

Official URL
DOI : https://doi.org/10.5220/0007675201330140

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24784

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: El Malki, Nabil and Ravat, Franck and

Teste, Olivier K-means improvement by dynamic pre-aggregates.

(2019) In: 21st International Conference on Enterprise

Information Systems (ICEIS 2019), 3 May 2019 - 5 May 2019

(Heraklion, Crete, Greece).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/287740754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

k-means Improvement by Dynamic Pre-aggregates

Nabil El malki1,2, Franck Ravat1 and Olivier Teste2

1Université de Toulouse, UT2, IRIT(CNRS/UMR5505), Toulouse, France
2Capgemini, 109 Avenue du Général Eisenhower, Toulouse, France

Keywords: k-means, Machine Learning, Data Aggregations.

Abstract: The k-means algorithm is one well-known of clustering algorithms. k-means requires iterative and repetitive

accesses to data up to performing the same calculations several times on the same data. However, intermediate

results that are difficult to predict at the beginning of the k-means process are not recorded to avoid

recalculating some data in subsequent iterations. These repeated calculations can be costly, especially when

it comes to clustering massive data. In this article, we propose to extend the k-means algorithm by introducing

pre-aggregates. These aggregates can then be reused to avoid redundant calculations during successive

iterations. We show the interest of the approach by several experiments. These last ones show that the more

the volume of data is important, the more the pre-aggregations speed up the algorithm.

1.1 k-means

Let X = {x1, ..., xn} be a set of points in the d-

dimensional space ℝd. The distance between xi and xj

is denoted ||xi − xj||. Several distances could be

calculated using various formulas (Euclidean,

Manhattan, Canberra, Cosine…). In this study, the

standard Euclidean distance is used as the distance

measure.

Let k be a positive integer specifying the number

of clusters. Then C = {C1, ..., Ck} is a set of non-

overlapping clusters that partition X into k clusters,

and G = {G1, ..., Gk} is a set of centroids, each of

which is corresponding to the arithmetic mean of

points it contains. |Cj| is the cardinality of Cj.

If we consider t as the current iteration, we denote

!"#$ the set of clusters and %"#$ the set of centroids

at the previous iteration, whereas !" and %" are

respectively the set of clusters and the set of centroids

of the current iteration.

In the initialization phase, each k centroid is

assigned a data point from X either randomly or via

an initialization method such as k-means++ (Arthur

and Vassilvitskii, 2007). Then, k-means algorithm

partitions the set of points X into k non-overlapping

clusters such that the sum of the distances between

points and the corresponding cluster centroid is

minimized. To do that, the k-means algorithm repeats

iteratively steps until convergence (i.e., %"#$ ≈ %").

1 INTRODUCTION

For years until now, data clustering also known as

cluster analysis has been one of the most important

tasks in exploratory data analysis. It is also applied in

a variety of applications, such as web page clustering,

pattern recognition, image segmentation, data

compression and nearest neighbor search (Zhao et al,

2018). Various clustering algorithms have been

available since the early 1950s. The goal of data

clustering is to classify a set of patterns, points or

objects into groups known as clusters. The data that

are in the same group are as similar as possible, in the

same way that the data belonging to different groups

are as dissimilar as possible (Jain et al., 1999).

Clustering algorithms can be divided into two main

groups: hierarchical and partitional (Celebi et al,

2013). Hierarchical algorithms recursively discover

nested groups either in a divisive way or

agglomerative way. On the other hand, partitional

algorithms find all groups simultaneously as a data

partition without hierarchical structures. One of the

most widely used data clustering and partitional

clustering is k-means. It is the subject of our study.

Due its simplicity and its linearity of its time

complexity it remains popular since it was proposed

over four decades (Jain, 2010). In this paper, we

consider the standard k-means; i.e. the Lloyd-Forgy

version (Forgy, 1965).

DOI: 10.5220/0007675201330140

Algorithm 1: Classic k-means process.

 In: X, k

 Out: C

1: t ← 0 -- Initialization

2: for j & [1…k] do

3: G'
(← random(X); C'

(← Ø

4: end do

5: repeat

6: foreach i & [1…n] do -- assignment

7: j’ ← argmin'&[$�)]||x* + G'
(||;,C'-

(,←,C'-
(. {x*},

8: end do

9: t ← t+1 --update

10: for j & [1…k] do

11: G'
(←

$

|/0|
1 x*23,&/0

456

12: end do

13: until G(#$ 7 G(

14: return {C$(#$8 � 8 C)
(#$}

The algorithm of k-means is based on an iterative

and repetitive processing. The iterative aspect is

based on the fact that the different steps of the

algorithm must be performed several times before

converging towards a result; i.e., towards a stable

partitioning. For instance, the assignment phase (see

Algorithm 1) that calculates for each point xi, the

distance separating it from the k centroids and keeps

the index of the closest centroid j to xi via the argmin

function, is repeated until convergence; i.e. until there

is no longer any point that changes class. The

repetitive aspect lies in the fact that the same

calculation is potentially performed several times on

the same portions of data. For instance, in the phase

of updating the centroids (Algorithm 1), the centroid

of a class may be recalculated several times even if

this class remains the same in the following iterations.

If the points belong to the data space of dimension d

then the centroid %9
" corresponds to the arithmetic

average of the data values of the class Cj for each

dimension.

Even if the k-means algorithm is based on an

iterative and repetitive processing, the results of one

iteration are not stored for the next iteration. Each

calculation is done on original dataset. This limit can

cause k-means execution times to slow down.

Moreover, the impact of this limit is all the more

important if we consider two following notions:

- The notion of dimension is very important in the

case of clustering algorithms. The dimension of

a point is the number of the attributes set that

characterizes it. The attributes are all numeric in

the case of using k-means. A point may have

from one to millions of dimensions.

- The notion of massive data corresponds to the

fact that large volumes of data can be used for

each attribute, thus leading to clustering on a

large data set, large but also of varying density.

1.2 Contribution

In order to allow k-means to offer better performance,

especially on large volumes of data and numerous

dimensions, we provide an extension of the k-means

algorithm based on the idea of pre-calculations (pre-

aggregations). More precisely, we propose an

extension to optimize the repetitive access to data

performed during the different iterations, based on a

strategy whose principles are as follows:

- Pre-calculate and store the different calculations

performed during the successive iterations.

- Reuse the stored pre-calculations to accelerate

future iterations (unlike the traditional algorithm

that recalculates each iteration from the initial

data).

We show through experiments that our approach

is effective when it comes to exploratory analyses on

massive data with numerous dimensions. In section 2,

we discuss the state of the art. In sections 3 and 4, we

present our model and our experimentations.

2 RELATED WORK

k-means Approaches: Using the standard version of

k-means requires an execution time proportional to

the product of the number of classes and the number

of points per iteration. This total execution time is

relatively expensive in terms of calculation,

especially for large data sets (Alsabti et al., 1997). As

a result, the k-means algorithm cannot satisfy the need

for fast response time for some applications (Hung et

al., 2005). Several extensions of the standard version

of the k-means have been proposed to accelerate

execution times:

- Acceleration by parallelizing the algorithm,

particularly based on MapReduce or MPI

paradigms (Zhang et al., 2013; Zhao et al.,

2009) , which are programming models

designed to process large volumes of data in a

parallelized and distributed way;

- Acceleration by reducing the number of

calculations to be performed. The algorithms of

(Elkan, 2003) and (Hamerly, 2010) are based on

the property of triangular inequality to avoid

calculating at each iteration the distance

between a given point and all other centroids of

the classes.

- Acceleration by restructuring the dataset. In

(Hung et al., 2005) the authors propose an

algorithm accelerating k-means by splitting the

dataset into equal non-empty unit blocks. Then

k-means is unrolled on the centroids of these

blocks and not on the contained points.

These extensions accelerate the execution time of

standard k-means but do not use a pre-calculation

approach of intermediate results. These results, which

are referred to as dynamic, are likely to make these

calculations more efficient.

Pre-aggregation Approaches: Pre-calculation of

aggregates has already been used in several areas,

including multidimensional data warehouses (OLAP)

and statistical analysis.

Pre-calculations are commonly used in

multidimensional data warehouses to effectively

support OLAP analyses. Indeed, the

multidimensional structure allows anticipating

analytical calculations, which are materialized,

constituting data cubes (Gray et al., 1996). In

(Deshpande et al., 1998) the authors score data in

uniform "chunks" blocks. Each of these chunks is

reused individually in subsequent calculations.

Calculation operations are decomposed in order to

focus on the chunks in memory. The ability to

memory is not sufficient in the context of a single

machine, the computation operations can also fetch

the complementary chunks from disk.

Statistical data mining allows knowledge

extraction by repeating the same operations several

times, most often on detailed data (such as calculating

averages, correlations or measures of similarities

between data). Works improving exploration by

integrating the pre-calculation of aggregates has been

proposed by (Wasay et al., 2017) where the authors

describe a system called Data canopy. It is based on

a memory cache for exploratory statistical analysis.

This system pre-aggregates statistical calculations to

minimize repetitive access to original data. To do this,

it breaks down the calculations into elementary

operations and the original data into unit blocks. The

latter are stored in a binary tree that recursively

aggregates the calculations from the leaves to the

root. The construction must respect a precise

scheduling; this requirement requires Data canopy to

support only calculations that respect this scheduling.

All the approaches mentioned above have been

developed on static data. In the context of the

clustering we process algorithms that operate on very

dynamic data. The dynamic aspect lies in the fact that

it is not possible to know the calculations to be pre-

aggregated. Our approach is therefore based on a

principle of "hot storage" as the calculations.

3 OUR EXTENDED k-means

ALGORITHM

Algorithm 2: Extended k-means(EKM) process.

 In: X, k

 Out: I

1: t ← 0 -- Initialization

2: for j & [1…k] do

3: G'
(← random(X); I'

(← Ø

4: end do

5: repeat

6: foreach i & [1…n] do -- assignment

7: j’ ← argmin'&[$�)]||x* + G'
(||;,I'-

(,←,I'-
(. {i},

8: end do

9: t ← t+1 --update

10: for j & [1…k] do

10: I'
(#$ ← sort(I'

(#$); key ← concatenate(I'
(#$)

11: If ¬:;m)<=> then --aggregation

12: m)<= ←
$

|?0
456|

1 x**&?0
456

13: end if

G'
(← m)<=

14: end do

15: until G(#$ 7 G(--convergence

16: return {I$(#$8 � 8 I)
(#$}

The algorithm below aims to accelerate the standard

k-means algorithm using a pre-aggregation approach.

Our approach is mainly focused on the part of

updating the calculated centroids.

We note that a class is associated with a key (also

called class index) that allows it to be uniquely

identified. This key will be used to identify the

centroid of a given class along the successive

iterations. Knowing that each data has a unique

numerical index, then the key (or class index) is

formed by the concatenation of the indexes of the data

points contained in this class.

Let I = {I1, ..., Ik} be a set of ordered set of keys.

From each cluster Cj, we determine its corresponding

key denoted Ij from each index of data points within

the cluster.

Let M = {m1, ..., mA} be a set of aggregates (i.e.

centroids), which are calculated from each cluster Cj.

These aggregates are identified by keys that are

formed as iterations from the classes built.

In the assignment part, we identify the index j' of

the closest centroid to point xi. Then the index i is

added to the set @9-
" . In the update step, the function

sort makes the set of indexes @9
"#$ sorted in ascending

order. Subsequently, a key is created in which the

value returned by the concatenate function is

assigned. The latter concatenates the indices of the

data contained in @9
"#$. The symbol "-" is placed

between each index pair, e.g. 4-7-9. This key allows

identifying the centroid of each class, if it exists in M,

otherwise the average is calculated and stored in M.

4 EXPERIMENTATIONS

The purpose of the following experiments is to

evaluate our approach in comparison with the

standard approach (Forgy, 1965). For these

experiments, we use a computing platform composed

of a cluster of 24 nodes; each of them hosts 8

processors. The usable memory of a processor

reaches a maximum of 7.5 GB.

4.1 Experimental Framework

Data Set: We considered two types of synthetic

datasets.

- spherical data (SD): several separate groups of

homogeneous data;

- homogeneous data (HD): a single compact

group of data.

Each data represents decimal values within the

range [-10; 10]. The spherical data have been

generated according to an isotropic Gaussian

distribution; the scikit-learn python library offers

functionalities that allow us to generate well

separated data sets. The library also allows us to

generate homogeneous data (data compacted into a

single group) using the Gaussian mixture.

Experimental Protocol: The datasets are generated

using the following parameters:

- the number of classes k & [4...20] incremented

with a step of 4,

- the dimension d & [1 ;2000] with a step of 100

or d & [2000; 97000] with a step of 5000,

- the number of data points n & [2000; 202000],

for each of the two types of distributions (SD

and HD).

2798 synthetic datasets were generated including

1987 spherical datasets and 811 homogeneous

datasets reaching up to 62 GB.

An experiment consists first of all in generating

homogeneous or spherical datasets, then initializing

the centroids with k-means++ (Arthur and

Vassilvitskii, 2007) and finally applying the both

unsupervised classification standard k-means and the

extended k-means. The experiment is repeated 10

times with the same parameters (number of classes k,

number of data points n, type of data distribution i.e.

HD or SD). The average of the execution times of

each of the both methods is kept.

Note that the experiments produce always the

same partitioning of the data for the two k-means

(standard and extended versions) since both versions

use the same set of initialization centroids.

4.2 Comparisons between Extended
and Standard k-means Applied to
Spherical and Homogeneous
Datasets

We evaluate, for spherical data and homogeneous data,

the difference in execution time between the extended

k-means version and the standard version. This

difference will be called later in this document DETES.

DETES is calculated as the difference between the time

taken by the extended k-means and the standard k-

means; it is positive when k-means extended is

favourable compared to k-means standard, otherwise

negative in the unfavourable case.

The Table 1. summarizes all the experiments

performed on spherical and homogeneous data. The

extended version shows better results in terms of

execution time: out of 1987 experiments on spherical

data (d & [1; 97000]), the extended version shows 1353

favourable cases (68%) where the DETES can reach

1758 seconds. We can also see that the performance of

our extended version exceeds the standard version by

more than 100 seconds in 25% of cases. The number

of favourable cases is even more important when it

comes to spherical data with dimensions d ³ 2000,

since a favourable case rate of 97% is reached and with

55% having a DETES greater than 100 seconds.

Table 1: Favourable cases (%) to extended version k-means

applied to SD and HD according to k (number of classes).

k SD ; d>=2000 HD; d>=2000

4 100% 67%

8 99% 71%

12 96% 68%

16 97% 66%

20 95% 55%

In Figures 1 to 4, we can observe the distribution

of favourable and unfavourable cases. The horizontal

(red) line separates favourable cases (green crosses)

from unfavourable cases (orange circles) to extended

k-means.

Figure 1 shows the percent of execution time

gained by the extended version compared to the

standard k-means: from 3.15 GB of data, the extended

k-means is almost always favourable up to 30 %

faster. In Figure 2, we can note that the extended

version of k-means is clearly favourable from data of

dimension greater than 2000 (green vertical line)

where DETES reaches up to 1758 seconds (97% of

favourable cases) whereas the average execution time

of k-means standard is 3473 seconds. Unfavourable

cases are mainly concentrated in the subspace of

dimensions less than 2000.

In Figures 3 and 4, we evaluate the behaviour of

the both versions with homogeneous data. In Figure

3, the percentage of execution time gained by the

extended version compared to standard k-means is

approximately from 0 to 21% when the homogeneous

data dimension is at least equivalent to 42000. As

shown in Figure 4, the extended version is

advantageous from 42000 dimensions. From this

dimension, the average execution time of extended k-

means is 1755 seconds. The gain can reach up to

nearly 2156 seconds.

In Figures 3 and 4, we evaluate the behaviour of

the both versions with homogeneous data. In Figure

3, the percentage of execution time gained by the

extended version compared to standard k-means is

approximately from 0 to 21% when the homogeneous

data dimension is at least equivalent to 42000. As

shown in Figure 4, the extended version is

advantageous from 42000 dimensions. From this

dimension, the average execution time of extended k-

means is 1755 seconds. The gain can reach up to

nearly 2156 seconds.

In the performed experiments, the influence of the

parameter k (number of classes) was evaluated. We

consider in Table 2 that the HD and SD datasets have

dimension larger than 2000. The extended version

unrolled on the spherical data gains with a very good

rate clearly higher than 95% for classes ranging from

4 to 20. We can see that for k = 4 it gains 100%.

Concerning homogeneous data, the favourable case

rate is correct and is higher than 55% for classes 4 to

20. There is no decline or increase in favourable case

rates as a function of k for either type of data

distribution. The number of classes k does not alone

influence the behaviour of the extended version of k-

means. But favourable case rates in SD is largely

favourable comparing to a distribution of HD data.

Table 2: Results of the executions of the both k-means versions on SD and HD.

Data Number of

experiments

cases favourable

to EKM

cases favourable to

EKM (DETES³100s)

Max DETES

(sec)

SD (d & [1;97000]) 1987 1353 (68%) 497 (25%) 1758

SD (d<=2000) 1155 542 (46%) 39 (2%) 532

SD (d>=2000) 832 811 (97%) 458 (55%) 1758

HD (d & [1;97000]) 937 462 (49%) 110 (11%) 2156

Figure 2: Evolution of the time differences (DETES) of

the both versions of k-means according to the dimension.

Figure 1: Time gained (%) by the EKM compared to the

standard version as a function of the SD volume (GB).

Table 3: Percentage of centroids instances reused.

Figure 3: The time gained (%) by the EKM compared to the

standard version as a function of the SD volume (GB).

Figure 4: Time gained (%) by the EKM compared to the

standard version as a function of HD dimension.

Figure 5: DETES as a function of HD dimension.

4.3 The Proportions of the Reuse of the
Centroids According to the
Distribution HD and SD

The extended version does not obtain the same

favourable case rate in both types of data

distributions. It is more favourable on spherical data

than on homogeneous data.

We consider two definitions of reuse of centroids.

The first defines reuse as the number of reused

centroids in a k-means execution. The second is the

number of instances of centroids reused, i.e. if a

centroid is reused p times it is said that there are p

times reuses of the instance of this centroid.

Table 3 and Figures 6-7 show results of

experiment on reuse of centroids according to the data

distribution (HD or SD), the number of classes k and

the number of data points n (data size). Table 3 and

figure 7 discuss the reuse of centroids instances while

figure 6 discuss reuse of centroids without

considering their instances. The experiment was

performed under the same conditions as the previous

one, but the dimension d is defined from 2 to 1802

with a step of 200, the size n &![20000 ;100000] with

a step of 20000 and k &![4 ;16] with a step of 4.

In Figure 6, the number of centroids used SD is on

average 6 times smaller compared to those in the case

of HD. Similarly, the number of centroids reused

among the centroids used remains marginal in SD and

HD. It is practically 4% for each of the both

distributions. Moreover, the more the number of

classes k increases, the more the number of centroids

used and reused also increases. This increase is more

pronounced in HD.

In Figure 7, in each of the different k-means

executions, the centroid whose instances were most

reused was identified. The number of reuses of this

centroid corresponds to "max reuse". Thus, "avg

reuse" is the average of the number of the instances

of all the centroids used in a k-means execution. "Max

reuse" is about 2.5 times higher than the average reuse

of the instances of the centroids (avg reuse) in the case

of SD. It increases from two to nine times when k

k = 4 k = 8 k = 12 k = 16
Dataset

size

SD HD SD HD SD HD SD HD

20000 33% 5% 41% 15% 45% 19% 51% 27%

40000 32% 3% 44% 10% 50% 12% 55% 16%

60000 43% 3% 43% 7% 38% 12% 50% 19%

80000 40% 4% 53% 6% 50% 11% 53% 14%

100000 40% 3% 32% 4% 40% 7% 45% 12%

AVG 37.6% 3.6% 42.6% 8.4% 44.6% 12.2% 50.8% 17.6%

increases in the case of HD. Moreover, when k

increases "avg reuse" remains stable for both data

distributions, it is approximately 2.5 and 18

respectively for DH and SD. This shows that the

larger k is, the more the reuse of the centroids

instances of a small set of centroids is increased but

the stability of the average reuse of centroids

instances is ensured when k increases.

Table 3 completes Figure 7. For each data

distribution the proportion (%) of reused centroids

instances is a function of the size of the data n and the

number of classes k. This proportion is the average of

the reused centroids for each dimension. The

proportions of centroids reused in the extended

version are superior in the case where it is applied on

spherical data than in homogeneous data. For k = 4,

the proportion is on average 37.6% for SD against

3.6% for HD that to say a difference of 30%. This

difference is roughly similar for the other values of k,

but the proportions in both distributions of data

increase as k increases. In short, even if a subset of

centroids is small compared to all of the centroids

used through iterations in k-means, their instances are

reused several times in order to exceed 50% of the

reuses of centroids instances in the case of SD and

27% for HD. Also, experiments have shown that if a

centroid is reused, it is reused successively over

iterations. In other words, if the centroid is not reused

in the iteration following the one where it was reused,

it will no longer appear in all subsequent iterations.

4.4 Extended Gini Index

We found that our approach works better in spherical

data than in homogeneous data. We used the gini

index (Gini, 1921) to characterize a spherical dataset

and predict in advance if our approach could be used.

The gini index is a static measure used to measure

the level of dispersion of a dataset.

%ABD E ,
1 AFH + J + KDBLM
LN$

J1 BLM
LN$

(1)

% O,E {PQARSDTUV"W|X E K�Y} (2)

EG = VAR(G*) (3)

Equation (1) defines G with S as a series of

ordered positive numerical values. It is defined for

univariate datasets. In our case, the data are

multivariate. Let X be a dataset with d dimensions.

The gini index is calculated for each dimension

resulting in the list G* (equation 2). Finally, the

variance of G* is calculated to obtain a scalar

considered as the dispersion level of X (equation 3).

In practice, the cste constant of (equation 2) has been

set to 10, which allows for a good separation of the

two distributions.

In Figure 8, spherical datasets (green crosses) are

distinguished from homogeneous data sets (orange

circles). Each data set has a size between 20 000 and

100 000. There is a clear separation (horizontal line)

between the both types of data according to the gini

index EG. The limit is about EG =300.

Figure 6: Figures on reuse of centroids.

Figure 7: Figures on reuse of centroids instances.

Figure 8: Gini index EG as a function of dimension.

5 DISCUSSION

The extended k-means algorithm is advantageous on

homogeneous data with numerous dimensions (if the

101 214 348 480

4 9 16 21

654

1457
1740

2074

11 36 73 123

0

1000

2000

3000

4 8 12 16

n
u

m
b

e
r

o
f

re
su

se

k
 centroids used (SD) Centroids reused (SD)

centroids used (HD) Centroids reused (HD)

34

44 46
40

11
18 19 19

4
9

29
26

2 2 3 3

0

10

20

30

40

50

4 8 12 16

n
u

m
b

e
r

o
f

re
u

se

k
Max reuse(SD) Avg reuse (SD)

Max reuse (HD) Avg reuse(HD)

dimension is at least equal to 42000) while it is

advantageous on spherical data only from dimension

2000. In addition, the execution of both versions of k-

means on spherical data is much faster than on

homogeneous data. The k-means processes applied to

homogeneous data calculate a significantly higher

number of different centroids than those applied to

spherical data if we consider that these processes

adopt the same parameters (number of classes k,

dimension d and size of data n). This difference

therefore generates more iterations on homogeneous

data than on spherical data and convergence is also

slower. Among these different centroids, very few are

used in k-means applied to homogeneous data. On the

contrary, they are much reused in the case of k-means

unrolled on spherical data, which explains why the

extended k-means is much more favourable on these

data than the homogeneous data.

If EKM is applied several times on the same

dataset with different initializations of the centroids.

It can be seen that the proportions of the reused

centroids are not the same from one EKM execution

to another. This observation is valid for both data

distributions. So, the initialization of the centroids

coupled with the choice of the distribution have an

influence on our approach.

6 CONCLUSION

REFERENCES

Alsabti, K., Ranka, S. and Singh, V. (1997) ‘An efficient k-

means clustering algorithm’, EECS

Arthur, D. and Vassilvitskii, S. (2007) ‘k-means++: the

advantages of careful seeding’, SODA, pp. 1027–1025

Celebi, M. E., Kingravi, H. A. and Vela, P. A. (2013) ‘A

comparative study of efficient initialization methods for

the k-means clustering algorithm’, ESA, pp. 200–210.

Deshpande, P. M. and al. (1998) ‘Caching

multidimensional queries using chunks’, in

Proceedings of the 1998 ACM SIGMOD, pp. 259–270.

Elkan, C. (2003) ‘Using the Triangle Inequality to

Accelerate k-Means’, Proc.Twent. ICML, pp. 147–153.

.

Forgy, E. W. (1965) ‘Cluster analysis of multivariate data:

efficiency versus interpretability of classifications’,

Biometrics.

Gini, C. (1921) ‘Measurement of Inequality of Incomes’,

The Economic Journal. .

Gray, J. and al. (1996) ‘Data cube: A relational aggregation

operator generalizing group-by, cross-tab, and sub-

totals’, DMKD, 1(1), pp. 29–53.

Hamerly, G. (2010) ‘Making k -means even faster’, SDM

2010, pp. 130–140.

Hung, M.-C., Wu, J. and Chang, J.-H. (2005) ‘An Efficient

k-Means Clustering Algorithm Using Simple

Partitioning’, JISE 21, 1177, pp. 1157–1177.

Jain, A. K. (2010) ‘Data clustering: 50 years beyond K-

means’, PRL. North-Holland, 31(8), pp. 651–666.

Jain, A. K., Murty, M. N. and Flynn, P. J. (1999) ‘Data

clustering: a review’, CSUR, 31(3), pp. 264–323.

Wasay, A. and al. (2017) ‘Data Canopy’, Proceedings of

the 2017 ACM SIGMOD ’17, pp. 557–572.

Zhang, J. and al. (2013) ‘A Parallel Clustering Algorithm

with MPI – MKmeans’, JCP, 8(1), pp. 10–17.

Zhao, Weizhong; Ma, Huifang; He, Q. (2009) ‘Parallel K -

Means Clustering Based on MapReduce’, CLOUD

Zhao, W. L., Deng, C. H. and Ngo, C. W. (2018) ‘k-means:

A revisit’, Neurocomputing, 291, pp. 195–206.

In this paper, we provided an approach to accelerate

the process of the unsupervised data learning

algorithm, called k-means. This approach is based on

an algorithm that pre-calculates and stores

intermediate results, called dynamic pre-aggregates,

to be reused in subsequent iterations. Our

experiments compare our extended k-means version

with the standard version using two types of data

(spherical and homogeneous data). 2798 synthetic

datasets that have been generated reaching up to

62GB. We demonstrate that our approach is

advantageous for partitioning large datasets from

dimensions 2000 and 42000 respectively for spherical

data and homogeneous data.

Several perspectives are planned. We are ongoing

to experiment our extended version of k-means with

even more massive data to better evaluate the cost of

calculating pre-aggregates. In addition, it is proposed

to study situations where it might be more effective

to start from an archived centroid corresponding to a

class almost similar to the new class encountered

rather than recalculate it entirely on the pretext that

the class is not exactly identical.

