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Wind power forecasting methods are essentially based on sta-
tistical approaches which use previous historical data to train a
model representing the relation between wind power and explana-
tory variables including Numerical Weather Prediction (NWP) and
on-line measured data [7]. Approaches based on machine learning
methods such as boosted regression trees [8], neural networks [14]
or deep learning [16] are at the forefront of the technology, with
gradient boosting methods winning two Global Energy Forecasting
Competitions [5], [6]. Despite the performance of these approaches,
they do not take into account the information available relating to
the relationships between wind turbines.

Indeed, since awind turbine generates electricity from the energy
in the wind, the wind leaving the turbine has a lower energy content
than the wind arriving in front of the turbine. A wind turbine thus
interferes with its neighbors and can cause a production decrease
on the turbines located behind it downwind. This phenomenon is
called the wake effect [13]. This additional information has to be
taken into account in the forecast process with the aim of improving
the prediction accuracy. Therefore, the problem is to forecast the
production at wind farm level by considering local constraints
between turbines.

3 A MAS FORWIND POWER FORECASTING
This problem requires modelling a distributed, dynamic system that
has inter-dependencies between its elements. These characteristics
correspond to aMulti-Agent System able to adapt to its environment
in an autonomous way, such as those studied in [1].

The criticality of an agent expresses its degree of dissatisfaction
[12] and its cooperative social attitude consists in always helping
the most critical agent in its (limited) neighborhood (without being
altruistic i.e. without becoming the most critical agent). The actions
of the agents aim to reduce as much as possible the criticality of all
the agents in the system without needing any global knowledge.

The proposed system is composed of Turbine Forecaster Hour
(TFH) agents. Each agent is responsible of the forecast of a wind
turbine production at a given hour. Each agent has access to weather
forecasts and production data history. The neighborhood of a TFH
agent is based on physical closeness: at a given hour, a TFH agent
is related to, at most, the two closest TFH agents.

The behavior of an agent follows a Perception-Decision-Action
life cycle. The agent starts with an initial forecast and can modify
it at the end of each cycle. The behavior of an agent is summed up
in Algorithm 1.

Algorithm 1 Life-Cycle of a TFH agent
repeat

Perceive: Store its own forecast and criticality and those of
its neighbors

Decide: Compute the criticality of each possible action (in-
crease, decrease or not change the forecast) and decide coop-
eratively the action that minimizes the highest criticality of its
neighbors and its own

Act: Perform the decided action and inform its neighbors of
its new criticality
until Global criticality convergence or limit number of cycles
exceeded

The quality of the forecast made by a TFH agent depends on the
consistency of its forecast with both its own past productions and
the neighboring agents forecast. Compliance with these constraints
appears through Local and Neighboring criticalities. The final crit-
icality of a TFH agent corresponds to the maximum between its
local criticality and each neighboring criticality. This choice enables
not to give an advantage to one criticality over the other, they are
considered equivalent. The functions representing the criticalities
are obtained from forecasted Probability Density Functions (PDF).
A high probability corresponds to a low criticality while a low
probability corresponds to a high criticality.

4 EXPERIMENTS AND ANALYSIS
The experiment consists in making a first forecast with Gradient
Boosting Model (GBM) [3], a reference algorithm. Then our pro-
posed system is used to possibly correct this. The model is validated
by a 10-fold cross-validation. To evaluate forecasts performance
two standard measures were used: the Mean Absolute Error (MAE)
and the Root Mean Squared Error (RMSE).

The study was carried out on five wind farms in France. These
farms were chosen because they are located in different wind zones
and on land with different topographies. Weather forecasts are
provided by theMétéo-France AROME [15] high-resolution forecast
model for the entire next day (with time horizon from 21h to 45h).
The experiment covers a large period thanks to a nearly three-
year history of wind power and weather forecasts from 01/2014
to 09/2017. In order to obtain the PDF and build the criticality
functions, another GBM was trained with the parameters related
to Equation 1, at 100m: wind speed, wind direction, temperature,
pressure and relative humidity. The increase and decrease value
specified in Algorithm 1 has been set to 1kW.

Finally, over the evaluation period, the improvement reaches on
average 1% on MAE and 0.9% on RMSE compared to a reference
algorithm. Although low, this decrease in error can avoid significant
financial penalties for the wind operator on the electricity market,
especially when the forecasts concern several wind farms.Moreover,
the improvement was observed individually for the five wind farms
evaluated. Plotting the criticality of agents shows that the local
behavior of agents leads to a decrease in the overall criticality of
the system. The cooperative behavior of the agents allowed a global
resolution of the problem. As weather forecasts are uncertain, the
decrease in criticality is not always correlated with a decrease in
error. However, the results show an overall decrease in error.

Since there are also time dependencies in productions, the next
step will be to connect each agent to its neighbors at hours h-1 and
h+1. The model should also be tested on a larger scale on offshore
wind farms where the wake effect is greater. Testing the model on
other farms may also provide a better understanding of the impact
of farm characteristics on the results.
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