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Abstract: The k-means algorithm is one well-known of clustering algorithms. k-means requires iterative and repetitive 

accesses to data up to performing the same calculations several times on the same data. However, intermediate 

results that are difficult to predict at the beginning of the k-means process are not recorded to avoid 

recalculating some data in subsequent iterations. These repeated calculations can be costly, especially when 

it comes to clustering massive data. In this article, we propose to extend the k-means algorithm by introducing 

pre-aggregates. These aggregates can then be reused to avoid redundant calculations during successive 

iterations. We show the interest of the approach by several experiments. These last ones show that the more 

the volume of data is important, the more the pre-aggregations speed up the algorithm. 

1.1 k-means 

Let X = {x1, ..., xn} be a set of points in the d-

dimensional space ℝd. The distance between xi and xj

is denoted ||xi − xj||. Several distances could be 

calculated using various formulas (Euclidean, 

Manhattan, Canberra, Cosine…). In this study, the 

standard Euclidean distance is used as the distance 

measure. 

Let k be a positive integer specifying the number 

of clusters. Then C = {C1, ..., Ck} is a set of non-

overlapping clusters that partition X into k clusters, 

and G = {G1, ..., Gk} is a set of centroids, each of 

which is corresponding to the arithmetic mean of 

points it contains. |Cj| is the cardinality of Cj. 

If we consider t as the current iteration, we denote 

!"#$ the set of clusters and %"#$ the set of centroids

at the previous iteration, whereas !" and %" are

respectively the set of clusters and the set of centroids 

of the current iteration.  

In the initialization phase, each k centroid is 

assigned a data point from X either randomly or via 

an initialization method such as k-means++ (Arthur 

and Vassilvitskii, 2007). Then, k-means algorithm 

partitions the set of points X into k non-overlapping 

clusters such that the sum of the distances between 

points and the corresponding cluster centroid is 

minimized. To do that, the k-means algorithm repeats 

iteratively steps until convergence (i.e., %"#$ ≈ %").

1 INTRODUCTION

For years until now, data clustering also known as 

cluster analysis has been one of the most important 

tasks in exploratory data analysis. It is also applied in 

a variety of applications, such as web page clustering, 

pattern recognition, image segmentation, data 

compression and nearest neighbor search (Zhao et al, 

2018). Various clustering algorithms have been 

available since the early 1950s. The goal of data 

clustering is to classify a set of patterns, points or 

objects into groups known as clusters. The data that 

are in the same group are as similar as possible, in the 

same way that the data belonging to different groups 

are as dissimilar as possible (Jain et al., 1999).

Clustering algorithms can be divided into two main 

groups: hierarchical and partitional (Celebi et al,

2013). Hierarchical algorithms recursively discover 

nested groups either in a divisive way or 

agglomerative way. On the other hand, partitional 

algorithms find all groups simultaneously as a data 

partition without hierarchical structures. One of the 

most widely used data clustering and partitional 

clustering is k-means. It is the subject of our study. 

Due its simplicity and its linearity of its time 

complexity it remains popular since it was proposed 

over four decades (Jain, 2010). In this paper, we 

consider the standard k-means; i.e. the Lloyd-Forgy 

version (Forgy, 1965). 
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Algorithm 1: Classic k-means process.

  In: X, k  

  Out: C  

1: t ← 0    -- Initialization 

2: for  j & [1…k]  do 

3:   G'
(  ← random(X);  C'

( ← Ø 

4: end do 

5: repeat 

6:      foreach i & [1…n]  do           -- assignment 

7:          j’ ← argmin'&[$�)]||x* + G'
(||;,C'-

( ,←,C'-
( . {x*},

8:     end do 

9:    t ← t+1 --update 

10:     for j & [1…k]  do 

11:        G'
(  ← 

$

|/0|
1 x*23,&/0

456  

12:     end do 

13: until  G(#$ 7 G( 

14: return {C$(#$8 � 8 C)
(#$} 

The algorithm of k-means is based on an iterative 

and repetitive processing. The iterative aspect is 

based on the fact that the different steps of the 

algorithm must be performed several times before 

converging towards a result; i.e., towards a stable 

partitioning. For instance, the assignment phase (see 

Algorithm 1) that calculates for each point xi, the 

distance separating it from the k centroids and keeps 

the index of the closest centroid j to xi via the argmin

function, is repeated until convergence; i.e. until there 

is no longer any point that changes class.  The 

repetitive aspect lies in the fact that the same 

calculation is potentially performed several times on 

the same portions of data. For instance, in the phase 

of updating the centroids (Algorithm 1), the centroid 

of a class may be recalculated several times even if 

this class remains the same in the following iterations. 

If the points belong to the data space of dimension d

then the centroid %9
" corresponds to the arithmetic

average of the data values of the class Cj for each 

dimension.  

Even if the k-means algorithm is based on an 

iterative and repetitive processing, the results of one 

iteration are not stored for the next iteration. Each 

calculation is done on original dataset. This limit can 

cause k-means execution times to slow down. 

Moreover, the impact of this limit is all the more 

important if we consider two following notions: 

- The notion of dimension is very important in the 

case of clustering algorithms. The dimension of 

a point is the number of the attributes set that 

characterizes it. The attributes are all numeric in 

the case of using k-means. A point may have 

from one to millions of dimensions. 

- The notion of massive data corresponds to the 

fact that large volumes of data can be used for 

each attribute, thus leading to clustering on a 

large data set, large but also of varying density. 

1.2 Contribution 

In order to allow k-means to offer better performance, 

especially on large volumes of data and numerous 

dimensions, we provide an extension of the k-means

algorithm based on the idea of pre-calculations (pre-

aggregations). More precisely, we propose an 

extension to optimize the repetitive access to data 

performed during the different iterations, based on a 

strategy whose principles are as follows:  

- Pre-calculate and store the different calculations 

performed during the successive iterations. 

- Reuse the stored pre-calculations to accelerate 

future iterations (unlike the traditional algorithm 

that recalculates each iteration from the initial 

data). 

We show through experiments that our approach 

is effective when it comes to exploratory analyses on 

massive data with numerous dimensions. In section 2, 

we discuss the state of the art. In sections 3 and 4, we 

present our model and our experimentations. 

2 RELATED WORK

k-means Approaches: Using the standard version of

k-means requires an execution time proportional to

the product of the number of classes and the number

of points per iteration. This total execution time is

relatively expensive in terms of calculation,

especially for large data sets (Alsabti et al., 1997). As

a result, the k-means algorithm cannot satisfy the need

for fast response time for some applications (Hung et

al., 2005). Several extensions of the standard version

of the k-means have been proposed to accelerate

execution times:

- Acceleration by parallelizing the algorithm, 

particularly based on MapReduce or MPI 

paradigms (Zhang et al., 2013; Zhao et al.,

2009) , which are programming models 

designed to process large volumes of data in a 

parallelized and distributed way;  

- Acceleration by reducing the number of 

calculations to be performed. The algorithms of 

(Elkan, 2003) and (Hamerly, 2010) are based on 

the property of triangular inequality to avoid 



calculating at each iteration the distance 

between a given point and all other centroids of 

the classes. 

- Acceleration by restructuring the dataset. In 

(Hung et al., 2005) the authors propose an 

algorithm accelerating k-means by splitting the 

dataset into equal non-empty unit blocks. Then 

k-means is unrolled on the centroids of these

blocks and not on the contained points.

These extensions accelerate the execution time of 

standard k-means but do not use a pre-calculation 

approach of intermediate results. These results, which 

are referred to as dynamic, are likely to make these 

calculations more efficient. 

Pre-aggregation Approaches: Pre-calculation of 

aggregates has already been used in several areas, 

including multidimensional data warehouses (OLAP) 

and statistical analysis.  

Pre-calculations are commonly used in 

multidimensional data warehouses to effectively 

support OLAP analyses. Indeed, the 

multidimensional structure allows anticipating 

analytical calculations, which are materialized, 

constituting data cubes (Gray et al., 1996). In 

(Deshpande et al., 1998) the authors score data in 

uniform "chunks" blocks. Each of these chunks is 

reused individually in subsequent calculations. 

Calculation operations are decomposed in order to 

focus on the chunks in memory. The ability to 

memory is not sufficient in the context of a single 

machine, the computation operations can also fetch 

the complementary chunks from disk.  

Statistical data mining allows knowledge 

extraction by repeating the same operations several 

times, most often on detailed data (such as calculating 

averages, correlations or measures of similarities 

between data). Works improving exploration by 

integrating the pre-calculation of aggregates has been 

proposed by (Wasay et al., 2017) where the authors 

describe a system called Data canopy. It is based on 

a memory cache for exploratory statistical analysis. 

This system pre-aggregates statistical calculations to 

minimize repetitive access to original data. To do this, 

it breaks down the calculations into elementary 

operations and the original data into unit blocks. The 

latter are stored in a binary tree that recursively 

aggregates the calculations from the leaves to the 

root. The construction must respect a precise 

scheduling; this requirement requires Data canopy to 

support only calculations that respect this scheduling. 

All the approaches mentioned above have been 

developed on static data. In the context of the 

clustering we process algorithms that operate on very 

dynamic data. The dynamic aspect lies in the fact that 

it is not possible to know the calculations to be pre-

aggregated. Our approach is therefore based on a 

principle of "hot storage" as the calculations. 

3 OUR EXTENDED k-means 

ALGORITHM

Algorithm 2: Extended k-means(EKM) process.

  In: X, k  

  Out:  I 

1: t ← 0          -- Initialization 

2: for  j & [1…k]  do 

3:       G'
(  ← random(X);  I'

( ← Ø 

4: end do 

5: repeat 

6:      foreach i & [1…n]  do          -- assignment 

7:          j’ ← argmin'&[$�)]||x* + G'
(||;,I'-

( ,←,I'-
( . {i}, 

8:    end do 

9:    t ← t+1         --update 

10:    for j & [1…k]  do 

10:    I'
(#$ ← sort(I'

(#$); key ← concatenate(I'
(#$)

11:       If ¬:;m)<=> then --aggregation 

12:         m)<=  ← 
$

|?0
456|

1 x**&?0
456

13:         end if 

G'
( ← m)<=

14:    end do 

15: until  G(#$ 7 G(         --convergence 

16: return {I$(#$8 � 8 I)
(#$} 

The algorithm below aims to accelerate the standard 

k-means algorithm using a pre-aggregation approach.

Our approach is mainly focused on the part of

updating the calculated centroids.

We note that a class is associated with a key (also 

called class index) that allows it to be uniquely 

identified. This key will be used to identify the 

centroid of a given class along the successive 

iterations. Knowing that each data has a unique 

numerical index, then the key (or class index) is 

formed by the concatenation of the indexes of the data 

points contained in this class. 

Let I = {I1, ..., Ik} be a set of ordered set of keys. 

From each cluster Cj, we determine its corresponding 

key denoted Ij from each index of data points within 

the cluster. 

Let M = {m1, ..., mA} be a set of aggregates (i.e.

centroids), which are calculated from each cluster Cj.



These aggregates are identified by keys that are 

formed as iterations from the classes built. 

In the assignment part, we identify the index j' of 

the closest centroid to point xi. Then the index i is 

added to the set @9-
" . In the update step, the function

sort makes the set of indexes @9
"#$ sorted in ascending

order. Subsequently, a key is created in which the 

value returned by the concatenate function is 

assigned. The latter concatenates the indices of the 

data contained in @9
"#$. The symbol "-" is placed

between each index pair, e.g. 4-7-9. This key allows 

identifying the centroid of each class, if it exists in M,

otherwise the average is calculated and stored in M. 

4 EXPERIMENTATIONS

The purpose of the following experiments is to 

evaluate our approach in comparison with the 

standard approach (Forgy, 1965). For these 

experiments, we use a computing platform composed 

of a cluster of 24 nodes; each of them hosts 8 

processors. The usable memory of a processor 

reaches a maximum of 7.5 GB.

4.1 Experimental Framework 

Data Set: We considered two types of synthetic 

datasets. 

- spherical data (SD): several separate groups of 

homogeneous data; 

- homogeneous data (HD): a single compact 

group of data. 

Each data represents decimal values within the 

range [-10; 10]. The spherical data have been 

generated according to an isotropic Gaussian 

distribution; the scikit-learn python library offers 

functionalities that allow us to generate well 

separated data sets. The library also allows us to 

generate homogeneous data (data compacted into a 

single group) using the Gaussian mixture. 

Experimental Protocol: The datasets are generated 

using the following parameters: 

- the number of classes k & [4...20] incremented 

with a step of 4,  

- the dimension d & [1 ;2000] with a step of 100 

or d & [2000; 97000] with a step of 5000,  

- the number of data points n & [2000; 202000], 

for each of the two types of distributions (SD

and HD).

2798 synthetic datasets were generated including 

1987 spherical datasets and 811 homogeneous 

datasets reaching up to 62 GB.  

An experiment consists first of all in generating 

homogeneous or spherical datasets, then initializing 

the centroids with k-means++ (Arthur and 

Vassilvitskii, 2007) and finally applying the both 

unsupervised classification standard k-means and the 

extended k-means. The experiment is repeated 10

times with the same parameters (number of classes k,

number of data points n, type of data distribution i.e.

HD or SD). The average of the execution times of 

each of the both methods is kept. 

Note that the experiments produce always the 

same partitioning of the data for the two k-means

(standard and extended versions) since both versions 

use the same set of initialization centroids. 

4.2 Comparisons between Extended 
and Standard k-means Applied to 
Spherical and Homogeneous 
Datasets 

We evaluate, for spherical data and homogeneous data, 

the difference in execution time between the extended 

k-means version and the standard version. This

difference will be called later in this document DETES.

DETES is calculated as the difference between the time

taken by the extended k-means and the standard k-

means; it is positive when k-means extended is

favourable compared to k-means standard, otherwise

negative in the unfavourable case.

The Table 1. summarizes all the experiments 

performed on spherical and homogeneous data. The 

extended version shows better results in terms of 

execution time: out of 1987 experiments on spherical 

data (d & [1; 97000]), the extended version shows 1353 

favourable cases (68%) where the DETES can reach 

1758 seconds. We can also see that the performance of 

our extended version exceeds the standard version by 

more than 100 seconds in 25% of cases. The number 

of favourable cases is even more important when it 

comes to spherical data with dimensions d ³ 2000, 

since a favourable case rate of 97% is reached and with 

55% having a DETES greater than 100 seconds. 

Table 1: Favourable cases (%) to extended version k-means 

applied to SD and HD according to k (number of classes). 

k SD ; d>=2000 HD; d>=2000

4 100% 67%

8 99% 71%

12 96% 68%

16 97% 66%

20 95% 55%



In Figures 1 to 4, we can observe the distribution 

of favourable and unfavourable cases. The horizontal 

(red) line separates favourable cases (green crosses) 

from unfavourable cases (orange circles) to extended 

k-means.

Figure 1 shows the percent of execution time

gained by the extended version compared to the 

standard k-means: from 3.15 GB of data, the extended 

k-means is almost always favourable up to 30 %

faster. In Figure 2, we can note that the extended

version of k-means is clearly favourable from data of

dimension greater than 2000 (green vertical line)

where DETES reaches up to 1758 seconds (97% of

favourable cases) whereas the average execution time

of k-means standard is 3473 seconds. Unfavourable

cases are mainly concentrated in the subspace of

dimensions less than 2000.

In Figures 3 and 4, we evaluate the behaviour of 

the both versions with homogeneous data. In Figure 

3, the percentage of execution time gained by the 

extended version compared to standard k-means is 

approximately from 0 to 21% when the homogeneous 

data dimension is at least equivalent to 42000. As 

shown in Figure 4, the extended version is 

advantageous from 42000 dimensions. From this 

dimension, the average execution time of extended k-

means is 1755 seconds. The gain can reach up to 

nearly 2156 seconds. 

In Figures 3 and 4, we evaluate the behaviour of 

the both versions with homogeneous data. In Figure 

3, the percentage of execution time gained by the 

extended version compared to standard k-means is 

approximately from 0 to 21% when the homogeneous 

data dimension is at least equivalent to 42000. As 

shown in Figure 4, the extended version is 

advantageous from 42000 dimensions. From this 

dimension, the average execution time of extended k-

means is 1755 seconds. The gain can reach up to 

nearly 2156 seconds. 

In the performed experiments, the influence of the 

parameter k (number of classes) was evaluated. We 

consider in Table 2 that the HD and SD datasets have 

dimension larger than 2000. The extended version 

unrolled on the spherical data gains with a very good 

rate clearly higher than 95% for classes ranging from 

4 to 20. We can see that for k = 4 it gains 100%. 

Concerning homogeneous data, the favourable case 

rate is correct and is higher than 55% for classes 4 to 

20. There is no decline or increase in favourable case

rates as a function of k for either type of data

distribution. The number of classes k does not alone

influence the behaviour of the extended version of k-

means. But favourable case rates in SD is largely

favourable comparing to a distribution of HD data.

Table 2: Results of the executions of the both k-means versions on SD and HD. 

Data Number of 

experiments

cases favourable 

to EKM

cases favourable to 

EKM (DETES³100s)

Max DETES 

(sec)

SD (d & [1;97000]) 1987 1353 (68%) 497 (25%) 1758

SD (d<=2000) 1155 542 (46%) 39 (2%) 532

SD (d>=2000) 832 811 (97%) 458 (55%) 1758

HD (d & [1;97000]) 937 462 (49%) 110 (11%) 2156

Figure 2: Evolution of the time differences (DETES) of 

the both versions of k-means according to the dimension.

Figure 1: Time gained (%) by the EKM compared to the 

standard version as a function of the SD volume (GB).



Table 3: Percentage of centroids instances reused. 

Figure 3: The time gained (%) by the EKM compared to the 

standard version as a function of the SD volume (GB). 

Figure 4: Time gained (%) by the EKM compared to the 

standard version as a function of HD dimension.

Figure 5: DETES as a function of HD dimension. 

4.3 The Proportions of the Reuse of the 
Centroids According to the 
Distribution HD and SD

The extended version does not obtain the same 

favourable case rate in both types of data 

distributions. It is more favourable on spherical data 

than on homogeneous data.  

We consider two definitions of reuse of centroids. 

The first defines reuse as the number of reused 

centroids in a k-means execution. The second is the 

number of instances of centroids reused, i.e. if a 

centroid is reused p times it is said that there are p

times reuses of the instance of this centroid.  

Table 3 and Figures 6-7 show results of 

experiment on reuse of centroids according to the data 

distribution (HD or SD), the number of classes k and 

the number of data points n (data size). Table 3 and 

figure 7 discuss the reuse of centroids instances while 

figure 6 discuss reuse of centroids without 

considering their instances. The experiment was 

performed under the same conditions as the previous 

one, but the dimension d is defined from 2 to 1802

with a step of 200, the size n &![20000 ;100000] with 

a step of 20000 and k &![4 ;16] with a step of 4.  

In Figure 6, the number of centroids used SD is on 

average 6 times smaller compared to those in the case 

of HD. Similarly, the number of centroids reused 

among the centroids used remains marginal in SD and 

HD. It is practically 4% for each of the both 

distributions. Moreover, the more the number of 

classes k increases, the more the number of centroids 

used and reused also increases. This increase is more 

pronounced in HD. 

In Figure 7, in each of the different k-means 

executions, the centroid whose instances were most 

reused was identified. The number of reuses of this 

centroid corresponds to "max reuse". Thus, "avg 

reuse" is the average of the number of the instances 

of all the centroids used in a k-means execution. "Max 

reuse" is about 2.5 times higher than the average reuse 

of the instances of the centroids (avg reuse) in the case 

of SD. It increases from two to nine times when k 

k = 4 k = 8 k = 12 k = 16
Dataset 

size

SD HD SD HD SD HD SD HD

20000 33% 5% 41% 15% 45% 19% 51% 27%

40000 32% 3% 44% 10% 50% 12% 55% 16%

60000 43% 3% 43% 7% 38% 12% 50% 19%

80000 40% 4% 53% 6% 50% 11% 53% 14%

100000 40% 3% 32% 4% 40% 7% 45% 12%

AVG 37.6% 3.6% 42.6% 8.4% 44.6% 12.2% 50.8% 17.6%



increases in the case of HD. Moreover, when k 

increases "avg reuse" remains stable for both data 

distributions, it is approximately 2.5 and 18 

respectively for DH and SD. This shows that the 

larger k is, the more the reuse of the centroids 

instances of a small set of centroids is increased but 

the stability of the average reuse of centroids 

instances is ensured when k increases. 

Table 3 completes Figure 7. For each data 

distribution the proportion (%) of reused centroids 

instances is a function of the size of the data n and the 

number of classes k. This proportion is the average of 

the reused centroids for each dimension. The 

proportions of centroids reused in the extended 

version are superior in the case where it is applied on 

spherical data than in homogeneous data. For k = 4, 

the proportion is on average 37.6% for SD against 

3.6% for HD that to say a difference of 30%. This 

difference is roughly similar for the other values of k, 

but the proportions in both distributions of data 

increase as k increases. In short, even if a subset of 

centroids is small compared to all of the centroids 

used through iterations in k-means, their instances are 

reused several times in order to exceed 50% of the 

reuses of centroids instances in the case of SD and 

27% for HD.  Also, experiments have shown that if a 

centroid is reused, it is reused successively over 

iterations. In other words, if the centroid is not reused 

in the iteration following the one where it was reused, 

it will no longer appear in all subsequent iterations. 

4.4 Extended Gini Index 

We found that our approach works better in spherical 

data than in homogeneous data. We used the gini 

index (Gini, 1921) to characterize a spherical dataset 

and predict in advance if our approach could be used. 

The gini index is a static measure used to measure 

the level of dispersion of a dataset. 

%ABD E ,
1 AFH + J + KDBLM
LN$

J1 BLM
LN$

(1)

% O,E {PQARSDTUV"W|X E K�Y} (2)

EG = VAR(G*) (3)

Equation (1) defines G with S as a series of 

ordered positive numerical values. It is defined for 

univariate datasets. In our case, the data are 

multivariate. Let X be a dataset with d dimensions.

The gini index is calculated for each dimension 

resulting in the list G* (equation 2). Finally, the 

variance of G* is calculated to obtain a scalar 

considered as the dispersion level of X (equation 3). 

In practice, the cste constant of (equation 2) has been 

set to 10, which allows for a good separation of the 

two distributions. 

In Figure 8, spherical datasets (green crosses) are 

distinguished from homogeneous data sets (orange 

circles). Each data set has a size between 20 000 and 

100 000. There is a clear separation (horizontal line) 

between the both types of data according to the gini 

index EG. The limit is about EG =300.

Figure 6: Figures on reuse of centroids. 

Figure 7: Figures on reuse of centroids instances. 

Figure 8: Gini index EG as a function of dimension. 

5 DISCUSSION

The extended k-means algorithm is advantageous on 

homogeneous data with numerous dimensions (if the 
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dimension is at least equal to 42000) while it is 

advantageous on spherical data only from dimension 

2000. In addition, the execution of both versions of k-

means on spherical data is much faster than on 

homogeneous data. The k-means processes applied to 

homogeneous data calculate a significantly higher 

number of different centroids than those applied to 

spherical data if we consider that these processes 

adopt the same parameters (number of classes k,

dimension d and size of data n). This difference 

therefore generates more iterations on homogeneous 

data than on spherical data and convergence is also 

slower. Among these different centroids, very few are 

used in k-means applied to homogeneous data. On the 

contrary, they are much reused in the case of k-means

unrolled on spherical data, which explains why the 

extended k-means is much more favourable on these 

data than the homogeneous data. 

If EKM is applied several times on the same 

dataset with different initializations of the centroids. 

It can be seen that the proportions of the reused 

centroids are not the same from one EKM execution 

to another. This observation is valid for both data 

distributions. So, the initialization of the centroids 

coupled with the choice of the distribution have an 

influence on our approach. 

6 CONCLUSION 
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In this paper, we provided an approach to accelerate 

the process of the unsupervised data learning 

algorithm, called k-means. This approach is based on 

an algorithm that pre-calculates and stores 

intermediate results, called dynamic pre-aggregates, 

to be reused in subsequent iterations. Our 

experiments compare our extended k-means version 

with the standard version using two types of data 

(spherical and homogeneous data). 2798 synthetic 

datasets that have been generated reaching up to 

62GB. We demonstrate that our approach is 

advantageous for partitioning large datasets from 

dimensions 2000 and 42000 respectively for spherical 

data and homogeneous data.  

Several perspectives are planned. We are ongoing 

to experiment our extended version of k-means with 

even more massive data to better evaluate the cost of 

calculating pre-aggregates. In addition, it is proposed 

to study situations where it might be more effective 

to start from an archived centroid corresponding to a 

class almost similar to the new class encountered 

rather than recalculate it entirely on the pretext that 

the class is not exactly identical. 


