraction of the original free stream slowed

down by the wall (Bejan [5]) due to the fluid viscosity

δ˚U8 “
ż 8

0

U8dy ´
ż 8

0

Udy. (3.3)

The momentum thickness θ is based on a similar argument: it is a measure of the longitudinal

momentum missing at any x relative to the original (x “ 0) amount, (Bejan [5]),

θU2
8 “

ż 8

0

U2
8dy ´

ż 8

0

U2dy ´ U8

ż 8

0

pU8 ´ Uq dy. (3.4)

The ratio H “ δ˚{θ is called the shape factor and it characterizes the shape of the velocity

profile in the boundary layer.

Different Reynolds numbers can be created using these quantities:

Reδ “ U8δ99

ν
, Reδ˚ “ U8δ˚

ν
, Reθ “ U8θ

ν
. (3.5)

The local boundary layer flow is characterized by its friction coefficient, that can be written

using the wall shear stress τ0pxq

Cf pxq “ τ0pxq
1
2
ρU2

8

. (3.6)
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Figure 3.2: Example of the evolution of the friction coefficient Cf and the Stanton number St with

Reθ. The graph is extracted from Li et al. [58]. solid line - Cf obtained in [58]; line with circle -

St obtained in [58]; dashed lines - turbulent correlations from Kays and Crawford [44].

Finally, the local Stanton number is a dimensionless number reporting heat-transfer coefficient

in turbulent flow,

Stx “ hpxq
ρCpU8

, (3.7)

where hpxq “ q
2

0{pT0 ´ T8q is the heat-transfer coefficient that can be calculated using the wall

heat flux q
2

0pxq.
The evolution of the friction coefficient Cf and the Stanton number St with the momentum

thickness Reynolds number Reθ is shown in figure 3.2. Both quantities decrease with Reθ and they

are related through a functional relation [44], that writes, for high Reynolds number,

2St

Cf

“ Pr´2{5. (3.8)

3.1.2 Turbulent boundary layer equations

For the configuration of a turbulent boundary layer, the Navier-Stokes equations reduce to x-

momentum and energy equations. By applying the decomposition of the fields into a mean field

and the corresponding fluctuations we obtain

U
BU
Bx ` V

BU
By “ ´1

ρ

dP

dx
` 1

ρ

B
By

ˆ
µ

BU
By ´ ρ ă u1v1 ą

˙
, (3.9)

U
BT
Bx ` V

BT
By “ 1

ρCp

B
By

ˆ
k

BT
By ´ ρCp ă v1θ1 ą

˙
. (3.10)

Note that, for a flat plate at zero incidence, the pressure gradient along the wall, dP {dx, is zero.

In the momentum equation (3.9) the molecular diffusion shear stress µBU{By is augmented by

the time-averaged eddy shear stress p´ρ ă u1v1 ąq. This so called apparent shear stress τapp is

therefore composed by the viscous shear τν “ µBU{By and the turbulent shear τt “ ´ρ ă u1v1 ą
(figure 3.3)

τapp “ µ
BU
By ´ ρ ă u1v1 ą“ ρ pν ` ǫM q BU

By , (3.11)
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Figure 3.3: Example of shear stress distribution for Reθ “ 1430. ( ) - total shear stress; (b) -

Reynolds shear stress; ( ) - viscous stress. The graph is extracted from DeGraaff and Eaton [20].

where ǫM is the momentum eddy diffusivity.

In the same way, in energy equation (3.10), the apparent heat flux is defined as

´ q
2

app “ k
BT
By ´ ρCp ă v1θ1 ą“ ρCp pα ` ǫHq BT

By , (3.12)

where α is the thermal diffusivity and ǫH is the thermal eddy diffusivity.

The ratio between the momentum eddy diffusivity and the thermal eddy diffusivity defines the

turbulent Prandtl number Prt “ ǫM{ǫH . Its evolution in the boundary layer is shown in figure

3.4. The turbulent Prandtl number tends to remain constant along the wall-normal direction. In

the vicinity of the wall region a maximum value is obtained at the wall.

An analysis of the apparent shear stress shows that there are different zones in the boundary

layer, as illustrated in figure 3.3. The inner region is defined by a negligible inertial effect, equation

(3.9) resuming to

pν ` ǫM q BU
By “ τ0

ρ
, (3.13)

with τ0 the value of τapp at y “ 0, where the Reynolds stress ´ρ ă u1v1 ą vanishes (Bejan [5]). The

dimensions of pτ0{ρq1{2 are those of velocity, and it is therefore known in the turbulence literature

as the friction velocity

uτ “
ˆ
τ0

ρ

˙1{2

, (3.14)

and it is used for the nondimensionalization of the flow problem. In the same way, a friction

temperature Θτ can be defined

Θτ “ q
2

0

ρCpuτ

. (3.15)

The outer zone is a region where the τapp “ constant assumption fails. It is also called the wake

region and it is ruled by a balance between inertia and τapp.

The boundary layer is not dominated by a single physical mechanism, therefore, the nondimen-

sionalization of the flow problem is done by using two different length scales: the inner scale or the

wall coordinates y` “ yuτ {ν and the external scale η “ y{δ99.
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Figure 3.4: Example of the evolution of the turbulent Prandtl number Prt. The graph is extracted

from Kong et al. [49];

3.1.3 Reynolds stress tensor and the turbulent kinetic energy balance

equation

We have seen in equation (3.9) that the turbulence manifests itself by a highly correlated fluctuating

mouvement. Its study can be made through the Reynolds stress tensor Rij “ă u1
iu

1
j ą. The

component ă u1v1 ą appears in equation (3.9) and its influence has already been described in

section 3.1.2.

The summation of the other three Reynolds stresses, (ă u12 ą, ă v12 ą, ă w12 ą) gives the

turbulent kinetic energy 2k1. The maximum of turbulent kinetic energy is contained in the buffer

layer. The principal contribution is given by the streamwise component ă u
12 ą (figure 3.5),

showing the high anisotropic character of the flow close to the wall. The transverse stress ă w12 ą
is the second contribution to k

1

, followed by the normal stress ă v12 ą.

DeGraaff and Eaton [20] show that the streamwise normal stress profiles ă u12 ą` presents a

peak very near the wall. Their study demonstrates that the magnitude of ă u12 ą` is a strong

function of Reynolds number throughout the entire inner region, except the viscous sublayer (figure

3.6). The near-wall peak occurs at y` “ 14 and grows in magnitude with increasing Reynolds

number. In the same work, it is shown that the energy from the mean flow is first transferred

to ă u12 ą`, and then redistributed by pressure and turbulent transport to the other Reynolds

stresses.

The balance equation of the turbulent kinetic energy, obtained using the Navier-Stokes equa-

tions, yields

0 “ ´U
Bk1

Bx ´V
Bk1

By `
ˆ

´ ă u1v1 ą BU
By

˙
´
ˆB ă v1k1 ą

By

˙
´
ˆB ă v1 pp{ρq ą

By

˙
` ν

B2k
1

By2 ´ ǭ (3.16)

The first two terms represent the advection. The production term p´ ă u1v1 ą BU{Byq writes

as a coupling between the turbulent stress and the mean velocity gradient. For a boundary layer,

this term is predominantly positive and it translates that the turbulence takes the energy from

the mean flow and converts it in velocity fluctuations. This production center is situated close

to y` » 12. It can be observed in figure 3.7 that the generated energy is not entirely dissipated,

a part is converted into turbulent pB ă v1k1 ą {Byq and viscous ν
`
B2k1{By2

˘
diffusion. In the

viscous sublayer, the energy balance is reflected by the equality between the turbulent diffusion
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Figure 3.6: Example of u
12 profiles for different values of Reynolds number Reθ. The graph is

extracted from DeGraaff and Eaton [20].
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Figure 3.7: Example of the evolution of the different terms from the turbulent kinetic energy

balance equation (3.16). All the terms are nondimenionalized by u4
τ {ν. The graph is extracted

from Pamies [72], who used the data from the DNS of Spalart [95].

and dissipation ǫ terms. Finally, for y` ą 30, the main equilibrium, production equals dissipation,

shows that the energy provided by the mean motion is dissipated locally.

3.1.4 Mean velocity profile

The mean velocity distribution can be deduced from the definitions given previously. Close to

the wall, the length scales of the vortices are very small and their energy is entirely dissipated.

Additionally, considering the no-slip condition up0q “ 0, at the wall, the turbulent eddy shear is

negligible and equation (3.13) writes

ν
BU
By “ u2

τ , (3.17)

and a linear profile is obtained for the mean velocity U` “ y`. This equation is valid only on a

thin zone called the viscous sublayer, which expands from the wall y` “ 0 to y` „ 7. Further

in the boundary layer, the viscous effects become negligible and we obtain that all the turbulence

production is dissipated. A dimensional analysis done using the turbulent kinetic energy balance

(3.16) leads to

ă u1v1 ą BU
By “ ǫ „ u3

τ

κy
, (3.18)

which allows obtaining
BU
By “ 1

κ

uτ

y
. (3.19)

Or, by using the inner length scale definition, the nondimensionalization of the above equation

writes

y` BU`

By`
“ 1

κ
. (3.20)

We obtain from equation (3.20) the logarithmic law for the mean velocity

U` “ lnpy`q
κ

` C, (3.21)

where κ » 0.4 is the von Karman constant and C » 5 is an integration constant. Its domain of

validity expands from y` “ 50 to y` “ 200 [20]. The connection between the linear and logarithmic

laws takes place in the buffer region.
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Figure 3.8: Example of mean velocity profiles for different values of the Reynolds number. The

graph is extracted from Bejan [5].

This laws allows an universal description of the inner zone of the boundary layer. They are

often used in experimental works to determine the friction coefficient.

Starting some distance from the wall, the external region can be poorly described by the

logarithmic law (3.20). By making an analogy with the wake flows [16], a correction term is added,

U` “ lnpy`q
k

` 2Π

k
sin2

ˆ
πy

2δ99

˙
, (3.22)

where Π is a constant.

In figure 3.8, example of the mean velocity U`py`q measurements is shown for different values

of the Reynolds number Reθ. The experimental results are in very good agreement with the

logarithmic law, illustrating the universality of the latter. However, as the momentum boundary

layer thickness increases, the viscous sublayer occupies a smaller fraction of the boundary layer.

DeGraaff and Eaton’s study [20] gives a very thorough analysis on non-equilibrium boundary-layer

scaling with the Reynolds number.

For the heat transfer part of the turbulent boundary layer problem, we focus on the equation

(3.10) and make the assumption that, sufficiently close to the wall, the left side of (3.10) becomes

negligible. With an approach analogous to the procedure used for the mean velocity profile, we

obtain the mean temperature profile (Bejan [5])

T` “

$
&
%

Pr y` if y` ă y`
CSL

Pr y`
CSL ` Prt

k
ln

y`

y`
CSL

if y` ą y`
CSL

. (3.23)

According to Kays and Crawford [44], good agreement with temperature measurements is achieved

if Prt » 0.9, k » 0.41 and y`
CSL » 13.2.
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3.2 Review of the numerical simulation methods for turbu-

lent flows

In what follows we will first remind the three numerical approaches one can use to simulate a

turbulent flow: RANS, LES and DNS. We only give a brief description of these, more details can

be found in Jarrin [37].

The most widely used and less costly approach for turbulent flow simulation is to simulate only

the averaged quantities. The decomposition of the flow motion into a mean and a fluctuating com-

ponent conducts to the Reynolds-Averaged Navier–Stokes (RANS) equations (equations (3.9) and

(3.10) for a boundary layer flow). The Reynolds stresses are expressed using classical turbulence

models allowing to close the flow problem.

Direct numerical simulation (DNS) of turbulent flow is the simulation of the Navier-Stokes

equations without modeling assumption. All the scales of the flow are resolved by the numerical

grid used. The difficulty of the DNS resides in the wide range of scales that needs to be simulated.

The size of the smallest structures in the near wall layer is proportional to the viscous length scale

ν{uτ . The constraint on the grid is therefore given by the smallest scale, imposing the use of a

non-uniform grid in the direction normal to the wall.

For turbulent flows at high Reynolds numbers, large-eddy simulation (LES) can be used to

simulate all the flow scales larger than the mesh size while using subgrids models to describe the

physics of the smaller scales. This allows for simulations less costly than the ones conducted with

the DNS. Nevertheless, for wall flows at high Reynolds numbers, the cost of computing the inner

layer exceeds by several order of magnitudes the cost of simulating the outer layer. In this case,

the cost of a LES is driven by the inner layer resolution requirement, making the computational

cost of LES similar to DNS (Jarrin [37]). Hybrid RANS-LES methods exist, aiming to overcome

the empirical default of the RANS models while making LES less computationally demanding.

Another issue of great importance is the specification of realistic boundary conditions, and,

especially, inlet boundary conditions. The prescribed inflow data at the inlet should be consistent

with the turbulence model chosen for the simulation. Except for the RANS, where only mean

profiles are needed, for LES and DNS simulations the specification of inflow data at the inlet plane

requires as specific care: in order to simulate turbulence, turbulence has to be prescribed at the

inlet plane. In the context of my thesis, a thorough overview of the literature on this subject has

been conducted and it is depicted in what follows.

3.2.1 Generation of inflow boundary conditions for a turbulent flow

The numerical simulation of a spatially developing turbulent flow is not straightforward. The

simplest way is to simulate the developement of the boundary layer from the laminar to the

turbulent regime. For example, Wu and Moin [107] propose a DNS of a nominally zero-pressure-

gradient flat-plate boundary layer with heat transfer, starting from the Blasius theory solution

at Reθ “ 80 continuously to a turbulent state of Reθ “ 1950. The computational domain size is

12750θ0, 2250θ0 and 562.5θ0 in the streamwise, wall-normal , and spanwise directions, respectively,

where θ0 is the inlet boundary layer momentum thickness. The number of grid points along these

three directions is 8192 ˆ 500 ˆ 256, respectively. The same strategy is used by Zhao et al. in

[111]. The laminar Blasius profile is specified at the inflow boundary, and the laminar inlet is

located downstream of the leading edge of the flat plate where Reθ “ 80. At the inlet station,

periodically migrating isotropic turbulent blocks that were obtained from a precursor DNS of

homogeneous decay turbulence were introduced to trigger the laminar boundary layer to transition.
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Figure 3.9: Sketch of the Spalart’s approach to simulate a spatially developing boundary layer using

periodic boundary conditions. The graph is extracted from Spalart [95]. (solid lines) - streamlines;

(dashed lines) - coordinate lines.

The computational domain in each direction pLx ˆ Ly ˆ Lzq is 6375θ0 ˆ 1500θ0 ˆ 375θ0 and the

corresponding numbers of grid points Nx, Ny, and Nz are 4096, 512, and 128. As noted, this kind

of approach demands a high computational cost. Additionally, even if some strategies are used

to trigger the transition to turbulence, the physical time needed for the simulation to converge is

very long. To avoid these drawbacks, an inflow boundary condition can be imposed at the inlet;

the corresponding inflow has to be as close as possible to a turbulent flow.

All the existing inflow generation methods are based on the decomposition of the flow fields

into a mean component and a fluctuating component. Thus, the flow problem resumes to the

generation of turbulent fluctuations of zero mean. Depending upon the used approach, in principle,

it is possible to match the first and second moments of the fluctuations. However, imposing the

spectra or the appropriate phase information between the modes is found to be more difficult and

in some cases very costly. Nevertheless, without this structural information, inflow conditions are

not accurate and the flow is far from beeing realistic. It must therefore undergo an adjustment

distance, as the turbulent eddies are generated and evolve until the correct phase information

is established. This adjustment distance is one of the criteria for judging an inflow generation

method. Ultimately, the most efficient methods are those that allow giving as much structural

information as possible for a reasonable computationally cost.

A recent review proposed by Wu [106] summarizes the research activities on inflow turbulence

generation methods for computations of spatially developing turbulent flows, such as the synthetic

Fourier method [53], recycling/rescaling method [62], synthetic eddy method [38], and digital fil-

tering method [108], among others. Keating et al. [45] carried out comparisons of inflow conditions

for simulations of turbulent, wall-bounded flows. Inter alia, they give a plain survey of the exist-

ing methods for generating inflow conditions for the simulation of spatially evolving wall-bounded

flows. According to their paper, the latter can be divided into three major categories: the recycling

methods, the use of a precursor calculation and the synthetic turbulence methods.

3.2.1.1 The recycling methods

The difficulty to impose realistic turbulent inflow at the inlet plane made that early simulations

were often dedicated to temporally developing flows (homogeneous isotropic decay, shear layers,

mixing layers and plane channels) where one could use periodic boundary conditions in the flow

direction. This approach was then extended to simulations of spatially developing turbulent flows.

Spalart [95], for instance, performed DNS of flat-plate boundary layers using periodic boundary

conditions. In order to account for the thickening of the boundary layer he added source terms

to the Navier-Stokes equations. In this way, the equations are transformed into a self-similar
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Figure 3.10: Schematics of the recycling method.

coordinate frame, in which the flow is periodic. A schematic of this approach is shown in figure

3.9. Spalart’s method allows producing an equilibrium spatially evolving boundary layer and a

direct control of the skin friction and momentum thickness is possible. The phrase ’equilibrium

layer’ was used by Townsend [104] to mean a region of a boundary layer where the local rates

of energy production and dissipation are equal. DeGraaff and Eaton [20] gave a more applicable

definition: an equilibrium boundary layer is a wall-bounded flow where the shear stress distribution

is in equilibrium with the shear stress at the wall.

Returning to the recycling technique of Spalart, despite its robustness, it is complicated to

understand and to program. Additionally, it requires a special purpose flow solver as well as

external inputs for the streamwise gradients of mean flow variables.

Lund et al. [62] were the first to propose a more flexible version of the Spalart’s approach.

The modification is achieved by choosing to transform only the boundary conditions in the flow

direction, as opposed to the entire solution domain. The method consists of taking a plane of data

from a location several boundary-layer thicknesses δ99 downstream of the inflow, and rescaling the

inner and the outer layers of the velocity profiles separately, to account for the different similarity

laws that are observed in these two regions. The rescaled velocity profiles are then reintroduced at

the inlet (see figure 3.10). The exponents inner and outer are used to designate the inner and the

outer zone. The quantities extracted from the recycling station will be denoted by the subscript

recy and the ones imposed to the inlet plane will be marked with the subscript inlt. The technique

proposed by Lund et al. assumes the specification at the inlet plane of a velocity field decomposed

into a mean and a fluctuating part

uipxinlt, y, z, tq “ Uipxinlt, yq ` u1
ipxinlt, y, z, tq. (3.24)

The flow is decomposed according to the inner and the outer zone of the boundary layer,

ui “
´

pUiqinner `
`
u1
i

˘inner¯ p1 ´ W pηqq `
´

pUiqouter `
`
u1
i

˘outer¯
W pηq , (3.25)

where the weighting function W pηq is defined as

W pηq “ 1

2

ˆ
1 ` tanh

ˆ
α pη ´ bq

p1 ´ 2bq η ` b

˙
{ tanhpαq

˙
, (3.26)

The parameters α “ 4 and b “ 0.2 ensure that the function is zero at 0, equals to 0.5 for η “ b

and equals to 1 when η “ 1. The choice for b “ 0.2 corresponds to the limit of validity of the

logarithmic law.
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The mean flow is rescaled according to the law of the wall in the inner region

U inner
i py`q “ uτ pxqf1

`
y`

˘
, (3.27)

and the defect law in the outer region

Uouter
i pηq “ U8 ´ uτ pxqf2 pηq . (3.28)

The functions f1py`q and f2pηq are supposed to be universal, which allows obtaining

U inner
inlt “ γUrecypy`

inltq, (3.29)

and

Uouter
inlt “ γUrecypηinltq ` p1 ´ γqU8, (3.30)

where

γ “ uτ,inlt

uτ,recy

. (3.31)

The mean velocity at the recycle station Urecy

`
y`
inlt

˘
is expressed as a function of y` and evaluated

at the inner coordinate of the mesh at the inlet. The same goes for the outer region. The scaling

for the vertical velocity writes

V inner
inlt “ Vrecypy`

inltq, (3.32)

and

V outer
inlt “ Vrecypηinltq. (3.33)

The velocity fluctuations are decomposed using a similar reasoning, obtaining

`
u1
i

˘inner
inlt

“ γu1
i,recy

`
y`
inlt, z, t

˘
(3.34)

and `
u1
i

˘outer
inlt

“ γu1
i,recy pηinlt, z, tq . (3.35)

This set of equations allows the reconstruction of the velocity field at the inlet plane of the do-

main, using the velocity field from the recycling station. However, this technique requires knowing

δ99 and uτ for both stations, inlet and recycling. These two parameters are needed to compute

y`
inlt, y`

recy, ηinlt and ηrecy. Additionally, Lund et al. [62] propose to estimate the ratio of the

friction velocities γ using the momentum thicknesses,

γ “ uτ,inlt

uτ,recy

“
ˆ
θrecy

θinlt

˙1{p2pn´1qq

, (3.36)

with n “ 5. This expression is obtained using the standard power-law approximations for the

friction coefficient and the momentum boundary layer thickness (Schlichting [92]).

As often claimed in the turbulence literature (Pamies et al. [72], Spalart et al. [97], Ferrante and

Elghobashi [24]), the initial condition for simulations using this technique is of great importance.

If, for instance, the flow is initialized with random noise, without the adequate frequency content,

the fluctuations can be rapidly dissipated which will lead to the laminarization of the flow. Spalart

et al. [97] propose to first position the recycling station far away from the inlet plane. This allows

the turbulence to establish. Once the statistical quantities are converged, the recycling plane can

be located closer to the inlet plane in order to reduce the numerical costs. Liu and Pletcher [60]

propose a modification to the Lund’s method in order to overcome this drawback. The recycling

plane is dynamically positioned according to the downstream instantaneous field, using

Xptq “ Xp0q ` min pX8 ´ Xp0q, αU8 max p0, pt ´ t0qqq , (3.37)
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where X is the position of the recycling plane, X8 is its final desired position, αU8 is the plane

convection velocity, and t0 is the time at which the turbulent flow generated at the inlet plane

arrives to the coordinate Xp0q. This procedure allows having the recycling station in the region

where the turbulent structures are well developed.

At the moment, the recycling/rescaling methods represent the most reliable and robust solution

for the turbulent inflow generation problem. They allow a good control of the friction coefficient

and the boundary layer thickness. However, their use demands that the flow is at equilibrium in

order to apply the universality of the wall laws. This condition often translates by the use of an

auxiliary simulation, whose utility is only to generate the inlet conditions. Ferrante and Elghobashi

[24] used an auxiliary simulation, denoted as Code-A in their work, in which the method of Lund et

al. [62] is implemented. The rescaling process is repeated until a satisfactory solution is obtained.

At each time step, the velocity components on a vertical plane in the middle of the domain of Code-

A are stored and are used later as inflow boundary conditions for the main simulation, denoted

as Code-B. Although the recycling/rescaling method [62] is a powerful technique, Ferrante and

Elghobashi were not able to obtain satisfactory development of the turbulent velocity correlations

in Code-A for the DNS of a spatially developing boundary layer over a flat plate (in [62], the

method was tested using LES). They corrected this by initializing the flow in the rescaling region

using the method of Le et al. [53], which prescribes the Reynolds-stress tensor and the energy

spectra. Their technique is essential for sustaining the production rate of turbulent kinetic energy

near the wall throughout the domain. Additionaly, the recycling station is taken much closer to

the inflow so that the computational cost of generating the inflow data is reduced. The recycling

station is positioned at δ99 downstream of the inlet compared to 8δ99 in the original method. Their

results for a Reynolds number Reθ “ 1430 are in good agreement with the experimental data of

DeGraaff and Eaton [20].

A second drawback of this type of methods is the introduced spurious periodicity, as remarked

by Keating et al. [45], among others. The presence of this periodicity can be problematic if the

corresponding frequency is close to the one of a physical phenomenon that we want to study (see

Pamies [71]).

3.2.1.2 The use of a precursor calculation

The use of a precursor calculation, prior stored in a database, allows the specification of turbulent

data providing a reasonable degree of realism. The idea is to rescale a time-dependent set of data

in order to reproduce a velocity profile and turbulent fluctuations (see the work of Schlüter et al.

[93]). Usually, the data can be obtained using a RANS simulation.

This method is particularly attractive when the flow we want to simulate does not contain

an equilibrium zone where a recycling/rescaling procedure could be applied. From this point of

view, this technique can be adaptabted to any flow, independently of the Reynolds number value.

However, the acces to important storage capacities as well as the costly reading operations during

the simulation make this approach unappealing.

3.2.1.3 Synthetic turbulence methods

The last group of inflow generation methods is represented by the synthetic turbulence techniques.

They are based on the assumption that a turbulent flow can be approximated by reproducing a

set of low order statistics, such as the mean velocity, the turbulent kinetic energy, the Reynolds

stresses. However, higher order statistics such as the terms in the turbulent kinetic energy balance

equation (the rate of dissipation, the turbulent transport or the pressure-strain term) are not
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usually reproduced. Therefore, the synthetic turbulence represents only a crude approximation of

real turbulence. Additionaly, the synthetic turbulence might have a structure sensibly different

from the one of the real flow. If the structure of the turbulent eddies and their dynamics is

not accurately reproduced, then it is expected that the synthetic turbulence undergoes a transition

process before it redevelops towards a more physical state. The distance for the transition process is

called adaptation or adjustement distance and determines the performance of the method because

it fixes the streamwise length of the computational box devoted to the generation of realistic

turbulence.

The synthetic turbulence generation methods are numerous, in what follows we will discuss

only a few of them. For more details, the recent review of Wu [106] is recommended.

Lund et al. [62] propose a random fluctuation method designed to match a prescribed mean

flow and Reynolds stress tensor. Their idea is similar to the one proposed by Le et al. [53]. Three

sequences of random numbers ũj are generated. They are conditioned so that each distribution has

zero mean, unit variance, and zero covariance with the other two distributions. The corresponding

fluctuations are computed using the Reynolds stress tensor via

u1
i “

ÿ

j

aij ũj , (3.38)

where the amplitude tensor aij has the expression

aij “

»
————–

?
R11 0 0

R21

a11

a
R22 ´ a221 0

R31

a11

?
R32 ´ a21a31

a22

a
R33 ´ a231 ´ a232

fi
ffiffiffiffifl
. (3.39)

where Rij “ă u1
iu

1
j ą.

In [62] it is shown that inflow conditions for a spatially developing boundary layer generated

using this technique lead to a laminarization of the flow up to a point where transition takes place

and realistic turbulence starts to develop. However, in their study, the boundary layer thickness

never grew at the correct rate (the domain length was 48δ99, and the friction coefficient never

reached a fully developed value).

To go further, Klein et al. [46] introduced a new approach for the generation of artificial velocity

data, based on digital filtering of random data. The objective was to remedy the lack of large-scale

dominance in the inflow data generated by the random data described above. In one dimension,

the velocity signal is defined by a convolution or a digital linear non-recursive filter

u1pjq “
Nÿ

n“´N

bnrpj ` nq, (3.40)

where bn are the filter coefficients, N is connected to the support of the filter and rpj ` nq is the

random number generated at point pj `nq with ă rj ą“ 0 and ă rjrj ą“ 1. It follows easily that

the two-point correlations between points j and pj ` mq depend on the filter choice and read

ă u1pjqu1pj ` mq ą“
Nÿ

n“´N`m

bnbn´m. (3.41)

Jarrin et al. [38, 37] proposed a method, whose originality lies in the use of coherent structures,

with a random position in space and in time. The signal is then coupled to a prescribed second
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(a) (b)

Figure 3.11: (a) Schematics of the partitioning of the inlet plane into P zones, proposed by Pamies

[71]. (b) Schematics of the distribution of different turbulent structures in a boundary layer in

fonction of the distance to the wall, extracted from Robinson [86].

order moments using the technique of Lund et al. [62], described above. The velocity fluctuations

are expressed by

u1
ipx, tq “

3ÿ

j“1

aij
1

NE

NEÿ

k“1

ǫjkfj px ´ xkptqq , (3.42)

where NE is the number of coherent structures, ǫjk are the random independent variables equal to

1 or ´1 and fj is a normalized function accounting for the velocity distribution of the turbulent

eddy. xkptq is the position of the center of the structure k, convected through the flow using

Taylor hypothesis. The authors used this approach for a spatially decaying homogeneous isotropic

turbulence and a fully developed turbulent channel. Rawat et al. [81] used this method in an

auxiliary simulation of a spatially developing turbulent boundary layer meant to obtain inflow

data. Next, the stored planes were used as inflow data for the main simulation of a turbulent

boundary layer with bubbles.

Jarrin’s method was later modified by Pamies [71, 72] for the use on a LES of a spatially

developing turbulent boundary layer on a plate. They propose that the stochastic signal be modified

so that it can be split into several modes (see figure 3.11, with different time, length and velocity

scales and also with different vorticity contents. In particular, the random signal ũj needed for the

Cholesky decomposition (3.38) is computed as a sum over the P zones of the inlet plane,

ũj “
Pÿ

p“1

ṽjp, (3.43)

where ṽjp corresponds to a normalized random sequence that has a compact support on the pth

zone. To each structure, time scale ltp, as well as wall-normal lyp and transverse lzp length scales are

assigned. The velocity signal is therefore obtained by

ũjpt, y, zq “
Nÿ

p“1

1a
Nppq

Nppqÿ

k“1

ǫkΛjp

ˆ
t ´ tk ´ ltp

ltp

˙
Φjp

ˆ
y ´ yk

l
y
p

˙
Ψjp

ˆ
z ´ zk

lzp

˙
. (3.44)

The modified method is also able to generate randomly located turbulent structures, of customiz-

able sizes, celerity and geometrical shape. The boundary layer is populated with several types of

coherent structures: elongated streamwise vortices in the near-wall region and hairpinlike vortices

in the logarithmic layer. Pamies et al. [71] extracted information from the work of Jeong et al. [39]
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that they used for the prescription of the geometrical shape of the structures at the inlet plane.

They found that their technique allows obtaining more realistically the distribution of scales in the

wall-normal direction. Also, they show that the specification of realistic modes for the buffer and

the logarithmic layers helps to reduce the spatial transient undergone by the synthetic inflow data.

Lund et al. [62] Ferrante & Elghobashi [24] Pamies et al. [71]

Reθ 1400 ´ 1640 800 ´ 1500 3535

Grid points 100 ˆ 45 ˆ 64 256 ˆ 96 ˆ 256 -

Domain dimensions p10 ˆ 3 ˆ π{2qδinlt p10 ˆ 3.6 ˆ 5qδinlt „ p7.5 ˆ 4 ˆ 2qδinlt
L`
x “ 6400

L`
y “ ´

L`
z “ 960

-

-

-

-

-

-

Grid resolution ∆x` » 64

∆z` » 15

∆y`
min » 1.2

-

∆x` » 14

∆z` » 7

∆y`
min » 0.58

∆y`
min » 34

∆x` » 44

∆z` » 14

∆y`
min » 1

-

Time step ∆t 2ν{u2
τ 0.15ν{u2

τ 0.00096δinlt{U8

Time of turbulence statistics 1400θinlt{U8 2600θinlt{U8 3000θinlt{U8

Table 3.1: Description of numerical cases overviewed above for a turbulent boundary layer.

All in all, the synthetic turbulence generation methods allows imposing a distribution of time

and space scales with a good degree of realism. In addition, this kind of techniques can be imple-

mented directly as an inflow condition, at a certain distance upstream the region of study, without

the need for a careful flow initialization. This distance translates the capacity of the approach

to produce a turbulence containing realistic statistical and temporal informations. Unfortunately,

as stated by Keating et al. [45], even the most complex procedures for synthetized turbulence

can involve large adaptation distances, superior to the ones demanded by the recycling/rescaling

techniques. Nevertheless, these methods do not induce spurious periodicity, making them more

appealing. In table 3.1 the reader can find a description of some of the numerical cases overviewed

above. Especially, the domain dimensions as well as the grid resolution are given.

3.2.2 Selection criteria

The choice of the method used for the generation of inflow data can be made taking into account

the following parameters:

• the adaptation distance which drives directly the computational domain streamwise length.

It depends, on one hand, on the capacity of the technique to generate a turbulence fairly

realistic and on the other hand, on the level of realism the user expects.

• the integrability of the inflow condition represented by the need of a careful flow initialization,

the compatibility of the method with the physical frequencies in study etc.

• the degree of empiricism which indicates the quantity of informations the user has to provide.
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• the computational cost.

• the complexity of the implementation.

An assessment of the methods described in the previous section is given in table 3.2, in ac-

cordance to the selection criteria presented above. The symbol 1`1 signifies that the method is

particularly performing for the concerned criterion. On the contrary, the symbol 1´1 translates

that the criterion represents a drawback for the corresponding method.

Recycling/rescaling methods

Spalart [95] Lund et al. [62] Liu and Pletcher [60]

Adaptation distance + (12δ99) + (8δ99) +

Integrability - - +

Degree of empiricism + + -

CPU cost - + -

Complexity - - -

Synthetic methods

Lund et al. [62] Klein et al. [46] Jarrin et al. [38] Pamies et al. [72]

Adaptation distance - (20δ99) - - (24δ99) + (7.5δ99)

Integrability + + + +

Degree of empiricism + + - -

CPU cost + - - -

Complexity + + + +

Hybrid methods

Keating et al. [45] Ferrante and Elghobashi [24]

Adaptation distance - (20δ99) + (8.25δ99)

Integrability + -

Degree of empiricism + +

CPU cost - -

Complexity + -

Table 3.2: Comparison between the overviewed methods for generating turbulent inflow data

(Pamies [72]).

As already stated, the synthetic methods demand a fairly long adaptation distance. For the

method of Pamies [71], the information is misleading, note that the outlet of the domain is located

at the end of an additional box placed after the main box. In this box, mesh cells are stretched in the
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streamwise direction so that turbulent fluctuations are progressively damped. On the other hand,

this type of method is straightforward to implement, does not need a careful flow initialization

and does not create nonphysical frequencies. However, the prescription of turbulent information

is needed and can be a constraint.

The recycling methods demand a lower CPU cost and the adjustment distance is more reason-

able. Nevertheless, their integrability and their complexity represent major drawbacks in compar-

ison with the synthetic turbulence techniques.

Last but not least, the configuration under study (boundary layer blown by a vertical velocity

induced by the liquid/vapor phase change) will not be at equilibrium. Therefore, the use of a

recycling/rescaling approach will be possible only if an auxiliary simulation is considered for the

generation of the turbulent inflow data.

After thoroughly analyzing all of these arguments we decided to use the synthetic eddy method

of Jarrin [38] to generate the inflow condition for the simulation of the spatially developing bound-

ary layer on a flat plate. Additionally, Rawat et al. [81] showed an excellent adjustment of this

method for a turbulent boundary layer simulation.

3.2.3 Generation of inflow boundary conditions for a turbulent bound-

ary layer with heat transfer

In what follows, we will give a survey of the existing techniques for the simulation of turbulent

boundary layer flows with heat transfer. The thermal field can be treated as a passive scalar

field. The concept of passive scalars and thermal fields is equivalent only under the following

assumptions [2]: the temperature difference in the thermal boundary layer is assumed small, the

buoyancy effects and temperature dependence of material properties are negligible.

As seen for the dynamic turbulent boundary layer, performing simulations requires time-varying

realistic thermal turbulent data at the inlet of the computational domain. The first DNS study

of turbulent boundary layers was performed by Bell and Ferziger [6]. They use the fringe concept

of Spalart and Watmuff [96] to convert the nonperiodic inflow/outflow boundary conditions to

periodic ones. In their study, they use isothermal wall condition for an extent of momentum

thickness Reynolds number from 300 to 700 and values of the Prandtl number equal to 0.1, 0.71,

and 2.

The recycling/rescaling method of Lund et al. [62] was extended to thermal inflow by Kong et

al. [49]. As in the original method [62], the authors use a single scale along the entire boundary

layer for the rescaling processes of the thermal field: the friction temperature Θτ . They show that

the behavior of the wall-normal heat-flux is similar to that of the Reynolds shear stress indicating

close correlation between the streamwise velocity and temperature.

Hattori et al. [31] employ the inflow generation method ([62], [49]) to investigate the effects

of buoyancy on the near-wall region of stable and unstable turbulent thermal boundary layers.

Their computational domain was composed of two parts: the driver part and the main part. In

the driver part, a zero-pressure-gradient flow with an isothermal wall and without buoyancy effect

is generated and used as the inflow boundary condition for the main simulation. In the main

part, stable boundary layer and unstable boundary layer are simulated. They concluded that the

structure of near-wall turbulence was significantly altered by thermal stratifications caused by the

weak buoyant force.

Araya and Castillo [2] propose a modification to the recycling/rescaling method [62, 49] for an

adverse-pressure gradient turbulent boundary layer with heat transfer. Their modification consists

in using scaling laws obtained by performing a similarity analysis over the governing equations
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in the inner and outer regions of the boundary layer. This allows the assimilation of streamwise

pressure gradients. Additionally, the auxiliary domain that generates inflow turbulent information

in [62] is eliminated and the principal domain produces its own inflow conditions at every time

step by rescaling the solution downstream.

Kong et al. [49] Araya and Castillo [2] Li et al. [58]

Reθ 300 ´ 430 1940 ´ 2300 1100 ´ 1940

Grid points 352 ˆ 64 ˆ 128 400 ˆ 150 ˆ 125 4096 ˆ 512 ˆ 128

Domain dimensions p22 ˆ 3.4 ˆ 4.5qδinlt p11 ˆ 3.3 ˆ 1.75qδinlt p464 ˆ 109 ˆ 27qθinlt
L`
x “ 3203

L`
y “ 608

L`
z “ 666

L`
x “ 8800

L`
y “ 2640

L`
z “ 1375

-

-

-

Grid resolution ∆x` » 9.1

∆z` » 5.2

∆y`
min » 0.19

∆y`
min » 25

∆x` » 22

∆z` » 11

∆y`
min » 0.5

∆y`
min » 12

∆x` » 5.36

∆z` » 9.98

∆y`
min » 0.62

∆y`
min » 26.1

Time step ∆t 0.38ν{u2
τ 0.44ν{u2

τ 0.057θinlt{U8

Time of turbulence statistics 1700θinlt{U8 1460θinlt{U8 3420θinlt{U8

Table 3.3: Description of numerical cases overviewed above for a turbulent boundary layer with

heat transfer.

Li et al. [58] run an auxiliary computation to obtain the inlet flow; instantaneous fluid velocity

and temperature fields were extracted at the location Reθ “ 1100. The precursor data was then

used to perform DNS of turbulent thermal boundary layer for a momentum thickness Reynolds

number “ 1100´1940 with Pr “ 0.71. They have observed a strong correlation between streamwise

velocity and temperature fluctuations near the wall.

Simulation of turbulent boundary layer with heat transfer has been done either with methods

based on the recycling/rescaling method [62, 49] or in a domain were the transition from laminar

to turbulence is triggered in some way [107, 59, 111]. In table 3.3 the corresponding parameters

(when avalaible) of some of the overviewed works are shown. Attention is drawn to the values of

the mesh resolution in the wall-normal direction; the minimum value of the ∆y` is around 0.5, or

smaller, in order to solve the viscous sublayer.

Given the order in which the present work was conducted, some preliminary simulations have

been conducted only for the dynamic boundary layer. To this extent, as mentioned in the previous

section, the synthetic eddy method of Jarrin [38] has been used and therefore implemented in the

code DIVA. The implementation of a new method of inflow generation would have been undue.

For this reason, an extension of the synthetic eddy method for the thermal boundary layer has

been proposed during this thesis. The mentioned method as well as the proposed extension are

further described in detail.
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Figure 3.12: Box of edies around the inlet plane. The figure is extracted from Jarrin [37].

3.3 Synthetic Eddy Method (SEM)

3.3.1 Basic equations of the SEM

The synthetic eddy method (SEM) allows to generate a velocity signal with prescribed first- and

second-order moments in a three-dimensional virtual box. This operation, already proposed in

[62], uses the Cholesky decomposition aijpyq of a prescribed Reynolds stress tensor Rijpyq to

assign second-order moments to a normalized stochastic signal rujpx, y, z, tq superimposed to a

mean velocity uipyq,
uipx, y, z, tq “ Uipyq `

ÿ

j

aij ũjpx, y, z, tq, (3.45)

with: ũjpx, y, z, tq - a centered random sequence with unit variance pvarpũjpx, y, z, tqq “ă ũ2
j ą“ 1q

and zero covariance pcovarpũjpx, y, z, tqq “
b

ă ũ2
j ą “ 0q.

The inlet plane x “ 0 is defined by a finite set of points S “ tx1,x2, ...,xs;x “ p0, y, zqu on

which the synthetic velocity fluctuations will be generated with the SEM. We assume that the

mean velocity Ui, the Reynolds stresses Rij and a characteristic length scale of the flow σ are

avalaible for the set of points considered.

The first step is to create a box B which contains the synthetic eddies. The dimensions of the

box are chosen in such a way that all the points in S are surrounded by eddies,

B “
 
xE
i “ pxE , yE , zEq P R

3 : xE
i,min ď xE

i ď xE
i,max

(
, (3.46)

where xE
i,min “ min

`
xE
i ´ σpxSq

˘
and xE

i,max “ max
`
xE
i ` σpxSq

˘
. Figure 3.12 shows the inlet

plane surrounded by the virtual box of eddies B, of volume VB .

The velocity signal generated by the N eddies is expressed by

ũipy, zq “ 1

N

Nÿ

k“1

ǫi,kfσpxq

`
x ´ x

E
k

˘
, (3.47)

where x
E
k are the locations of the N eddies, ǫi,k are independent variables taken from any distri-

bution with zero mean and unit variance. We choose ǫi,k P t´1, 1u with equal probability to take
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one value or the other. The velocity distribution of the eddy located at x
E
k is represented by the

function fσ. It is assumed that the differences in the distributions between the eddies depend only

on the length scale σ,

fσ “
a
VBσ´3f

ˆ
xE
k

σ

˙
f

ˆ
y ´ yEk

σ

˙
f

ˆ
z ´ zEk

σ

˙
. (3.48)

The shape function f is common to all eddies. The latter has the compact support r´σ, σs and

has the normalization
ş`σ

´σ
f2pxqdx “ 1. The multiplying factor

?
σ´3 assures the normalization

condition.

The position of the eddies x
E
k before the first time step are independent from each other and

taken from a uniform distribution.

Finally, the different steps in the generation of a velocity signal with the SEM are as it follows:

1. Estimate all the necessary input data (Ui, Rij and σ) on the set of points S.

2. Define the virtual box B where the eddies will be generated using (3.46).

3. Generate for each eddy k two random vectors xE
k and ǫi,k for its location and its intensity,

respectively.

4. Compute the velocity signal on the set of points S by the use of (3.48). In all simula-

tions carried out in this thesis a tent function has been used for the shape of the velocity

distribution,

fpxq “
# b

3
2

p1 ´ |x|q , |x| ă 1

0, otherwise
. (3.49)

5. Compute, at each time step, the velocity field using (3.45).

6. Convect the eddies though B with the characteristic velocity Uc “
ş
S
Upxqdx,

xE
k pt ` dtq “ xE

k ptq ` Ucdt, (3.50)

with dt - the time step.

7. Generate new locations and intensities for eddies which were convected outside B. Advance

to next time step and go back to step 4.

3.3.2 Preliminary validation of the SEM

3.3.2.1 Simulation of instantaneous signals

After implementing the SEM following the steps described in the previous section, a preliminary

validation was conducted by first simulating instantaneous signals of synthetic isotropic turbulence.

This validation configuration is extracted from the thesis of Jarrin [37].

Isotropic synthetic fluctuations are generated on a two-dimensional plane with the SEM. The

dimensions of the pOyzq plane are 2π ˆ 2π. A mean velocity in the streamwise direction U “ 10

m{s and fluctuating velocities u1
i “ 1 m{s are imposed. The length scale defining the radius of

each eddy is constant and has the value σ “ 0.5 m. The number of eddies generated in the virtual

box is N “ 1000. The mesh grid employed for the two-dimensional domain is 128 ˆ 128.

Figure 3.13 shows the temporal evolution of u, v and w recorded at point py, zq “ pπ, πq
and instantaneous contours of u, v and w on the two-dimensional plane. The obtained signal is

stationary in time and homogeneous and isotropic in space, as expected.
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Figure 3.13: Simulation of instantaneous signals for a THI. Time evolution and velocity field of u,

v, and w from top to bottom.

Figure 3.14 shows the time convergence of the time averaged mean velocity, the Reynolds

stresses, the skewness and the flatness of the SEM simulated signal at a point py, zq “ pπ, πq.
The velocity derivatives skewness S and kurtosis or flatness F represent the normalized velocity-

derivative moments of order 3 and 4, respectively:

Sij “ xpBui{Bxjq3y
xpBui{Bxjq2y3{2

, (3.51)

and

Fij “ xpBui{Bxjq4y
xpBui{Bxjq2y2

. (3.52)

The skewness allows to have a measure of the symmetry of the velocity distribution while the
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flatness defines the "spreading" of the distribution field. For example, for a Gauss distribution,

the flatness equals to 3 while the skewness is zero.

The obtained statistics converge towards the imposed values,

ă u ą“ U0, ă u1
iu

1
j ą“ u2

rmsδij , (3.53)

where δij is the Dirac distribution and urms “
b

ă u1
iu

1
j ą is the rms velocity. Jarrin demonstrates

in [37] that for the present configuration, the target values of the skewness and flatness are

Sui
“ 0, Fui

“ 4.1. (3.54)

The skewness and the flatness demand further averaging to be fully converged.

Figure 3.14: Time evolution of the time averaged velocity ă ui ą (top left), the Reynolds stresses

ă u
1

iu
1

j ą (top right), skewness (bottom left) and flatness (bottom right) at a point py, zq “ pπ, πq
for the simulated SEM signal.

The time-averaged two-point correlations in the y-direction of the three velocity components are

illustrated in figure 3.15. The expression of the two-point correlations of the velocity fluctuations

writes

Rijpx, rq “ă u
1

ipx, tqu
1

jpx ` r, tq ą, (3.55)

where r “ pr1, r2, r3q is a vector defining the relative positions between the two-points at which

the velocity correlations are computed. In [37], Jarrin demonstrates that given the formulation of

the SEM, and for x “ 0, the following expression can be found for Rijp0, r, 0q,

Rijprq “ Rij

3ź

l“1

rf ‹ f s
´rl
σ

¯
, (3.56)
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where ’‹’ denotes the convolution product. The obtained evolutions for the three time-averaged

two-point correlations are therefore coherent; a maximum value of 1 for r “ 0 and a decreasing

evolution towards zero, attained at „ r “ 1.

Figure 3.15: Two point correlations in the y direction for the velocity components of the simulated

SEM signal.

3.3.2.2 Homogeneous isotropic turbulence

A second validation study for the implemented SEM was conducted for the simulation of spa-

tially decaying homogeneous isotropic turbulence (HIT). This configuration allows to verify that

the coherent structures generated using the SEM evolve towards a turbulent flow. Most works

involve temporal decaying HIT ([46], [1]), where the computational domain is filled with turbulent

fluctuations and their evolution in time is recorded. The spatially decaying HIT assumes a rough

initialization of the field. The turbulence is imposed as an inflow boundary condition at the inlet

plane. Synthetic turbulent fluctuations are superimposed on the mean velocity, non-zero only in

the streamwise direction. The spatially evolution of the coherent structures is studied.

The computational domain has the dimensions lx ˆ ly ˆ lz, with lx “ ly “ lz “ 1 m. Periodic

boundary conditions are imposed in the normal y and spanwise z directions. At the inlet plane,

we prescribe turbulent fluctuations obtained with the SEM superimposed to the streamwise mean

velocity U “ 0.2 m{s. At x “ lx, an outflow boundary condition is imposed for the velocity field.

For the pressure, the boundary conditions in the streamwise directions are: a Neumann condition

Bp{Bx “ 0 at x “ 0 and a Dirichlet condition p “ 0 at x “ lx. The velocity field is initialized by

superimposing on the mean field of random fluctuations of maximum value 0.1U.

The turbulent Reynolds number Ret,max “ urmsσ{ν one can simulate depends on the used mesh

grid, as will be further explained. The minimum value for the Kolmogorov scale lk corresponds

to the grid dimension ∆x “ lx{pnx ´ 1q. On the other hand, the first Kolmogorov hypothesis

states that for a HIT the dissipative structures are entirely described by the kinematic viscosity ν

and the dissipation rate ǫ. This leads to the following relation between the length scale σ and the

Kolmogorov scale lk,

ǫ “ u3
rms

σ
“ u3

k

lk
, (3.57)

where uk is the Kolmogorov characteristic velocity. Furthermore, the Reynolds number based on

the Kolmogorov scales has to be 1, which leads to

uk “ ν

lk
. (3.58)



3.3. Synthetic Eddy Method (SEM) 73

Figure 3.16: Spatial evolution of the turbulent kinetic energy in the x direction for a spatially

decaying HIT at a turbulent Reynolds number Ret “ 43.7.

Injecting this expression in the dissipation rate relation we obtain

σ

lk
“ Re

3{4
t . (3.59)

For this study, the value for the length scale is σ “ lx{15. The argument for this choice is that it

allows to generate enough vortices in order to have converged statistics (see Alis [1]).

The Kolmogorov and the length scales being fixed, the equation (3.59) gives the maximum

turbulent Reynolds number not to be exceeded for a certain mesh grid. The rms velocity urms can

then be computed.

In the present study we have used the mesh grid 256 ˆ 256 ˆ 256. This implies a turbulent

Reynolds number of Ret “ 43.7 with the characteristic length scales σ “ 0.067 m and lk “
3.91 ¨ 10´5 m and a rms velocity urms “ 0.0262 m{s.

All the necessary parameters have now been defined. For the study of the spatially decaying

HIT at Ret “ 43.7 we have investigated three criteria: the spatially decrease of the turbulent kinetic

energy, the skewness and the flatness coefficients of the turbulent fluctuations. The statistics are

computed using a space (in the y and z directions) average and a time average. For each quantity,

a time convergence study has been conducted.

Figure 3.16 shows the evolution of the turbulent kinetic energy k1 for different times of simu-

lation. The time convergence is acquired for T “ 200 s. At the inlet plane, the turbulent kinetic

energy converge towards the imposed value k1 “ 3
2
u2
rms “ 0.00102 m2{s2. The kink on all k1

profiles from x “ 0 to x “ 0.1 is most certainly a numerical artifact.

For a HIT, the skewness and the flatness are calculated as the one-third of the trace of the

corresponding tensors defined in the previous section (equations (3.51) and (3.52)),

S “ 1

3
TrpSq, F “ 1

3
TrpFq. (3.60)

In the textbook of Pope [76] it is shown that S and F are not constant, but increase with

Reynolds number. Measurements of the flatness increase from F » 4 in low-Reynolds-number

grid turbulence to F » 40 at the highest Reynolds numbers measured. For a Reynolds number

Ret ă 50, the flatness is in the interval 3 ă F ă 4. For this range of flatness values, the skewness
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Figure 3.17: Spatial evolution of the skewness and the flatness for a spatially decaying THI at a

turbulent Reynolds number Ret “ 43.7.

is ´0.5 ă S ă ´0.4. The spatial evolutions of these quantities are plotted in figure 3.17. It can be

observed that the flatness demands further averaging to be fully converged.

The skewness and the flatness reach values that are at the limit of their corresponding range

interval. Better results could certainly be obtained if the length in the streamwise direction was

increased. Indeed, in comparison to the temporal decaying HIT, the spatial decrease demands a

greater length in the streamwise direction. In the left of figure 3.18, the vorticity field obtained with

the configuration presented above is plotted. The picture from the right of figure 3.18 corresponds

to a length two times higher in the streamwise direction and using a coarser mesh grid 256 ˆ
128 ˆ 128. For this second case, the decrease of the turbulence is unequivocal. Nevertheless, the

computational cost to simulate this configuration for the correct mesh grid 512ˆ256ˆ256 are fairly

important. Additionally, the results obtained for the computation domain 1 ˆ 1 ˆ 1 are in very

good agreement with the reference values. It has therefore been shown that the SEM allows the

simulation of a spatially decaying HIT. We will further describe its configuration for a turbulent

boundary layer flow.

Figure 3.18: Vorticity magnitude field for a spatially decaying HIT at a turbulent Reynolds number

of Ret “ 43.7 for two computational configurations: left - a box 1 ˆ 1 ˆ 1 and 256 ˆ 256 ˆ 256;

right - a box 2 ˆ 1 ˆ 1 and 256 ˆ 128 ˆ 128.
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3.3.3 Configuration of the SEM for a turbulent boundary layer flow

The SEM was originally used in [38] for the simulation of a spatially decaying homogeneous isotropic

turbulence and of a fully developed turbulent channel flow. In this section the configuration of the

SEM for the simulation of a spatially developing turbulent boundary layer flow on a flat plate is

presented.

The use of the SEM demands first of all the knowledge of the input data ui, Rij and σ.

Furthermore, the friction velocity uτ and the boundary layer thickness δ99 are also necessary

for the processes of dimensionalization of the inflow data and the nondimensionalization of the

obtained results.

Jimenez et al. [40] propose a full database for three momentum thickness Reynolds numbers:

Reθ “ 1100, 1551, and 1968. In the context of my thesis, only the database for Reθ “ 1100 was

used for computational cost reasons.

In addition to the dimensionless averaged statistics, Jimenez et al. also give the values for the

friction velocity uτ “ 0.0462 m{s, the boundary layer thickness δ99 “ 2.7568 m, the displacement

thickness δ˚ “ 0.45 m, the momentum thickness θ “ 0.3143 m and the Reynolds number computed

for the friction velocity Reτ “ uτδ99

ν
“ 445. The information that can be extracted from this data

are

- the kinematic viscosity, ν “ 2.85911 ¨ 10´4 m2{s from ν “ uτδ99

Reτ
,

- the free-stream velocity, U8 “ 1 m{s from U8 “ νReθ

θ
,

- from uτ “
ˆ
τ0

ρ

˙1{2

, if ρ “ 0.426 kg{m3 then one can deduce the wall friction shear τ0 “
u2
τ “ 2.13444 ¨ 10´3 kg{m{s2.

The length scales σ “ pσx, σy, σzq define the size of the generated eddies. As outlined in

section 3.2.1.3, the specification of length scales close to the ones found in real turbulent flows

is of great importance (Pamies et al. [71]). In this work, we considered isotropic length scales,

σx “ σy “ σz “ σpyq, that varies with the wall-normal direction y based on Prandtl’s mixing-

length hypothesis (Bejan [5]), i.e. σpyq “ κy, where κ is the von Karman constant. However, due

to the grid stretching in the wall-normal direction, close to the wall, the eddy becomes too small to

be discretized in spanwise and streamwise directions. Therefore, the size of the eddies is calculated

using

σpyq “ max pκy,∆q , (3.61)

where ∆ “ max p∆x,∆y,∆zq. The generated eddies are convected throughout the box B using

the mean of the averaged velocity at the inlet plane Uc “
` ş

S
upyqdydz

˘
{plylzq.

3.3.4 Extension of the SEM for a thermal boundary layer

We describe here the proposed extension of this method for a thermal boundary layer inflow

generation. The approach for generating a temperature signal Θ̃ follows exactly the same steps

detailed in section 3.3.1. The temperature imposed at the inlet plane writes

T py, z, tq “ T pyq ` θrmspyqΘ̃py, z, tq, (3.62)

where θrms “
?

ă θ12 ą is the rms temperature.

The mean temperature T and the rms temperature θrms have to be specified at the inlet plane.

To avoid an increase of the computational cost due to a change in the computational domain
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dimensions (Pr ă 1) or a more refined grid (Pr ą 1), during all the simulations for this study, the

Prandtl number was taken to be Pr “ 1. This means that the thermal and dynamic boundary

layers have the same thickness.

The survey of the literature on turbulent boundary layer flow with heat transfer presented in

section 3.2.3 showed that the existing works were in general for momentum thickness Reynolds

numbers of less than Reθ “ 1100. Additionally, no database with all the necessary information

was found.

Much attention has been paid on the similarity between the temperature and streamwise veloc-

ity. Perry and Hoffman [74] carried out experiments of a turbulent boundary layer developing on

a heated uniform-temperature plate. They showed that the characteristics of momentum and heat

fluxes are very similar to each other. Iritani et al. [36] showed that the feature of the temperature

field near the wall is very similar to that of the velocity in the viscous wall region.

For these reasons, we decided to use the same database proposed by Jimenez et al. [40], making

the assumption on the equivalence between the streamwise velocity and the temperature field. For

this reason, the temperature equation (1.13) is transformed using a reduced temperature field

defined by

T̃ “ T ´ T8

T0 ´ T8
, (3.63)

where T̃ P r0, 1s.
The dimensionalization of the input data obtained from [40] is done using

T̃` “ T̃

Θτ

, (3.64)

and

θ1` “ θ1

Θτ

. (3.65)

In the context of this thesis, Pr » 1 and ǫM “ ǫH (” Prt “ 1), which leads to (Bejan [5])

Θτ “ τ

U8
, (3.66)

given that T̃8 ´ T̃0 “ 1.

For simplification reasons, hereinafter, the reduced temperature will be noted without the tilde,

T ” T̃ .

3.4 Inlet plane statistics obtained using the SEM

The implemented SEM was validated for the simulation of instantaneous signals of synthetic

isotropic turbulence as well as for a spatially decaying HIT in section 3.3.2. After configuring

the SEM for a turbulent boundary layer, we have first made some verifications on the inlet inflow

data calculated using this approach. The objective is to make sure that the mean and rms fields

of the SEM inflow is equal to the prescribed Jimenez data [40]. Different parameters can influence

the performance of the SEM at the inlet plane: the number of eddies N , the length scale σ, the

mesh resolution in the wall-normal direction and the physical time over which the statistics are

averaged. All these will be discussed in what follows.

3.4.1 Computational configuration

For this preliminary study, we have considered a box of dimensions p3.6 ˆ 3.6 ˆ 3.6qδinlt, where

δinlt is the boundary layer thickness at the inlet plane equal to 2.7568 m. Different mesh grids as
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well as different values for the number of eddies N are used in order to study their corresponding

influence, as further explained. These configurations are described in table 3.5.

Periodic boundary conditions are imposed in the spanwise y-direction for the velocity com-

ponents and the temperature. The no-slip boundary condition for the velocity components and

Neumann condition for the pressure, as well as a Dirichlet condition for the reduced temperature,

are imposed at the wall boundary,

u “ v “ w “ 0,
Bp
By “ 0, T “ 0 at y “ 0. (3.67)

Neumann conditions for the velocity components, the pressure and the reduced temperature field

were imposed at the free-stream boundary,

Bu
By “ Bw

By “ 0, v “ 0,
Bp
By “ 0,

BT
By “ 0 at y “ ly. (3.68)

At the outflow plane x “ lx the following conditions were prescribed for the velocity components

Bu
Bx ` Bv

By ` Bw
Bz “ 0,

Bv
Bx ` Bu

By “ 0, and
Bw
Bx ` Bu

Bz “ 0. (3.69)

A zero value for the pressure p “ 0 and a Neumann condition for the temperature BT {Bx “ 0 are

also imposed at the outflow x “ lx.

At the inflow plane, the described SEM is used to impose the velocity and temperature profiles.

A zero-gradient Bp{Bx “ 0 is prescribed at x “ 0.

The velocity and the temperature fields are initialized with the mean profile obtained from

Jimenez et al. [40]. Random fluctuations are superimposed, with a maximum amplitude of 10%

of the mean profile.

Note that the post-processing is done at the inlet plane x “ 0. The statistics are averaged

in time and in the z direction. For each configuration, former time convergence studies have

been conducted in order to determine the time of simulation at which the averaged statistics are

converged (see Appendix B.1).

3.4.2 Computational constraints

Before discussing the results obtained at the inlet plane, we consider of great importance to detail

the different computational constraints encountered during this work.

The in-house code DIVA has been described in section 1.3. The resolution of the pressure

equation as well as the temperature field is done using a Black Box MultiGrid method. This

solver performance has greatly been demonstrated for configurations where uniform grids and

computational domains of equal dimensions l3 are used [22, 63]. Nevertheless, during my thesis,

it has been found that the solver performances are deteriorated for simulations using non uniform

grids and/or high aspect ratio for the domain or the grid dimensions. This represents a limitation

of the current solver to investigate thoroughly the DNS of turbulent boundary layer.

We will further show these limitations by investigating the BBMG solver performances on

configurations with different aspect ratio, for the simulation of a turbulent boundary layer flow on

a flat plate.

Let it be ξl “ maxplx{ly, lx{lz, ly{lzq the maximum aspect ratio for the computational domain

dimensions and ξg “ maxp∆x{∆y,∆x{∆z,∆y{∆zq the maximum aspect ratio for the mesh grid.

In table 3.4 the number of iterations needed to solve the pressure equation is given, for different

configurations. The configuration ξl “ 4 or ξl “ 8 is representative of a computational box 4 or 8
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times longer in the streamwise direction. The value ξg “ 1 corresponds to an uniform mesh grid

while ξg „ 8 or ξg „ 17 represents a non-uniform mesh grid in the y direction.

It can be observed that, when the aspect ratio, ξl or ξg, is increased, the number of iterations

in the BBMG solver is also considerably increased. The use of a computational domain 8 times

longer than a lx “ ly “ lz domain, implies a time cost multiplied by 8 for a non-uniform grid.

Additionally, if one wants to refine the mesh in the y direction in order to capture the smaller

eddies as well as go further in the viscous sublayer, the limit value for the aspect ratio is around 8.

For higher values, the number of iterations increases drastically. Additionally, a reduction of the

time step is needed to ensure the stability of our simulation.

These computational constraints due to the used solver will impact our work and results, by

limiting the resolution of the boundary layer.

ξl “ 1 ξl “ 4 ξl “ 8

ξg “ 1 ξg „ 8 ξg „ 17 ξg “ 1 ξg „ 8 ξg “ 1 ξg „ 8

BBMG nb. of iterations 10 45 204 (∆t{2) 45 65 310 370

Table 3.4: Computational constraints due to the BBMG solver used for the resolution of the

Poisson equation for the pressure. The number of iterations needed for the resolution of the

Poisson equation for the pressure for different configurations. The configuration (ξl “ 1, ξg “ 1) is

representative of the box p3.6 ˆ 3.6 ˆ 3.6qδinlt and the uniform mesh grid 128 ˆ 128 ˆ 128.

3.4.3 Mesh grid and number of eddies influence onto the inlet statistics

The structural information of the boundary layer is varying in the wall-normal direction. In tables

3.1 and 3.3, it has been shown that the minimum size of grid close to the wall should be around

∆y`
min “ 0.5 for a DNS. Nevertheless, given the computational constraints explained in section

3.4.2, we only went to ∆y`
min “ 1.55.

Table 3.5 exposes the different configurations used for the discussion on the mesh grid and

number of eddies influence onto the inlet plane obtained statistics. The key parameters in this

discussion are the time cost per 8 s simulation tcost and the convergence time of the turbulent

statistics Tcv.

Some trends emerge from table 3.5. Increasing the mesh refinement induces an increase of the

time cost while lowering the convergence time. Eddies multiplication in the virtual box does not

entail the same increase in the time of simulation for each mesh grid. For a coarse mesh (C.1), an

increase of 10 times in the number of eddies induce an increase of 6 times in the time cost, while

for a more refined mesh (C.2), the ratio is only of 2. The time of convergence is highly influenced

by the number of eddies and the mesh grid. Indeed, if the virtual box is poorly populated, then

the averaged statistics need a much longer time to attain convergence. Last but not least, when

increasing the number of eddies N , for a refined mesh grid (C.2), a reduction of the time step is

needed in order to ensure the stability.

First, we have conducted a study allowing to determine the number of eddies N needed to

obtained the expected statistics at the inlet plane. The obtained evolutions are plotted in figure

3.19. For the coarse grid 64 ˆ 64 ˆ 64, the value of N “ 4000 is sufficient. When the mesh grid

is refined to 128 ˆ 128 ˆ 128, besides enabling a deeper resolution into the viscous sublayer, we

observe that some of the statistics are under- or overevaluated.
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Mesh Nb. eddies (N) tcost rhs Tcv rss

(for 8 s job)

C.1.1 4000 „ 0.09 „ 960

64 ˆ 64 ˆ 64

C.1.2 8000 „ 0.1 „ 480

∆x` “ ∆z` „ 25

C.1.3
∆y`

min “ 3.1
16000 „ 0.15 „ 240

∆y`
max „ 40

C.1.4
σ`
min „ 25

40000 „ 0.55 „ 240

C.2.1 4000 „ 3 „ 480

128 ˆ 128 ˆ 128

C.2.2 8000 „ 5 „ 240

∆x` “ ∆z` „ 12.6 (∆t{2)

C.2.3
∆y`

min “ 1.55
16000 „ 5.2 „ 120

(∆t{2)

C.2.4
σ`
min „ 12.6

40000 „ 6 „ 120

(∆t{2)

C.3.1 4000 „ 0.8 „ 480128 ˆ 64 ˆ 128

∆x` “ ∆z` „ 12.6

C.3.2

∆y`
min “ 3.1

40000 „ 1.4 „ 120∆y`
max „ 40

σ`
min „ 12.6

Table 3.5: Configurations used for the discussion on the mesh grid and the number of eddies

influence onto the inlet statistics. l`s,min is the smaller length scale captured with the corresponding

configuration. tcost rhs is the time cost for a simulation of 8 s. Tcv rss is the time of convergence

for the turbulent statistics. Each simulation has been conducted using 8 processus.

The number of eddies has to be increased 10 times in order to obtain the prescribed statistics,

except for the rms velocity in the spanwise direction, w`
rms. Indeed, the mesh refinement used

here does not suffice to obtain the prescribed w`
rms. Nonetheless, an improvement can be observed

when the mesh is refined, as it can be observed in figure 3.20.
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Figure 3.19: Inlet plane statistics evolution with the wall coordinate, for different values of number

of eddies N . Each curve is plotted after the corresponding Tcv. (black line) - Jimenez data [40];

( ) - N “ 4000 ; ( ) - N “ 8000; ( ) - N “ 16000; ( ) - N “ 40000;
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Figure 3.20: Inlet plane statistics evolution with the wall coordinate, for different mesh grids. Each

curve is plotted after the corresponding Tcv. (black line) - Jimenez data [40]; ( ) - 64 ˆ 64 ˆ 64,

N “ 4000; ( ) - 128 ˆ 128 ˆ 128, N “ 40000; ( ) - 128 ˆ 64 ˆ 128, N “ 40000.

It is interesting that the mesh refinement in the three directions 128 ˆ 128 ˆ 128 or in the x

and z directions 128 ˆ 64 ˆ 128, have the same influence. Indeed, the number of eddies has to be

increased for both cases and, as it can be remarked from figure 3.20, the obtained curves overlap.

As seen from the definition of the length scale σ, equation (3.61), the smallest length scale captured

does not depend on the ∆ymin, when a non-uniform mesh is used. So, when the length scale is

smaller due to smaller dimensions of the mesh in the x and z directions, the compact support of

the velocity distribution fσ, equation (3.48), is diminished. Thus, more eddies are needed for the

convergence of the ensemble mean (3.47). This also follows from the illustration of the velocity

field u in figure 3.21. The velocity field plotted in 3.21c is much more closer to a boundary layer

flow snapshot than 3.21b, where fewer eddies spots can be observed.

Considering the maximum ratio of the mesh dimensions at the wall, the inner zone is populated

with eddies of larger length scales, regardless of the ∆ymin (see values of σ in table 3.5). This

implies a structural information of the turbulence fairly different from the real one.

During my thesis, an attemp to adress this point was conducted by implementing the method

of Pamies et al. [72]. Their approach to impose dimensions and velocity distributions allows to

dispose of the definition of the length scale (3.61). Nevertheless, as it can be observed in Appendix

B.2, we were not able to obtained satisfactory results for our DNS (their work was on a LES of

spatially developing boundary layer).

3.4.3.1 Closing remarks

The analysis on the inlet plane statistics presented in the previous section was first of all a validation

of the SEM for a boundary layer inflow data. Second, the purpose of this study was to allow

choosing the most suitable computational configuration for the forthcoming work on the spatial

evolution of a boundary layer. The analysis showed a strong link between the mesh grid, the

consequent length scale and the number of eddies.

Considering the informations on the domain dimensions (tables 3.1 and 3.3) and on the adap-

tation distance (table 3.2), the ideal computational domain should mesure p28.8 ˆ 3.6 ˆ 3.6qδinlt.
The corresponding mesh grid should write 2048 ˆ 128 ˆ 256, with N “ 40000 at least. This ideal

configuration is considerably out of reach, considering the computing constraints explained in sec-
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(a) 64 ˆ 64 ˆ 64, N “ 4000 (b) 128 ˆ 64 ˆ 128, N “ 4000 (c) 128 ˆ 64 ˆ 128, N “ 40000

Figure 3.21: Streamwise velocity field u rm{ss at the inlet plane for different configurations.

tion 3.4.2. Additionally, the time step should undoubtedly be diminished to ensure the stability of

the numerical solver.

Therefore, for the forthcoming study on the spatial development of a turbulent boundary layer

on a flat plate, the following configuration has been used: a computational domain of dimensions

p14.4 ˆ 3.6 ˆ 3.6qδinlt, a mesh grid 512 ˆ 128 ˆ 128 and a number of eddies of N “ 4000. The

imposed statistics are satisfactory and the computational cost in term of physical time needed

for the simulations as well as the number of hours used on a supercomputer is reasonably. The

specifics will be detailed in the next section.

3.5 Numerical simulation of a turbulent boundary layer flow

with heat transfer at Reθ “ 1100

In the following section we will describe the work on the numerical simulation of a turbulent layer

flow over a flat plate with heat transfer, for a momentum thickness number of Reθ. First, the

computational configuration is described. Only small differences exist in comparison with the

computational configuration described in the previous section 3.4. Next, the results obtained are

presented and discussed.

3.5.1 Computational configuration

As already stated, for the present study we use a computational domain of dimensions p14.4 ˆ
3.6 ˆ 3.6qδinlt and a mesh grid 512 ˆ 128 ˆ 128. The number of eddies is fixed at N “ 4000.

The boundary conditions employed for this study are a slight different from the one described

in section 3.4. At the free-stream boundary y “ ly, outflow boundary conditions are imposed,

Bu
Bx ` Bv

By ` Bw
Bz “ 0,

Bv
Bx ` Bu

By “ 0, and
Bw
By ` Bv

Bz “ 0. (3.70)

and a Dirichlet condition for the pressure p “ 0. The Neumann boundary condition on the

temperature field has been conserved. The choice of an outflow boundary condition instead of a

Neumann condition is related to the fact that later on the boundary layer will be blown by the

liquid/vapor phase change. This would have not been coherent with a symmetrical condition on

the velocity.
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Figure 3.22: The influence of the outflow boundary condition on the computed statistics at the

post-processing plane xpp. Each curve is plotted after the corresponding Tcv. ( ) - 256 ˆ 64 ˆ 64;

(dashed line) - 384 ˆ 64 ˆ 64. For both configurations, the the post-processing plane is positioned

at the same distance relative to the inlet plane.

The other boundary conditions, as well as the initialization have been done as described in

section 3.4. Note that verifications have been made to show that the specified changes did not

influence the inlet plane statistics (see Appendix B.3).

The post-processing for the evolution of the turbulent quantities with the wall coordinate y` is

done on a normal to the streamwise plane, located at xpp “ xpi “ 5Nx{6q, where Nx is the number

of grids in the x direction. Considering the spatial development of the boundary layer and the

constraint of the adaptation distance for the SEM, the choice of this position was done in order to

be as far as possible from the inlet plane. On the other hand, too close to the outflow boundary

can also have repercussions on the results. A verification has been made in order to ensure that

the outflow boundary condition at x “ lx does not influence the wall coordinate evolution of the

obtained statistics. A coarse mesh has been employed, 256ˆ64ˆ64, given the computational costs

when ξl ąą 1 (see table 3.4). For both configurations, the post-processing plane is positioned at

the same distance relative to the inlet plane. The obtained evolutions are shown in figure 3.22

and demonstrates that the post processing plane located at xpp is not influenced by the outflow

boundary conditions.

For the fixed xpp, the average is done in time and in the z direction. Note that the average in

time has been done after a certain time of simulation in order to remove all spurious influence of

the initialization of the velocity and the temperature fields.

The simulations have been conducted using the supercomputer from Idris, ADA. Note that a

simulation of 1528θinlt{U8 “ 480 s, done using 512 ˆ 128 ˆ 128, lasted 25 days.

3.5.2 Results

We will further present the results obtained for the numerical simulation of the spatial development

of a boundary layer flow on a flat plate with heat transfer, for a momentum thickness Reθ “ 1100.

Figure 3.23 shows a capture of the vorticity magnitude field for the developed boundary layer.

Qualitatively, the synthetic vortices generated at the inlet plane evolve towards a boundary layer

flow.

In figure 3.24 the reduced temperature field and the streamwise velocity field are represented.
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Figure 3.23: Vorticity magnitude field for a spatially developing boundary layer over a flat plate.

The caption is taken after a simulation of 1528θinlt{U8 “ 480 s.

Some differences can be found between the two captions, but primarly the hypothesis used on the

equivalence between the temperature and the streamwise velocity can be considered reasonable.

3.5.2.1 Evolution of the mean and rms quantities with the wall coordinate

In this section we will present the results obtained for the mean and the rms quantities (for velocity

and temperature).

The mesh grids employed in this study are 256 ˆ 64 ˆ 64 and 512 ˆ 128 ˆ 128. As seen

previously, the time of convergence of the turbulent statistics is not the same when using different

mesh grid resolutions. The evolution of the mean and rms quantities is plotted, for the mesh grid

256 ˆ 64 ˆ 64, in figure 3.25, and for the mesh grid 512 ˆ 128 ˆ 128, in figure 3.26. The time

needed for the averages to achieve convergence is Tcv “ 1528U8{θinlt “ 480 s for 256 ˆ 64 ˆ 64

and Tcv “ 764U8{θinlt “ 240 s for 512 ˆ 128 ˆ 128.

The influence of the mesh grid has already been studied in consideration to the inlet plane

statistics. It has been shown that, for the inlet plane, refining the mesh grid to go further into

the viscous sublayer demanded a larger number of eddies in order to achieve convergence to the

prescribed statistics. Aside from the poor resolution of the viscous sublayer, the coarse mesh

was sufficient to obtain the prescribed statistics. These tendencies are not expected for the post-

processing plane. Indeed, as already stated in the literature (section 3.2.3), the inlet synthetic

turbulence will first encounter a decline and then, after a certain adaptation distance, it will start

to redevelop into real turbulence. This trend can be observed in figure 3.27, where we plotted

the isosurfaces 0.25 of the Q criterion. Q represents the local balance between shear strain rate

and vorticity magnitude, defining vortices as areas where the vorticity magnitude is greater than

the magnitude of rate-of-strain. The inlet imposed vortices, lacking energy spectra, are rapidly

dissipated, to finally redevelop into real turbulence.

For the chosen computational configuration, the influence of the mesh grid onto the evolution of

the mean and rms quantities, as well as a comparaison with the Jimenez [40] prescribed statistics

and the actual statistics calculated for the imposed inlet inflow are plotted in figure 3.28. The first

observation is that the mesh refinement greatly improve the obtained results. This can be seen for

all the turbulent quantities. However, some differences can be observed in the logarithmic layer
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(a) T

(b) u rm{ss

Figure 3.24: Reduced temperature and streamwise velocity fields for a spatially developing bound-

ary layer over a flat plate. The caption is taken after 1528θinlt{U8 “ 480 s.

for the rms quantities. The mean fields are not entirely recovered in the buffer layer.

These illustrations show that mesh refinement is still needed to obtain the correct statistics.

Indeed, smaller scales would be captured and the energy cascade from the large to small eddies

would be better reproduced. This observation agree with what we have seen in the literature (see

tables 3.1 and 3.3) where a more refined mesh grid is often used.

The evolution obtained for the rms temperature is slightly different from the streamwise rms

velocity. This was also visible when the temperature and the velocity fields have been represented

in a x-y plane (figure 3.24). These differences can be related inter alia, to the use of the scattered

mesh, where the temperature and the velocity are not computed on the same grid. Or else, the

use of different boundary conditions could also induce some discrepancies between the resolutions

of the two fields.

3.5.2.2 Evolution of the heat fluxes quantities with the wall coordinate

To analyze the characteristics of the correlations between the velocity and the temperature fluctu-

ations, the turbulent heat fluxes are defined by:

ă u1θ1 ą`“ ă u1θ1 ą
uτθτ

, (3.71)

ă v1θ1 ą`“ ă v1θ1 ą
uτθτ

. (3.72)

Their evolutions in wall units are illustrated in figure 3.29, for the two mesh grids used in this

study. Additionally, the heat fluxes calculated for the inlet inflow is also plotted. It can be observed

that the mesh grid influence is even more important than for the rms velocity and temperature.

The profiles obtained with the more refined mesh 512 ˆ 128 ˆ 128 are close to the ones calculated

at the inlet plane.

Figure 3.30 shows the streamwise and wall-normal turbulent heat fluxes here obtained for a

momentum thickness Reynolds number Reθ “ 1100, together with the numerical results of Wu and
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θ

Figure 3.25: Turbulent statistics evolution with the wall coordinate, for the mesh grid 256 ˆ 64 ˆ
64. Different values of times of simulation for the average processus (after eliminating 240 s of

simulation) are considered: ( ) - Tcv “ 120 s; ( ) - Tcv “ 240 s; ( ) - Tcv “ 480 s.
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θ

Figure 3.26: Turbulent statistics evolution with the wall coordinate, for the mesh grid 512ˆ 128ˆ
128. Different values of times of simulation for the average processus (after eliminating 480 s of

simulation) are considered: ( ) - Tcv “ 60 s; ( ) - Tcv “ 120 s; ( ) - Tcv “ 240 s.
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Figure 3.27: Isosurfaces of the Q criterion of value Q “ 0.25 for a spatially developing boundary

layer over a flat plate. The caption is taken after T “ 1528θinlt{U8 “ 480 s.

Moin [107] at Reθ “ 1840 and Reθ “ 300, for a Prandtl number of Pr “ 1. Despite the different

values of the Reynolds number, strong similarities are observed between the obtained profiles and

the ones from [107]. The wall-normal heat flux ă v1θ1 ą` is in good agreement with the data from

[107] in the near-wall region. Good agreement is also observed in the profile of the streamwise heat

flux ă u1θ1 ą` except in the vicinity of the peak location. This difference can be related to the

lack of mesh convergence.

In the outer region, the profiles are slighty different from the reference data. This difference

can be explained by the difference in Reynolds number. Indeed, in this region, the curves obtained

for a Reθ “ 1100 are situated between the Reθ “ 300 and Reθ “ 1840 Wu and Moin x profiles.

Kong et al. [49] have also shown that the wall-normal heat fluxes for different Reynolds numbers

coincide up to y` “ 50. In the outer region, the wall-normal flux becomes larger with increasing

Reynolds number. The profile of the streamwise heat flux also shows a similar behavior as the

wall-normal heat flux as the Reynolds number increases.

Figure 3.31 illustrates the evolution of the turbulent Prandtl number with the wall coordinate.

Prt tends to remain constant along the wall-normal direction except in the very near-wall region

where a maximum value is obtained at the wall, with Prt “ 1.09. Similar wall values have also

been reported in other previous studies, [49, 59, 2], in which Prt approaches a value of 1.1 at the

wall. In the y` ă 40 region, the turbulent Prandtl number is in very good agreement with the

reference data. For higher values of the wall coordinate, some slight differences can be observed.

3.5.2.3 Streamwise evolution of the turbulent quantities

Figure 3.32 shows the variations of the mean skin-friction coefficient Cf and the Stanton number

St with the momentum thickness Reynolds number Reθ. The definitions of these parameters are

given in section 3.1.1, equations (3.6) and (3.7). The turbulent correlations for the skin-friction

coefficient, Cf “ 0.024Re
´1{4
θ , and for the Stanton number, St “ 0.0125Pr´2{5Re

´1{4
θ , proposed

by Kays and Crawford [44], are also included for comparison. In addition, the evolutions obtained

in the DNS of Wu and Moin [107] and Li et al. [58] are also plotted.
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θ

Figure 3.28: The influence of the mesh grid onto the wall coordinate evolution of the turbulent

statistics. Each curve is plotted after the corresponding Tcv. (black line) - Jimenez data [40];

(dashed line) - the statistics of the imposed inlet inflow; ( ) - 256 ˆ 64 ˆ 64; ( ) - 512 ˆ 128 ˆ 128.

θ

θ

Figure 3.29: Turbulent heat fluxes in the streamwise ă u1θ1 ą` and wall-normal ă v1θ1 ą`

directions. Each curve is plotted after the corresponding Tcv. (black line) - the statistics of the

imposed inlet inflow; ( ) - 256 ˆ 64 ˆ 64; ( ) - 512 ˆ 128 ˆ 128.
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θ

θ

Figure 3.30: Turbulent heat fluxes in the streamwise ă u1θ1 ą` and wall-normal ă v1θ1 ą`

directions. Comparison with the data extracted from Wu and Moin [107] for a Pr “ 1; (solid lines)

- Reθ “ 1840 and (dashed lines) - Reθ “ 300. ( ) - present results obtained with 512 ˆ 128 ˆ 128.

Figure 3.31: Turbulent Prandtl number Prt in wall units. Comparison with the data extracted

from the literature; (solid line) - DNS of Li et al. [59] for Reθ “ 800, (dashed lines) - DNS of Araya

and Castillo [2] for Reθ “ 400; (dashed dot lines) - DNS of Araya and Castillo [2] for Reθ “ 2290;

(dashed dot dot lines) - DNS of Kong et al. [49] for Reθ “ 376; ( ) - present results obtained with

512 ˆ 128 ˆ 128, for Reθ “ 1100.
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θ

Figure 3.32: Streamwise variation of the skin friction coefficient Cf and the Stanton number St with

Reθ. (solid lines) - Li et al. [58]; (dashed lines) - turbulent correlations from Kays and Crawdord

[44];( ) - Wu and Moin [107]; ( ) - present Cf ; ( ) - present St, obtained with 512 ˆ 128 ˆ 128.

The results obtained in the present study are overvalued, for the Cf , and underestimated, for

the St. The friction coefficient decreases close to the inlet plane, for Reθ ă 1150, followed by an

increase with the Reynolds number, whereas its evolution should be the opposite. The Stanton

number evolution is on the right path. One can assume that if the length in the streamwise

dimension lx was higher, the St curve would reach the reference curves, and maybe attain the

correct slope.

These behaviour patterns are often found in the numerical simulation of turbulent boundary

layer flow on a flat plate. For example, in the random fluctuation method proposed by Lund et

al. [62], the friction coefficient exhibits a sharp drop between the inlet plane at Reθ “ 1500 until

Reθ “ 1850, the maximum error being 70%, followed by an increase once the flow develops realistic

turbulent structure. The same trend is observed by Keating et al. in [45], where precursor time

series are used for the inlet inflow. The coefficient of friction decreases immediately downstream

of the inflow plane, but then recovers after 6 ´ 10δinlt, as can be seen in figure 3.33. Pamies et al.

[72] obtain also a similar behavior, when using the modified SEM of Jarrin et al. [38]. In their

case, the friction coefficient increases drastically downstream the inlet plane but recover quickly,

after 3 ´ 6δinlt.

This information implies that, in order to obtain better profiles for the friction coefficient and

Stanton number, we should increase the length dimension in the streamwise direction. This would

allow the development of the generated turbulence towards a more realistic one. Given the already

stated computational constraints, in the present study, the increase of the streamwise direction

was not possible.

In the next chapter we will present our work on the interaction between the phase change

induced velocity and the boundary layer flow. To this extent, a second simulation will be used.

This will allow, firstly, to consider an extension of the spatial development of the boundary layer

and to investigate the influence of the dimension lx onto the evolutions of the turbulent quantities.

3.6 Conclusions

This chapter was devoted to the numerical simulation of the spatial development of a turbulent

boundary layer flow on a flat plate, with heat transfer. A thorough overview of the literature on
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Figure 3.33: Streamwise variation of the skin friction coefficient Cf . The graph has been extracted

from Keating et al. [45]. (solid line) - precursor simulation; (dashed line) - synthetic turbulence us-

ing standard scales; (dashed dot line) - "suboptimal" synthetic turbulence; (dotted line) - synthetic

turbulence using corrected scales ("optimal").

the existing numerical methods to generate inflow data for turbulent flows simulation allowed us

to choose the SEM for the present study.

The implemented method was validated for the simulation of instantaneous turbulent signals as

well as for the spatially decaying HIT. Additionally, the influence of the mesh grid, the length scale

value, the number of eddies and a time convergence study were conducted. It allowed, on one hand,

to validate our implementation, and on the other hand, to choose the computational configuration

to use for this work. It was shown that for the inlet plane inflow, the obtained statistics outside

the viscous sublayer were correct for a coarse mesh of dimensions ∆x “ ∆z „ 25, ∆y`
min “ 3.1,

∆y`
max „ 40. For a more refined mesh grid, the number of eddies had to be increased in order to

obtain the correct evolutions. This was explained using the definition of the length scale σ, which

depends on the spanwise and streamwise mesh dimensions in the close-to-the-wall region.

Finally, the numerical simulation of a turbulent boundary layer flow with heat transfer at a

momentum thickness Reynolds number Reθ “ 1100 was described. It was shown via snapshots

of the streamwise velocity and temperature fields that the hypothesis of the equivalence between

the two can be considered reasonable. The evolutions of the turbulent statistics, mean and rms

velocities and temperature profiles, with the wall coordinate were plotted. It is shown that the mesh

refinement greatly improve their corresponding evolutions. The same is found for the turbulent

heat fluxes, in the streamwise and the wall-normal directions. A comparaison with data extracted

from the literature shows a good agreement of the obtained evolutions. The same goes for the

turbulent Prandtl number, which reaches a maximum value of 1.09 close to the wall, while similar

values have also been reported in other previous studies, in which Prt approaches a value of 1.1 at

the wall.

The streamwise evolutions of the friction coefficient and the Stanton number, allowing for the

characterization of the local boundary layer flow, showed significant differences in comparison with

the existing empirical (Kays and Crawford [44]) and numerical or experimental evolutions. In the

vicinity of the inlet plane, it has already been reported that, when using a synthetic method, these

parameters have incorrect evolutions. Often, their evolution regain the correct path, but only after

some distance in the streamwise direction. This matter will be tackled with in the next chapter.

The next chapter is dedicated to the numerical simulation of the interaction between a spatially

evolving boundary layer flow with heat transfer and the normal velocity induced by liquid/vapor
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phase change.
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phase change and a spatially

developing turbulent boundary layer

flow

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Computational configuration . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.1 Treatment of the liquid/vapor phase change . . . . . . . . . . . . . . . . 97

4.2.2 Validation of the proposed treatment of liquid/vapor phase change on

the 2D laminar configuration . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Influence of the spatial extension in the streamwise direction onto

the development of the turbulent boundary layer flow . . . . . . . . 99

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.1 Qualitative study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.2 Quantitative study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.3 Nusselt number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . 110

In what follows, we investigate the interaction between a spatially developing turbulent

boundary layer flow and a normal velocity field induced by liquid/vapor phase change.

This has been conducted first qualitatively, by analysing the normal velocity field, the

vorticity magnitude field and the isosurfaces of the Q criterion. Next, a study on the

influence of the phase change onto the turbulent quantities is presented. Several Jakob

numbers are studied and a preliminar physical analysis is proposed for the obtained

profiles. Additionally, we take interest on the impact of the phase change onto the

Nusselt number evolution. This is given in the continuity of the work on the laminar

regime where correlations on the Nusselt number were proposed.
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4. INTERACTION BETWEEN LIQUID/VAPOR PHASE CHANGE AND A SPATIALLY

DEVELOPING TURBULENT BOUNDARY LAYER FLOW

4.1 Introduction

In practical applications, most flows which occur are turbulent. To this extent, the previous chapter

was dedicated to the spatial development of a turbulent boundary layer flow. The next step, taken

in this chapter, is to investigate the interaction between liquid/vapor phase change and a spatially

developing turbulent boundary layer flow. More precisely, we focus on the influence of a normal

velocity field induced by liquid/vapor phase change onto the evolution of turbulent quantities:

mean and rms fields, turbulent heat fluxes, friction coefficient, Stanton number. Additionally, an

analysis on the Nusselt number evolutions with and without phase change, for different values of

the Jakob number is proposed.

The present chapter is structured as it follows. First, we describe the computational configu-

ration used for this study, where two simulations are used: an auxiliary and a main simulations.

The main simulation is used to study the blowing effects of the phase change onto the turbulent

boundary layer. The auxiliary simulation serves to generate input data for the main simulation.

We first use this numerical configuration for the case without phase change, for which the main

simulation serves as a spatial extension of the computational domain in the x direction. This allows

studying whether and how the length in the streamwise direction influences the development of

the turbulent boundary layer flow.

Next, we address the configuration involving liquid/vapor phase change. The approach for

this study has been of varying the Jakob number and analyzing its influence onto the spatial

development of the turbulent boundary layer flow. First, a qualitative analysis of the obtained

results is proposed. The normal velocity field, the vorticity magnitude and the isosurfaces of the

Q criterion are plotted for the configurations with and without phase change. Comparisons and

physical interpretations are given for the observed influences of the phase change onto these fields.

Last but not least, we propose a quantitative study on the influence of the Jakob number

onto the turbulent quantities, namely onto the mean and the rms fields, the turbulent heat fluxes

in the streamwise and normal directions, the friction coefficient and onto the Stanton number.

Additionally, a preliminary analysis on the influence of the Jakob number onto the Nusselt number

is also given, in the continuity of the work on the laminar boundary layer presented in chapter 2.

Finally, the chapter ends with conclusions and perspectives on this work.

4.2 Computational configuration

For the study of the influence of liquid/vapor phase change onto an external turbulent flow, the

corresponding turbulent flow had first to be simulated. To this extent, in the previous chapter,

the focus was on the implementation of a turbulent inflow generator. The next step is to consider

a configuration allowing to investigate the influence of liquid/vapor phase change onto the spatial

development of the turbulent boundary layer. The most straightforward approach would be to

expand the computational domain. This configuration would strongly resemble to the laminar

boundary layer configuration illustrated in figure 2.1 in chapter 2. However, for the turbulent flow,

in comparison with the laminar boundary layer, an upstream additional length would have to be

added in order to simulate the spatial development of the turbulent boundary layer flow. This

approach is not conceivable given the computational constraints involved by the simulation of a

3D turbulent flow.

In order to alleviate the involved computational costs, two aspects had to be tackled with.

First, the addition of the upstream length was avoided by splitting the simulation into two parts,

an auxiliary and a main simulation. The configuration and the results of the auxiliary simulation,
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hereinafter denoted as Code-1, were the subject of the previous chapter. The inflow is generated

using the SEM and the post processing is done at xpp. After a certain computation time, allowing

to achieve the average convergence, the simulation advances while storing, at each time step, the

velocity components and the temperature on a vertical plane located at xpp. These planes are

later used as inflow boundary condition for the second simulation, hereinafter denoted as Code-2

(figure 4.1). The coupling between Code-1 and Code-2 involves writing/reading operations in the

MPIIO environment. Therefore, during my thesis, development of MPIIO communicators in the

zy post-processing and inlet planes was realized.

The second simulation uses the same computational configuration as Code-1, except for the

inflow boundary condition where we impose the planes generated using Code-1. This allows to

have a continuity in the spatial development of the turbulent boundary layer flow. The simulation

of the spatial development of the turbulent boundary layer flow on a flat plate is conducted until

the obtained averaged statistics attain temporal convergence (about 480 s), and then the phase

change is plugged in. No difference exists between Code-1 and Code-2, regarding the initialization,

mesh grid or domain dimensions. For more details on these aspects refer to section 3.5.1 of the

previous chapter.

The second aspect is related to the simulation of the liquid/vapor phase change. In order to

avoid the computational costs induced by the simulation of the static liquid pool at saturation,

the phase change is imposed as a boundary condition. Once the turbulent boundary layer is well

developed, the liquid/vapor phase change is activated, as illustrated in the lower part of figure 4.1.

The same Code-2 is used to this end, with the only difference concerning the boundary condition

imposed at y “ 0. The specifics on how the liquid/vapor phase change is treated are given in the

upcoming section.

4.2.1 Treatment of the liquid/vapor phase change

In chapter 2 we have described our study on the influence of liquid/vapor phase change onto an

external laminar boundary layer flow of vapor. The 2D computational configuration, shown in

figure 2.1, contains a liquid pool at saturation overflown by a boundary layer flow overheated

or subcooled. The Navier-Stokes equations, as well as the energy equation, are solved in both

domains, by the use of the Ghost Fluid Thermal Solver for Boiling, described in section 1.3.5 of

chapter 1.

The present 3D configuration has already a high computational cost. Avoiding the simulation

of the liquid pool and the use of the Ghost Fluid Thermal Solver for Boiling is therefore mandatory.

For the laminar 2D configuration, it was shown that the liquid velocity field induced by the shearing

of the external vapor flow is negligible. This observation allows to consider simulating only the

vapor flow and imposing the liquid/vapor phase change as a boundary condition on the velocity

field.

As already explained in chapter 1, through the liquid/vapor interface, the continuity of the

mass flux has to be satisfied. This induces a jump on the velocity field across the interface, written

as

rVsΓ “ 9m

„
1

ρ



Γ

n, (4.1)

where, we recall, that 9m is the mass flow rate, proportional to the interface thermal flux,

9m “ 1

Lv

„
k

BT
By



Γ

. (4.2)

We take the assumption of a plane interface, with n “ ey, between the vapor and the static liquid
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Figure 4.1: Schematic drawing of the computational domains of the auxiliary simulation (Code-1)

and the main simulation (Code-2).

pool at saturation. The velocity field in the liquid is therefore zero ul “ 0 and the liquid is at

saturation temperature Tlpx, y, zq “ Tsat. Consequently, equations 4.1 and 4.2 write

rvsΓ “ 9m

ˆ
1

ρv
´ 1

ρl

˙
, with 9m “ 1

Lv

ˆ
kv

BT
By

ˇ̌
ˇ
y“0

˙
. (4.3)

The liquid/vapor phase change is therefore imposed as an inflow boundary condition at y “ 0,

with u “ 0 and v “ 9m p1{ρv ´ 1{ρlq. The mass flow rate 9m is obtained at each time step, using

the vapor temperature gradient at y “ 0. We recall that, for methodology reasons, we simulate

the reduced temperature field T̃ “ pT ´ T8q { pT0 ´ T8q. This implies that the mass flow rate,

computed using the reduced temperature, writes 9m “ pT0 ´ T8q
Lv

˜
kv

BT̃
By

ˇ̌
ˇ
y“0

¸
.

4.2.2 Validation of the proposed treatment of liquid/vapor phase change

on the 2D laminar configuration

Before presenting the results obtained for the turbulent boundary layer flow, we first validate the

proposed treatment of liquid/vapor phase change on the 2D laminar configuration, whose results

are described in chapter 2.

We consider the same 2D computational domain described in figure 2.1, chapter 2, with the

difference that the liquid domain is not simulated. The liquid/vapor phase change is imposed

through the boundary condition at y “ 0, as described in the previous section. Therefore, the

dimensions of the computational domain are plx, lyq with lx “ 0.007 and ly “ 0.014. The used

mesh grid is 512ˆ 1024. For the sake of simplicity, we consider here only the case of vaporization,
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Figure 4.2: Evolution of the Nusselt number for the laminar flow, for the dimensionless numbers:

RexL
“ 85.726, Pr “ 1.022, ρl

ρv
“ 17.746 and Ja “ 3.69. The influence of the liquid/vapor phase

change treatment; (black line) - Blasius theory; ( ) - simulation of both phases; ( ) - liquid/vapor

phase change imposed as a boundary condition at y “ 0.

described by the dimensionless numbers Pr “ 1.022, RexL
“ 85.726, ρl

ρv
“ 17.746, and Javap “

3.69.

In figure 4.2 the evolution of the Nusselt number is plotted, for the two configurations, with the

simulation of the liquid/vapor phase change and when the liquid/vapor phase change is imposed

as a boundary condition at y “ 0. Very little difference can be observed. We show therefore that

the two approaches can be considered equivalent.

4.3 Influence of the spatial extension in the streamwise di-

rection onto the development of the turbulent boundary

layer flow

In this section, the scope is to see whether and how an extension in the streamwise direction

improves the turbulent quantities obtained in our simulation. The simulations described in the

previous chapter showed that the inlet synthetic turbulence will first encounter a decline and then,

after a certain adaptation distance, it will start to redevelop into real turbulence. This has been

illustrated, inter alia, by plotting the isosurfaces 0.25 of the Q criterion (figure 3.27). When using

Code-2, the turbulent fluctuations imposed at the inlet plane are closer to real turbulence and no

adaptation distance is needed. This is shown in figure 4.3 where the isosurfaces of the Q criterion

of value Q “ 0.25 are plotted. In comparison with figure 3.27, it can be observed here a larger

population of vortices and a continuity in the spatial development of the boundary layer.

Figure 4.4 shows a comparison between the rms velocities profiles obtained at the post process-

ing plane in Code-1 and the ones obtained at the post processing plane in Code-2. For the coarse

mesh grid 256 ˆ 64 ˆ 64, the influence of the extension in the streamwise direction, via the use of

Code-2, is significant, while, for the more refined grid, slight differences can be observed only in the

outer zone. When using the coarse mesh grid, the generated synthetic turbulence contains mostly

large scales in the logarithmic layer. The development into more realistic turbulence with a correct

variation in the normal-wall direction of the length scales demands therefore a larger distance in
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Figure 4.3: Isosurfaces of the Q criterion of value Q “ 0.25 for a spatially developing boundary

layer over a flat plate, obtained using Code-2. The caption is taken after T “ 1528θinlt{U8 “ 240

s.

(a) 256 ˆ 64 ˆ 64 (b) 512 ˆ 128 ˆ 128

Figure 4.4: Evolution of the rms velocity with the wall coordinate, using Code-1 and Code-2. The

influence of the extension in the streamwise direction. Each curve is plotted after the corresponding

Tcv. (black line) - Jimenez data [40]; (dashed line) - the statistics obtained in Code-1; (symbols) -

the statistics obtained in Code-2.
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θ

θ

θ

Figure 4.5: Evolution of the rms temperature and the turbulent heat fluxes with the wall co-

ordinate, using Code-1 and Code-2. The influence of the extension in the streamwise direction.

Each curve is plotted after the corresponding Tcv. (black line) - Jimenez data [40]; (dashed line)

- the statistics obtained in Code-1; (symbols) - the statistics obtained in Code-2; (blue color) -

256 ˆ 64 ˆ 64; (red color) - 512 ˆ 128 ˆ 128

the streamwise direction. Meanwhile, for the more refined grid, the observed differences can be

explained by the increase in the Reynolds number. Indeed, as already discussed, it has been largely

shown that, even in wall units, there is an influence of the Reynolds number onto the evolution of

the turbulent quantities (see for example Degraaff et al. [20]).

Note that the same tendencies are observed for the rms temperature and the turbulent heat

fluxes profiles, in figure 4.5.

The influence of the extension in the streamwise direction, via the use of Code-2, on the

friction coefficient and Stanton number evolutions is shown in figure 4.6. The curves obtained with

Code-2 overlap with the profiles obtained with Code-1, showing the continuity in the turbulence

development. This supports the hypothesis of equivalence between an extension of the length in

the streamwise direction and the use of a second simulation. Additionally, the friction coefficient

stops increasing and starts decreasing at almost the same slope as the reference profile from Li et

al. [58]. The same behaviour is encountered for the Stanton number. A more refined grid would

allow, inter alia, to have a better resolution of the viscous sublayer and therefore to obtain more

realistic profiles for the friction coefficient and the Stanton number.

4.4 Results

In this section we will present our preliminary results on the influence of the liquid/vapor phase

change onto the spatial evolution of the turbulent boundary layer flow. We will first show some

tendencies when increasing the Jakob number Ja and extract a physical understanding of the

effects of a blowing velocity field onto the spatial development of the turbulent boundary layer

flow. Next, a more quantitive analysis is proposed by focusing on the different turbulent quantities

characterizing the turbulent boundary layer flow.

As previously, the post processing parameters studied here are the mean and rms velocity

and temperature fields, the turbulent heat fluxes in the streamwise and normal directions, the

friction coefficient and the Stanton number. Additionally, we take interest in the evolution of the
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θ

Figure 4.6: Streamwise variation of the skin friction coefficient Cf and the Stanton number St

with Reθ, using Code-1 and Code-2. The influence of the extension in the streamwise direction.

(solid lines) - Li et al. [58]; ( ) - Code-1, ( ) - Code-2.

(a) Without phase change (Ja “ 0). (b) With phase change (Ja “ 14).

Figure 4.7: Snapshots of the normal to the wall velocity v rm{ss in a Oyz plane situated at x “ lx{2.
Influence of the liquid/vapor phase change induced velocity on the normal to the wall velocity.
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(a) Without phase change (Ja “ 0). (b) With phase change (Ja “ 14).

Figure 4.8: Snapshots of the vorticity magnitude field in a Oyz plane situated at x “ lx{2. Influence

of the liquid/vapor phase change induced velocity on the vorticity magnitude.

Nusselt number in the streamwise direction. Some comparisons will be done in regard to the results

obtained for the 2D laminar configuration studied in chapter 2.

Note that the time average is done after eliminating 120 s of simulation. The time convergence

study is shown in Appendix C.1. The mesh grids used are 256 ˆ 64 ˆ 64 and 512 ˆ 128 ˆ 128.

Only the results obtained with the more refined mesh resolution are shown in what follows. The

influence of the mesh grid is shown in Appendix C.2.

At present, only four Jakob numbers have been investigated, Ja “ r0.088; 0.88; 8.8; 14s, while

keeping constant the other three dimensionless numbers, the Prandtl number Pr “ 1.022, the

Reynolds number Reθ “ 1100 and the density ratio ρl{ρv “ 17.746. We recall the expression of

the Jakob number, Ja “ Cp∆T

Lv
, where ∆T “ T8 ´ T0 “ 100o.

4.4.1 Qualitative study

Before discussing the influence of the Jakob number onto the evolution of the turbulent quantities,

we first show the blowing effects onto the normal velocity component, the vorticity magnitude and

the Q criterion.

In figure 4.7 is plotted the normal velocity component v in a Oyz plane located at x “ lx{2 for

two configurations: without phase change (Ja “ 0) and with phase change (Ja “ 14). Differences

can be observed between the two illustrated fields. The length scales of the spots are highly

diminished when the boundary layer is blown by the velocity induced by liquid/vapor phase change.

This is prominent in the region close to the wall, where numerous small spots can be observed.

Additionally, when comparing the two pictures, the free stream normal velocity value is higher when

liquid/vapor phase change occurs. On the other hand, no conclusion can be made on whether the

phase change increases the boundary layer thickness.

The vorticity magnitude field is shown in figure 4.8 for the same two configurations. The

spots with higher vorticity magnitude value are more abundant when liquid/vapor phase change is
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(a) Without phase change (Ja “ 0).

(b) With phase change (Ja “ 14).

Figure 4.9: Isosurfaces of the Q criterion of value Q “ 0.5. Influence of the liquid/vapor phase

change induced velocity on the spatial development of the turbulent boundary layer flow.

involved. This implies that the vertical velocity aids the energy transfer from large eddies to small

eddies. Furthermore, it would seem that the quantity of small eddies is highly increased.

A verification of the latter statements is done by using the Q criterion. In figure 4.9 the

isosurfaces of value Q “ 0.5 are plotted. Note that we have chosen here a higher value of Q than

in the previous cases. Figure 4.9b shows an important increase in the population of vortices when

the boundary layer is blown by the liquid/vapor phase change. This increase begins at a certain

length from the inlet plane and this behaviour would certainly be noticeable when showing the

streamwise evolution of the friction coefficient and the Stanton number.

Qualitatively, we have observed until now, that the vertical velocity imposed at the y “ 0

boundary modifies the structure of the turbulent boundary layer. It would seem that a fragmenta-

tion of large eddies into small eddies is enhanced. The liquid/vapor phase change brings through

the imposed normal velocity energy that is then used for the creation of eddies of high vorticity.

Further on we will focus on the influence of the Jakob number onto the evolution of the turbulent

quantities and try to explain the tendencies observed in this section. Even if we were not strictly

able to demonstrate the spatial convergence of our simulations, we will nevertheless consider that
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Figure 4.10: Influence of the Jakob number onto the evolution of the rms velocity fields. The

dimensionless numbers are Reθ “ 1100, Pr “ 1.022, ρl{ρv “ 17.746 and different values of the

Jakob number: (dashed line) - Ja “ 0; ( ) - Ja “ 0.088; ( ) - Ja “ 0.88; ( ) - Ja “ 8.8; ( ) -

Ja “ 14.

we are not far from its achievement, as the graphs from Appendix C.2 indicate it.

4.4.2 Quantitative study

Figure 4.10 shows the evolution of the rms velocities with the wall coordinate for different values of

the Jakob number. Its influence onto the rms temperature and the turbulent heat fluxes is plotted

in figure 4.11. The mean fields are also concerned and their evolutions for different rates of phase

change are illustrated in figure 4.12.

Increasing the Jakob number leads to an increase of the rms fields and of the turbulent heat

fluxes. The turbulent kinetic energy k1 is therefore increased. This is coherent with the previous

qualitative observations on the increase of the small eddies population. Indeed, small eddies possess

higher turbulent kinetic energy than large eddies.

The region on which the phase change impacts the profiles of these quantities expands with the

Jakob number. The buffer and the logarithmic zones are the most impacted. For the quantities

containing the normal velocity component, v`
rms, ă uv ą` and ă vθ ą`, the influence can be

observed for all y`.
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θ

θ θ

Figure 4.11: Influence of the Jakob number onto the evolution of the rms temperature and the

heat fluxes. The dimensionless numbers are Reθ “ 1100, Pr “ 1.022, ρl{ρv “ 17.746 and different

values of the Jakob number: (dashed line) - Ja “ 0; ( ) - Ja “ 0.088; ( ) - Ja “ 0.88; ( ) -

Ja “ 8.8; ( ) - Ja “ 14.
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δ

Figure 4.12: Influence of the Jakob number onto the evolution of the mean velocity and mean

temperature. The dimensionless numbers are Reθ “ 1100, Pr “ 1.022, ρl{ρv “ 17.746 and

different values of the Jakob number: (dashed line) - Ja “ 0; ( ) - Ja “ 0.088; ( ) - Ja “ 0.88;

( ) - Ja “ 8.8; ( ) - Ja “ 14.

The turbulent heat flux in the streamwise direction, ă uθ ą`, is enhanced by the liquid/vapor

phase change, its evolution with the wall coordinate beeing highly influenced by the liquid/vapor

phase change(figure 4.11). The peak of the heat flux in the normal direction ă vθ ą` is shifted to

the right when increasing the Jakob number. This can be explained by the fact that the maximum

of the turbulent heat flux in the normal direction is displaced further from the wall when increasing

the vertical velocity induced by the phase change.

Figure 4.12 illustrates the mean profiles of velocity and temperature for different values of the

Jakob number. The phase change induced velocity decreases the mean fields gradient close to

the wall while increasing it in the logarithmic zone. Outside the boundary layer, y{d99 ą 1, the

velocity profile presents the same kind of growth as for the laminar regime velocity profile, plotted

in figure 2.19. As until now, the nondimensionalization of the turbulent quantities is achieved

using the reference friction velocity uτ “ 0.0462, from Jimenez et al. [40]. As for flows at different

Reynolds number, it would be interesting to see if the curves overlap in the inner region, when

using the corresponding computed friction velocity. However, the employed mesh grid allows to

have only 3 points in the viscous sublayer, the friction velocity computed at y “ 0 is therefore not

yet converged. Its use will undoubtedly introduce errors.

The analysis of the influence of the phase chnage onto the evolutions of the mean velocity and

the crossed rms velocity ă u1v1 ą can also be done by plotting the total shear stress τ and its two

components, the Reynolds shear stress ´ρ ă u1v1 ą and the viscous shear stress µ
BU
By . This is

done for the case without phase change and for a Jakob number Ja “ 0.88 in figure 4.13. It can be

seen that the viscous shear stress is influenced by the phase change only in the viscous sublayer,

for y` ă 5. The Reynolds shear stress follows the same evolution in the close to the wall zone

(y` ă 10), regarless of the Jakob number. In the logarithmic zone, its profile is increased when

phase change occurs.

In figure 4.14 we have plotted the evolution of the friction coefficient and the Stanton number

with the x-axis. As expected, an increase in the Jakob number generates a decrease of these

parameters. Indeed, the blowing velocity imposed at the y “ 0 boundary will decrease the mean

velocity and temperature variation in the normal wall direction.
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Figure 4.13: Shear stress distribution with the wall coordinate. The dimensionless numbers are

Reθ “ 1100, Pr “ 1.022, ρl{ρv “ 17.746 and two values of the Jakob number: (black colour) -

Ja “ 0; (green colour) - Ja “ 0.88; (circle) - total shear stress; (square) - Reynolds shear stress;

(triangle) - viscous shear stress.

For the laminar configuration, very little influence of the phase change onto the evolution of

the friction coefficient has been observed. Given that for a turbulent regime, close to the wall there

is a viscous sublayer where the flow is considered laminar, we could expect to obtain the same

tendency on the evolution of the friction coefficient. However, the behaviour of the mean velocity

when phase change occurs is not the same as for the laminar. We recall that for the laminar

boundary layer configuration, the evolution of the tangential velocity profilewas almost identical

to the Blasius boundary layer velocity profile, despite the vapor blowing in the normal direction

due to phase change.

An additional observation in regard to the friction coeffient and the Stanton number evolutions

can be made. Close to the inlet plane, the profiles present a very steep slope, whose length increases

with the Jakob number. We can link this behaviour with what we have observed when plotting

the isosurfaces of the Q criterion. Indeed, an increase of the small eddies population could be

observed only at a certain distance from the inlet plane. This could perhaps explain the presence

of the steep slope on the obtained profiles. After this region, both the friction coefficient and the

Stanton number follow a power low evolution, close to the ones proposed by Kays ans Crawford

[44], Cf „ Re
´1{4
θ and St „ Pr´2{5Re

´1{4
θ . Very little influence of the Jakob number can be

observed on the slope of these power law curves. Further studies could be conducted in order to

establish an evolution law with the Jakob number for these parameters.

4.4.3 Nusselt number

We now take interest into the Nusselt number evolution when phase change occurs. We recall

its expression that writes Nu “ hx{k, where the heat transfer coefficient is expressed using the

reduced temperature field,

h “ k

∆T

BT
By “ k

BT̃
By . (4.4)

For the laminar regime, the Blasius theory allows to calculate the analytical solutions for
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Figure 4.14: Influence of the Jakob number onto the evolution of the friction coefficient and Stanton

number. The dimensionless numbers are Reθ “ 1100, Pr “ 1.022, ρl{ρv “ 17.746 and different

values of the Jakob number: (dashed line) - Ja “ 0; ( ) - Ja “ 0.088; ( ) - Ja “ 0.88; ( ) -

Ja “ 8.8; ( ) - Ja “ 14.

Figure 4.15: Spatial evolution of the Nusselt number for the dimensionless numbers: Reθ “ 1100,

Pr “ 1.022, ρl{ρv “ 17.746 and different values of the Jakob number: (dash dot dot line) - Ja “ 0;

( ) - Ja “ 0.088; ( ) - Ja “ 0.88; ( ) - Ja “ 8.8; ( ) - Ja “ 14. Note that X “ xL ` x, with

x P r0, lxs and δxL
“ 2.7568 m.
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the boundary layer problem. Here, in the absence of such a theory, we take as reference the

Nusselt number profile computed when no phase change occurs. Note that only a mean value

of the Nusselt number, computed over a length L, can be found in the literature, where NuL “
0.036pReLq0.8pPrq0.6.

In the continuity of the work conducted for the laminar boundary layer, one would want to plot

the Nusselt number evolution from the position xL, where δ99px “ xLq “ δinlt. To this extent, this

specific position has to be calculated. For this we use Prandtl’s 1/7th power law (see Bejan [5])

δ99

x
“ 0.37

ˆ
U8x

ν

˙´1{5

. (4.5)

where δ99 “ 2.7568 m is given by Jimenez and we add to the obtained distance the length of the

Code-1 domain, lx “ 14.4δ99, allowing to obtain xL “ 82.02 m.

The evolution of the Nusselt number is plotted in figure 4.15, for different values of the Jakob

number. We see that increasing the phase change has the same impact on the Nusselt number

for the turbulent boundary layer as for the laminar regime. The Nusselt number decreases when

increasing the Jakob number. In the same way, a transition zone is observed near the inlet plane,

with the presence of a minimum followed by a positive slope of the Nusselt curve evolution. This

result is very promising in our intent to find a similarity between the turbulent and the laminar

regime. However, further study is needed in order to conduct a parametric study by simulating

several intermediate Jakob numbers. It is possible that the values 8 and 14 are too high. We recall

that for the laminar regime, the highest value was 8 and it was at the limit of the validity range

of the proposed correlation. The change in the slope observed on the Nusselt number profiles in

figure 4.15, for the high Jakob numbers, could therefore be linked to a too important phase change

rate.

4.5 Conclusions and perspectives

In this chapter we have presented our results obtained for the study on the interaction between a

turbulent boundary layer flow of vapor and a normal velocity field induced by liquid/vapor phase

change.

The illustrations of the normal velocity and of the vorticity magnitude fields in a vertical plane

Oyz showed an increase of vortices in the inner zone of the boundary layer, possesing a high

vorticity. When plotting the isosurfaces of Q “ 0.5, an increase in the population of small eddies

was observed. These tendencies have been explained by considering that the energy cascade from

large to small eddies is higly enhanced by the blowing velocity induced by liquid/vapor phase

change.

A quantitative study has been conducted in order to determine the influence of liquid/vapor

phase change onto the evolution of the turbulent quantities. The rms fields showed a considerable

increase with the Jakob number. This is coherent with the observation on the increase of small

eddies number, considering that the energy goes from large to small turbulent scales. The turbulent

heat fluxes are also impacted by the phase change. The turbulent heat flux in the streamwise

direction is highly increased when increasing the Jakob number. The peak of the heat flux in the

normal direction is shifted towards higher values of the wall coordinate y` when increasing the

Jakob number. This can be explain by the blowing effect of the liquid/vapor phase change.

The mean profiles of the temperature and the velocity are also modified when phase change

occurs. The velocity gradient is decreased in the viscous sublayer and increased in the logarithmic

zone when increasing the Jakob number. It would be interesting, when obtaining the spatial
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convergence for our simulations, to use the computed friction velocity for the nondimensionalization

of the mean profiles in order to see whether the profiles overlap in the inner region. The evolutions

of the shear stressed show some interesting trends. The viscous shear stress is influenced by the

phase change only in the viscous sublayer, for y` ă 5. The Reynolds shear stress follows the

same evolution in the close to the wall zone (y` ă 10), regarless of the Jakob number while in the

logarithmic zone, its profile is increased when phase change occurs.

The friction coefficient and the Stanton number show little influence of the Jakob number onto

the slope of their profiles. Nevertheless, the corresponding curves are shifted towards smaller values

when increasing the phase change.

The evolution of the Nusselt number shows similar tendencies that the one obtained for the

laminar regime: first a region where the Nusselt number decreases towards a minimum followed

by a curve of positive slope.

The present work is in progress and opens to many perspectives. Simulations for intermediate

values for the Jakob number are ongoing. This will allow to get a better understanding from the

observed trends. For example, for all the turbulent quantities, a certain saturation effect could be

predicted, especially for vrms, wrms, Cf and St, where a constriction between the curves of Ja “ 8

and Ja “ 14 can be observed. Additionally, studying several values of the Jakob number would

allow to determine a behaviour law and compare it with the correlation obtained for the laminar

regime.

It would be valuable to investigate the terms from the turbulent kinetic energy balance. A

study on the influence of phase change onto the terms of production, diffusion and dissipation is

planned for the near future. This will allow to go further in the comprehension of the obtained

tendencies, comprehend what turbulent processus is most influenced by the liquid/vapor phase

change. Additionally, investigations on the energy spectra could allow to determine to what scales

the energy from the phase change is distributed.

Finally, simulations with a more refined mesh grid, 1024 ˆ 256 ˆ 256, would surely allow to

obtain better profiles for the friction coefficient and the Stanton number. This would enable a

parametric study for different Jakob numbers with the objective to determine behaviour laws for

the heat flux and the friction coefficient.
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In the previous chapter, the focus was on the microgravity regime, in which the liquid

propellant is pressurized by a superheated vapor. In this chapter, the objective is to

characterize the configuration where the cryogenic tank is subjected to gravitational ac-

celerations. In this framework, natural convection motions develop in the liquid while

the walls of the tank are heated through solar radiation or residual thermal diffusion.

This leads to an interaction between the convective mouvements and the phase change

taking place at the liquid/vapor interface. For this study, a 2D computational configu-

ration has been considered, where the density variations in the liquid phase are treated

using the low-Mach approximation while the vapor phase is incompressible. The influ-

ence of the Grashof number, characterizing the natural convection, onto the evolution

of the interface thermal flux is investigated.
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5.1 Introduction

In this chapter we present the work conducted on the natural convection motion driven by the

thermal stratification in a cryogenic tank.

The industrial context of this study is related to a cryogenic tank of a satellite, where the

subcooled liquid phase is pressurized by a superheated gas. During the launching phase or the

orbit insertion, convective mouvements develop in the ergol. The origine of these motions is

twofold. First, the subcooled liquid is heated in the vicinity of the tank wall. This can be due to

the thermal diffusion of the engines, or as a result of the solar radiation, depending on whether

the launching phase or the orbit insertion is considered. Second, the cryogenic tank is subjected

to a hypergravity acceleration, during the launching phase, or to a residual gravity acceleration,

during the orbit insertion, which leads to a thermal stratification in the ergol. The coupling of

these two phenomena produces the convective motions which will interact with the liquid/vapor

phase change.

The physical and the thermodynamical properties of the cryogenic fluids, the tank wall heat

flux and the tank dimensions make that the flow regime in the tank is turbulent (Gr „ 1010). The

direct numerical simulation of such a configuration is out of reach, in terms of computation cost.

Indeed, the simulation of turbulence has proved to be very complex and costly. Additionally, the

characteristic time of natural convection flow is very long while the tank dimensions are of order

of meters which would demand a very large number of points for the mesh resolution.

Our approach was to consider a 2D computational configuration, where natural convection

mouvements interact with liquid/vapor phase change, while being in a laminar regime (Gr „
106). Even if the configuration studied in the present work is fairly different from the industrial

configuration, it allows to have a better understanding of the involved physical phenomena. This

first step can also open to many perspectives and generate ideas on how to treat more complex

configurations.

The objective of this study is therefore to simulate the interaction between the natural convec-

tion motions and the liquid/vapor phase change. To this extent, a variable density solver had to

be implemented into the code DIVA.

In what follows we will give a short review of the literature on the numerical simulation of

natural convection. The chosen numerical approach for the implementation of a variable density

solver is then described. The validation of the implemented solver is done on a natural convection

configuration in a closed domain.

The second part of this chapter is dedicated to the core of this study, the numerical simulation

in a 2D configuration of a two phase flow, where the vapor is incompressible while the density

variations in the liquid are accounted for using the low Mach number approximation. The vapor

is initially at saturation temperature and the liquid is subcooled. Wall conduction is considered

for the boundary conditions on the vertical walls. A natural convection flow is induced in the

liquid and its interaction with the liquid/vapor phase is investigated. Three values for the Grashof

number are studied and a discussion on its influence on the thermal flux is given. The chapter ends

with the conclusions and the perspectives. Note that the present study is in progress and that the

obtained results are preliminary.
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5.2 Short overview on the numerical simulation of natural

convection

Batchelor [4] was one of the firsts to study two-dimensional convective motion generated by buoy-

ancy forces on the fluid. Its configuration was represented by a long rectangle, of which the two

long sides are held at different temperatures. Since then, many authors have investigated free

convection in many different geometries.

For the numerical simulation of variable pressure for confined flows, where the variations of

the pressure is non negligible, a fully compressible treatment of all fluid phases has often been

considered, as for example in the work of Saurel and Abgrall [90]. Two major drawbacks exist

when applying this approach to a natural convection configuration, where the velocity in the gas

is very small. First, the variation of the dynamic pressure is of order ρV 2. This can be an issue

for the numerical representation of the pressure given that the mean pressure is of order 105

Pa. Additionally, it involves a poor conditioning of the Jacobian matrix. The second and major

drawback is the severe limitation of the time step induced by the large value of the sound velocity

in the liquid, much larger than the convection velocity. Considering that for a natural convection

configuration, the equations are integrated on the order of a viscous or diffusion time scale, this

renders impossible to attain the asymptotic flow regime.

All-Mach or Mach-uniform methods are aimed to remedy this second drawback. These tech-

niques are categorized into: density based methods and pressure based methods. The second ones

are derived from the projection methods. The implicit treatment of the pressure allows avoiding

the limitation of the time step and can be used both for incompressible and compressible flows.

This was demonstrated by Kadioglu et al. [41], who proposed a new second order primitive pre-

conditioner technique for solving all speed multi-phase flow problems. Their technique allows to

compute both compressible and incompressible flows with Mach-uniform accuracy and efficiency.

Kwatra et al. [50] propose a method for the simulation of inviscid compressible flow with shocks,

contacts and rarefactions. Their method allows to alleviate the severe CFL condition imposed by

the sound speed. It is based on the pressure equation and leads to a standard Helmholtz equation

similar to a diffusion equation. In the limit as the sound speed goes to infinity one obtains the

Poisson equation for incompresible flows. This makes the methods suitable for two-way coupling

between compressible and incompressible flows.

Ida [35] proposes an improved numerical solver for the unified solution of flows involving an

interface between either compressible or incompressible fluids. In their method, each of convection

and acoustic parts of the Euler equations are treated individually by a splitting manner. In their

work, Ida [35] and Kwatra et al. [50] show that for unsteady calculations where one wants to

capture the acoustic waves, the time step still has a value of order of the acoustic time step for

accuracy reasons.

Huber et al. presents in [34] a numerical simulation of the interaction of an ultrasound wave

with a bubble. Their interest is to develop a fully compressible solver in the two phases and to

account for surface tension effects.

For configuration involving small velocity values and liquid/vapor phase change, low Mach num-

ber approach seems more adapted considering that the acoustic part is removed beforehand from

the equations. The use of this technique was already proposed by Dellacherie [21] in the context of

multicomponent gaseous flows. The proposed model allows the simulation of non-stationary defor-

mations on an interface separating two immiscible fluids induced by large temperature differences

at low Mach number. The model system is obtained through an asymptotic expansion applied to
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the two-phase compressible Navier-Stokes system which filters out the acoustic waves. In [54], Le

Quéré et al. develop a Chebyshev collocation algorithm to integrate the time-dependent Navier-

Stokes equations for natural convection flow with large temperature differences. The working fluid

is assumed to be a perfect gas and its thermophysical properties vary with temperature according

to Sutherland laws.

In low-Mach number approaches, the pressure is split into a mean pressure evolving in time

and an additional component responsible for the continuity equation. This procedure removes the

local coupling between pressure and density. The simulation of acoustic waves is therefore avoided

and the corresponding stability criteria is lessen. Paillère et al. [70] and Le Quéré et al. [55] show

that the low-Mach number techniques are much more efficient than fully compressible models when

treating natural convection flows in closed cavities. In their papers, they give benchmarks for low

Mach number solvers for natural convection flows with large temperature differences.

Daru et al. [19] propose a model dedicated for the simulation of low speed non isothermal

two-phase flows in closed vessels. In their model, both liquid and gaseous phases are described by

the Navier-Stokes equations and the energy equation. The liquid is treated as fully incompressible

while the gas follows a low-Mach number approximation. Their proposed numerical model is

validated on air bubbles embedded in a closed cavity filled with liquid water.

For more details, a detailed summary of numerical and experimental studies related to laminar

natural convection in enclosures can be found in the work of Pandey et al. [73]. Miroshnichenko

and Sheremet [66] present a review of the research on turbulent natural convection in rectangular

cavities using numerical and experimental techniques. In the present work only laminar regime is

considered.

5.3 Numerical method for the simulation of low Mach num-

ber liquid/vapor flows

The numerical simulation of natural convection demands a specific solver where the variation of

the density is taken into account. During my thesis, I have implemented in the code DIVA a low

Mach number solver for the liquid phase, based on the numerical approach proposed by Daru et

al. [19].

The configuration described in [19] consists in a multiphase flow involving a strictly incompress-

ible liquid phase and a compressible gaseous phase, the latter being considered under the low-Mach

number assumption. In what follows, we will first describe the different steps of implementation of

the variable density numerical solver for a gas phase and second, the corresponding modifications

when the method is used for a liquid phase.

5.3.1 Gas phase treated using the low-Mach number approximation

The system of equations governing a configuration involving two-phase flows, containing an in-

compressible liquid and a compressible gas phase treated with a low-Mach number approximation,
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writes

Bρ
Bt ` ∇ ¨ pρuq “ 0, (5.1)

ρpBu
Bt ` u ¨ ∇uq “ ´∇p̃ ` ∇ ¨ τ ` ρg, (5.2)

ρCp

ˆBT
Bt ` u ¨ ∇T

˙
“ ∇ ¨ pk∇T q ´ P∇ ¨ u, (5.3)

ρpx, tq “ P ptq
rT px, tq , (5.4)

where p̃px, tq » ppx, tq ´P ptq, P ptq is the thermodynamic pressure and r is the ideal gas constant.

The viscous tensor τ is equal to λ∇ ¨ uI ` 2µD with Lamé coefficients λ and µ, D the strain rate

tensor and I the identity tensor.

Using the ideal gas law (5.4), the continuity equation (5.1) can also be expressed as

∇ ¨ u “ ´1

ρ

Dρ

Dt
“ 1

T

DT

Dt
´ 1

P

DP

Dt
. (5.5)

The thermodynamic pressure is calculated using an integral relation derived from (5.5),

1

P

dP

dt
“ 1

Ωg

˜ż

Ωg

1

T

DT

Dt
dx ´

ż

BΩg

u ¨ nds
¸
, (5.6)

where Ωg is the volume of the gas domain and BΩg is its bounding surface. Equation (5.6) allows

for the calculation of the source term

P ptq “ P pt0qexp

ˆż t

t0

ˆ
1

P

dP

dt

˙
dt

1

˙
. (5.7)

where t0 is some reference time.

Note that in the original method of Daru et al. [19], the temperature field was determined

using the enthalpy formulation

ρCp

DT

Dt
“ ∇ ¨ pk∇T q ´ T

ρ

ˆ Bρ
BT

˙

p

Dp

Dt
. (5.8)

Finally, the different steps of the numerical procedure are

(1) initialization of the velocity, the temperature and the density field (via equation (5.4)),

u
n; Tn; ρn. (5.9)

(2) solve the Navier-Stokes equations using the projection method,

u
n`1. (5.10)

(3) solve the temperature equation (5.3),

Tn`1. (5.11)

(4) calculate the temporal derivative of the thermodynamic pressure with equation (5.6),

ˆ
1

P

dP

dt

˙n`1

“ 1

Ωg

˜ż

Ωg

1

Tn`1

ˆ
Tn`1 ´ Tn

∆t
` pu ¨ ∇T qn`1

˙
dx

¸
. (5.12)
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(5) determine the thermodynamic pressure P using equation (5.7).

Pn`1 “ P pt0qexp

˜ż tn`1

t0

ˆ
1

P

dP

dt

˙
dt

1

¸
. (5.13)

(6) compute the density ρ with the relation (5.4),

ρn`1 “ Pn`1

rTn`1
. (5.14)

(7) calculate the continuity equation (5.5),

p∇ ¨ uqn`1 “ 1

Tn`1

ˆ
Tn`1 ´ Tn

∆t
` pu ¨ ∇T qn`1

˙
´
ˆ
1

P

dP

dt

˙n`1

. (5.15)

Note that steps (4-7) are done only for the phase treated under the low-Mach number approxima-

tion, in this case the gas phase.

5.3.2 Liquid phase treated using the low-Mach number approximation

For the simulation of variable density in the liquid phase, some modifications are made to the

above described method. First of all, the equation of state for a perfect gas can no longer be used.

The density is written using

ρpx, tq “ ρ0 p1 ´ β pT ´ T0qq , (5.16)

with ρ0 the density at temperature of reference T0 and β the thermal dilatation coefficient.

The continuity equation is then expressed with

∇ ¨ u “ ´1

ρ

Dρ

Dt
“ ´βρ0

DT

Dt
. (5.17)

The algorithm for the liquid phase maintains steps (1-3), followed by

(4) compute the density ρ with the relation (5.16),

ρn`1 “ ρ0
`
1 ´ β

`
Tn`1 ´ T0

˘˘
. (5.18)

(5) calculate the continuity equation (5.17),

p∇ ¨ uqn`1 “ ´βρ0

ˆ
Tn`1 ´ Tn

∆t
` pu ¨ ∇T qn`1

˙
. (5.19)

Note that, for the liquid phase, we no longer have acces to the thermodynamic pressure P .

Nevertheless, its variations are negligible for an open computational configuration, and one can

use the value of an external thermodynamic pressure in equation (5.3).

5.4 Validation test case

The implemented variable density solver is now validated on a 2D configuration. The test case,

taken from [55], consists in a differentially heated square cavity problem illustrated in figure 5.1.

On all walls, the no-slip condition is imposed for the velocity. On the horizontal walls, Neumann

conditions, BT {By “ 0, are applied for the temperature. The wall at x “ 0 is heated, T px “ 0, yq “
Th, while the wall at x “ lx is cooled, T px “ lx, yq “ Tc. The imposed initial conditions are:

T px, yq “ T0, ρpx, yq “ ρ0, upx, yq “ vpx, yq “ 0 and P pt “ 0q “ P0.
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Figure 5.1: Differentially heated square cavity problem.

The dimensions of the computational domain are r0, Ls ˆ r0, Ls and their determination is

further given. The configuration is defined by a Rayleigh number of 106. For a perfect gas, the

Rayleigh number is defined as

Ra “ Pr
gρ20 pTh ´ TcqL3

T0µ
2
0

, (5.20)

where g is the gravitational acceleration, L is the height of the cavity, T0 is a reference temperature

equal to pTh ` Tcq {2, ρ0 the reference density corresponding to T0, and µ0 is the dynamic viscosity

at T0.

We introduce a non-dimensional parameter ǫ “ pTh ´ Tcq { pTh ` Tcq characterizing the com-

pressibility effects. For small enough ǫ, incompressible flow models with the Boussinesq approx-

imation are valid, meanwhile for high values of ǫ the Boussinesq assumptions break down and

one needs to resort to a compressible flow model, or since the Mach numbers remain small, to a

low-Mach number approximation model.

The problem is completely defined by the Rayleigh number, the value of ǫ and the following

parameters:

P0 “ 101325 Pa; T0 “ 600 K; r “ 287 J{kg{K; ρ0 “ P0

rT0

;

Pr “ 0.71; γ “ 1.4; g “ 9.81 m{s2; ǫ “ 0.6.

The heat transfer to the walls is characterized by the local Nusselt number,

Nupyq “ L

pTh ´ Tcq

ˆBT
Bx

˙

w

. (5.21)

In figure 5.2 are illustrated the temperature field and the streamlines obtained in the heated

square cavity. As expected, each side wall is coated with a conduction layer. The heated layer

tends to rise along the heated wall while the cooled layer falls along the cooled wall. A steady state

characterized by en energy balance between conduction and convection is reached by the thermal

layers (Bejan [5]).

Different mesh grids were used for the convergence study. Additionally, verifications were

carried out to evaluate whether the energy formulation or the enthalpy formulation gives the same

results. All the results are shown in Tables 5.1 and 5.2. The convergence is achieved with the mesh
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Figure 5.2: Temperature field and streamlines in the heated square cavity configuration.

Table 5.1: Results obtained with the internal energy formulation (equation 5.3).

Nuh Nuc P {P0 m{m0

128 ˆ 128 8.87755 8.811519 0.82640 0.9682

256 ˆ 256 8.83592 8.844706 0.848147 0.99129

512 ˆ 512 8.851341 8.853514 0.853832 0.99729

1024 ˆ 1024 8.856285 8.856827 0.85547 0.99904

Reference Solution [55] 8.859777 8.859777 0.8563380

grid 512ˆ512 and, as expected, the formulation for the temperature equation does not influence the

results. In addition to the Nusselt number and the variation of the thermodynamic pressure, the

conservation of mass is also computed. For both formulations, the simulations converge towards

0.1% of mass loss, which is negligible.

5.5 Present work

In this section we present the work conducted on the numerical simulation of a 2D configuration de-

scribing the interaction between natural convection mouvements in the liquid and the liquid/vapor

phase change.

In what follows we first describe the computational configuration. For the present study, in

addition to variable density, wall conduction was also implemented into the code DIVA. The latter is

validated for a classic test case of pure conduction. Finally, our preliminary results are presented;

the influence of the natural convection, through the Grashof number, onto the thermal flux is

shown and discussed. Conclusions and perspectives on the present study are given at the end of

the chapter.
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Table 5.2: Results obtained with the enthalpy formulation (equation (5.8).

Nuh Nuc P {P0 m{m0

128 ˆ 128 8.77279 8.823986 0.82712 0.96743

256 ˆ 256 8.83685 8.84917 0.8486 0.991244

512 ˆ 512 8.852247 8.855293 0.85407 0.997318

Reference Solution [55] 8.859777 8.859777 0.8563380

5.5.1 Computational configuration

In the present study, as a first approach, the cryogenic tank has been represented by a 2D con-

figuration, illustrated in figure 5.3. The liquid is located in the lower part of the domain and the

vapor is found above the liquid. The two sub-domains are separated by a plane interface Γ, the

contact angle being imposed at 90o. The dimensions of the computational domain are lx ˆ ly, the

interface being situated at 2ly{3, with ly “ 0.05 m and lx “ ly.

The velocity is initialized with a static field, both for the liquid and vapor phases, ul “ uv “ 0.

The liquid temperature is initialized with a thermal gradient, with Tlpx, yΓq “ Tsat and Tlpx, 0q “
Tsat ´ ∆T . The temperature in the vapor phase is initially uniform and equal to the saturation

temperature, Tv “ Tsat. The configuration is under gravitational acceleration g “ ´gey.

The no-slip condition is imposed for the horizontal wall y “ 0 and for the two vertical walls

x “ 0 and x “ lx. A free outflow is applied at the y “ ly boundary, using the relations presented

in section 3.4.1 of chapter 3. For the pressure, Neumann conditions are imposed for the walls,

pBp{Bxqx“0,x“lx
“ 0 and pBp{Byqy“0 “ 0, and a Dirichlet condition for the outflow condition,

ppx, y “ lyq “ 0.

For the temperature, a Dirichlet condition is imposed at y “ 0, equal to T px, y “ lyq “ Tsat ´
∆T . At the top of the computational domain, an adiabatic condition is applied, pBT {Byqy“ly

“ 0.

In the x direction, the vertical walls are heated through conduction, where the imposed temperature

at xw “ 0 is Twpxw “ 0, yq “ Tsat ` ∆T {2. More on the wall conduction is found in the next

section.

Considering the symmetry of the proposed computational configuration, we choose to simulate

only the half of the domain by applying a symmetrical boundary condition at x “ lx{2. This will

alleviate the computational cost of our simulations.

At present, only two uniform mesh grids Nx ˆ Ny were employed, 64 ˆ 128 and 128 ˆ 256.

The liquid is treated under the low-Mach number approximation while the vapor phase is

incompressible.

5.5.2 Wall conduction

For the 2D computational configuration described above, we have considered that the vertical walls

are heated through wall conduction. The wall dimensions are rlx,wall ˆ lys, with lx,wall “ lx{4 “
62.5 ¨ 10´4 m.

The Dirichlet condition imposed on the temperature at x “ 0 is calculated solving the wall

conduction, described by the equation

ρSCp,S

BTwall

Bt “ ∇ ¨ pkS∇Twallq . (5.22)

with Twall the temperature field in the wall domain, kS the wall conductivity, ρS the wall density

and Cp,S the heat capacity of the wall.
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Figure 5.3: Schematics of the computational configuration.

The temperature field in the wall is initialized with the profile

Twallpx, t “ 0q “ Axwall ` B, (5.23)

with

A “ T px “ 0, yq ´ Twallpxw “ 0, yq
lx,wall

and B “ Twallpxw “ 0, yq, (5.24)

where xwall P r0, lx,walls.
Dirichlet boundary conditions are imposed in the x direction, Twallpxw “ 0, yq “ Tsat ` ∆T {2

and Twallpxw “ lx,wall, yq “ T px “ 0, yq. Zero flux Neumann boundary conditions are applied at

y “ 0 and y “ ly.

The wall conduction equation is solved using a Gauss-Seidel algorithm. The mesh grid employed

depends upon the resolution of the fluid domain. The number of grids in the y direction is the

same as for the fluid while in the x direction we use Nx{4 points.

The wall conduction solver is validated on a pure conduction test case. Three layers are

considered, the solid wall, the liquid and the vapor, as can be seen in figure 5.4a. An analytical

solution is avalaible for this configuration, which give access to the temperature profile and therefore

to the temperature at the interface between each layer: Ts{l “ 382.995 K and Tl{v “ 381.468 K.

In figure 5.4a we have plotted the initial temperature field, constant in the liquid and the vapor

phases and equal to T “ 373 K. In the solid, we impose a linear evolution. Dirichlet boundary

conditions are imposed in the y direction: Twallpx, yw “ 0q “ 383 K and T px, y “ lyq “ 363 K.

Figure 5.4b illustrates the established temperature field, obtained after a certain time of sim-

ulation. The values of temperature obtained at the solid-liquid and liquid-vapor interfaces are in

very good agreement with the theory.

5.5.3 Preliminary results

In what follows we present some preliminary results obtained for the described configuration. Even

though the present study is under development and not finalized, this initial analysis is an opening

to a more thorough study and allows for a first physical understanding of the involved phenomena.

Additionally, this step allows to determine the different perspectives for this study.
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(a) Inital temperature field (b) Final temperature field

Figure 5.4: Validation of the wall conduction solver for a pure conduction test case. Temperature

field.

5.5.3.1 Dimensionless numbers

The present problem is characterized by several dimensionless numbers:

• Prandtl number,

Pr “ µCp

k
“
#

3.93, for the liquid phase

0.98, for the vapor phase
.

• Jakob number,

Ja “ Cp∆T

Lv

“
#

0.1481, for the liquid phase

0.035, for the vapor phase
.

• density ratio,

r “ ρl

ρv
“ 1623.

• effusivity ratio,

K “ pρCpkq
S

pρCpkq “
#

4.7518 for the liquid phase

3.85 ¨ 105, for the vapor phase
.

where pρCpkq
S

are respectively, the density, the heat capacity and the thermal conductivity

of the solid wall. The effusivity ratio characterizes the thermal contact between the fluid and

the solid wall.

• Grashof number,

Gr “ gβ∆TL3

ν2
“
#

r4.71; 9.93; 18.8s ¨ 105, for the liquid phase

1168, for the vapor phase
.



124
5. INTERACTION BETWEEN LIQUID/VAPOR PHASE CHANGE AND NATURAL CONVECTION

INDUCED FLOW

where g is the gravitational acceleration, β is the coefficient of thermal expansion, ∆T is the

thermal gradient described previously and L is the vertical length.

The Grashof number Gr is described as the ratio between the buoyancy and the viscous force

and is analogous to the Reynolds number Re, where the velocity scale is related to buoyancy

effects.

Several observations can be made concerning this configuration. First, in comparison with the

2D configuration of a laminar boundary layer, described in chapter 2, here, the jump velocity is in

the liquid phase and not in the vapor phase. Second, both the liquid and the vapor are in contact

with the heated wall. Therefore, two Grashof numbers could be calculated, one for the liquid and

one for the vapor phase. However, for the present study, the vapor is considered incompressible.

Treating the vapor with a low-Mach number approximation can be one of the perspectives for

this study. For the liquid phase, we have considered three values for the Grashof number, showed

above. Note that for a laminar regime of the flow, the Grashof number has to be in the range

103 ă Gr ă 106.

The product between the Grashof number and the Prandtl number gives the Rayleigh number,

Ra “ Pr ¨ Gr. The latter is often used in relation to natural convection problems, characterizing

the thermal flux.

5.5.3.2 Convergence study

In this work, we first investigate the influence of the natural convection onto the thermal flux

induced at the liquid/vapor interface. Note that only the thermal flux calculated in the liquid

phase is considered here.

The natural convection motions, governed by the Grashof number value, influence the thermal

flux evolution at the liquid/vapor interface. This thermal flux, computed with

ΦI “ kl
BT
By

ˇ̌
ˇ
Γ,l

(5.25)

is, inter alia, induced by the liquid/vapor phase change, governed by the Jakob number value.

As already said, three values for the Grashof number are studied, Gr “ r4.71; 9.93; 18.8s ¨ 105,
by varying the coefficient of thermal expansion β. For each simulation, a convergence study is

required. The simulation of the natural convection being fairly long, T „ 1600 s to obtain an

established regime, only two mesh grids were here used: 64 ˆ 128 and 128 ˆ 256. The simulations

done with the more refined mesh 256ˆ 512 are ongoing. Note that for the simulation of 128ˆ 256,

the computation lasted 14 days while for the simulation of 256 ˆ 512, we expect a duration of 60

days (using 32 processors).

Figure 5.5 illustrates the spatial evolution of the liquid thermal flux ΦI at the liquid/vapor

interface, for the two used mesh grids. We observe that the mesh convergence is influenced by the

Grashof number value. Indeed, increasing the latter induces an increase in the velocity, which, in

turn, decreases the thermal boundary layer thickness. Therefore, a better resolution of the zone

close to the interface is needed in order to capture the induced high thermal gradient. On the

other hand, the lack of convergence can be observed only for x ă 0.01 m, for Gr “ 9.93 ¨ 105 and

Gr “ 1.88 ¨ 106, and close to the wall, x „ 0, for Gr “ 4.71 ¨ 105.
Even if, at present, our computations are not entirely converged, we will nevertheless try to go

further in the understanding of the evolution of the thermal flux at the liquid/vapor interface.
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Φ

(a) Gr “ 4.71 ¨ 105

Φ

(b) Gr “ 9.93 ¨ 105

Φ

(c) Gr “ 1.88 ¨ 106

Figure 5.5: Spatial evolution of the liquid thermal flux at the liquid/vapor interface. Mesh con-

vergence. ( ) - 64 ˆ 128 ; ( ) - 128 ˆ 256.
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Φ

Figure 5.6: Influence of the Grashof number Gr onto the evolution of the liquid thermal flux at the

liquid/vapor interface. Mesh grid employed 128ˆ 256. ( ) - Gr “ 4.71 ¨ 105 ; ( ) - Gr “ 9.93 ¨ 105;
( ) - Gr “ 1.88 ¨ 106. Zone II, (dash dot lines) - power laws axn; Zone III, (dash dot lines) - linear

laws ax ` b. Each dash dot lines color is calculated for the corresponding Grashof number.

5.5.3.3 Grashof influence onto the evolution of the thermal flux

We have plotted in figure 5.6 the spatial evolution of the liquid thermal flux at the interface, for

three values of Grashof number. Note that the y axis is in logarithmic scale. Increasing the Grashof

number increases the interface thermal flux. Additionally, figure 5.7 shows the temperature field

and the streamtraces for the three configurations. Three principal zones can be distinguished.

Zone I is represented by the region in the vicinity of the solid wall, where the thermal flux

is considerably high. The proximity to the triple line renders this region difficult to converge.

Unfortunately, we will have to wait for a more refined simulation, such as the 256 ˆ 512, in order

to make an analysis on this zone.

A second region, denoted as zone II, is delimited by 0.0065 ă x ă 0.018 m and represents

the region where the convection mouvements shear the liquid/vapor interface. In this region, the

spatial evolutions of the thermal flux can be fitted with power laws axn, where a and n could

depend on the dimensionless numbers governing the problem.

Finally, the third zone, denoted as zone III, is located in the region where the convective

mouvements stop shearing the interface and have already moved away from the interface. In this

region, the interfacial flux can be fitted with a linear law, ax` b. This fit demonstrates the lack of

interaction between the natural convection and the interface.

Further investigations can be made on this matter. The dependence of the coefficients a and b

with the dimensionless numbers, for each zone, could be determined by conducting a parametric

study. More on this will be discussed in the perspectives of the present work.

The streamtraces plotted in figure 5.7 show also a dependence on the value of the Grashof

number. For a low Grashof number, we have a discrepancy between the scale of the two circulations.

When increasing its value, the situation tends to inverse, the small circulation increases its scale

while the large circulation tends to decrease its scale. Another observation one can made is on
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(a) Gr “ 4.71 ¨ 105 (b) Gr “ 9.93 ¨ 105

(c) Gr “ 1.88 ¨ 106

Figure 5.7: Captions of the simulations for different values of the Grashof number. Temperature

field and streamtraces. The entire computational domain is illustrated, the solid wall at the left,

the liquid phase at the lower part of the domain and the vapor phase at the upper part of the

domain. Note that only half of the 2D configuration has been simulated.
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the thermal boundary layer located at y “ 0, above the cooled wall. The increase on the Grashof

number decreases its thickness. A more detailed analysis on these matters could also be considered

among the perspectives of the present work.

5.6 Conclusions and perspectives

In this chapter we have described our preliminary work on the interaction between natural con-

vection and liquid/vapor phase change. For computational cost reasons, we have considered the

laminar regime (Gr „ 106) while the industrial configuration is characterized by a turbulent regime

(Gr „ 1010). Nevertheless, this first approach employed to study this type of configuration is not

without value.

The work was first on the implementation and validation of a variable density solver in the

liquid phase. The wall conduction solver was also validated for a pure conduction test case.

Next, we have configurated our simulation in order to begin the study on the interaction

between natural convection and liquid/vapor phase change in a 2D domain. Several values of the

Grashof number were simulated and a preliminary spatial convergence study was carried out for

each one of them. It was shown that for some of this simulations, a more refined mesh grid was

needed. However, the obtained results allowed a first discussion on the influence of the natural

convection onto the interface thermal flux, which increases when Gr increases. Additionally, we

have proposed a decomposition of the interface region into three zones: the close to the solid wall

zone, the sheared interface zone and the no-interaction-with-the-natural-convection zone. For the

last two zones, a power law and a linear evolution were proposed, respectively, for the spatial

evolution of the thermal flux at the liquid/vapor interface.

The present work is ongoing and opens to many perspectives. Simulations allowing for a

complete convergence study are in progress. We plan next to conduct a parametric study to

investigate the influence of the dimensionless numbers onto the thermal flux, particularly the

Grashof number Gr and the effusivity ratio K. In addition, we would want to investigate how the

mass flow rate at the liquid/vapor interface behaves for these configuration. A dimensional analysis

of the evolution of the observed circulations in fonction of the dimensionless numbers could also

be relevant.

In the distant future, a 2D axisymmetric configuration could be considered. This would allow

a deeper investigation of the region close to the contact line. Additionally, for both 2D and 2D

axisymmetric configurations, the contact angle could be variated and its influence studied. For

the cryogenic tank application, when the liquid hydrogen is emplyed as cyrogenic propellant, its

pressurization is done using a non-condensable gas. Therefore, studying the configuration involving

a multi species gas could be one of the perspectives. This will increase the complexity of the study

by adding the Marangoni convection at the liquid/gas interface.

And finally, a reflexion on how to simulate a turbulent natural flow convection is mandatory.

An approach could consist of injecting turbulent fluctuations close to the wall, at x “ 0, and see

how they evolve when advected via the natural convection flow.



Conclusions and future directions

Conclusions

This thesis has described the numerical study conducted on the interaction between liquid/vapor

phase change and an external flow.

This research was motivated by the need of a better understanding of the physical phenomena

generated in a cryogenic tank, during the various phases of the flight mission of a satellite. More

precisely, the objective was to find behaviour laws for the heat transfer at the liquid/vapor interface,

laws that can further be used in industrial codes to model the interface.

The numerical study presented in this thesis was conducted using the in house code DIVA,

stating for Interfacial Dynamics for Atomization and Vaporization. The solver implemented in

the code DIVA was first described, together with all the corresponding numerical methods for the

simulation of two phase flows with phase change.

The chapters that follow were dedicated to the work realized during the present thesis. Two

configurations were studied, in microgravity and under gravitational acceleration.

First, the focus was on the interaction between liquid/vapor phase change and an external

boundary layer flow. This configuration characterizes the microgravity regime, when the satellite

is in orbit and the subcooled liquid contained in the cryogenic tank is pressurized by a superheated

vapor. Even if, for most of the industrial applications, the flows are turbulent, we have considered

of scientific and theoretical importance to tackle first the laminar regime. Therefore, the computa-

tional configuration implemented was a 2D laminar boundary layer flow of vapor shearing a static

and plane liquid. Both condensation and vaporization were studied, by considering, respectively,

a subcooled or a superheated vapor, while the liquid phase is at saturation temperature. A para-

metric study was conducted by varying the dimensionless numbers characterizing this problem,

the Reynolds number, the Prandtl number, the density ratio and the Jakob number. Correlations

were obtained on the Nusselt number when phase change occurs. It was showed that the local flow,

induced by the phase change, decreases or increases, respectively, the local heat flux, depending

upon vaporization or condensation is considered. For the vaporization configuration it was found

that the Nusselt number, and therefore the heat transfer, decreases exponentially with the Jakob

number until reaching a saturation value. The opposite trend was observed for the condensation,

for which the Nusselt number increases as an exponential function of the Jakob number. Based

on the obtained correlations for the Nusselt number, we were able to determine expressions for

the integrated heat flux at the liquid/vapor interface. Another noteworthy result was about the

viscous friction on the interface, or the tangential component of the viscous tensor, which was

found to be weakly affected by the phase change in the case of a plane interface.

The obtained correlations are difficult to be used for a cryogenic tank application, considering

the existing turbulent regime flow. It was only natural to further study the interaction between a

spatial developing turbulent boundary layer flow and liquid/vapor phase change. In comparison
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with the laminar regime, no exact theory exists for the resolution of the turbulent boundary layer

flow. For this reason, our work was first dedicated to the numerical simulation of the spatial

development of a turbulent boundary layer flow on a flat plate, with heat transfer. A thorough

overview of the literature on the existing numerical methods to generate inflow data for turbulent

flows simulation allowed us to choose the SEM for the present study. The implemented method

was first validated for the simulation of instantaneous turbulent signals as well as for a spatially

decaying HIT.

The numerical simulation of a turbulent boundary layer flow with heat transfer at a momentum

thickness Reynolds number Reθ “ 1100 was next described. For the thermal turbulent boundary

layer simulation, an extension of the initial method of Jarrin et al. [38] was proposed. The

assumption of the equivalence between the thermal and the dynamic boundary layer has therefore

been taken, for a Prandtl number Pr “ 1. Studies on the influence of the mesh grid, the length scale

value, the number of eddies and a time convergence study on the generated turbulent fluctuations

at the inlet plane were conducted. It allowed, on one hand, to validate our implementation, and

on the other hand, to choose the computational configuration used for this work. Additionally, a

study on the performance of the employed pressure solver was conducted and a detailed description

of the involved computational constraints was given.

Finally, the results obtained were presented. We have shown via snapshots of the streamwise

velocity and temperature fields that the hypothesis of the equivalence between the two can be

considered reasonable. The evolutions of the turbulent statistics, mean and rms velocities and

temperature profiles, with the wall coordinate were illustrated. The mesh refinement greatly

improve their corresponding evolutions. The same was found for the turbulent heat fluxes, in

the streamwise and the wall-normal directions. A comparaison with data extracted from the

literature showed a good agreement of the latter evolutions. The same was found for the turbulent

Prandtl number, which reaches a maximum value of 1.09 close to the wall, while similar values

were also reported in other previous studies, in which Prt approaches a value of 1.1 at the wall.

The streamwise evolutions of the friction coefficient and the Stanton number, allowing for the

characterization of the local boundary layer flow, showed significant differences in comparison with

the existing empirical (Kays and Crawford [44]) and numerical or experimental evolutions. In the

vicinity of the inlet plane, it has already been reported that, when using a synthetic method, these

parameters have incorrect evolutions. Often, their evolutions regain the correct path, but only

after some distance in the streamwise direction.

Further on, the focus has been on the simulation of the interaction between the spatially

developing turbulent boundary layer flow and liquid/vapor phase change. The procedure employed

was to use two simulations. The auxiliary simulation allows the development of the boundary layer

from a synthetic turbulence imposed at the inlet plane. After a certain time of simulation allowing

to achieve the average convergence, the auxiliary simulation advances while storing, at each time

step, the velocity components and the temperature on a vertical plane. These planes are later

used as inflow boundary condition for the second simulation, where the phase change is plugged

in. The liquid/vapor phase change was imposed as a boundary condition, for computational costs

reason. The results obtained were analyzed qualitatively and quantitatively. The illustrations of

the normal velocity and of the vorticity magnitude fields in a vertical plane Oyz showed an increase

of vortices in the inner zone of the boundary layer, possesing a high vorticity. When plotting the

isosurfaces of Q “ 0.5, an increase in the population of small eddies was observed. These tendencies

were explained by considering that the energy cascade from large to small eddies is higly enhanced

by the blowing velocity induced by liquid/vapor phase change. A quantitative study allowed to

investigate the influence of liquid/vapor phase change onto the evolution of the turbulent quantities.
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The rms fields showed a considerable increase with the Jakob number. This is coherent with the

observation on the increase of small eddies number, considering that the maximum of turbulent

energy is contained by small turbulent scales. The heat fluxes were also impacted by the phase

change. The turbulent heat flux in the streamwise direction was highly increased when increasing

the Jakob number. The peak of the heat flux in the normal direction was shifted towards higher

values of the wall coordinate y` when increasing the Jakob number. This was explained by the

blowing effect of the liquid/vapor phase change. The mean profiles of the temperature and the

velocity were also modified when phase change occurs. The velocity gradient was decreased in

the viscous sublayer and increased in the logarithmic zone when increasing the Jakob number.

The evolutions of the shear stressed showed some interesting trends. The viscous shear stress was

influenced by the phase change only in the viscous sublayer, for y` ă 5. The Reynolds shear stress

followed the same evolution in the close to the wall zone (y` ă 10), regarless of the Jakob number

while in the logarithmic zone, its profile was increased when phase change occurs. The friction

coefficient and the Stanton number have shown little influence of the Jakob number onto the slope

of their profiles. Nevertheless, the corresponding curves were shifted towards smaller values when

increasing the phase change. The evolution of the Nusselt number showed similar tendencies that

the one obtained for the laminar regime. The curves presented a first region where the Nusselt

number decreases towards a minimum and followed by a curve of positive slope.

The second configuration involved natural convection. As explained in the ??, during the

launching phase or for the space manoeuvres, the satellite is in a gravitational acceleration field.

This induces convective motions in the liquid that will influence onto the liquid/vapor phase

change. The last part of this thesis was dedicated to the interaction between natural convection

and liquid/vapor phase change. More precisely, an investigation on how the Grashof number,

governing the natural convection, will influence the spatial evolution of the liquid thermal flux at

the liquid/vapor interface. To this extent, a variable density solver using the low-Mach number

approximation was implemented into the code DIVA. Its validation was conducted on the simu-

lation of a heated square cavity. Additionally, a wall conduction solver was used to impose the

boundary conditions on the vertical walls of the tank. This solver was validated on a pure con-

duction test case for which the temperature profile can be determined analytically. Preliminary

results were shown. We have first investigated the mesh convergence and as was showed, for some

of the Grashof number values, the convergence was not achieved. More refined simulations are in

progress. However, the obtained results allowed a first discussion on the influence of the natural

convection onto the interface thermal flux, which increased when Gr increased. Additionally, we

have proposed a decomposition of the interface region into three zones: the close to the solid wall

zone, the sheared interface zone and the no-interaction-with-the-natural-convection zone. For the

last two zones, a power law and a linear evolution were proposed, respectively, for the spatial

evolution of the thermal flux at the liquid/vapor interface.

Both turbulent and natural convection configurations open to many perspectives that will be

further detailed.

Future Directions

The following research could be considered as direct extensions of the present work. We will first

consider the turbulent configuration.

Simulations for intermediate values for the Jakob number are ongoing. This will allow to get

a better understanding from the observed trends. For example, for all the turbulent quantities,
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a certain saturation effect could be predicted, especially for vrms, wrms, Cf and St, where a

constriction between the curves of Ja “ 8 and Ja “ 14 can be observed. Additionally, studying

several values of the Jakob number would allow to determine a behaviour law and compare it with

the correlation obtained for the laminar regime.

It would be valuable to investigate the terms from the turbulent kinetic energy balance. A

study on the influence of phase change onto the terms of production, diffusion and dissipation is

planned for the near future. This will allow to go further in the comprehension of the obtained

tendencies, comprehend what turbulent processus is most influenced by the liquid/vapor phase

change. Additionally, investigations on the energy spectra could allow to determine to what scales

the energy from the phase change is distributed.

Finally, simulations with a more refined mesh grid, 1024 ˆ 256 ˆ 256, would surely allow to

obtain better profiles for the friction coefficient and the Stanton number. This would enable a

parametric study for different Jakob numbers with the objective to determine behaviour laws for

the heat flux and the friction coefficient.

The work on the natural convection is at its early stages and many perspective can be foreseen.

For the near future, a complete convergence study is intended, the corresponding simulations

are ongoing. We plan next to conduct a parametric study to investigate the influence of the

dimensionless numbers onto the thermal flux, particularly the Grashof number Gr and the effusivity

ratio K. In addition, we would want to investigate how the mass flow rate at the liquid/vapor

interface behaves for these configuration. A dimensional analysis of the evolution of the observed

circulations in fonction of the dimensionless numbers could also be relevant.

In the distant future, a 2D axisymmetric configuration could be considered. This would allow

a deeper investigation of the region close to the contact line. Additionally, for both 2D and

2D axisymmetric configurations, the contact angle could be variated and its influence studied.

For the cryogenic tank application, when the liquid hydrogen is used as cryogenic propellant, its

pressurization is done using a non-condensable gas. Therefore, studying the configuration involving

a multi species gas could be one of the perspectives. This will increase the complexity of the study

by adding the Marangoni convection at the liquid/gas interface. Finally, a reflexion on how to

simulate a turbulent natural flow convection is mandatory. An approach could consist of injecting

turbulent fluctuations close to the wall, at x “ 0, and see how they evolve when advected via the

natural convection flow.

Last but not least, a discussion with the industry sector in order to determine how the obtained

behaviour laws could be employed in their industrial codes seems important.



Appendix A

Parametric study fo the laminar

boundary layer

The purpose of the present work was to investigate the influence of liquid/vapor phase change on

the Blasius theory results, particularly on the Nusselt number evolution. At first, the correction

NuBl
x ´ Nuvap

x “ F

ˆ
Rex, P r, Ja,

ρl

ρv
, xL

˙
, (A.1)

has been plotted. As it can be seen in Fig. A.1, for x “ xL, the correction NuBl
x ´Nuvap

x ‰ 0 and

Figure A.1: The correction on the Nusselt number from the Blasius theory with the x-axis -

Vaporization configuration - dimensionless numbers: Pr “ 1.022, RexL
“ 85.726, Ja “ 3.69 and

ρl

ρv
“ 17.746.

it increases with x as a power function. Therefore, the Nusselt number with vaporization can be

written as

Nuvap
x “ NuBl

x ´
ˆ
α

ˆ
x

xL

´ 1

˙n

` β

˙
Hpx ´ xLq, (A.2)

where the Heaviside function Hpx ´ xLq enables locating the phase change only for x ą xL.

The next step in our inquiry was to determine the evolution of the parameters α, β and n with

the dimensionless numbers characterizing the configuration of interest: Reynolds number RexL
,

Prandtl number Pr, Jakob number Ja and the density ratio ρl

ρv
. It is noteworthy that, given the
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dimensionless form of the Eq. A.2, the choice of an inlet Reynolds number RexL
instead of a

general Reynolds number Rex is straighforward.

(a) Evolution with the Reynolds number and keeping

fixed the dimensionless numbers: Pr “ 1.022, Ja “

3.69 and ρl
ρv

“ 17.746. // apPr, Ja,
ρl
ρv

q “ 0.02866.

(b) Evolution with the Prandtl number and keeping

fixed the dimensionless numbers: RexL
“ 85.7226,

Ja “ 3.69 and ρl
ρv

“ 17.746. // bpJa, ρl
ρv

q “ 0.0748.

(c) Evolution with the Jakob number and keep-

ing fixed the dimensionless numbers: Pr “ 1.022,

RexL
“ 85.7226 and ρl

ρv
“ 17.746. // dp ρl

ρv
q “

0.07108.

(d) Evolution with the density ratio and keeping fixed

the dimensionless numbers: Pr “ 1.022, RexL
“

85.7226 and Ja “ 3.69.

Figure A.2: Evolution of the jump βpRexL
, P r, Ja, ρl

ρv
q for x “ xL - Vaporization configuration.

The adressed approach to determine the parameters α, β and n is developed as it follows. First,

the jump β for x “ xL has been examined. Its evolution with the Reynolds number RexL
(Fig.

A.2a), the Prandtl number (Fig. A.2b), the Jakob number (Fig. A.2c) and finally with the density

ratio (Fig. A.2d) have been plotted.

By means of a Matlab library, CFTool, one was able to obtain its evolution with the dimen-
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sionless numbers,

β “ 0.119Re0.4777xL
Pr0.2374

ˆ
1 ´ exp

ˆ
´0.0043Ja

ˆ
ρl

ρv
´ 1

˙˙˙
.

Figure A.3: Spatial evolution of the correction on the Nusselt number from the Blasius theory

obtained from the numerical simulation and the function fitting its evolution: α “ 2.062 and

n “ 0.3561; β known for the corresponding couple of dimensionless numbers.

In the interest of finding the expressions of the parameters α and n from Eq. A.2, the relation

NuBl
x ´ Nuvap

x has been plotted with the x axis for each value of dimensionless number. For

exemple, in Fig. A.3 the evolution of NuBl
x ´ Nuvap

x is plotted for RexL
“ 85.7226, Pr “ 1.022,

Ja “ 3.689, and ρl

ρv
“ 17.746. Conducting a full set of simulations sweeping a large range of values

for the dimensionless numbers enabled us to determine the expressions of parameters α and n,

α “ 0.294Re0.495xL
Pr0.333

ˆ
1 ´ exp

ˆ
´0.0248Ja

ˆ
ρl

ρv
´ 1

˙˙˙
,

and

n “ 0.9351Re´0.11
xL

Pr´0.07Ja´0.1

ˆ
ρl

ρv

˙´0.12

.

Their evolution with each dimensionless number is plotted in Fig. A.4 and Fig.A.5.
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(a) Evolution with the Reynolds number and keeping

fixed the dimensionless numbers: Pr “ 1.022, Ja “

3.69 and ρl
ρv

“ 17.746. // apPr, Ja,
ρl
ρv

q “ 0.2271.

(b) Evolution with the Prandtl number and keeping

fixed the dimensionless numbers: RexL
“ 85.7226,

Ja “ 3.69 and ρl
ρv

“ 17.746. // bpJa, ρl
ρv

q “ 0.227.

(c) Evolution with the Jakob number and keep-

ing fixed the dimensionless numbers: Pr “ 1.022,

RexL
“ 85.7226 and ρl

ρv
“ 17.746. // dp ρl

ρv
q “ 0.4185.

(d) Evolution with the density ratio and keeping fixed

the dimensionless numbers: Pr “ 1.022, RexL
“

85.7226 and Ja “ 3.69.

Figure A.4: Evolution of the coefficient αpRexL
, P r, Ja, ρl

ρv
q for x ą xL - Vaporization configuration.
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(a) Evolution with the Reynolds number and keeping

fixed the dimensionless numbers: Pr “ 1.022, Ja “

3.69 and ρl
ρv

“ 17.746. // mpPr, Ja,
ρl
ρv

q “ 0.5879.

(b) Evolution with the Prandtl number and keeping

fixed the dimensionless numbers: RexL
“ 85.7226,

Ja “ 3.69 and ρl
ρv

“ 17.746. // ppJa, ρl
ρv

q “ 0.5739.

(c) Evolution with the Jakob number and keep-

ing fixed the dimensionless numbers: Pr “ 1.022,

RexL
“ 85.7226 and ρl

ρv
“ 17.746. // qp ρl

ρv
q “ 0.6567.

(d) Evolution with the density ratio and keeping fixed

the dimensionless numbers: Pr “ 1.022, RexL
“

85.7226 and Ja “ 3.69.

Figure A.5: Evolution of the parameter npRexL
, P r, Ja, ρl

ρv
q for x ą xL - Vaporization configura-

tion.



Appendix B

Inlet plane statistics obtained using

the SEM

B.1 Time convergence

We present here the study of temporal convergence for the turbulent statistics, for each configura-

tion presented in table 3.5, section 3.4. Figure B.1 shows the evolution of the inlet plane statistics

with the wall coordinate y` for a mesh grid 64 ˆ 64 ˆ 64 and different values of the number of

eddies in the virtual box, an this for different times of simulation. The same is done for the mesh

grid 128 ˆ 128 ˆ 128 (figure B.2) and 128 ˆ 64 ˆ 128 (figure B.3).

For all mesh grids, depending upon the number of eddies employed in the virtual box, the time

of convergence is not the same.

B.2 Modified SEM

Figure B.4 shows the evolution of the inlet plane statistics with the wall coordinate, obtained

using the modified SEM, proposed by Pamies et al. [72]. The computational domain is p3.6ˆ3.6ˆ
3.6ˆqδinlt and the mesh grid is 256 ˆ 256 ˆ 256. As can be observed, we were not able to obtain

the corect profiles in the inner zone of the boundary layer.

B.3 Comparaison on the obtained inlet statistics when dif-

ferent boundary conditions are used

In figure B.5 we have plotted the evolution of the inlet plane statistics with the wall coordinate

y` for two configurations: the one used for the study on the inlet plane statistics, presented in

table 3.5 as (C.1.1) and the one used for the numerical simulation of a spatially evolving boundary

layer flow presented in section 3.5. It can be observed that the modification on the free-stream

boundary conditions (from Neumann condition to an outflow condition) and the modification on

the pressure condition at the outflow plane ( from a Dirichlet condition to a Neumann condition)

does not influence the evolution of the statistics at the inlet plane.
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Figure B.1: Time convergence for the turbulent statistics at the inlet plane x “ 0, for a mesh grid

64 ˆ 64 ˆ 64 (configuration (C.1) from table 3.5, section 3.4). (black line) - Jimenez data [40]; ( )

- Tcv “ 120 s; ( ) - Tcv “ 240 s; ( ) - Tcv “ 480 s; ( ) - Tcv “ 960 s.
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Figure B.2: Time convergence for the turbulent statistics at the inlet plane x “ 0, for a mesh grid

128 ˆ 128 ˆ 128 (configuration (C.2) from table 3.5, section 3.4). (black line) - Jimenez data [40];

( ) - Tcv “ 60 s; ( ) - Tcv “ 120 s; ( ) - Tcv “ 240 s; ( ) - Tcv “ 480 s;
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Figure B.3: Time convergence for the turbulent statistics at the inlet plane x “ 0, for a mesh grid

128 ˆ 64 ˆ 128 (configuration (C.3) from table 3.5, section 3.4). (black line) - Jimenez data [40];

( ) - Tcv “ 120 s; ( ) - Tcv “ 240 s; ( ) - Tcv “ 480 s;
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Figure B.4: Inlet plane statistics evolution with the wall coordinate obtained using the modified

SEM, proposed by Pamies et al. [72]. (black line) - Jimenez data [40]; ( ) - the obtained profiles.
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Figure B.5: Inlet plane statistics evolution with the wall coordinate. Comparaison between the

computational configuration (C.1.1) from table3.5 and the present configuration, in regard to the

changes in the employed boundary conditions. Each curve is plotted after the corresponding Tcv.

(black line) - Jimenez data [40]; ( ) - (C.1.1); ( ) - present configuration.



Appendix C

Turbulent boundary layer interaction

with liquid/vapor phase change

C.1 Time convergence

In figure C.1 are plotted the evolutions of the rms quantities for different time of simulation.

Note that we have excluded T “ 120 s of simulation before begining the time convergence. Two

configurations are shown here, for Ja “ 0.08 and Ja “ 14, with the mesh grid 512 ˆ 128 ˆ 128.

It can be seen that we obtain convergence after T “ 120 s.

(a) Ja “ 0.088 (b) Ja “ 14

Figure C.1: Time convergence for the turbulent statistics, for a mesh grid 512 ˆ 128 ˆ 128. ( ) -

Tcv “ 30 s; ( ) - Tcv “ 60 s; ( ) - Tcv “ 120 s;

C.2 Mesh grid influence

We show here the influence of the mesh grid onto the obtained turbulent quantities. Two mesh

grids are employed, 256 ˆ 64 ˆ 64 and 512 ˆ 128 ˆ 128. Only the two extreme values of the Jakob

142
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number are here shown, Ja “ 0.08 and Ja “ 14.

(a) Ja “ 0.088 (b) Ja “ 14

Figure C.2: Influence of the mesh grid onto the evolution of the rms quantities. ( ) - 256ˆ64ˆ64;

( ) 512 ˆ 128 ˆ 128; (dashed line) - without phase change with the mesh 512 ˆ 128 ˆ 128.

(a) Ja “ 0.088 (b) Ja “ 14

Figure C.3: Influence of the mesh grid onto the evolution of the rms temperature. ( ) - 256ˆ64ˆ64;

( ) 512 ˆ 128 ˆ 128; (dashed line) - without phase change with the mesh 512 ˆ 128 ˆ 128.
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(a) Ja “ 0.088
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(b) Ja “ 14

Figure C.4: Influence of the mesh grid onto the evolution of the heat fluxes. ( ) - 256 ˆ 64 ˆ 64;

( ) 512 ˆ 128 ˆ 128; (dashed line) - without phase change with the mesh 512 ˆ 128 ˆ 128.
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A B S T R A C T

Based on a numerical approach, we propose in this study to characterize the interaction between a laminar
boundary layer of a superheated or subcooled vapor flow and a static liquid pool at saturation temperature. For
the purpose of this study, we define a canonical configuration that will help to improve our physical under-
standing of the interaction between a laminar flow and vaporization or condensation. By performing a full set of
simulations sweeping the parameters space, correlations are proposed for the first time on the Nusselt number
depending on the dimensionless numbers (the Reynolds number, the Prandtl number, the Jakob number and the
density ratio) that characterize both vaporization and condensation. As attended, the Nusselt number decreases
or increases in the configurations involving vaporization or condensation respectively. For high Jakob number,
opposite trends are observed depending whether if vaporization or condensation is considered. Indeed a sa-
turation of the heat flux happens in the first case, whereas a self-amplification of the heat flux occurs in the
second one. Since the Nusselt number expressions are known, analytical expressions for the integrated heat flux
exchanged at the liquid/vapor interface can be determined. Our study also takes interest to the behaviour of the
viscous friction of the vapor flow on the liquid pool, which is weakly affected by the phase change, despite the
important variation of the local flow structure due to evaporation or condensation. The physical mechanisms
inducing all these phenomena are here discussed and clarified.

1. Introduction

There is currently little information on how an external flow will
modify evaporation or condensation of a liquid plane surface in spite of
its significant interest in various fields, such as processes in thermal
engineering, in combustion applications, weather forecasting or climate
modeling. Most applications cited above involve turbulent flows and
gas mixture. Nevertheless, the simpler configuration where a laminar
superheated or subcooled vapor flow is shearing a saturated liquid in-
terface has still never been solved whether theoretical, numerical or
experimental approaches are considered. This would be a significant
step forward before considering more complex configurations. The
theory of an expanding laminar boundary layer of a fluid above a solid
plate, known as the Blasius theory [1], has been generalized to account
for heat transfer between the fluid and an isothermal plate by Pohl-
hausen in Ref. [21]. Both theories are based on a boundary layer hy-
pothesis assuming that the velocity component in the streamwise di-
rection is much higher than the one in the normal direction to the plate.
However, when one considers an expanding boundary layer of a

superheated or subcooled vapor flow over a saturated liquid, the latter
assumption is no longer valid due to the phase change vapor flow that
will respectively blow or aspirate the boundary layer, depending on
whether vaporization or condensation occurs. The mathematical com-
plexity of this problem being strongly increased, the resulting flow will
exhibit a fully two-dimensional rotational structure for which a classical
theoretical analysis can hardly be practiced. Consequently, using fully
resolved numerical simulation is a promising alternative for tackling
such a problem in order to improve our knowledge in the field of heat
transfer in liquid-vapor flow with phase change. Phase change heat
transfer, treated using the so-called conception of the two-phase
boundary layer, has been a subject of study in several papers. For ex-
ample, Koh et al. made an analysis of a saturated vapor in a forced-
convection flow over a flat plate in Ref. [12] and a vertical plate in Ref.
[13]. The configuration with film boiling was studied for a forced-
convection flow by Cess and Sparrow in Ref. [4] and for a free-con-
vection flow by Kaneyasu and Takehiro in Ref. [11]. Turkyilmazoglu in
Ref. [32] studies the traditional Stefan problems concerning solidifi-
cation or liquidisation phenomena of a phase changing bar. Regarding
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the interaction between liquid-vapor phase change and two-phase
flows, since the seminal works of Renksizbulut and Yuen [23,24],
where correlations on Nusselt number and drag coefficient of evapor-
ating droplets have been designed, a few studies have been dedicated to
fully characterize other configurations.

Scriven [27] has proposed 1D theory of bubble growth involving an
induced phase change flow motion (radial and irrotational flow). In the
context of bubble growth, Ruckenstein and Davis [25] have developed a
theoretical study where the external flow is approximated by a poten-
tial flow. Nevertheless, rotational effects can have influence both on the
viscous friction and the heat flux as it is the case in the present study.

In this paper, we present a numerical study to characterize the in-
teraction between a superheated or subcooled external laminar vapor
flow shearing a static and plane liquid pool at saturation temperature.
The Blasius-Pohlhausen theory of an expanding laminar boundary layer
over an isothermal plate can be considered as a reference solution. Our
purpose was to find, for this configuration, a correlation on the Nusselt
number accounting for the modification of the local thermal gradient
on the interface due to the vaporization or condensation induced flow.
As the local structure of the flow is also modified in the vicinity of the
liquid-vapor interface, our study includes an analysis on the interfacial
viscous friction when phase change occurs.

To the best of our knowledge, the study on the interaction between
an external vapor flow and the liquid/vapor phase change of a liquid
pool has never been conducted before in the proposed configuration. In
addition to its academic interest, this study could also be relevant in
more industrial configurations, as for example in space applications. In
launchers fuel tanks, the pressure regularization is done by injecting
vapor jets above a liquid plane. It is of utmost importance to predict the
vaporization or condensation mass flow rate in such a configuration. A
solution is to solve the flow only on a small region close to the liquid/
vapor interface and obtain local laws on the heat flux that could be used
as a closure model in larger scale approaches.

2. Numerical methods for the direct numerical simulation

2.1. Mathematical formulation

The model used to compute the process of heat transfer with phase
change is identical to one described in Refs. [10,31], where the liquid
and the vapor phases are supposed incompressible and mono-
component. It is assumed that the fluid densities and the thermo-
physical properties in each phase are spatially uniform. Therefore, the
mathematical formulation of the two-phase incompressible flow is:

=V 0, (1)

= + +
D

Dt
p µ

V
D g(2 ) .

(2)

where V is the velocity field, p is the pression field, ρ is the density, μ is
the dynamic viscosity, D is the deformation tensor and g is the gravity
acceleration.

The thermal field is computed by solving a simplified conservation
energy equation, formulated using the enthalpy primitive variable:

=C
DT

Dt
k T( ),p

(3)

where T is the thermal field, Cp is the specific heat at constant pressure
and k is the thermal conductivity.

The governing equations are formulated in a “Jump Condition
Form”, meaning that the field equations are written in each phase se-
parately and additional jump conditions have to be imposed at the in-
terface to maintain the conservation of mass (Eq. (4)), momentum (Eq.
(5)) and energy (Eq. (6)). The movement of expansion or suction in the
vapor, depending on whether vaporization or condensation occurs, is
directly related to the phase change mass flow rate,

= mV n[ ]
1

.
(4)

Because of the interface motion, momentum in the direction of the
unit normal vector n is convected at the relative velocity of the fluid
with respect to the interface. Including the effects of the pressure and
surface tension forces, the momentum balance normal to the interface
writes

= +p µ
V

n
m[ ] 2

1
.

n 2

(5)

Finally, the balance of energy at the interface translates that the
thermal flux exchanged at the interface depends on the energy released
or absorbed in the process of phase change,

=k T mLn[ ] , (6)

with σ the surface tension, κ the local interface curvature, n the normal
vector at the interface pointing towards the liquid phase, L the latent
heat of vaporization, m the phase change rate and V

n

n the normal de-

rivative of the normal velocity component. The operator [ ] accounts
for the jump across the interface and it is defined by: =f f f[ ] vap liq.

The formalism to deduce the jump equations (4)–(6) is described in
Appendix A (see Refs. [7,8,19]).

As in this paper we consider a plane interface, simulations results do
not depend on surface tension due to zero interface curvature.
Moreover, according to the second law of thermodynamics and as-
suming that the local equilibrium hypothesis is still valid, the interface
temperature is imposed at the saturation temperature. This assumption
is thermodynamically consistent with a pure liquid/vapor system, see
for instance the following reference [3].

2.2. Numerical methods

In this section, the methods used in our numerical study are pre-
sented. The dimensional Navier Stokes equations (1)–(6) are solved for
a steady incompressible two-phase flow in a two-dimensional domain.

Thermal field is computed by solving the simplified conservation
energy Eq. (3). As the liquid-gas interface is not boundary fitted with
computational grid, the suitable jump conditions can be imposed across
the interface following the general guidelines of the Ghost Fluid Method
[6] to maintain the conservation of mass [19,30] and energy [7,8,31].
That is made possible by using the subgrid location of the interface with
a static Level Set function whose zero level curve represents the inter-
face [20]. Spatial derivatives are computed with fifth order WENO-Z
schemes [2]. A Black-Box MultiGrid solver [5] is used to solve the
pressure Poisson equation and we perform an implicit temporal dis-
cretization of the viscous terms as presented in Refs. [15,16]. The
system of unsteady equations is solved until reaching a steady state by
using a second order TVD Runge-Kutta scheme for the temporal in-
tegration.

As the interface temperature is constant and continuous across the
interface, the following algorithm, named GFTSB (Ghost Fluid Thermal
Solver for Boiling) in Refs. [31,34], has been designed in Ref. [7] to
solve the heat transfer around the interface when phase change occurs.
The scheme used for solving the energy equation is given by

+ =

+

+
T T

t
T k Tu ( )

n n
n n n

1
1

(7)

First, solve the temperature field in the liquid domain with a pre-
scribed Dirichlet boundary condition at the interface

= >

=

+ +C T t k T C T t T

T T

u( ) ( ), if 0

|

l p l
n

l l
n

l p l
n

l
n

l
n

sat

1 1
l l

(8)

with ϕ the Level Set function. Next, solve the temperature field in the
vapor domain with the same prescribed Dirichlet boundary condition at
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the interface

= <

=

+ +C T t k T C T t T

T T

u( ) ( ), if 0

|

v p v
n

v v
n

v p v
n

v
n

v
n

sat

1 1
v v

(9)

Once the temperature field has been computed, the local mass flow
rate can be easily deduced from

=m
k T

L

n[ ]

vap (10)

Given that the temperature field in the liquid is uniform and equal
to the saturation temperature, the thermal flux in the liquid phase is
zero. The local mass flow rate depends therefore only on the thermal
flux in the vapor phase. This formalism allows switching naturally from
vaporization to condensation depending only on the sign of the thermal
gradient. Indeed, if the vapor is superheatedm is positive and this leads
to a blowing effect in the vapor phase. On the other hand, if the vapor is
subcooled, m becomes negative which generates an aspirating flow
towards the interface.

Our in house code, DIVA, has been extensively validated with the-
oretical solutions [9,31,34] and with experimental data whether Nu-
cleate Boiling [10,33] or Leidenfrost Droplet [26] is considered. Suc-
cessful comparisons between numerical simulations and experimental
data in Ref. [29] for droplets collisions or in Ref. [14] for oscillations of
rising bubbles or droplets have also been reported.

3. Computational configuration of numerical simulations

3.1. Initialization and boundary conditions

We consider here the canonical configuration of an expanding
Blasius-Pohlhausen boundary layer interacting with a saturated and
static liquid pool. Our aim is to investigate the influence of the external
flow on the local heat flux, for an improved knowledge on the inter-
action between liquid/vapor phase change and fluid mechanics. Even
though each different industrial system would require a specific quan-
titative study, there is a strong interest in understanding local me-
chanisms in academic configurations. A possible experimental set-up
representative of our computations is illustrated in Fig. 1.

The actual computational domain implemented in our simulations is
the liquid/vapor domain (for x xL). The interface has a plane shape,
which corresponds to the asymptotic case of a high Weber number
(high surface tension value). The vapor stream is flowing in the upper
part of the domain over a static saturated liquid pool located in the
lower part of the computational domain. An inflow boundary condition
is used on the left of the domain for the injection of the superheated or
subcooled vapor flow. Given that the purpose of this work is to study
the influence of the liquid/vapor phase change on an expanding
Blasius-Pohlhausen boundary layer, a boundary layer thickness xL has
to be imposed at the inlet of the domain. This boundary layer thickness
depends on the length of the solid plate, defined as xL on the schematics
in Fig. 1. It should be emphasized that the results of the present study
will directly depend on the inlet boundary layer thickness xL. Such a

dependence on the boundary layer thickness is classical in Fluid Me-
chanics and has been observed for various type of flows as reported in
Refs. [17,18] in the framework of primary atomization, for instance.

Velocity and temperature inflow profiles are computed by solving
respectively the Prandtl [22] and the Pohlhausen [21] boundary layer
equations:

+ =f f f( )
1

2
( ) ( ) 0,

(11)

and

+ =
Pr
f( )

2
( ) ( ) 0

(12)

where =f
u

U
and =

T T

T

sat are the normalized stream function and the

non-dimensional temperature, respectively; T is the thermal gradient.
The boundary conditions are: = = = =f f f0: 0, 0; : 1 for
Eq. (11) and = = =0: 0; : 1 for Eq. (12). We recall that

y
is the dimensionless variable, x

U
is the boundary layer

thickness, =Pr
µC

k

p is the Prandtl number.
Free-boundary condition is used on top and on the right of the

computational domain, in order to avoid containment effects and to
maintain isobaric conditions.

As the aim of this work is to characterize a steady solution of the
interaction between an external flow and a static liquid pool, it is
considered that the interface position is fixed in time in order to
maintain a constant liquid height in the computational domain. This
assumption is fitting with the schematics of a possible experimental set-
up proposed in Fig. 1, if one considers an additional device that allows
maintaining a constant liquid level in the liquid pool. Unlike boiling,
stationary hypothesis is a classical approximation [28] when con-
sidering the evaporation of a liquid (as droplet evaporation for in-
stance) interacting with a superheated vapor since the velocity of the
vapor flow is much higher than the interface speed regression.

Moreover, it has been verified that for viscosity ratios [2,56]
µ

µ

liq

vap

the liquid motion due to the shear stress of the vapor flow on the in-
terface can be neglected in our configurations. Consequently, only the
velocity jump condition due to phase change will interact with the
external flow. However, such a configuration is consistent with the
static liquid hypothesis only if one assumes a sufficiently high density
ratio, since the ratio between the interface velocity and the vapor ve-
locity on the interface is close to the density ratio.

The velocity and thermal field are initialized, in the whole domain,
with the Blasius-Pohlhausen dynamic and thermal boundary layer
profiles, respectively.

3.2. Computational domain and mesh grid

To avoid the thermal singularity on the phase change mass flow rate
at the inlet plane, we assume that the vapor flow has traveled a distance
xL over an isothermal solid plate before contacting the liquid pool
(Fig. 2 and Fig. 3). Consequently, the boundary layer thickness of the
vapor inlet flow depends on this distance xL that can be accounted for in
our dimensionless analysis by defining an inlet Reynolds number RexL,

such as =Rex
U x

µL
v L

v
. The dimensions of the computational domain are

l l( , )x y with =l 6.7x xL, = min ( , )x u TL where = 4.92u
x

Re

L

xL

and

= PrT u
1
3 are the dynamic and the thermal boundary layers, re-

spectively. Our interest is to compute the spatial development of the
thermal and dynamical boundary layers over the saturated liquid pool.
A study on containment effects allowed showing that, for the vapor-
ization configuration, the dimension in the normal direction has to be
=l l2y x , while, in the condensation configuration, =l ly x is sufficient to

ensure that the numerical solutions do not depend on the computa-
tional domain size. That can be explained considering that the vapor-
ization has a “blowing” effect on the boundary layer and so a larger

Fig. 1. Schematics of the expanding Blasius-Pohlhausen boundary layer inter-
acting with a saturated and static liquid pool.
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domain in the y-direction is needed to assure that the development of
the boundary layer is not affected by the upper boundary condition.
Unlike vaporization, condensation aspirates the boundary layer, so
containement effects have smaller influence on its spatial development.

Even though the present parametric study has been conducted using
the computation configuration presented in Section 3.1., some addi-
tional verifications have been done to ensure that the upstream con-
tainment effects do not have a significant influence on the Nusselt
number evolution (Fig. B.16 in B).

A convergence study with different mesh grids has been carried out
for both configurations, for a couple of liquid/vapor defined by the
following dimensionless numbers: =Pr 1.022, =Re 85.726xL ,
= 17.746l

v
, and two different values for the Jakob number: =Ja 3.69vap

and =Ja 8.87vap for the vaporization and =Ja 0.37cond and =Ja 1.15cond

for the condensation. The dimensionless numbers are defined as it

follows: =Rex
U x

µ

v

v
, , =Javap

C T T

L

( )pv sat and =Jacond
C T T

L

( )pv sat . The

subscript ‘v’ is for vapor and ‘l’ is for liquid, μ is the viscosity, Cpv
is the

specific heat, k is the thermal conductivity, T Tv sat is the thermal
gradient and U is the velocity in the uniform zone outside the
boundary layer.

The local dimensionless coefficient of heat transfer, known also as
the local Nusselt number, is defined as

= =Nu
hx

k

x

k T T( )
,x

I

I (13)

where h is the convective heat transfer coefficient, I is the local heat
flux at the liquid/vapor interface and TI is the liquid/vapor interface
temperature, equal to the saturation temperature Tsat.

At first glance, the evolution of the Nusselt number seems to be
converged with the grid ×256 256, for the vaporization (Fig. 4) and
with the grid ×128 128 for the condensation configuration (Fig. 5).
Nevertheless, the velocity jump at =x xL from a single-phase boundary
layer flow to a phase change boundary layer flow has to be captured
and well resolved. As one of the objectives of this numerical study is to
define correlations on the Nusselt number, high accuracy is required.
Consequently, the mesh grid ×2048 1024 - for the vaporization, and

×1024 1024 - for the condensation have been chosen to run the present
numerical study. At the inlet, this mesh grid allows to have 150 points
in the boundary layer.

Since all the simulations are 2D and reach a steady state, the overall
computational cost of one simulation remains moderate even if a very
refined grid is considered. This has permitted to perform a full para-
metric study by varying the four dimensionless numbers characterizing

Fig. 2. Streamlines and temperature profile [K] of a liquid pool evaporating in
an superheated gas flow for =Pr 0.98, =Re 211xL , = 1623l

v
, =Ja 7.38vap ; left -

classic Blasius boundary layer, right - the boundary layer blown by the va-
porization.

Fig. 3. Streamlines and temperature profile [K] of a subcooled gas flow con-
densating in the liquid pool. for =Pr 0.98, =Re 211xL , = 1623l

v
, =Ja 0.74cond ;

left - classic Blasius boundary layer, right - the boundary layer “aspirated” by
the condensation.

Fig. 4. Convergence study for the evolution of the Nusselt number for the vaporization configuration, for the dimensionless numbers: =Re 85.726xL , =Pr 1.022,

= 17.746l

v
.
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our configuration in a wide range of values. Moreover, solving mass and
momentum conservation equations in the liquid field enabled us to
assess that neglecting the liquid motion was a correct assumption, for
high viscosity ratio.

4. Results and discussion

4.1. Parametric study

A parametric study has been conducted to determine how the
Nusselt number is varying with the dimensionless numbers character-
izing our configuration. These dimensionless numbers can be extracted
from the physical model as: the Reynolds number Rex from the mo-
mentum balance Eq. (2), the Prandtl number Pr from the energy con-
servation equation Eq. (3), the Jakob number Ja from the balance of
energy at the interface Eq. (6) and the density ratio l

v

from the jump

condition on the mass conservation Eq. (4).
The physical variables varied in this parametric study are the ve-

locity U for the Reynolds number, the thermal conductivity of the
vapor k for the Prandtl number, the latent heat L for the Jakob number
and the liquid density l for the density ratio.

The range of values for our parametric study was: =Re (15; 1250)xL ,

=Pr (0.6; 8), =Ja (0.00037; 8.87) and = (10; 5000)l

v
, with approxi-

mately fifty simulations in both configurations.

4.2. The spatial evolution of the Nusselt number

The spatial evolution of the Nusselt number along the longitudinal
coordinate x is showed in Fig. 6 for vaporization, and in Fig. 7 for
condensation, with a couple of liquid/vapor defined by the following
dimensionless numbers: =Pr 1.022, =Re 85.726xL , = 17.746l

v
, and

different values of Jakob number. One can see that the Nusselt number
is lower for vaporization and higher for condensation than the Nusselt
number obtained from the Blasius theory. Indeed, as observed in Fig. 2,
when vaporization occurs, the thermal boundary layer being thickened
due to the expansion flow of vapor, the heat transfer coefficient de-
creases. The same trend has been observed by Yan and Soong in Ref.
[35], where the convective heat and mass transfer along an inclined
heated plate with film evaporation have been studied. On the other
hand, the condensation involves an aspirating flow towards the liquid/
vapor interface, as it can be visualized in Fig. 3. As this flow decreases
the thermal boundary layer thickness, the heat transfer coefficient is
increased.

For the vaporization, the minimum value observed on the Nusselt
number can be related to the rapid decrease of the heat flux in the
vicinity of the inlet flow (see Fig. 8). This can be explained by the
connecting zone between the Blasius-Pohlhausen expanding boundary
layer (for <x xL) and the established flow in interaction with the phase
change (for > >x xL).

The influence of the Jakob number on the spatial evolution of the
Nusselt number can also be visualized in Figs. 6 and 7. The increase of

Fig. 5. Convergence study for the evolution of the Nusselt number for the condensation configuration, for the dimensionless numbers: =Re 85.726xL , =Pr 1.022,

= 17.746l

v
.

Fig. 6. Spatial evolution of the Nusselt number for different Jakob number for
the vaporization configuration; =Pr 1.022, =Re 85.726xL , = 17.746l

v
.

Fig. 7. Spatial evolution of the Nusselt number for different Jakob number for
the condensation configuration; =Pr 1.022, =Re 85.726xL , = 17.746l

v
.
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the Jakob number implies an increase of the vapor/liquid phase change
and therefore the Nusselt number decreases or increases if vaporization
or condensation is respectively concerned, as expected. Figs. 6 and 7 are
now compared in regard to the influence of the Jakob number on the
Nusselt number evolution. If the Jakob number is doubled and then
tripled, in the case of the boundary layer “blown” by the liquid pool
vaporization, a decrease of the intervals between the succesives curves
is observed, while if the boundary layer is “aspirated” by the con-
densation, the intervals between the succesives curves increase. These
unanticipated results will be further explained, but first, the correla-
tions on the Nusselt number will be presented.

4.3. Correlations on the Nusselt number

By fitting the numerical Nusselt number evolution obtained in all of
our simulations, we have found, general correlations that depend on the
dimensionless numbers characterizing this configuration. In what fol-
lows, the resulting correlations are presented separately for the va-
porization and for the condensation. For the sake of simplicity, the
approach to find these correlations is described in the Appendix C. Both
correlations have been designed by adding correction terms to the
Nusselt number from the Blasius theory which is defined as

=Nu Pr Re0.332x
Bl

x
0.333 0.5.

4.3.1. Vaporization
The correlation for the Nusselt number with vaporization has the

following expression

= +Nu Nu
x

x
H x x1 ( ),x

vap
x
Bl

L

n

L
(14)

where H x x( )L is the Heaviside function who has a non-zero value
only for >x xL, α, β and n have the following expressions

=
( )Re Pr e0.294 1 ,x

Ja0.495 0.333 0.0248 1

L

l

v

=n Re Pr Ja0.935 ,x
l

v

0.11 0.07 0.1
0.12

L

=
( )Re Pr e0.119 1 ,x

Ja0.477 0.237 0.0043 1

L

l

v

4.3.2. Condensation
In the configuration involving condensation, the correlation on the

Nusselt number writes as

= + +Nu Nu
x

x
H x x1 ( ),x

cond
x
Bl

L

m

L
(15)

where γ, η and m have the following expressions

=
( )Re Pr e0.0854 1 ,x

Ja0.483 0.356 0.1018 1

L

l

v

=m Re Pr e0.519 ,x
Ja0.045 0.042 0.02985

L

l

v

= Re Pr Ja0.00042 1 .x
l

v

0.426 0.55

1.25

L

4.3.3. Validation of the proposed correlations
For the sake of validation of the proposed correlations, we present

for various configurations in Table 1, the average relative error ¯ and
the maximum relative error max, between the computed Nusselt
number and the correlations, with the relative error defined as:

= 100%
Nu Nu

Nu

x
correl

x
num

x
num . One can see that the average relative error be-

tween the Nusselt number from DNS and the correlation is less than 2%
for condensation and less than 5% for vaporization. Comparisons be-
tween the proposed correlations and numerical results are also plotted
in Fig. 9 for the vaporization and in Fig. 10 for the condensation for
different configurations from Table 1.

Fig. 8. Vaporization Configuration - Evolution of the local heat flux I with the

x-axis for the dimensionless numbers: =Pr 1.022, =Re 85.726xL , = 17.746l

v
and

different values of Jakob number.

Table 1
The average relative error and the maximum relative error for the Nusselt
number for different couples of dimensionless numbers.

Condensation ¯[%] [%]max

C.1 =Pr 8, =Re 85.726xL 1.028 1.171

=Ja 0.37, = 17.6l

v

C.2 =Pr 0.98, =Re 1250xL 0.58 0.75

=Ja 0.179, = 1623l

v

C.3 =Pr 1.022, =Re 85.726xL 0.65 1.34

=Ja 0.7, = 17.6l

v

C.4 =Pr 0.98, =Re 105.51xL 0.28 0.32

=Ja 0.179, = 5000l

v

C.5 =Pr 0.98, =Re 30xL 1.38 1.6

=Ja 0.179, = 1623l

v

C.6 =Pr 6, =Re 105.51xL 1.69 1.8

=Ja 0.179, = 1623l

v

C.7 =Pr 0.98, =Re 105.51xL 0.57 0.703

=Ja 0.29, = 1623l

v

Vaporization ¯[%] [%]max

V.1 =Pr 8, =Re 85.726xL 1.56 7

=Ja 3.69, = 17.6l

v

V.2 =Pr 0.98, =Re 1250xL 1.09 1.45

=Ja 0.179, = 1623l

v

V.3 =Pr 1.022, =Re 85.726xL 2.13 9.4

=Ja 8.87, = 17.6l

v

V.4 =Pr 0.98, =Re 105.51xL 2.4 2.8

=Ja 0.179, = 3500l

v

V.5 =Pr 1.022, =Re 30xL 4.8 6

=Ja 3.69, = 17.6l

v

V.6 =Pr 1.022, =Re 85.726xL 1.8 2.69

=Ja 3.69, = 5l

v

V.7 =Pr 0.98, =Re 105.51xL 2.17 2.64

=Ja 0.3598, = 1623l

v
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4.4. Asymptotic cases

The correlations on the Nusselt number can be simplified when
considering asymptotic cases, as it will be shown in the following
paragraphs.

4.4.1. Asymptotic cases for the vaporization Nusselt number correlation
If Ja 0, the approximation of the terms depending on the Jakob

number yields simpler expressions for the parameters α and β from Eq.
(14):

Fig. 9. Spatial evolution of the Nusselt number for different configurations extracted from Table 1 for the case involving vaporization.

Fig. 10. Spatial evolution of the Nusselt number for different configurations extracted from Table 1 for the case involving condensation.
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=Ja Ja Re Pr( 0) 0.0073 1l

v

x
0.495 0.333
L

and

=Ja Ja Re Pr( 0) 0.0005 1 .l

v

x
0.477 0.237
L

This asymptotic case brings out a linear evolution of the Nusselt
number, both with the Jakob number and the density ratio, for low
vaporization rate.

When =Ja 0, the correction terms equal to 0 as the jump condition
on the velocity field is zero. Hence, the boundary layers are not mod-
ified and the expression of the Nusselt number fits simply with the one
obtained with the Blasius theory.

Considering the asymptotic cases Ja or l

v
, it can be

shown that in the vaporization case, the expression of the Nusselt
number tends towards a saturation value:

+( )Nu Ja Nu Re Pr Re Pr( ) 0.294 0.119 .x
vap

x
Bl

x x
0.495 0.333 0.4777 0.2374
L L

It can be explained by remarking that an increase of the vapor su-
perheat tends to increase the local heat flux on the interface, and thus,
the jump on the normal velocity. As this jump condition tends to
thicken the thermal boundary layer and thus to decrease the local heat
flux, the saturation effect results from an equilibrium state between
these two antagonistic effects.

4.4.2. Asymptotic cases for the condensation Nusselt number correlation
The expression of the Nusselt number in the condensation case is

now presented for a low Jakob number.
If Ja 0, Eq. (15) becomes:

+Nu Nu
x

x
H x x1 ( ),x

cond
x
Bl

L

m

L

with

=Ja Ja Re Pr( 0) 0.0087 1l

v

x
0.483 0.356
L

and

=m Ja Re Pr( 0) 0.519 ,x
0.045 0.042
L

considering

=Ja( 0) 0.

As for the vaporization, when =Ja 0, the Nusselt number simply fits
with the Blasius theory.

Moreover, if Ja or l

v
, an opposite trend to the one ob-

served for vaporization is reported. In the case of condensation, the
oncoming subcooled flow being aspirated towards the interface, the
thickness of the thermal boundary layer is reduced. This leads to an
increase of the local heat transfer as it can be visualized in Fig. 7. It is
found that in the case of condensation, no saturation effect on the
Nusselt number is observed neither in the numerical simulations, nor in
the expression of the proposed correlation 15. This can be understood
by remarking that, compared to vaporization, in the case of con-
densation, the jump condition on the normal velocity is of opposite
direction, favoring the local heat transfer. These trends have also been
observed when Figs. 6 and 7 were compared regarding to the influence
of the Jakob number on the evolution of the Nusselt number.

4.5. The integrated heat lux

From the correlations on the Nusselt number one can calculate the
expression of the integrated heat flux exchanged at the liquid/vapor
interface.

4.5.1. Vaporization
Given the expression (eq. (14)) of the Nusselt number when va-

porization happens, the heat flux per unit of width, integrated between
xL and x is defined as

= =

=

x x x dx k T T dx

k T T dx dx dx

( , ) ( ) ( )

( )

vap
L x

x vap
sat x

x Nu x

x

sat x

x Nu x

x x

x

x x

x

x

( )

( )
1

1

L L

vap

L

Bl

L

x

xL

n

L

(16)

The different components of eq. (16) are calculated as it follows

=
Nu x

x
dx Nu x Nu x

( )
2( ( ) ( )),

x

x Bl
Bl Bl

L
L (17)

=

( ) ( ) ( )
x

dx
F n n n

n
n

1 , ; 1 ,
csc( ),

x

x

x

x

n x

x

n x

x2 1

L

L L

L

(18)

where =ncsc( )
sin n

1

( )
is the cosecant function and

( )F n n n, ; 1 ;
x

x2 1
L is the Gauss hypergeometric function, defined

as

=
+ +

+
=

F a b c z
c

a b

a k b k

c k

z

k
( , ; ; )

( )

( ) ( )

( ) ( )

( ) !
k

k

2 1

0

with =a a( ) ( 1)! the gamma function.
If one considers also the region x x(0, )L where the boundary layer

is evolving without interacting with the vaporization, one will find the
following expression for the heat flux per unit of width

= + =

+ ( )
( )

x x x dx x dx k T T Nu x

n H x x

( , ) ( ) ( ) ( ) 2 ( )

csc( ) ln ( )

L
x Bl

x

x vap
sat

Bl

F n n n

n

x

x L

0

, ; 1 ,

L

L

x

xL

n
xL

x

L

2 1

(19)

The expression (eq. (19)) of the integrated heat flux is plotted in
Fig. 11. The black curve represents the integrated flux exchanged if the
boundary layer evolved without interacting with the liquid vaporiza-
tion. The dotted lines depict the x-evolution of the thermal flux ex-
changed at the liquid/vapor interface from xL to Lx for different values
of the Jakob number. As expected, the vaporization reduces the ex-
changed heat flux.

Fig. 11. The x-evolution of the integrated exchanged thermal flux at the in-
terface for =Pr 1.022, =Re 85.726xL , = 17.746l

v
and different values of the

Jakob number - vaporization configuration.
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4.5.2. Condensation
For the configuration with condensation, the approach to calculate

the exchanged heat flux is the same as for the vaporization. Considering
the expression (eq. (15)) of the Nusslet number, the exchanged heat flux
per unit of width is expressed as

= + = +

+ + ( )
( )

x x x dx x dx k T T Nu x

m H x x

( , ) ( ) ( ) ( ) 2 ( )

csc( ) ln ( )

L
x Bl

x

x cond
sat

Bl

F m m m

m

x

x L

0

, ; 1 ,

L

L

x

xL

m
xL

x

L

2 1

(20)

The evolution of the integrated heat flux is plotted in Fig. 12. The
black curve represents the integrated flux exchanged if the boundary
layer evolved without interacting with the condensation. The dotted
lines depict the x-evolution of the exchanged heat flux at the liquid/
vapor interface from xL to Lx for different values of the Jakob number.
The exchanged heat flux is increased by the condensation.

4.6. The inluence of the phase change on the viscous friction

We now examine the influence of the liquid/vapor phase change on
the viscous friction. Given the expression of the viscous tensor:

=

+

+

( )
( )

µ µ

µ µ

¯

2

2

u

x

u

y

v

x

u

y

v

x

v

y

we know that at the interface of normal vector ey, the stress vector

=T e¯ y has the following normal and shear components: = µT ey
v

y

and = +( )µT ex
u

y

v

x
.

The friction coefficient can be determined by: =
C

U2

f I
2 with the

expression of the interfacial friction: = T e |I x yI
. We recall that for the

Blasius theory the friction coefficient is =

C

Re2

0.332f
Bl

x
. Plotted in Fig. 13 is

the evolution of the friction coefficient for the three configurations, i.e.
Blasius theory, vaporization and condensation. One can see that, sur-
prisingly, the phase change does not influence the viscous friction at the
liquid/vapor interface, despite the modification of the velocity field in
the vicinity of the interface.

In order to justify the relevance of this result we will further take a
look at the tangential and the normal velocities at the liquid/vapor
interface. For the sake of simplicity we will take only the example of the
vaporization. In Fig. 14, the evolution of the tangential velocity with
the Y-axis is plotted for =x

l

2

x . It is noteworthy that the evolution of the
tangential velocity profile in the vaporization configuration is almost
identical to the Blasius boundary layer velocity profile, despite the
vapor blowing in the normal direction due to phase change. The liquid
motion due to the shear stress of the vapor flow on the interface is
negligible (see the zoom at the bottom left of the figure). Moreover,
there is little modification of the tangential velocity profile at the li-
quid/vapor interface (for =y 0.005 m) (see the zoom situated in the
middle right of the graphics). As simulations showed that we can still
make the assuption u

y

v

x
, this explains why only marginal mod-

ifications of the interfacial friction coefficient are observed.
Plotted in Fig. 15 is the evolution of the normal velocity v and the

thermal flux = kv
T

y
with the Y-axis for a fixed value of x. An im-

portant difference can be observed between the normal velocity from
the Blasius theory and the normal velocity when the vaporization
phenomenon occurs. Unlike the classical Blasius theory, where the
thermal flux is induced only by conduction, in the phase change con-
figuration there is a significant influence of the thermal convection in
the transverse direction. Thereby, it can be understood that the dis-
continuity on the Nusselt number is induced by the jump condition on
the normal velocity field.

Fig. 12. The x-evolution of the integrated exchanged thermal flux at the in-
terface for =Pr 1.022, =Re 85.726xL , = 17.746l

v
and different values of the

Jakob number - condensation configuration.

Fig. 13. Evolution of the friction coefficient for: =Pr 1.022, =Re 85.726xL ,

= 17.746l

v
, =Ja 3.69vap and =Ja 0.369cond .

Fig. 14. Evolution of the tangential velocity u for the vaporization study case
for =Pr 1.022, =Re 85.726xL , = 17.746l

v
, =Ja 3.69vap : black line - Blasius

theory, red dashed line - vaporization configuration. Zoom on the liquid region
(the bottom left) and on the zone close to the interface (middle right).
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5. Conclusions

Based on numerical simulations, in this paper we propose correla-
tions on the influence of an external flow on the vaporization or con-
densation of a static liquid pool. It is shown that the local flow, induced

by the phase change, decreases or increases, respectively, the local heat
flux, depending upon vaporization or condensation is considered. For
the vaporization configuration it was found that the Nusselt number,
and therefore the heat transfer, decreases exponentially with the Jakob
number until reaching a saturation value. The opposite trend is ob-
served for the condensation, for which the Nusselt number increases as
an exponential function of the Jakob number. Another noteworthy re-
sult is about the viscous friction on the interface, or the tangential
component of the viscous tensor, which is weakly affected by the phase
change in the case of a plane interface. Additionally, given the evolu-
tion of the normal velocity v with y, the influence of the phase change
on the normal component of the viscous tensor is still very weak in
comparison to the tangential one, as it is the case for the classical
Blasius boundary layer. Moreover, even if the profiles are not super-
imposed, it can be qualitatively observed that the derivative v

y
is in the

same order of magnitude with or without phase change. This is why we
can conclude that the liquid vapor phase change has little influence on
the components of the viscous stress vector.
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Appendix A. Jump conditions

The liquid and the vapor phases are separated by an interface across which the phase change occurs (i.e. the liquid vaporizes into vapor or the
vapor condenses into the liquid). The subscripts l and v are used to refer to the liquid and vapor phases, respectively. The interface velocity is denoted
by V and n is the local unit vector pointing towards the liquid phase. The interface mass flux, m is obtained by using the mass conservation across
the interface:

= =m V V n V V n( ) ( ) .l l v v (A.1)

The jump on the velocity field across the interface can therefore be written as:

= mV n[ ]
1

.
(A.2)

According to the second law of thermodynamics and assuming that the local equilibrium hypothesis is still valid, the interface temperature is
imposed at the saturation temperature: = =T T Tl v sat at the interface. Integrating Eq. (3) across the interface along with Eq. (A.1) gives the following
jump condition for the energy conservation

=h k TV V n n[ ( ) ] [ ] ,l (A.3)

where the operator [ ] accounts for the jump across the interface and it is defined by: =f f f[ ] v l and h defines the enthalpy. It is assumed that h
depends only on the temperature. By using Eq. (A.1), the jump condition for the energy conservation rewrites

=mL k T n[ ] , (A.4)

with =L h[ ] the latent heat of phase change. Finally, integrating Eq. (2) across the interface and including the effects of surface tension leads to:

+ =p µ
V

n
V n V n( ) ,

n 2

(A.5)

which, by using Eq. (A.2), is rewritten as

= +p µ
V

n
m[ ] 2

1
,

n 2

(A.6)

Appendix B. The influence of a conditioning section within the simulation domain

We have included here a graph demonstrating the validity of the inflow boundary condition. A conditioning section has been added, where the

Fig. 15. Evolution of the normal velocity v and the thermal flux for the va-
porization study case for =Pr 1.022, =Re 85.726xL , = 17.746l

v
, =Ja 3.69vap :

dashed line - Blasius theory, solid line - vaporization configuration.
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boundary layer is spatially developing from a certain point =x xL0 to =x xL. The phase change is plugged at xL and we want to investigate the
differences between imposing a Blasius profile at the inlet plane and simulating its development upstream. Even if the computation domain starts
before the point =x xL, the evolution of the Nusselt number is not affected at all in the far field and only weakly affected in the inlet vicinity, as
demonstrated on the figure below.

Figure B.16. Spatial evolution of the Nusselt number. Condensation configuration for: =Pr 1.022, =Re 85.726xL , =Ja 1.15 and = 17.746l

v
.

Appendix C. Parametrical study

The purpose of the present work was to investigate the influence of liquid/vapor phase change on the Blasius theory results, particularly on the
Nusselt number evolution. At first, the correction

=Nu Nu F Re Pr Ja x, , , , ,x
Bl

x
vap

x
l

v

L

(C.1)

has been plotted.

Fig. C.16. The correction on the Nusselt number from the Blasius theory with the x-axis - Vaporization configuration - dimensionless numbers: =Pr 1.022,
=Re 85.726xL , =Ja 3.69 and = 17.746l

v
.

As it can be seen in Fig. C.17, for =x xL, the correction Nu Nu 0x
Bl

x
vap and it increases with x as a power function. Therefore, the Nusselt

number with vaporization can be written as

= +Nu Nu
x

x
H x x1 ( ),x

vap
x
Bl

L

n

L
(C.2)

where the Heaviside function H x x( )L enables locating the phase change only for >x xL.
The next step in our inquiry was to determine the evolution of the parameters α, β and n with the dimensionless numbers characterizing the

configuration of interest: Reynolds number RexL, Prandtl number Pr , Jakob number Ja and the density ratio l

v

. It is noteworthy that, given the

dimensionless form of Eq. (C.2), the choice of an inlet Reynolds number RexL instead of a general Reynolds number Rex is straightforward.
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Figure C.18. Evolution of the jump ( )Re Pr Ja, , ,xL
l

v
for =x xL - Vaporization configuration.

The addressed approach to determine the parameters α, β and n is developed as it follows. First, the jump β for =x xL has been examined. Its
evolution with the Reynolds number RexL (Fig. C.18a), the Prandtl number (Fig. C.18b), the Jakob number (Fig. C.18c) and finally with the density
ratio (Fig. C.18d) have been plotted.

By means of a Matlab library, CFTool, one was able to obtain its evolution with the dimensionless numbers,

= Re Pr exp Ja0.119 1 0.0043 1 .x
l

v

0.4777 0.2374
L
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Figure C.19. Spatial evolution of the correction on the Nusselt number from the Blasius theory obtained from the numerical simulation and the function fitting its
evolution: = 2.062 and =n 0.3561; β known for the corresponding couple of dimensionless numbers.

In the interest of finding the expressions of the parameters α and n from Eq. (C.2), the relation Nu Nux
Bl

x
vap has been plotted with the x axis for

each value of dimensionless number. For example, in Fig. C.19 the evolution of Nu Nux
Bl

x
vap is plotted for =Re 85.7226xL , =Pr 1.022, =Ja 3.689,

and = 17.746l

v
. Conducting a full set of simulations sweeping a large range of values for the dimensionless numbers enabled us to determine the

expressions of parameters α and n,

= Re Pr exp Ja0.294 1 0.0248 1 ,x
l

v

0.495 0.333
L

and

=n Re Pr Ja0.9351 .x
l

v

0.11 0.07 0.1

0.12

L

Their evolution with each dimensionless number is plotted in Fig. C.20 and Fig.C.21.
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Figure C.20. Evolution of the coefficient ( )Re Pr Ja, , ,xL
l

v
for >x xL - Vaporization configuration.
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Figure C.21. Evolution of the parameter ( )n Re Pr Ja, , ,xL
l

v
for >x xL - Vaporization configuration.
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