
Official URL 
DOI : https://doi.org/10.978.8896471/371 

Any correspondence concerning this service should be sent 

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: 
http://oatao.univ-toulouse.fr/24877 

Open  Archive  Toulouse  Archive  Ouverte 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

To cite this version: Quintero Rincon, Antonio and Batatia, 

Hadj and Alejandro Pereyra, Marcelo and Risk, Marcelo Detection 

of onset in epilepsy signals using generalized Gaussian 

distribution. (2014) In: 5th International Conference on Advances 

in New Technologies, Interactive Interfaces and Communicability 

(ADNTIIC 2014), 10 November 2014 - 12 November 2014 

(Córdoba, Argentina). 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/287740789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Detection of Onset in Epilepsy Signals using 

Generalized Gaussian Distribution 

Antonio Quintero-Rincón1, Hadj Batatia2, Marcelo Pereyra3, Marcelo Risk1,4 

1 Department of Bioengineering, Instituto Tecnológico de Buenos Aires (ITBA) 

Av. Eduardo Madero 399 C1106ACD, Buenos Aires, Argentina 
2 University of Toulouse, IRIT - INP-ENSEEIHT, 

Toulouse, 2, rue Charles Camichel, B.P. 7122, 31071 Cedex 7, France 
3 Department of Mathematics,  University of Bristol, University Walk, Clifton 

Bristol BS8 1TW, U.K.  
4 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 

[aquinter@itba.edu.ar, hadj.batatia@inp-toulouse.fr, 

marcelo.pereyra@bristol.ac.uk, mrisk@itba.edu.ar] 

Abstract.  Extracting information from scalp EEG signals is a challenging 

biomedical signal processing problem that has a potentially strong impact in the 

diagnosis and treatment of numerous neurological conditions. In this work we 

study a new methodology for extracting information from EEG signals from 

patients suffering from epilepsy. The methodology is based on a multi-

resolution wavelet representation and a statistical generalized Gaussian model, 

which provide a compact description of the time-frequency information in the 

EEG signal array. Preliminary experiments suggest that the information 

captured by the model is potentially useful for effectively detecting the onset of 

epileptic seizures, which is key for epilepsy diagnosis and treatment.  

1   Introduction 

Appropriate diagnosis and treatment of epilepsy is a main public health issue. Patients 

suffering from this disease often exhibit epileptic seizures, which result from the 

synchronous and excessive discharge of a group of neurons in the cerebral cortex. 

Epileptic seizures usually have a sudden onset, spread in a matter of seconds or 

minutes and, in most instances, are brief. The manifestation of a seizure depends on 

where in the brain it starts and how far and fast it spreads, and correctly identifying 

this information is key to treatment.  

Electroencephalography (EEG) is a non-invasive and widely available biomedical 

modality that can be used to diagnose epilepsy and plan treatment. One particular task 

that has received a lot of attention is the detection of epileptic seizures from EEG 

signals measured on the brain scalp. It is widely acknowledged that detection can be 

improved by summarizing the EEG signals using relevant descriptors; that is, 

quantities computed from the EEG signals that capture the main relevant features of 
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the seizure and whose values help discriminate between normal and abnormal brain 

activity. The most relevant EEG features studied in the literature can be classified in 3 

groups: a) spectral properties such as band power and edge frequency; b) signal 

morphological properties such as wave amplitude, sharpness, line length, zero 

crossings; and c) statistical descriptors such as statistical moments, correlation times, 

entropies, etc. (see [7]-[14] for some works on this topic). 

In this work we investigate a statistical model for summarizing EEG signals and 

highlighting epileptic seizures. The remainder of this document is structured as 

follows. Sections 2 and 3 describe the proposed statistical methodology that is used to 

describe EEG signals and highlight epileptic seizures. This methodology is then 

applied to real EEG signals from patients suffering epileptic seizures in Section 4. 

Discussions and conclusions are finally reported in Section 5. Notice the potential 

applications of this work in E-health, for instance in telemedicine where physicians 

evaluate patients remotely. 

2   Mathematical Concepts 

Before presenting the proposed methodology we define the statistical model that is 

considered in this work. The univariate generalized Gaussian distribution (GGD) is a 

flexible statistical model for one-dimensional signals that has found numerous 

applications in science and engineering (see [2], [3], [4], [5], [6] for more details and 

examples). This parametric distribution has 3 parameters, and its probability density 

function (PDF) is given by: 
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and where µ ∈ℜ is a location parameter, σ ∈ℜ+ is a scale parameter and β ∈ℜ+ is a 

shape parameter that controls the shape of the density’s tail. The PDF (2) has many 

properties that are useful for modeling: i) the value of (2) approaches zero as x 
approaches positive and negative infinity, ii) the mean and mode of (2) is µ, iii) (2) is 

symmetric with respect to µ. Notice that the GGD parametric family comprises many 

popular distributions that are commonly used in biomedical signal processing. For 

example, setting β=1 leads to a Laplacian or double-exponential distribution, β=2 to a 

Gaussian or normal distribution, and β→∝ to a uniform distribution. We refer the 

reader to [1] for a comprehensive treatment of the mathematical properties of the 

GGD model.

 



3   Methodology 

We are now ready to describe the proposed methodology and its application to EEG 

signals. The first step of this methodology is to represent the signals using a time-

frequency representation. This step will allow separating each EEG signal in the array 

of signals into different frequency bands with specific anatomical behaviors 

(clinicians typically use the bands 0-1Hz, 1-2Hz, 2-4Hz, 4-8Hz and 8-16Hz to capture 

different types of neurological activity). In this work this is achieved by using a 

Dauchebies wavelet decomposition with 5 resolution scales, designed to capture the 

bands described above [10]. From the wavelet decomposition it is then possible to 

assess how the energy in the signal is spread over the frequency spectrum, and how 

this distribution evolves over time.  

Once the array of EEG signals has been transformed to the wavelet domain (notice 

that this operation can be done “online” as the signals are acquired), we divide the 

wavelet coefficients associated with each of the 5 resolution scales into groups 

corresponding to 2-minute time frames or windows. In this work we use overlapping 

groups with an overlapping factor of 119 seconds (i.e., frames differ by 1 second). 

Notice that the wavelet transform used is orthogonal and therefore these coefficients 

contain all the information of the array of EEG signals. 

The third main step of our methodology is to summarize the information contained in 

each group of wavelet coefficient by modeling their statistical distribution with a 

GGD. Precisely, for each group of coefficients (that is, each time resolution level and 

each time window), we compute the statistical estimates of the GGD parameters 

defined in (2). Given that EEG signals have zero mean we have µ=0, and it is only 

necessary to estimate σ and β. Here we have computed these estimates using the 

algorithm [6] that computes estimates for α(σ) and β. For comparison we contrasted 

visually the fit of the GGD model with other statistical models: Normal, Cauchy, 

Logistic, T-Location Scale and Alpha-Scale, we found that the GGD often produces 

the best results, see Figure 1. We also used goodness-of-fit measures such as the 

Kolmogorov-Smirnov test and Cramer-von-Mises test to evaluate the GGD model 

and obtained satisfactory results (p < 0.05) that were in agreement with the results 

from the literature [16], [17]. 

In this work we study the hypotheses that rapid changes in the values of α(σ) and β 

over time (at least for certain frequency bands) reveal the onset of an epileptic seizure, 

see Figure 2. Also we have investigated this hypotheses by monitoring the values of 

α(σ) and β for each frequency band over time and identifying visually the points in 

which significant rapid changes occur. The development of automatic detection 

methods is currently under investigation. 

The performance of the proposed seizure onset detector was evaluated using the 

Children's Hospital Boston database [15], which consists of 36 EEG recordings from 

pediatric subjects with intractable seizures. In this work we used 30 crisis from 10 

subjects. A set including two to five bipolar EEG recordings sampled at 256Hz were 

 



available for each subject. Each recording contained a seizure event with a labeled 

onset that was detected by an experienced neurologist, who worked backward from 

the observed clinical onset to find the electrographic onset. The signals epochs have 

42 minutes, 30 minutes before crisis and between 10 to 12 minutes after crisis, 

depending on the duration of the crisis. 

No distinctions regarding the types of seizure onsets were considered; the data 

contains focal, lateral, and generalized seizure onsets. Furthermore, the recordings 

were made in a routine clinical environment, so non-seizure activity and artifacts such 

as head/body movement, chewing, blinking, early stages of sleep, and electrode 

pops/movement are present in the data. The set of recordings lasted on average 35 

minutes for 30 subjects in total; 2 hours for 4 subjects; and 12 hours for 2 other 

subjects. Taken together the recordings account for 60 hours of EEG recordings and 

139 seizures [15].  

Fig. 1. This Distribution-Fitting example shows the best fit for different distributions: GGD 

(__), Normal (∇), Cauchy (*), Logistic (Χ), T-Location Scale (ο) and Alpha-Scale (--); the 

plots present a Generalized Gaussian distribution how the best options; Normal distribution has 

a good performance and Cauchy, T-Locale Scale and Alpha-Scale distributions present a 

similar shape, however they do not comply in full fit; also for Logistic distribution. 

4   Results 

The proposed methodology for detecting epileptic seizures was assessed using the 

Children's Hospital Boston database described above. Performance was measured 

using conventional sensitivity and specificity criteria, defined as !"#$%&%'%&()*+,&-.*

+/$012+,&-.*!"%345"$0, where TPs mean True Positives, and !6"7%8%7%&(*2!0*)*+,&-.* 
9/*&%:";*+,&-.*<,#=!"%345"*&%:", where FPs mean False Positives. The sensitivity 

results we obtained are 0.77 for (the visual inspection of) α(σ) and 0.80 for β. The 



specificity results we obtained are 0.27 for α(σ) and 0.23 for β. For completeness we 

also evaluated the latency of our method, which we found to be on average 0.17 

seconds for both parameters.  

Fig. 2. For illustration, this figure shows the trace plots of α(σ) and β for one 

spectral band. These plots have been computed from the array of EEG signals of a 

patient that exhibited an epileptic seizure at minute 30 (!–axis). We observe that the 
values of α(σ) and β are indeed very sensitive to this event and clearly highlight the 

period when the seizure takes place.  

5 Discussion 

The appropriate detection of epileptic seizures from EEG signals is very important for 

the diagnosis and treatment of epilepsy, and has key applications in a clinical facility 

setting as well in E-health. In this work we have investigated the use of a new 

methodology for detecting seizures from EEG signals. This methodology is based on 

a GGD statistical model for the wavelet representation of the signal. Preliminary 

results suggest that the parameters of this model are very sensitive to epileptic seizure 

and therefor potentially interesting for devising automatic detection algorithms.  

Perspective for future work include an extensive evaluation of this methodology, 

comparisons with other detection methods from the state of the art, the development 

of fusion methods that combine many detection techniques to increase robustness to 

noise and artifacts, and a study of seizure intensity, duration and spread, and other 

characteristics.  
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