
Official URL
DOI : https://doi.org/10.1007/978-3-030-19570-0_34

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24814

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Calabar, Pedro and Fandinno, Jorge and

Schaub, Torsten and Schellhorn, Sebastian Lower Bound Founded Logic

of Here-and-There. (2019) In: 16th European Conference on Logics in

Artificial Intelligence (JELIA 2019), 7 May 2019 - 11 May 2019

(Rende, Italy).

Lower Bound Founded Logic of

Here-and-There

Pedro Cabalar1 , Jorge Fandinno2 , Torsten Schaub3(B) ,
and Sebastian Schellhorn3

1 University of Corunna, A Coruña, Spain
2 University of Toulouse, Toulouse, France

3 University of Potsdam, Potsdam, Germany
torsten@cs.uni-potsdam.de

Abstract. A distinguishing feature of Answer Set Programming is that
all atoms belonging to a stable model must be founded. That is, an atom
must not only be true but provably true. This can be made precise by
means of the constructive logic of Here-and-There, whose equilibrium
models correspond to stable models. One way of looking at foundedness
is to regard Boolean truth values as ordered by letting true be greater
than false. Then, each Boolean variable takes the smallest truth value
that can be proven for it. This idea was generalized by Aziz to ordered
domains and applied to constraint satisfaction problems. As before, the
idea is that a, say integer, variable gets only assigned to the smallest
integer that can be justified. In this paper, we present a logical recon-
struction of Aziz’ idea in the setting of the logic of Here-and-There.
More precisely, we start by defining the logic of Here-and-There with
lower bound founded variables along with its equilibrium models and
elaborate upon its formal properties. Finally, we compare our approach
with related ones and sketch future work.

1 Motivation

A distinguishing feature of Answer Set Programming (ASP; [5]) is that all atoms
belonging to a stable model must be founded. That is, an atom must not only be
true but provably true. This can be made precise by means of the constructive
logic of Here-and-There (HT; [17]), whose equilibrium models correspond to sta-
ble models [23]. One way of looking at foundedness is to regard Boolean truth
values as ordered by letting true be greater than false. Then, each Boolean vari-
able takes the smallest truth value that can be proven for it. Thus, in analogy to
[20,25] foundedness in ASP can be understood by minimizing values of Boolean
variables. This idea was generalized in [1] to ordered domains and applied to
constraint satisfaction problems. As before, the idea is that a, say integer, vari-
able gets only assigned to the smallest integer that can be justified. In fact, ASP
follows the rationality principle, which says that we shall only believe in things,
we are forced to [15]. While this principle amounts to foundedness in the propo-
sitional case, there are at least two views of statements such as x ≥ 42. First,

_https://doi.org/10.1007/978-3-030-19570-0 34

we may accept any value greater or equal than 42 for x. Second, we may only
consider value 42 for x, unless there is a reason for a greater value. Arguably,
the latter corresponds to the idea of foundedness in ASP.

The ASP literature contains several approaches dealing with atoms contain-
ing variables over non-Boolean domains [7,8,18] but these approaches do not
comply with foundedness in our sense. For instance, approaches to Constraint
ASP (CASP) like [7] only allow for atoms with variables over non-Boolean
domains in the body of a rule. Thus, these atoms and the values of non-Boolean
variables cannot be founded in terms of ASP.

Approaches like [8,18] focus on foundedness on an atom level and allow for
almost any kind of atoms in heads and bodies. They match the view of the
rationality principle that accepts any value satisfying a statement like x ≥ 42.
This permits assignments over non-Boolean domains to be founded but the vari-
ables are not necessarily assigned to the smallest value that can be justified. The
following examples point out the difference of the two views of the rationality
principle. Moreover, we show that taking any value satisfying a statement as a
rational choice together with separate minimization will not yield foundedness
in terms of ASP. Consider the rules

x ≥ 0 y ≥ 0 x ≥ 42 ← y < 42 (1)

The approach presented in [8] produces the following result. The first two rules
alone would generate any arbitrary pair of positive values for x and y, but the
last rule further restricts x ≥ 42 when the choice for y satisfies y < 42. It
is clear that this last rule causes the range of x to depend on the value of y.
Unfortunately, this dependence disappears if we try to minimize variable values
a posteriori by imposing a Pareto minimality criterion on the solutions. If we
do so, we get a first minimal solution with y �→ 0 and x �→ 42 which somehow
captures the expected intuition: we first decide the minimal value of y (which
does not depend on x) assigning 0 to y and then apply the third rule to conclude
x ≥ 42 obtaining the minimal value 42 for x. However, among the solutions of
(1), we also get those in which we chose y ≥ 42, so the third rule is not applicable
and x ≥ 0. Therefore, we get a second Pareto-minimal solution with y �→ 42 and
x �→ 0 that seems counter intuitive: as y does not depend on x there seems to
be no reason to assign a minimal value other than 0 to y. To show that separate
minimization on solutions does not always yield all (and possibly more) solutions
as expected by foundedness, consider the rules

x ≥ 1 x ≥ 42 ← ¬(x ≤ 1) (2)

In this case, depending on whether we assume ¬(x ≤ 1) or not, we may get two
founded solutions. By assuming x ≤ 1, the second rule is disabled and the first
rule x ≥ 1 determines the founded minimal value 1 for x, still compatible with
the assumption x ≤ 1. If, on the contrary, we assume ¬(x ≤ 1), then the second
rule imposes x ≥ 42 determining the minimal value 42 for x that, again, confirms
the assumption ¬(x ≤ 1). In other words, we expect two founded solutions with
x �→ 1 and x �→ 42, respectively. In contrast, if we first apply [8] and then a

Pareto minimization, we lose the solution with x �→ 42. This is because when
assuming x ≤ 1, we get x ≥ 1 as before, and the only compatible solution assigns
1 to x, whereas if we assume ¬(x ≤ 1), we obtain infinitely many values x ≥ 42
compatible with the assumption. The solutions are then x �→ 1 plus the infinite
sequence x �→ 42, x �→ 43 and so on. Thus, the unique Pareto minimal solution
assigns 1 to x.

On the other hand, Aziz’ original approach to foundedness [1] has some
counter intuitive behavior. In this approach, p ← ¬p alone yields a solution with
p, unlike in traditional ASP. In view of this, we present in the following a logical
reconstruction of Aziz’ idea of foundedness in the setting of the logic of Here-and-
There. More precisely, we start by defining the logic of Here-and-There with lower

bound founded variables (HTLB for short) along with its equilibrium models.1

We elaborate upon the formal properties of HTLB like persistence, negation and
strong equivalence.2 Furthermore, we point out the relation of HTLB to HT,
and show that our approach can alternatively be captured via a Ferraris-style
definition of stable models [11] adapted to our setting. Finally, we compare our
approach with related work and point out the benefits of HTLB.

2 Background

Let A be a set of propositional atoms. A formula ϕ is a combination of atoms
by logical connectives ⊥, ∧, ∨, and ←. As usual, we define ⊤ def= ⊥ → ⊥ and
¬ϕ def= ϕ → ⊥. A theory is a set of formulas.

We denote an interpretation over A by I ⊆ A and an HT-interpretation
over A by 〈H ,T 〉 where H ⊆ T ⊆ A are interpretations. Since we want to
abstract from the specific form of atoms, we rely upon denotations for fixing their

semantics. A denotation of atoms in A is a function � · �A : A → 22A

mapping
atoms in A to sets of interpretations over A. Accordingly, � p �A

def= {I | p ∈ I }
represents the set of interpretations where atom p holds.

With it, we next define satisfaction of formulas in HT.

Definition 1. Let 〈H ,T 〉 be an HT-interpretation over A and ϕ a propositional

formula over A. Then, 〈H ,T 〉 satisfies ϕ, written 〈H ,T 〉 |= ϕ, if the following

conditions hold:

1. 〈H ,T 〉 �|= ⊥
2. 〈H ,T 〉 |= p iff H ∈ � p �A for propositional atom p ∈ A
3. 〈H ,T 〉 |= ϕ1 ∧ ϕ2 iff 〈H ,T 〉 |= ϕ1 and 〈H ,T 〉 |= ϕ2

4. 〈H ,T 〉 |= ϕ1 ∨ ϕ2 iff 〈H ,T 〉 |= ϕ1 or 〈H ,T 〉 |= ϕ2

5. 〈H ,T 〉 |= ϕ1 → ϕ2 iff 〈I ,T 〉 �|= ϕ1 or 〈I ,T 〉 |= ϕ2 for both I ∈ {H ,T}

As usual, we call 〈H ,T 〉 an HT-model of a theory Γ , if 〈H ,T 〉 |= ϕ for all ϕ

in Γ . The usual definition of HT satisfaction (cf. [23]) is obtained by replacing
Condition 2 above by

1 Upper bound founded variables are treated analogously.
2 We provide an extended version including all proofs at: www.cs.uni-potsdam.de/

∼seschell/JELIA19-paper-proofs.pdf.

2’. 〈H ,T 〉 |= p iff p ∈ H for propositional atom p ∈ A

It is easy to see that both definitions of HT satisfaction coincide.

Proposition 1. Let 〈H ,T 〉 be an HT-interpretation and ϕ a formula over A.

Then, 〈H ,T 〉 |= ϕ iff 〈H ,T 〉 |= ϕ by replacing Condition 2 by 2’.

As usual, an equilibrium model of a theory Γ is a (total) HT-interpretation
〈T ,T 〉 such that 〈T ,T 〉 |= Γ and there is no H ⊂ T such that 〈H ,T 〉 |= Γ .
Then, T is also called a stable model of Γ .

Let us recall some characteristic properties of HT. For HT-interpretations
〈H ,T 〉 and 〈T ,T 〉 and formula ϕ over A both 〈H ,T 〉 |= ϕ implies 〈T ,T 〉 |= ϕ

(persistence) and 〈H ,T 〉 |= ϕ → ⊥ iff 〈T ,T 〉 �|= ϕ (negation) holds. Further-
more, Γ1 ∪ Γ and Γ2 ∪ Γ have the same stable models for theories Γ1 and
Γ2 and any theory Γ over A iff Γ1 and Γ2 have the same HT-models (strong

equivalence).

3 Lower Bound Founded Logic of Here-and-There

In what follows, we introduce the logic of Here-and-There with lower bound
founded variables, short HTLB, and elaborate on its formal properties.

3.1 HTLB Properties

The language of HTLB is defined over a set of atoms AX comprising variables,
X , and constants over an ordered domain (D,�). For simplicity, we assume
that each element of D is uniquely represented by a constant and abuse nota-
tion by using elements from D to refer to constants. Similarly, we identify �
with its syntactic representative. The specific syntax of atoms is left open but
assumed to refer to elements of X and D. The only requirement is that we
assume that an atom depends on a subset of variables in X . An atom can be
understood to hold or not once all variables in it are substituted by domain
elements. Clearly, variables not occurring in an atom are understood as irrel-
evant for its evaluation. Examples of ordered domains are ({0, 1, 2, 3},≥) and
(Z,≥), respectively; corresponding atoms are x = y and x ≥ 42. An example of
a formula is ‘y < 42 ∧ ¬(x = y) → x ≥ 42’. We let vars(ϕ) ⊆ X be the set of
variables and atoms(ϕ) ⊆ AX the atoms occurring in a formula ϕ.

For capturing partiality, we introduce a special domain element u, standing
for undefined, and extend (D,�) to (Du ,�u) where Du

def= D ∪ {u} and �u

def=
� ∪ {(c,u) | c ∈ Du}. With it, we define a (partial) valuation over X ,D as a
function v : X → Du mapping each variable to a domain value or undefined.
For comparing valuations by set-based means, we alternatively represent them
by subsets of X × D. Basically, any function v is a set of pairs (x, c) such that
v(x) = c for c ∈ D. In addition, we view a pair (x, c) as x � c and add its
downward closure (x ↓ c) def= {(x, d) | c, d ∈ D, c � d}. Given this, a valuation v

is represented by the set
⋃

v(x)=c,x∈X (x↓c).3 As an example, consider variables

x and y over domain ({0, 1, 2, 3},≥). The valuation v = {x �→ 2, y �→ 0} can
be represented by v = (x ↓ 2) ∪ (y ↓ 0) = {(x, 0), (x, 1), (x, 2), (y, 0)}. Then,
v ′ = {x �→ 1, y �→ u}, viz. {(x, 0), (x, 1)} in set notation, can be regarded as
“smaller” than v because v ′ ⊆ v . The comparison of two valuations v and v ′ by
set-inclusion ⊆ amounts to a twofold comparison. That is, v and v ′ are compared
regarding the occurrence of variables and their particular values wrt �. We let
VX ,D stand for the set of valuations over X and D.

We define the satisfaction of formulas over AX wrt atom denotations over
X ,D, which are functions � · �X ,D : AX → 2VX ,D mapping atoms to sets of
valuations. Let a be an atom of AX and � a �X ,D its denotation. Then, � a �X ,D

is the set of valuations making a true. Since a depends on variables vars(a) ⊆ X ,
we have for each v ∈ � a �X ,D and valuation v ′ with v(x) = v ′(x) for x ∈ vars(a)
that v ′ ∈ � a �X ,D. Intuitively, values of X \ vars(a) may vary freely without
changing the membership of a valuation to � a �X ,D. For simplicity, we drop
indices X ,D whenever clear from context.

For instance, interpreting the atoms x ≥ 42, 42 ≥ 0 and 0 ≥ 42 over (Z,≥)
yields the following denotations:

�x ≥ 42 � def= {v | v(x) ≥ 42} � 42 ≥ 0 � def= V � 0 ≥ 42 � def= ∅.

�x ≥ 42 � is the set of valuations assigning x to values greater or equal than 42
and all variables in X \{x} take any value in Du , eg (x↓45) and (x↓45)∪ (y↓0)
for y ∈ X \ {x} are possible valuations. Interestingly, atoms like x � x with
�x � x � = {v | v(x) �= u} force variables to be defined over D per definition
of �. A valuation v is defined for a set of variables Y ⊆ X if v(x) �= u for all
x ∈ Y.

We define an HTLB-valuation over X ,D as a pair 〈h, t〉 of valuations over
X ,D with h ⊆ t . We define satisfaction of formulas in HTLB as follows.

Definition 2. Let 〈h, t〉 be an HTLB-valuation over X ,D and ϕ be a formula

over AX . Then, 〈h, t〉 satisfies ϕ, written 〈h, t〉 |= ϕ, if the following holds:

1. 〈h, t〉 �|= ⊥
2. 〈h, t〉 |= a iff v ∈ � a �X ,D for atom a ∈ AX and for both v ∈ {h, t}
3. 〈h, t〉 |= ϕ1 ∧ ϕ2 iff 〈h, t〉 |= ϕ1 and 〈h, t〉 |= ϕ2

4. 〈h, t〉 |= ϕ1 ∨ ϕ2 iff 〈h, t〉 |= ϕ1 or 〈h, t〉 |= ϕ2

5. 〈h, t〉 |= ϕ1 → ϕ2 iff 〈v , t〉 �|= ϕ1 or 〈v , t〉 |= ϕ2 for both v ∈ {h, t}

As usual, we call 〈h, t〉 an HTLB-model of a theory Γ , if 〈h, t〉 |= ϕ for all ϕ in Γ .
For a simple example, consider the theory containing atom x ≥ 42 only. Then,
every HTLB-valuation 〈h, t〉 with h, t ∈ �x ≥ 42 � is an HTLB-model of x ≥ 42.
Note that, different to HT, satisfaction of atoms in HTLB forces satisfaction in
both h and t , instead of h only. We discuss this in detail below when comparing
to a Ferraris-like stable model semantics.

Our first result shows that the characteristic properties of persistence and
negation hold as well when basing satisfaction on valuations and denotations.

3 Note that (x↓u) = ∅, since u �∈ D.

Proposition 2. Let 〈h, t〉 and 〈t , t〉 be HTLB-valuations over X ,D, and ϕ be a

formula over AX . Then,

1. 〈h, t〉 |= ϕ implies 〈t , t〉 |= ϕ, and

2. 〈h, t〉 |= ϕ → ⊥ iff 〈t , t〉 �|= ϕ.

Persistence implies that all atoms satisfied by 〈h, t〉 are also satisfied by 〈t , t〉.
To make this precise, let At(〈h, t〉) def= {a ∈ AX | h ∈ � a � and t ∈ � a �} be the
set of atoms satisfied by 〈h, t〉.

Corollary 1. Let 〈h, t〉 and 〈t , t〉 be HTLB-valuations over X ,D. Then,

At(〈h, t〉) ⊆ At(〈t , t〉).

Finally, we define an equilibrium model in HTLB.

Definition 3. An HTLB-valuation 〈t , t〉 over X ,D is an HTLB-equilibrium model

of a theory Γ iff 〈t , t〉 |= Γ and there is no h ⊂ t such that 〈h, t〉 |= Γ .

We refer to an HTLB-equilibrium model 〈t , t〉 of Γ as an HTLB-stable model t of
Γ . Let us reconsider the theory containing atom x ≥ 42 only. Then, t = (x↓42)
is an HTLB-stable model of x ≥ 42, since t ∈ �x ≥ 42 � and there is no h ⊂ t with
h ∈ �x ≥ 42 �. In contrast, neither HTLB-model 〈t ′, t ′〉 with t ′ = (x↓42) ∪ (y↓0)
nor 〈t ′′, t ′′〉 with t ′′ = (x↓53) are HTLB-stable models since t is a proper subset
of both and 〈t , t ′〉 |= x ≥ 42 as well as 〈t , t ′′〉 |= x ≥ 42 holds. Hence, HTLB-
stable models make sure that each variable is assigned to its smallest founded
value.

Note that HTLB-equilibrium models induce the non-monotonic counterpart
of the monotonic logic of HTLB. Following well-known patterns, we show that
HTLB allows us to decide strong equivalence wrt HTLB-equilibrium models.

Proposition 3 (Strong Equivalence). Let Γ1, Γ2 and Γ be theories over AX .

Then, theories Γ1 ∪ Γ and Γ2 ∪ Γ have the same HTLB-stable models for

every theory Γ iff Γ1 and Γ2 have the same HTLB-models.

The idea is to prove the only if direction via contraposition, and the if direc-
tion by proving its direct implication. The contraposition assumes that there
exists an HTLB-valuation that satisfies Γ1 but not Γ2 which implies that the
stable models of Γ1 ∪ Γ and Γ2 ∪ Γ do not coincide. There are two cases to
construct Γ in a way that Γ1 ∪ Γ has a stable model which is not a stable
model of Γ2 ∪ Γ and the other way around. Consider an example to illustrate
the idea of the construction of Γ . Let h = (x ↓ 0) and t = (x ↓ 2) ∪ (y ↓ 0)
be HTLB-valuation over {x, y}, {0, 1, 2, 3} with 〈h, t〉 |= Γ1 and 〈h, t〉 �|= Γ2. For
the first case, assume that 〈t , t〉 �|= Γ2. Since t cannot be a model of Γ2 ∪ Γ

by assumption, we construct Γ in a way that t is a stable model of Γ1 ∪ Γ .
Hence, let Γ = {z � c | (z, c) ∈ t} = {x � 0, x � 1, x � 2, y � 0} be the
theory with the only stable model t . By persistence of 〈h, t〉 wrt Γ1 and con-
struction of Γ , we get that t is a stable model of Γ1 ∪ Γ but not of Γ2 ∪ Γ .
For the second case, we assume 〈t , t〉 |= Γ2. Now, we construct Γ in a way that

t is a stable model of Γ2 ∪ Γ but not of Γ1 ∪ Γ . By assumption, we have that
〈h, t〉 |= Γ1 and 〈h, t〉 �|= Γ2 as well as 〈t , t〉 |= Γ2, thus we want to have 〈h, t〉
and 〈v , v ′〉 with t ⊆ v ⊆ v ′ as the only models of Γ . Hence, let Γ = Γ ′ ∪ Γ ′′

with Γ ′ = {z � c | (z, c) ∈ h} = {x � 0} be the theory satisfied by everything
greater or equal than h, and Γ ′′ = {z � t(z) → z′ � t(z′), z � c → z � t(z) |
(z, c), (z, t(z)), (z′, t(z′)) ∈ t \h, z �= z′} = {x � 2 → y � 0, y � 0 → x � 2, x �
1 → x � 2, x � 2 → x � 2} the theory deriving values of t for each v ′′ with
h ⊂ v ′′ ⊂ t . Since 〈h, t〉 �|= Γ2 and by construction of Γ , we get that t is a stable
model of Γ2 ∪ Γ but not of Γ1 ∪ Γ .

The following result shows that a formula a ← ¬a has no stable model if a

cannot be derived by some other formula.

Proposition 4. Let Γ be a theory over AX containing a formula of form a ←
¬a and for each HTLB-stable model v of Γ \ {a ← ¬a} over X ,D we have that

〈v , v〉 �|= a.

Then, Γ has no HTLB-stable model.

This proposition may seem to be trivial but we show in Sect. 4 that Aziz’ original
approach does not satisfy this property.

3.2 Negation in HTLB

In the following, we elaborate on complements of atoms and their relation to
negation, since AX may contain atoms like x ≥ 42 and x < 42. Intuitively, the
complement of an atom holds whenever the atom itself does not hold. This can
be easily expressed by using atom denotations. More formally, the complement
a of atom a is defined by its denotation � a �X ,D

def= 2VX ,D \ � a �X ,D.
To illustrate that the simple complement of an atom is insufficient to yield

something similar to strong negation let us take a closer look at propositional
atoms in HTLB. For mimicking Boolean truth values, we consider the domain
({t, f}, {t � f}). Then, the denotation of propositional atoms in HTLB can be
defined as follows: � p = t �A,{t,f}

def= {v | v(p) = t} and � p = f �A,{t,f}
def= {v |

v(p) = f}. Note that p = t and p = f are regarded as strong negations of each
other, as in the standard case [16]; their weak negations are given by ¬(p = t)
and ¬(p = f), respectively. For instance, the complement p = t is characterized
by denotation � p = t �A,{t,f} = 2VA,{t,f} \ � p = t �A,{t,f} = {v | v(p) �= t}.
However, this complement allows for valuations v with v(p) = u which are not
in � p = f �A,{t,f}.

Let us define another complement to exclude assigning undefined to variables
of an atom. First, we define a denotation � a �X ,D of an atom a as strict if each
v ∈ � a �X ,D is defined for vars(a). Then, we characterize the strict complement
as of atom a by the strict denotation � as �X ,D

def= 2VX ,D \ (� a �X ,D ∪{v | v(x) =
u for some x ∈ vars(a)}). Informally, the strict complement of an atom holds
whenever all variables are defined and the atom itself does not hold. That is,
atoms p = f and p = t are strict complements of each other.

More generally, an atom with a strict denotation and its strict complement
can be regarded as being strongly negated to each other. For instance, consider

atom x ≥ 42 and its strict denotation �x ≥ 42 �X ,D = {v | v(x) ≥ 42}. Then, its
strict complement x ≥ 42

s
is defined by �x ≥ 42

s
�X ,D = {v | u �= v(x) < 42}.

As in the Boolean case, the strict complement x ≥ 42
s

can be seen as the strong
negation of x ≥ 42.

For making the relation of complements and negation precise, we define
entailment : A theory Γ over AX entails a formula ϕ over AX , written Γ |= ϕ, if
all HTLB-models of Γ are HTLB-models of ϕ. Then, we have the following result.

Proposition 5. Let a be an atom over AX , and a and as its complement and

its strict complement over AX , respectively.

Then, {as} |= a and {a} |= ¬a.

This implies that the strict complement as of an atom a implies its negation
¬a, just as strong negation implies weak negation in the standard case [23]. To
illustrate that in general the negation of an atom does not entail its complement,
viz {¬a} �|= a, consider atom x ≤ 42 with strict denotation �x ≤ 42 �X ,D = {v |
u �= v(x) ≤ 42}. Then, its complement x ≤ 42 is defined by �x ≤ 42 �X ,D =
2VX ,D \ �x ≤ 42 �X ,D = {v | v(x) = u or v(x) > 42}. For valuations h = (x↓42)
and t = (x ↓ 50), we have 〈h, t〉 |= ¬(x ≤ 42) since (x ↓ 50) �∈ �x ≤ 42 �X ,D. In
contrast, 〈h, t〉 �|= x ≤ 42, since (x ↓ 42) �∈ �x ≤ 42 �X ,D. Thus, the complement
a can be seen as a kind of negation in between strong and weak negation.

3.3 HTLB versus HT

Analogously to [8], we next show that HT can be seen as a special case of HTLB.
Note that both types of denotations � p �A in HT and � p = t �A,{t} in HTLB of

a propositional atom p collect interpretations and valuations assigning true to p.
To begin with, we define a transformation τ relating each propositional atom p

with corresponding atom p = t by τ(p) def= p = t. Let Γ be a propositional theory,
then τ(Γ) is obtained by substituting each p ∈ atoms(Γ) by τ(p). Moreover, we
extend τ to interpretations I by τ(I) def= {(p, t) | p ∈ I } to obtain a corresponding
valuation over A, {t}. The next proposition establishes that HT can be seen as
a special case of HTLB.

Proposition 6. Let Γ be a theory over propositional atoms A and 〈H ,T 〉 an

HT-interpretation over A. Let τ(Γ) be a theory over atoms {p = t | p ∈ A} and

〈τ(H), τ(T)〉 an HTLB-valuation over A, {t}.
Then, 〈H ,T 〉 |= Γ iff 〈τ(H), τ(T)〉 |= τ(Γ).

This can be generalized to any arbitrary singleton domain {d} and corresponding
atoms p = d and the relationship still holds.

We obtain the following result relating HTLB and HT:

Proposition 7. Let Γ be a theory over AX and 〈h, t〉 an HTLB-model of Γ over

X ,D.

Then, 〈At(〈h, t〉),At(〈t , t〉)〉 is an HT-model of Γ over AX .

That is, the collected atoms satisfied by an HTLB-model of Γ can be seen as
an HT-model of Γ by interpreting AX as propositional atoms. For instance,
consider the theory containing only atom x �= y and its denotation �x �= y � def=
{v | u �= v(x) �= v(y) �= u}. Let h = (x↓0) ∪ (y ↓4) and t = (x↓0) ∪ (y ↓42) be
valuations and hence At(〈h, t〉) = At(〈t , t〉) = {x �= y} interpretations. Then,
〈h, t〉 |= x �= y in HTLB and 〈At(〈h, t〉),At(〈t , t〉)〉 |= x �= y in HT.

Furthermore, we relate tautologies in HT and HTLB.

Proposition 8. Let ϕ be a tautology in HT over A and ϕ′ a formula over AX

obtained by replacing each atom in ϕ by an atom of AX .

Then, ϕ′ is a tautology in HTLB.

That is, tautologies in HT are independent of the form of atoms. For example,
consider the well known tautology p → p over A. Then, x ≥ 42 → x ≥ 42 over
AX is a tautology as well. Note that the other direction of the implication does
not hold, since x ≥ 42 → y ≥ 42 over AX with domain {42} is a tautology, but
p → q over A is not.

3.4 HTLB-stable versus Ferraris-style stable models

As mentioned, in Definition 2 satisfaction of atoms differs from HT by forcing
satisfaction in both h and t , instead of h only. This is necessary to guarantee
persistence in HTLB. To see this, consider an HTLB-valuation 〈h, t〉 satisfying
atom a in AX . Hence, by persistence, HTLB-valuation 〈t , t〉 satisfies a as well.
However, this does not necessarily mean that HTLB-valuations 〈v , t〉 with h ⊂
v ⊂ t satisfy a. For instance, consider atom x �= 42 with �x �= 42 � def= {v | u �=
v(x) �= 42} and valuations h = (x ↓ 0) and t = (x ↓ 53). Then, 〈h, t〉 |= x �= 42
and 〈t , t〉 |= x �= 42, but 〈v , t〉 �|= x �= 42 for v = (x↓42) with h ⊂ v ⊂ t .

A question that arises now is whether HTLB behaves in accord with stable
models semantics. To this end, we give straightforward definitions of classical
satisfaction and the reduct by Ferraris [11] in our setting and show that equilib-
rium models correspond to stable models according to the resulting Ferraris-like
stable model semantics.

We define the counterpart of classical satisfaction as follows.

Definition 4. Let t be a valuation over X ,D and ϕ a formula over AX . Then,

t satisfies ϕ, written t |=cl ϕ, if the following holds:

1. t �|=cl ⊥
2. t |=cl a iff t ∈ � a �X ,D for atom a ∈ AX

3. t |=cl ϕ1 ∧ ϕ2 iff t |=cl ϕ1 and t |=cl ϕ2

4. t |=cl ϕ1 ∨ ϕ2 iff t |=cl ϕ1 or t |=cl ϕ2

5. t |=cl ϕ1 → ϕ2 iff t �|=cl ϕ1 or t |=cl ϕ2.

We call t a classical model of a theory Γ , if t |=cl ϕ for all ϕ in Γ .
Then, we define a Ferraris-like reduct for formulas over AX as follows.

Definition 5. Let ϕ be a formula over AX and t a valuation over X ,D. Then,

the reduct of ϕ wrt t, written ϕt , is defined as

ϕt def=

⊥ if t �|=cl ϕ

a if t |=cl ϕ and ϕ = a is an atom in AX

ϕ1
t ⊗ ϕ2

t if t |=cl ϕ and ϕ = (ϕ1 ⊗ ϕ2) for ⊗ ∈ {∧,∨,→}

For theory Γ and HTLB-valuation t , we define Γ t def= {ϕt | ϕ ∈ Γ}. Note that in
case of propositional formulas our reduct corresponds to Ferraris’ original [11].

With it, we define a Ferraris-like stable model as expected.

Definition 6. A valuation t over X ,D is a Ferraris-like stable model of theory

Γ over AX iff t |=cl Γ t and there is no h ⊂ t such that h |=cl Γ t .

In analogy to the standard case [11], the next proposition shows that models
in HTLB can be alternatively characterized in the style of Ferraris:

Proposition 9. Let 〈h, t〉 be an HTLB-valuation over X ,D and Γ a theory over

AX .

Then, h |=cl Γ t iff 〈h, t〉 |= Γ .

As a special case, we obtain that every HTLB-stable model corresponds to a
Ferraris-like stable model and vice versa.

Corollary 2. Let t be a valuation over X ,D and Γ a theory over AX .

Then, t is an HTLB-stable model of Γ iff t is a Ferraris-like stable model of

Γ .

The last two results show that our logic follows well known patterns wrt different
representations of stable models.

3.5 Modeling with Bound Founded Programs

In what follows, we define logic programs over linear constraint atoms to illus-
trate the modeling capabilities of HTLB on an example.

We define linear constraint atoms over the integers (Z,≥) as

∑m

i=1 wixi ≺ k

where wi, k ∈ Z are constants, xi ∈ X are distinct variables, and ≺∈ {≥,

≤, �=,=}4 is a binary relation. The denotation of a linear constraint atom is
given by �

∑m

i=1 wixi ≺ k � def= {v |
∑m

i=1 wiv(xi) ≺ k, v(xi) �= u}. We denote
the set of linear constraint atoms over variables X and domain (Z,≥) by LX .

4 As usual, w1x1, + · · · + wnxn < k and w1x1, + · · · + wnxn > k can be expressed by
w1x1, + · · · + wnxn ≤ k − 1 and w1x1, + · · · + wnxn ≥ k + 1, respectively.

A linear constraint atom a and its negation ¬a over LX are called literals.
A rule is a formula over LX of form

a1 ∨ · · · ∨ an ← l1 ∧ · · · ∧ ln′ (3)

where ai is a linear constraint atom for 1 ≤ i ≤ n and lj is a literal for 1 ≤ j ≤ n′.
A logic program is a theory over LX of rules of form (3).

As an example, consider the dependency of the revolutions per minute (rpm)
of the engine of our car to its maximal range. The maximal range of a car
decreases with higher rpm; we need more fuel when choosing a smaller gear
which increases the rpm assuming the same conditions like speed. For simplicity,
we do not model gears, fuel or speed. Assume that our car needs at least 2000
rpm. Moreover, we know that our car has a range of at least 100 km. If we go
by less than 4000 rpm, then our range is at least 200 km. Then, the following
program P models the dependency of rpm and range without explicitly using
negation or minimization:

rpm ≥ 2000

range ≥ 100

range ≥ 200 ← rpm < 4000

The HTLB-stable model of P is (range ↓ 200) ∪ (rpm ↓ 2000), since 2000 is the
minimal value satisfying rpm ≥ 2000 and thus rpm < 4000 holds and yields
range ≥ 200. For instance, if we extend P by the new statement rpm ≥ 4000,
then we get the HTLB-stable model (range ↓ 100) ∪ (rpm ↓ 4000), since the
minimal value derived by rpm ≥ 4000 does not produce range ≥ 200 any more.
Thus, 100 is the minimal value for range derived by range ≥ 100. Intuitively, it
makes no sense to go by higher rpm and thus decrease the range if one is not
forced to.

This example behaves similar to the example in (1). The intuition is to min-
imize the value of rpm first since it does not depend on range. Afterwards, we
derive the minimal value of range out of the obtained consequences. Note that
this example can also be modeled by other approaches like [1,8], but those may
not provide the same intuitive modeling to achieve a bound founded semantics or
behave counter intuitive on some well known modeling techniques like integrity
constraints. For instance, the approach of [8] yields solutions for P consisting
of any arbitrary pair of values with rpm ≥ 2000 and range ≥ 100 where range
is further restricted to values greater or equal to 200 if the choice of rpm is
smaller than 4000. To achieve the same bound founded intuition as in HTLB

with approaches like [8] we need to rewrite the rpm example in a less intuitive
way. This is similar to representing formula p ← q under stable models semantics
in propositional logic.

4 Related Work

We start by comparing our approach to Aziz’ Bound Founded ASP (BFASP;
[1]). Both aim at generalizing foundedness to ordered domains. In BFASP, an

arbitrary formula is called constraint and a rule is defined as a pair of a constraint
and a variable called head. The constraint needs to be increasing wrt its head
variable. Informally, a constraint is increasing in a variable if the constraint is
monotonic in this variable. Note that increasing is defined on constraints instead
of atoms. For an example, the constraint x ≤ 42 is not increasing in x, but the
constraint x ≤ 42 ← y < 0 is increasing in x over domain N. Stable models are
defined in BFASP via a reduct depending on the monotonicity of constraints wrt
their variables and by applying a fix point operation.

Both, BFASP and HTLB assign variables to their smallest domain value by
default. Interestingly, they differ in their understanding of smallest domain val-
ues. In HTLB, the smallest domain value is always the value ‘undefined’ to cap-
ture partiality, whereas in BFASP partiality is not considered if undefined is not
explicitly part of the domain.

The value of a head variable is derived by the constraint even if it contains no
implication. For instance, consider rule (x + y ≥ 42, x) over N in BFASP. Then,
BFASP yields one stable model with x �→ 42 and y �→ 0. By default the value
of y is 0, since y appears nowhere as a head. The value of x is derived from the
value of 42−y. In contrast, HTLB results in 43 stable models from (x↓0)∪(y↓42)
to (x↓42) ∪ (y ↓0) for theory {x + y ≥ 42}. In HTLB, the variables of an (head)
atom are treated in an equal way instead of an implicatory way by declaring one
of them as head.

As already mentioned, BFASP does not satisfy Proposition 4. Rule p ←
¬p has no stable model in ASP and HTLB, but BFASP yields a stable model
containing p, since the BFASP reduct never replaces head variables and produces
the rule as is and yields p as the minimal (and only) model of the rule. This means
that BFASP provides a bound founded semantics but behaves unexpectedly on
rules representing integrity constraints.

Next, we compare HTLB to the logic of HT with constraints (HTC; [8]). First,
note that both are based on HT and capture theories over (constraint) atoms in
a non-monotonic setting and can thus express default values. The difference is
that HTC follows the rationality principle by accepting any value satisfying an
atom and thus foundedness is focused on atom level. Unlike this, foundedness
in HTLB is focused on variable level by following the rationality principle in
accepting minimal values only. The latter is achieved by additionally comparing
models wrt the values assigned to variables to determine equilibrium models.
For instance, reconsider the fact x ≥ 42 over {x}, N and valuations v and v ′

with v(x) = 42 and v ′(x) = 43. Then, in HTC we have v �= v ′, whereas in HTLB

we have v ⊂ v ′. Hence, v and v ′ are solutions in HTC but only v is a solution in
HTLB. The theories in (1) and (2) show that the semantics of HTLB cannot be
obtained by adding separate minimization to HTC.

On the other hand, both HTLB and HTC define atomic satisfaction in terms
of atom denotations. A difference is that in HTC denotations need to be closed.
Informally, a denotation is (upwards) closed if it is closed under the superset
relation. For HTLB, this cannot be maintained, due to the additional comparison
of valuations regarding values. The closure of denotations is significant to satisfy

persistence in HTC. In contrast, in HTLB persistence is established by forcing
atomic satisfaction in both h and t , instead of h only as in HTC. The corre-
sponding benefit is that this allows us to consider denotations of atoms in HTLB

which are not allowed in HTC, like x
.
= y with �x

.
= y � def= {v | v(x) = v(y)}

which is not closed in HTC.
The integration of non-Boolean variables into ASP is also studied in ASP

modulo Theories [2–4,6,7,10,13,14,18,19,21,22]. The common idea of these
hybrid approaches is to integrate monotone theories, like constraint or linear
programming, into the non-monotonic setting of ASP. Similar to HTC, found-
edness is only achieved at the atomic level—if at all. In fact, many approaches
avoid this entirely by limiting the occurrence of theory atoms to rule bodies.

Finally, logic programs with linear constraints under HTLB’s semantics
amount to a non-monotonic counterpart of Integer Linear Programming
(ILP; [24]). As a matter of fact, the monotonicity of ILP makes it hard to model
default values and recursive concepts like reachability. It will be interesting future
work to see whether HTLB can provide a non-monotonic alternative to ILP.

5 Conclusion

We presented a logical reconstruction of the idea of foundedness over ordered
domains in the setting of the logic of Here-and-There. We have shown that
important properties like persistence, negation and strong equivalence hold in
our approach. Also, we showed that HT is a special case of HTLB, and that HTLB-
stable models correspond to stable models according to a Ferraris’-like stable
model semantics. We instantiated HTLB with linear constraints to illustrate its
modeling capabilities by means of an example representing the dependency of
the rpm of a car and its range. Finally, we compared our approach to related
work to point out that foundedness is a non-trivial key feature of HTLB. Although
HTLB and BFASP share the same motivation, they differ in their treatment of
partiality. Furthermore, we indicated that HTLB can be seen as a non-monotonic
counterpart of monotonic theories such as ILP.

Interestingly, HTLB offers a new view of aggregates under Ferraris’ semantics
as atoms. In fact, sum aggregates are related to linear constraint atoms in HTLB.
As we will show in a follow-up work, aggregates under Ferraris’ semantics [12] can
be represented by atoms in HTLB. This is interesting since then aggregates are no
longer an extension of an existing approach, but rather an integral atomic parts of
HTLB. Hence, results shown in this work also apply to aggregates (under Ferraris’
semantics) and provide a way to elaborate upon properties and relationships
to other conceptions of aggregates. The view on aggregates as atoms provided
by HTLB may thus help us to better understand the differences among various
aggregate semantics.

Appendix of Proofs

Proof of Proposition 2. It is enough to prove the proposition for the base
case, since the rest follows directly by structural induction for each formula over
AX . Let 〈h, t〉 an HTLB-valuation over X ,D and a atom of AX .

First, we prove persistence, represented by 1 of the proposition. We have

〈h, t〉 |= a ⇔ h ∈ � a � and t ∈ � a � ⇒ t ∈ � a � ⇔ 〈t , t〉 |= a

Subsequently, we prove negation, represented by 2 of the proposition. We
have

〈h, t〉 |= a → ⊥

⇔ (〈h, t〉 |= ⊥ or 〈h, t〉 �|= a) and (〈t , t〉 |= ⊥ or 〈t , t〉 �|= a)

⇔ 〈h, t〉 �|= a and 〈t , t〉 �|= a

⇔ (h �∈ � a � or t �∈ � a �) and (t �∈ � a �)

⇔ 〈t , t〉 �|= a ⊓⊔

Proof of Proposition 4. We analyze what is needed to satisfy rule r of form
a ← ¬a and then derive from the fact that 〈v , v〉 �|= a for each HTLB-stable
model v of Γ \ {a ← ¬a} over X ,D, that there exists no stable model for Γ .

Note that the following holds

〈h, t〉 |= a ← ¬a

⇔(〈h, t〉 |= a or 〈h, t〉 �|= ¬a) and (〈t , t〉 |= a or 〈t , t〉 �|= ¬a)

⇔(〈h, t〉 |= a or 〈t , t〉 |= a) and (〈t , t〉 |= a)

⇔t ∈ � a �

This implies that 〈v , v ∪ {a}〉 |= Γ for each stable model v of Γ \ {a ← ¬a}.
Furthermore, note that v ⊂ v ∪ {a}, since 〈v , v〉 �|= a. Hence, Γ has no HTLB-
stable model. ⊓⊔

Proof of Proposition 5. Let a be an atom over AX , and a and as its comple-
ment and its strict complement over AX , respectively.

First, we prove as |= a. For any HTLB-valuation 〈h, t〉 over X ,D we have

〈h, t〉 |= a
s

⇔ h ∈ � a
s � and t ∈ � a

s � with � a
s � = 2V \ (� a � ∪ {v | v(x) = u for some x ∈ vars(a)})

⇒ h ∈ 2V \ � a � and t ∈ 2V \ � a �

⇔ 〈h, t〉 |= a

Secondly, we prove a |= ¬a. For any HTLB-valuation 〈h, t〉 over X ,D we have

〈h, t〉 |= a

⇔ h ∈ � a � and t ∈ � a � with � a � = 2V \ � a �

⇔ h �∈ � a � and t �∈ � a �

⇒ t �∈ � a �
Proposition 2 ⇔ 〈h, t〉 |= ¬a

⊓⊔
Proof of Proposition 6. It is enough to prove the proposition for the base
case, since the rest follows directly by structural induction for each theory over
A.

Let Γ be a theory over propositional atoms A and 〈H ,T 〉 an HT-
interpretation over A. Let τ(Γ) be a theory over atoms {p = t | p ∈ A} and
〈τ(H), τ(T)〉 an HTLB-valuation over A, {t}. Then we have

〈H ,T 〉 |= p

⇔ H ∈ � p �A

H⊆T ⇔ H ∈ � p �A and T ∈ � p �A

⇔ τ(H) ∈ � p = t �A,{t} and τ(T) ∈ � p = t �A,{t}

⇔ 〈τ(H), τ(T)〉 |= p = t

⊓⊔
Proof of Proposition 7. It is enough to prove the proposition for the base
case, since the rest follows directly by structural induction for each theory over
AX .

First, note that the pair 〈H ,T 〉 over AX with H = At(〈h, t〉) and T =
At(〈t , t〉) is a well formed HT-interpretation, since H ⊆ T holds by h ⊆ t and
Proposition 1. Then we have

〈h, t〉 |= a

⇔ h ∈ � a �X ,D and t ∈ � a �X ,D

⇒ H ∈ � a �AX
and T ∈ � a �AX

⇒ 〈H ,T 〉 |= a

⊓⊔

Proof of Proposition 9. It is enough to prove the proposition for the base
case, since the rest follows directly by structural induction for each theory
over AX .

Let Γ be a theory over AX and 〈h, t〉 an HTLB-valuation over X ,D. Then,
we have

h |=cl at

⇔ h |=cl a and t |=cl a

⇔ h ∈ � a � and t ∈ � a �

⇔ 〈h, t〉 |= a

⊓⊔

References

1. Aziz, R.: Answer set programming: founded bounds and model counting. Ph.D.
thesis, University of Melbourne (2015)

2. Balduccini, M.: Representing constraint satisfaction problems in answer set pro-
gramming. In: Faber, W., Lee, J. (eds.) Proceedings of the Second Workshop on
Answer Set Programming and Other Computing Paradigms (ASPOCP 2009), pp.
16–30 (2009)

3. Banbara, M., et al.: aspartame: solving constraint satisfaction problems with
answer set programming. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.)
LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 112–126. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23264-5 10

4. Banbara, M., Kaufmann, B., Ostrowski, M., Schaub, T.: Clingcon: the next gen-
eration. Theory Pract. Log. Program. 17(4), 408–461 (2017)

5. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

6. Bartholomew, M., Lee, J.: System aspmt2smt: computing ASPMT theories by SMT
solvers. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp.
529–542. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 37

7. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an integration of answer set and
constraint solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol.
3668, pp. 52–66. Springer, Heidelberg (2005). https://doi.org/10.1007/11562931 7

8. Cabalar, P., Kaminski, R., Ostrowski, M., Schaub, T.: An ASP semantics for
default reasoning with constraints. In: Kambhampati, R. (ed.) Proceedings of the
Twenty-fifth International Joint Conference on Artificial Intelligence (IJCAI 2016),
pp. 1015–1021. IJCAI/AAAI Press (2016)

9. Carro, M., King, A. (eds.): Technical Communications of the Thirty-second Inter-
national Conference on Logic Programming (ICLP 2016), vol. 52. Open Access
Series in Informatics (OASIcs) (2016)

10. Drescher, C., Walsh, T.: A translational approach to constraint answer set solving.
Theory Pract. Log. Program. 10(4–6), 465–480 (2010)

11. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005). https://doi.org/10.1007/11546207 10

12. Ferraris, P.: Logic programs with propositional connectives and aggregates. ACM
Trans. Comput. Log. 12(4), 25 (2011)

13. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Carro, M., King, A. (eds.) [9], pp.
2:1–2:15 (2016)

14. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill,
P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02846-5 22

15. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014)

16. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D.,
Szeredi, P. (eds.) Proceedings of the Seventh International Conference on Logic
Programming (ICLP 1990), pp. 579–597. MIT Press (1990)

17. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte
der Preussischen Akademie der Wissenschaften, p. 42–56. Deutsche Akademie der
Wissenschaften zu Berlin (1930). Reprint in Logik-Texte: Kommentierte Auswahl
zur Geschichte der Modernen Logik, Akademie-Verlag (1986)

18. Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S., Wanko, P.:
Clingo goes linear constraints over reals and integers. Theory Pract. Log. Program.
17(5–6), 872–888 (2017)

19. Janhunen, T., Liu, G., Niemelä, I.: Tight integration of non-ground answer set pro-
gramming and satisfiability modulo theories. In: Cabalar, P., Mitchell, D., Pearce,
D., Ternovska, E. (eds.) Proceedings of the First Workshop on Grounding and
Transformation for Theories with Variables (GTTV 2011), pp. 1–13 (2011)

20. Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: unfounded sets, fix-
point semantics, and computation. Inf. Comput. 135(2), 69–112 (1997)

21. Lierler, Y., Susman, B.: SMT-based constraint answer set solver EZSMT (system
description). In: Carro, M., King, A. (eds.) [9], pp. 1:1–1:15 (2016)

22. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer
programming. In: Brewka, G., Eiter, T., McIlraith, S. (eds.) Proceedings of the
Thirteenth International Conference on Principles of Knowledge Representation
and Reasoning (KR 2012), pp. 32–42. AAAI Press (2012)

23. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1–2), 3–41 (2006)
24. Schrijver, A.: Theory of linear and integer programming. Discrete mathematics

and optimization. Wiley, Hoboken (1999)
25. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic

programs. J. ACM 38(3), 620–650 (1991)

