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Joint Independent Subspace Analysis:
Uniqueness and Identifiability

Dana Lahat and Christian Jutten

Abstract—This paper deals with the identifiability of joint in-
dependent subspace analysis (JISA). JISA is a recently-proposed
framework that subsumes independent vector analysis (IVA) and
independent subspace analysis (ISA). Each underlying mixture can
be regarded as a dataset; therefore, JISA can be used for data fu-
sion. In this paper, we assume that each dataset is an overdeter-
mined mixture of several multivariate Gaussian processes, each of
which has independent and identically distributed samples. This
setup is not identifiable when each mixture is considered individ-
ually. Given these assumptions, JISA can be restated as coupled
block diagonalization (CBD) of its correlation matrices. Hence,
JISA identifiability is tantamount to CBD uniqueness. In this work,
we provide necessary and sufficient conditions for uniqueness and
identifiability of JISA and CBD. Our analysis is based on char-
acterizing all the cases in which the Fisher information matrix is
singular. We prove that non-identifiability may occur only due to
pairs of underlying random processes with the same dimension.
Our results provide further evidence that irreducibility has a cen-
tral role in the uniqueness analysis of block-based decompositions.
Our contribution extends previous results on the uniqueness and
identifiability of ISA, IVA, coupled matrix and tensor decomposi-
tions. We provide examples to illustrate our results.

Index Terms—Blind source separation, block decompositions,
coupled decompositions, data fusion, identifiability, independent
vector analysis, uniqueness.

I. INTRODUCTION

THIS theoretical paper deals with the identifiability of joint
independent subspace analysis (JISA) [1]–[3]. JISA is

a recently-proposed model that extends independent subspace
analysis (ISA) [4], [5] by considering several different ISA prob-
lems that are linked by statistical dependencies among the latent
multivariate random processes. Another way of looking at JISA
is as an extension of independent vector analysis (IVA) [6] to
mixtures of multivariate, instead of univariate, random variables.
Both ISA and IVA are themselves extensions of independent
component analysis (ICA) [7], a simple yet powerful concept
that has given rise to the very vast domain of blind source
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separation (BSS) [8], [9]. As such, JISA is a rich framework
that subsumes the versatility of the models that it is inspired
from.

JISA is a very general framework that is able to exploit any
of the types of diversity that are traditionally used in single-
mixture BSS, such as complex-valued data, higher-order statis-
tics (HOS), sample non-stationarity, and dependence among
samples, to name a few [1], [3], [10]. Due to the presence of mul-
tiple mixtures (which may be interpreted as multiple datasets),
and the links among them, the algebraic structures associated
with JISA are more elaborate than the ones associated with
single-mixture BSS; see, e.g., [1, Sec. VI],[10], for concrete ex-
amples. Algorithms for JISA under various model assumptions
are described, e.g., in [1]–[3], [10], [11]. Often, each type of di-
versity embedded in the model further enhances identifiability
(e.g., [12]).

In this paper, however, we choose to focus on a JISA model
that does not take into account any of these traditional types of
diversity. In this model, each of the underlying multivariate ran-
dom processes, in each mixture, is Gaussian with independent
and identically distributed (i.i.d.) samples. From a theoretical
point of view, this setup is of particular interest because each
underlying ISA problem is not identifiable individually. In this
case, its identifiability, if exists, is due to the link among mix-
tures. Therefore, this JISA setup allows us to isolate the added
value of the link between datasets [12], [13]. Understanding the
transition point between non-identifiability and identifiability
can provide us with better understanding of coupled decompo-
sitions and data fusion. The results that we present in this paper
add to the increasing amount of theoretical evidence (e.g., [10],
[14]–[16]) that the special type of diversity associated with data
fusion is sufficient to obtain identifiability of models that are oth-
erwise not identifiable. From a practical point of view, assum-
ing Gaussian i.i.d. variables means that second-order statistics
(SOS) are sufficient, and that no temporal properties between
samples, or non-Gaussianity, are required, or used.

Previous work on this JISA model has dealt with algorithms
(e.g., [2], [11]) and small error analysis, including the derivation
of Cramér-Rao lower bound (CRLB) and Fisher information
matrix (FIM) [1]. This paper deals with its uniqueness and iden-
tifiability. In previous work, we obtained supporting evidence
that this JISA model can be identifiable. First, we have shown
in [1] that the data (observations) always provide a sufficient
number of constraints with respect to (w.r.t.) the number of un-
knowns in the model, as soon as the following additional simpli-
fying assumptions hold: i) all mixing matrices have full column



rank, and ii) the dimensions of the corresponding latent mul-
tivariate random processes are identical in all datasets; within
each mixture, the different multivariate random processes may
have different dimensions. We shall formulate these assump-
tions mathematically in Section II. Second, in [1] and [11], given
these model assumptions, we derived a closed-form expression
for the FIM, and demonstrated its invertibility numerically, for
randomly generated data.

In this paper, however, we derive the identifiability of this
JISA model rigorously, by characterizing all the cases in
which this model is not identifiable, and showing that non-
identifiability occurs only in very particular cases. Previous the-
oretical results on the identifiability of SOS-based IVA in [14],
[17], and [18], and SOS-based nonstationary ISA [19] thus be-
come special cases of the new results in this paper. Assump-
tion (i) implies that the identifiability of this model depends
only on the SOS of the latent random processes and not on the
mixing matrices. In [1], this assumption allowed us to write the
CRLB and FIM using closed form and analytically tractable
expressions. It is worth mentioning that this JISA model may
be identifiable even if Assumption (i) is not satisfied, in certain
cases, as indicated by related results in [16] and [20]. As for
Assumption (ii), it is important to note that although, in many
cases, the same conclusions apply also when Assumption (ii) is
relaxed, this is not always the case, as demonstrated in [21].

JISA is a statistically motivated model. However, it can also
be considered from an algebraic point of view, as we now ex-
plain. As shown in [1] and [11], the JISA model that we have
just described can be reformulated as an (approximate) coupled
block diagonalization (CBD) of the (sample) covariance matri-
ces of the observations, if they exist and have finite values. These
covariance matrices are sufficient statistics for full model iden-
tifiability. Therefore, in this case, JISA identifiability amounts
to CBD uniqueness. CBD is formulated mathematically in
Section II. The fact that our model is tantamount to a reduction
of an ensemble of matrices to a block-diagonal form implies
that we have to characterize mathematically the fact that these
diagonal blocks cannot be further factorized into smaller ones.
In this paper, we show that this property, called irreducibility,
plays a central part in the identifiability of our model.

Our identifiability analysis is based on characterizing all the
cases in which the FIM is singular [22]. As mentioned earlier,
this FIM was derived in closed-form in [1]. As we show in
Appendix B, our analysis boils down to characterizing the set
of non-trivial solutions to a system of coupled matrix equations,
given rank and irreducibility constraints on its coefficients. This
problem does not exist in the literature, and thus addressing
it is another contribution arising from this work. In Appendix
A, we provide new identities on partitioned matrices. These
identities resulted from our analysis of the FIM, whose structure
involves Khatri-Rao products of block partitioned matrices. The
derivation of the solutions to this constrained system of matrix
equations is explained in detail in [23] and [24]. In this paper,
we only cite the relevant results.

A similar FIM-based approach was used in [19], in the identi-
fiability analysis of ISA of piecewise-stationary overdetermined
Gaussian multivariate processes. Similarly to JISA and CBD,
this ISA model can be represented algebraically, through joint

block diagonalization (JBD) of its correlation matrices [25].
Therefore, ISA identifiability can be recast in algebraic terms of
JBD uniqueness. JBD differs from CBD in the number of trans-
formations that block-diagonalize the observations: one in JBD,
several in CBD. In Section VIII-A, we show that these models
are not only similar but in fact, in certain respects, ISA and
JBD can be regarded as special cases of JISA and CBD. The
uniqueness and identifiability results for these ISA and JBD
models, in [19], [26], and [27], are based on Schur’s lemma on
irreducible representations [28], whose link with JBD was first
pointed out in [29]. Schur’s lemma deals with a single trans-
formation applied to an ensemble of matrices, and is thus not
applicable to CBD. In this paper, we extend the concept of irre-
ducibility to multiple transformations, and show that it is equally
crucial in analysing JISA and CBD uniqueness and identifiabil-
ity. In Section VIII, we discuss some of the links between the
results in [19], [26], and [27] and those in this paper, and explain
how the results in this paper can be regarded as a generalization
of the former. CBD and JBD will be described more rigorously
in the upcoming sections of this paper.

Our discussion of JISA is motivated by its ability to provide a
flexible framework for coupled processing of multiple datasets,
e.g.: i) recordings of one scene by different devices, ii) record-
ings of similar scenes (or subjects) with the same device, iii)
recordings of one scene (or subject) with one device at different
time windows. In a data fusion context, each underlying ISA
mixture represents a dataset. The statistical links among mix-
tures amount to links among datasets. In the literature, and in
particular in the context of data fusion, this type of links among
datasets is sometimes referred to as “soft”. Soft links allow each
dataset in the ensemble to remain in its most explanatory form,
with its own parameters, and thus allow a high degree of flexi-
bility in fusing heterogeneous datasets. This is the case in JISA,
where each dataset has its own mixing matrix and statistical
model for the signals. The other option is “hard” links, where
datasets deterministically share some of their factors. We refer
the reader to [13] for further discussion of this matter.

The raison d’être of the ISA aspect of JISA is that in var-
ious real-world applications, the assumption of classical BSS,
that each signal can be modeled by a single random variable,
is too restrictive. Although univariate methods are sometimes
used to achieve ISA, it has been shown that true multivariate
methods enhance accuracy and interpretability of the output
(e.g., [30]). In addition, algorithms based on this idea avoid fu-
tile attempts to further factorize irreducible subspaces, and thus
improve computational efficiency [4, Sec. 8],[11]. These ideas
extend naturally to JISA. JISA is the first ICA-type framework
to be able to exploit multidimensional block structures in an
ensemble of linked datasets.

The data fusion capacities of JISA are inherited from IVA.
The original motivation for IVA was dealing with the arbitrary
permutation of the estimated spectral coefficients in frequency
domain BSS of convolutive mixtures of acoustic sources [6].
This property extends naturally to JISA. Recently, IVA has
shown useful for a broad range of applications. For example, as
a framework for flexible modeling of the signal subspace that is
common to multiple subjects, as opposed to earlier state-of-the-
art ICA-based methods that are more rigid [31]. Kim et al. [31]



emphasize the importance of preserving subject variability in
multi-subject functional magnetic resonance imaging (fMRI)
analyses, for various personalized prediction tasks, for exam-
ple. An ISA-based approach has already been found useful in
various applications, including electrocardiography (ECG) [5],
[32], fMRI [33], electroencephalography (EEG) [34], astro-
physics [35], [36], and separation of mixed audio sources [37].
These references also propose different strategies for determin-
ing the most useful size of the subspaces. Based on these prop-
erties, Silva et al. [3] suggest that the flexibility of JISA in
considering multiple datasets with heterogeneous structures has
great potential for multimodal neuroimaging–genetics data anal-
ysis, e.g., for combining information in fMRI spatial maps with
genetic single nucleotide polymorphism (SNP) arrays.

Biomedical, astrophysical, and audio data, which we have just
mentioned within the context of ISA, are often studied within
a data fusion framework [13]. It is thus natural to suggest JISA
as a framework that can capture both their multiset and within-
dataset structures. The JISA model that we consider in this paper
is applicable to any data that admit a JISA model (possibly with
more types of diversity), and whose SOS satisfy our model as-
sumptions, as well as the identifiability conditions that we derive
in this paper. Naturally, for any real-life data, these requirements
will, at best, be satisfied only approximately. For example, a po-
tential application of JISA is the analysis of ECG data, whose
multidimensional nature was demonstrated in [32], for fetal
monitoring. Li et al. [38] showed that this task can be achieved
by IVA, in a suboptimal “mismodeling” approach [30]. Given
the ongoing interest in non-invasive methods for fetal monitor-
ing, in multi-subject and multimodal setups (see, e.g., [39] and
references therein), JISA is a potentially useful candidate to ad-
dress some of these challenges. Our preliminary experimental
results on the ECG data of [32], using an approach similar to
that in [38], indicate that the fetal electrocardiogram (FECG)
can be extracted to a reasonable extent even by the simplest
JISA model that we consider in this paper, using the algorithm
in [11]. Due to lack of space, we omit the details. Despite the
theoretically attractive advantages of data fusion and coupled
decompositions, when handling real-world data, there are many
more considerations to take into account, as discussed, e.g.,
in [13], [40], and [41]. Therefore, it is of utmost importance to
first understand the theoretical limitations of the basic model
before encumbering it with additional complicating factors.

This work is the first to deal theoretically with the identifia-
bility of JISA and the uniqueness of the CBD associated with
it. Until now, uniqueness results for coupled decompositions
addressed only models in which the link between datasets was
through a one-dimensional or a rank-1 elements; e.g., coupled
block term decomposition (BTD) [15] and IVA [14], [16]–[18]).
In this paper, however, the link among datasets is via multivari-
ate statistics and terms of rank larger than one.

The results in this manuscript have previously been presented
orally in [42]–[44] and in a technical report [24], however, they
have never been published.

A. Notations

The following notations will be used throughout this paper.
Symbols ·�, ·−�, ·H denote transpose, inverse transpose, and

conjugate transpose (Hermitian), respectively. E{·} denotes ex-
pectation. IM and 0M ×N denote an identity and an all-zero
matrices, respectively. 1K denotes an all-ones vector of length
K. Scalars, vectors, matrices, and sets, are denoted by a, a,
A, and 𝒜, respectively. All vectors are column vectors, unless
stated otherwise. Ai is the ith column block of a column-wise
partitioned block matrix A. Aij is the (i, j)th block of a par-
titioned block matrix A. Vector ai denotes the ith sub-vector
of a partitioned vector a, or the ith column of matrix A. ai

and aij denote the ith and (i, j)th scalar elements of a and A,
respectively. A[k ] and a[k ] denote a matrix A or a vector a in-
dexed by k. Notations A[k ]�, A−[k ] and A−[k ]� should be read
as (A[k ])�, (A[k ])−1 and (A[k ])−�, respectively. M[k∈D] stands
for “M[k ] for all k ∈ 𝒟”. For double-indexed matrices,

M[1:K,1:L ] �

⎡
⎣ M[1,1] · · · M[1,L ]

...
...

M[K,1] · · · M[K,L ]

⎤
⎦ .

A direct sum of K matrices is denoted by

⊕K
k=1N

[k ] = N[1] ⊕ · · · ⊕ N[K ] =

[
N[1] 0. . .
0 N[K ]

]
.

span(A) denotes the column space of A. vec(X) stacks the
entries of X in one vector, column-wise. We use the following
operations on partitioned matrices:

where A ⊗ B �
⎡
⎢⎣

a1 1 B a1 2 B · · ·
a2 1 B a2 2 B · · ·

...
...

. . .

⎤
⎥⎦, A ∗ B �

⎡
⎢⎣

a1 1 b1 1 a1 2 b1 2 · · ·
a2 1 b2 1 a2 2 b2 2 · · ·

...
...

. . .

⎤
⎥⎦,

A � B �
[
a1 ⊗ b1 a2 ⊗ b2 · · ·], A �| B � [A1 ⊗ B1 A2 ⊗

B2 · · · ]. Let Aij and Bij denote the (i, j)th mi × nj and
pi × qj blocks of partitioned matrices A and B, respectively.
The Khatri-Rao product for partitioned matrices [45] is defined
as

A � B �
[
A11 ⊗ B11 A12 ⊗ B12 · · ·
A21 ⊗ B21 A22 ⊗ B22 · · ·

...
...

. . .

]
,

where Aij ⊗ Bij and A � B are mipi × njqj and (
∑

mipi) ×
(
∑

njqj ), respectively.

B. Outline

In Section II, we present the JISA framework. We then fo-
cus on a special case that is based on SOS, and its algebraic
restatement as CBD. We show how identifiability of the former
is related to uniqueness of the latter. In Section III, we intro-
duce reducibility and irreducibility, key concepts in our analysis.
In Section IV, we review previous related identifiability results.
After presenting the required background material, we turn to
our main result. Section V presents our main result, a theorem



on the identifiability of SOS-based TISA, and accordingly, on 
the uniqueness of CBD, under certain constraints. In Section VI, 
we discuss the meaning of this theorem. In Section VII, we illus
trate and explain our main results through theoretical examples. 
In Section VIII, we discuss our results in a broader context, in
cluding their relation to ISA, JBD, and tensor decompositions. 
Section IX concludes our work. 

Il. PROBLEM FORMULATION 
A. Joint Independent Subspace Analysis (JISA)

Consider an ensemble of K � 2 datasets, modeled as

k= l, ... ,K, (l) 

where vector slk] is an instance of a multivariate random 
(stochastic) process, and the matrices A[k] are deterministic 
and different from each other. Consequently, xlk], which is a 
vector of length J[k] � 2 Vk, is an instance of a multivariate 
(JlkLvariate) random process. In the context of BSS, slk] rep
resents signais (sometimes referred to as "sources"), xlk] repre
sents observations or measurements at J[k] sensors, and A[k] is 
a "mixing matrix" representing channel effects between signais 
and sensors. Therefore, each dataset in(]) is sometimes referred 
to as a "mixture" of the latent, unobserved, signais. 

Each dataset in (]) can always be reformulated as a sum of 
R � 2 terms [5] 

i=l i=l 

where the ith vector xlk], of length J[k], is modeled as

x[k] = A[k]s[k]
t t 1, • 

(2 ) 

(3) 

In this mode), A[k] = [A�k]I · · - IA�I] is partitioned column
wise into R blocks A[k] of size J[k] x m[k] where m[k] 

> 1t t ' t -

Vi, k, and 1 � dim(span(Alk1)) � mik]. Accordingly, slk], of
1 h [k] · h . h f [k] 

_ [ [k]T [k]T]T Th.engt mi ,1s t eit segment o s - s1 , . . .  ,sR . 1s
mode) is more general than classical BSS, in which K = 1, 
mlk l = 1 Vk, and dim(span(Alk])) = 1 Vi,k. The K vectors
xlk] can be concatenated in a single vector, 

[ x'.11 
] 

-
n 

[

Api o 

X= : - L O ·.

x[K] i=l Ü Ü 

R R 

= L(IK [D Ai)s; =LX., (4) 
i=l i=l 

h _ [ [l]T [K]T]T · f h I h . w ere xi - X; , ... , xi 1s o t e same engt as x,
Si = [sil]T, ... , sr]T]T, and A. = [Ai111 · · · 1Ar1i. Table I
summarizes these notations. This mode), which is qui te general, 
will be simplified in Section 11-D. The last column of Table I 
refers to the simplified model. For now, we focus on the first 
two columns of Table 1. The JISA model that we consider in 
this paper satisfies the following assumptions: 

TABLE! 
GLOSSARY OF PRINCIPAL JISA NOfATIONS. THE SECOND COLUMN REFERS TO 

THE GENERAL MODEL IN SECTION Il-A. THE THIRD COLUMN REFERS TO THE 

SIMPLIFlED MODEL IN SECTION 11-0 

Quantity 

mlk] = [mlkl' ... 'm�l]T
m.= [mi11, ... ,m!KJJT
M=E�1m,

s[k] ' 
[k] _ [ (k]T (kJT]TS - s

1 
, ... ,SR 

S; = [s!l)T, ... ,sr)T]T
xlkl, x[k]• 

. _ (l)T [K)T T x� - [xi , ... , xi ] 

A(kJ• 

AlkJ = [Alkll · · · IA�1J

General 

./ 

./ 

Size 

(k)m, 
E�1 m!kl = mlk]T lR
E

K [k] T 
k=l m, = mi lK

[[k] 

Ef=1 rlkJ
J(k] X m(k] • 

[[k) X mlk]T lR 

Simplified 

./ 

m, 
M 

KM 

M 

KM 

Mxm, 

MxM 

111 
statistically independent 

� ,--... �,--, 

J[l] { � = 1 Ail] 1 � = � �
o 

+ ... + o�o ?mW
[li Ail], 8111 A(1J , 8111 ,

S 1 1 1 R ' R • 
1 1 1 

+···+

possibly 
dependent 

� 
:o :}mlK] 
, , R 

1 1 

A(K) : [K):
R ,SR • 

I 

possibly 
dependent 

Fig. 1. Illustration of a JISA mode) withI< mixtures and R terms (summands) 

in each mixture. Random vectors slkl may have different Jength, denoted by

mJkl 2:: 1. Accordingly, AJkl may have different width. Entries of random vec

tors slkl with the same subscript i are allowed to be statistically dependent (but 
do not have to ). Random vectors with different subscripts are always statistically 
independent. 

Al) For a specific i, some or ail of the entries of s; may be 
statistically dependent. In particular, entries of slk] and
sl11 may be dependent, for k =f l. The dependence and
independence relations among the elements of s; may 
be different from those within Sj, for i =f j.

A2) s1, ... , sn are statistically independent, with R maxi
mal. 

Fig. l illustrates the model that we have just described. 
The TISA framework subsumes several well-known models 

in the literature. When K = 1, this model amounts to ISA [4], 
[5], [32]. The special case of ISA with mlk] = 1 Vi is com
monly known as ICA [7]. When mlk] = 1 Vi and K � 2, this
mode) amounts to IVA [6]. Therefore, TISA can be regarded as a 
mode) that consists of several ISA problems, li nked by statistical 
dependencies among the latent signais. 

Assumption (Al) enables the link among datasets by allow
ing statistical dependence among signais that belong to differ-



ent datasets. Assumption (A1) enables the multivariate nature
of the signals within each dataset by allowing statistical depen-
dence among the m

[k ]
i ≥ 1 entries of s[k ]

i . Assumption (A2) im-

plies that s[k ]
i , the ith signal in dataset k, is always statistically

independent of s[l]
j , the jth signal in dataset l, for i �= j and

any (k, l). Together with (4), Assumption (A2) implies that
x1 , . . . ,xR are statistically independent as well. Therefore, the
requirement for maximal R in Assumption (A2) implies that
JISA can separate x into a sum of at most R statistically inde-
pendent random vectors x1 , . . . ,xR . Whereas Assumption (A1)
allows each m

[k ]
i to be larger than one, Assumption (A2) has the

opposite effect, of making sure that each m
[k ]
i has the smallest

possible value within the JISA framework.
We emphasize that the values of m

[k ]
i , R, and the respec-

tive partition of A[k ] and s[k ] that we use in this paper for our
JISA analysis, are w.r.t. the statistical properties of the over-
all JISA model, and not w.r.t. each underlying ISA mixture
individually. The simplest example is a mixture of Gaussian
multivariate i.i.d. signals, whose covariance matrix can always
be diagonalized, which implies that effectively, all signals are
one-dimensional. However, as soon as we consider three or more
such mixtures in a single JISA framework, it is possible to define
signals of dimensions larger than one within each mixture. A
large part of this paper is dedicated to the mathematical formu-
lation and understanding of this phenomenon. This also means
that in general, the JISA model cannot provide a finer separa-
tion of the observations beyond these R statistically independent
terms.

It is clear from (3) that one cannot distinguish between the
pairs (A[k ]

i , s[k ]
i ) and (A[k ]

i Z−[k ]
ii ,Z[k ]

ii s[k ]
i ), where Z[k ]

ii is an ar-

bitrary nonsingular m
[k ]
i × m

[k ]
i matrix. This means that only

x[k ]
i and span(A[k ]

i ), which do not suffer from this inherent un-
avoidable ambiguity, may be uniquely identified using the JISA
framework (unless additional assumptions are imposed, which
is not the case in this paper). Therefore, within each mixture,
the inherent ambiguities of JISA are the same as those of an ISA
problem that has the same partition into R statistically indepen-
dent elements. For a clearer view of how these inherent ambi-
guities are manifested in the joint framework, let us look at (4).
It follows from (4) that the pair (IK �| Ai , si) is indistinguish-
able from

(
(IK �| Ai)(⊕K

k=1Z
−[k ]
ii ) , (⊕K

k=1Z
[k ]
ii )si

)
, because

the product of the terms in each pair is xi . Therefore, only xi

and the subspace associated with the ith signal, span(IK �| Ai),
which do not suffer from this inherent unavoidable ambiguity,
may be uniquely identified using the JISA framework. Hence,
JISA can be regarded as a (joint) subspace estimation problem.

We thus define the problem associated with JISA as follows:
given x, and given {m[k ]

i }R , K
i=1,k=1 ,1 obtain statistically inde-

pendent x1 , . . . ,xR . In practice, the distributions are estimated
from data, and therefore, this goal can be achieved only ap-
proximately. Accordingly, we suggest the following definition
of JISA uniqueness and identifiability:

1In certain cases, it may be possible to estimate {m[k ]
i } directly from the

data; however, such methods are beyond the scope of this work.

Definition II.1: If, for a given x, and given {m[k ]
i }R , K

i=1,k=1 ,
any choice of x1 , . . . ,xR that satisfy all our model assumptions
yields the same R summands in (4), we say that the factorization
of x into a sum of R terms is unique, and that the JISA model
is identifiable.

By Definition II.1, non-identifiability means that for the
same observations, there exists another set of random vectors
{x̂1 , . . . , x̂R} that sum up to x, but with x̂i �= xi for at least one
value of i (obviously, to balance the equation, this must hold for
at least two values of i). These x̂1 , . . . , x̂R are associated with
mixing matrices that we denote Â[1], . . . , Â[K ] . This means that
span(A[k ]

i ) �= span(Â[k ]
i ) and span(A[k ]

j ) �= span(Â[k ]
j ) for at

least one value of k and one pair of i �= j, that is, not all signal
subspaces have been properly identified.

The aim of this paper is to provide the necessary and sufficient
conditions that guarantee that this separation be unique, under
certain additional assumptions. Later on in this section, and
in Section III, we shall give a more concrete meaning to these
assumptions, in terms of SOS.

B. Second-Order Statistics (SOS)

In this paper, we focus on SOS. Therefore, in this section,
we show how assumptions (A1) and (A2) are manifested in the
SOS. The cross-correlation between any two random vectors
s[k ]
i and s[l]

j satisfies

S[k,l]
ij � E

{
s[k ]
i s[l]H

j

}
=

{
S[k,l]

ii i = j
0 i �= j

. (5)

The zero values on the right-hand side (RHS) of (5) are due
to Assumption (A2). Assumption (A1) implies that S[k,l]

ii may

be non-zero. The m
[k ]
i × m

[l]
j matrix S[k,l]

ij can be placed in the
(k, l)th block of the m�

i 1K × m�
j 1K matrix

Sij � E{sisH
j } =

⎡
⎢⎣

S[1,1]
ij · · · S[1,K ]

ij
...

...

S[K,1]
ij · · · S[K,K ]

ij

⎤
⎥⎦ =

{
Sii i = j
0 i �= j

(6)

as well as in the (i, j)th block of the m[k ]�1R × m[l]�1R matrix

S[k,l] � E{s[k ]s[l]H} = S[k,l]
11 ⊕ · · · ⊕ S[k,l]

RR . (7)

The block-diagonal structure of S[k,l] follows from (5). The
RHS of Fig. 2(a) illustrates (7). Fig. 2(b) illustrates (5)
and (6).

C. Coupled Block Diagonalization (CBD)

The cross-correlation between observations in any two
datasets k and l satisfies

X[k,l] � E{x[k ]x[l]H} = A[k ]S[k,l]A[l]H (8a)

=
R∑

i=1

A[k ]
i S[k,l]

ii A[l]H
i (8b)

where the RHS of (8a) is due to (1), and (8b) is due to (3) and (7).
Due to the block partition of A[k ] , we refer to the decomposition
of each X[k,l] in (8) as a “block decomposition”, and to the
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Fig. 2. Example of SOS-based nsA with K 2::: 2 real-valued datasets, each with R = 3 independent elements of rank m\11 = m�l[ = m1Kl = 2, m\Kl =
m111 = 1, m�KI = 3, and nonsingular (un)mixing matrices of size Jill E )R5x5 and JIKI E JR6 X6 . (a) SOS-based nsA by CBD of {Xlk,l( }f

1
=1. Note the

block-diagonal structure of slk,l( and the symmetry along the main axis k = l. (b) Rearranging the elements of {slk ,l ) }f,1= 1 in {S;;}f= 1.

decomposition ail at once of the ensemble {X[k,ll}f1=1 as a
coupledblock decomposition. If Alk] is nonsingular Vk, (8) can be rewritten as 

A-(k]x(k,l]A-(!]H = g[k,!] (9) 

where the RHS is block-diagonal by (7). For fixed (k, l), (9) represents a block-diagonalization of X[k,l] by two transformation matrices, A -(k] and A-[!]. Therefore, when applied to ail k, latonce, (9) amounts to coupled block diagonalization ( CBD) [ 11]. CBD is illustrated in Fig. 2(a). Similarly, in analogy to the more familiar notion of matrix congruence, we use the term coupled 
congruence to denote the relation in (9) between {X[k,ll}f1=1and {S[k,l]}f1=1 via the J( nonsingular transformation matrices A (k]. One can readily verify that coupled congruence is an equivalence relation. Equivalence via coupled congruence is essential for TISA identifiability and CBD uniqueness, as we shall see later on. In accordance with our discussion of the inherent TISA indeterminacies earlier in Section Il-A, each summand in (8b) satisfies 
A[k] g[k,1] A[!]H = (A[k] z:-:[k]) (z[k] g[k,!] z(!_]H) (z:-:[l]H A (l]H) .

t 'U t 1. U  tt U 11. 'U 1 (10) 
In analogy to Definition 11.1, we can now suggest a definition for the uniqueness of CBD: 

De.finition 11.2: If, for given {X[k,l] }f1= 1, and given
{ [k]}R , K h · f {A[k]}R, K d {S[k,l]}K

mi i=l k=1' any c mce O i i=l k=l an ii k l=l that satisf� (8) yields the same R sum:uands A!k] si�·'] Al'IH
Vk, l, we say that the decomposition in (8) (and (9), if applicable) is essentially unique.2Altematively, we can restate Definition 11.2 by replacing the R summands with the R m; lK-dimensional signal subpaces span(IK [TI Ai). Example VIl.1 in Section VII illustrates Definition 11.2. 

2The term "essentially unique" emphasizes the fact that there still exists an 
inherent unavoidable ambiguity, as defined by (JO). 

D. J/SA via CBD and Additional Model Assumptions

In this paper, we focus on a TISA model in which, in additionto Assumptions (A2) and (Al), we assume thatA3) Each underlying multivariate random process is realvalued, normally distributed: s; � N(O, Si;), withi.i.d. samples.A4) Alk] is nonsingular and real-valued Vk,A5) Si; is nonsingular Vi.A6) Each s1�·11 with k f lis either zero-valued or full-rank.A 7) mikl = � Vi, k.Assumptions (A3), (A4) and (A 7) imply that sik] E ]Rm, xl, 
8(k] ElRMxl S· EIRKm,xl A(k] EIRMxm, Alk] ElRMxM 

, t ' 1 ' ' xlk] and xlk] E JRMxl, x and X; E JRKMxl, where M �

I:f: 1 mi. These quantities are summarized in the last column of Table I. When Assumption (A3) holds, the correlation matrices {X(k,!] }f1= 1 are sufficient statistics for full model identifiability [l].3 In this case, TISA amounts to coupled block decomposition (or to CBD, if Assumption (A4) holds as well) of {X[k,I] }f1= 1, as formulated in Section 11-C. In this case,Definition 11.2 now establishes the link between the uniqueness of CBD and the identifiability of TISA. When Assumption (A3) holds, each mixture in (1) is, in general, not identifiable individually, as mentioned in Section 1. However, previous results (see Section IV) provide supporting evidence to the identifiability of the joint decomposition when l( � 2. Hence, this TISA model highlights the added value of TISA w.r.t. analysing each mixture individually. When Assumption (A4) holds, our model's identifiability does not depend on A[k]. A useful implication of Assumptions (A3) to (A5) is that the FIM can be derived in closed form [l] (see also Footnote 3). The proof of our main results, in Section V, relies on characterizing ail the cases in which the FIM is singular. In Appendix B, we show that 
3In [1) we assumed, for clarity of exposition, that mJkl = m; \/k. The gen

eralization of ail the results in [1) to mJkl # m!1I for every l # k is trivial and 
straightforward, up to the minimal necessary notational adaptations. 
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Fig. 3. A block matrix S;; = {s!�·11} reducible by coupled congruence."-" 
denotes equivalence by coupled congruence. White: zero, color: any value. 
In this example, s1�·11 E Rm • xm , with m; = 4, and the size of the zero 
sub-blocks on the RHS is determined, according to (11), by (a) a,lll = 1, 
a,121 = 2 and a,IKJ = 3 (b) a,lll = a,121 = a,IKJ = 2 (c) a,lll = 4 a,121 = O
and a,IKJ' = 3. ' ' ' ' 

characterizing the singularity of the FIM boils down to charac
terizing the non-trivial solutions to a system of coupled matrix 
equations. The coefficients of these matrix equations are the 
source correlations. Assumptions (A6) and (A 7) impose con
straints on the coefficients of the coupled matrix equations that 
we have just mentioned, and thus, further simplify our deriva
tions. In this paper, we shall full y characterize the necessary and 
sufficient additional constraints on S;; that guarantee identifia
bility, and specify those values of S;; for which the model is not 
identifiable, given these assumptions. 

ill. REDUCIBILITY AND IRREDUCIBILITY

The concept of (ir)reducibility is fondamental to our analysis. 
We begin with definitions, and then ex plain how they are related 
to our model assumptions. 

De.finition ll/.1: A block matrix S;; whose (k, l)th block is 
s!7·1l, k, l = l, ... , K, is said to be reducible by coupled con

gruence if there exist l( nonsingular matrices (transformations) 
T!71 such that 

Vk,l, (11) 

where alk] and p(k] � m; - alk] are nonnegative integers Vk,
and positive for at least one k. Otherwise, Si; is said to be 
irreducible by coupled congruence. 

Examples of a block matrix S;; that is reducible by coupled 
congruence are illustrated in Fig. 3. Figs. 3(a) and 3(b) illus
trate two cases where alk] and p[k] are positive Vk. In 3(c), 
one alk] and one ,Blk'I, k =f k', are zero. The zero blocks 
in Fig. 3(c) indicate that the corresponding blocks of S;; were 
originally zero. Note that all the off-diagonal blocks in Figs. 3(a) 
and 3( c) are singular matrices, which means that the correspond
ing blocks in S;; were singular as well. In Fig. 3(b ), all the blocks 
are nonsingular matrices, which means that ail the blocks of Sii 

were nonsingular as well. 

Definition ill.1 can be restated as saying that S;; is reducible 
by coupled congruence if and only if (iff) it is equivalent by 
coupled congruence to another matrix, whose (k, l)th block has 
a block-diagonal structure as in (11), Vk, l. Definition ill.1 im
plies that S;; cannot be reducible by coupled congruence if 
m; = 1. If the transformations in Definition ill. l are all uni
tary, we say that Sii is unitarily (ir)reducible in the coupled 
sense. Clearly, if a matrix is irreducible by coupled congruence, 
it is irreducible by coupled unitary transformations. The con
verse, however, does not generally hold, because a matrix may 
be irreducible by coupled unitary transformations yet reducible 
by non-unitary coupled congruence transformations. As an ex
ample, consider the case J( = 2 with m; � 2, which is always 
reducible by generalized eigenvalue decomposition (GEVD), as 
explained in Section IV; however, the reducing transformations 
are not unitary, except for very special cases. Within the TISA 
framework, however, we can take advantage of the fact that the 
coupled congruence via any arbitrary transformation matrices 
g(k,I] ...... z[k]g[k,!]z(!_]T Vk, lin ( 10) can be regarded as basis11, tt u 11, 
transformations on the rows and columns of the blocks of Sii 

(in analogy to [46, Remark 7]). For brevity, we refer to this op
eration as coupled basis transformation. We can now state the 
following: 

Proposition 111.2: S;; is reducible by coupled congruence iff 
there exists a coupled basis transformation in which the trans
formed S;; is reducible by coupled unitary transformations. 

Proof- Let {Z!71}f=1 be non-unitary transformations such
that S;; is reducible by coupled congruence (Definition ill. l ). 
Let z!7l = Q[k] R[k] denote the QR decomposition of z!7 l , with
Q[k] unitary and R[k] upper triangular Vk. Tuen, 

QlkJRlkJ slk ,1JR11JTQ[1JT = [s!�i!
l o ] Vk z (12) 

--- " 0 g[k,1] ' 
non-unitary '2 '2 

which implies that {R[k] s!7·11R(!]T}f1=1 is unitarily reducible
by coupled congruence. • 

Proposition ill.2 amounts to saying that S;; is irreducible by 
coupled congruence iff there does not exist any coupled basis 
transformation in which the transformed S;; is reducible by a 
coupled unitary transformation. The concept of irreducibility in 
general, and Proposition ill.2 in particular, is a key ingredient 
for proving our main result, Theorerns V.1 and V.2. 

We now turn to explaining the relation between reducibil
ity and our mode!. Assumptions (A6) and (A 7) imply that a 
full-rank s!7·11 is square and nonsingular. This excludes all the
reducible cases in which at least one alk] or p(k] are zero, be
cause these cases correspond to patterns in which one or more 

(k 1] 
Sii' have a row (or column) of zeros and are thus rank defi-
cient, as in Fig. 3(c). Assumptions (A6) and (A 7) exclude also 
reducible cases with alk] positive Vk and alk] =f ,B[k] for at least 
one k, because they are associated with blocks that are a direct 
sum of rectangular non-square matrices, and thus singular, as 
in Fig. 3(a). Cases with positive alk] and p(k] Vk, as in Figs. 3(a) 
and 3(b) are eliminated by Assumption (A2) (indeed, there is 
an overlap: cases as in Fig. 3(a) are excluded by both argu
ments). To see this, suppose for a moment that all our model 
assumptions hold, except Assumption (A2), which is violated 



such that R is not maximal. Then, there exists a random vector
si with mi ≥ 2 that can be written as two distinct statistically
independent random vectors that we denote si1 and si2 . Then, in
each dataset, similarly to our discussion in Section II-A, we can
write s[k ]

i = [s[k ]�
i1

s[k ]�
i2

]�, where s[k ]
i1

and s[k ]
i2

have length m
[k ]
i1

and m
[k ]
i2

, respectively, m[k ]
i1

+ m
[k ]
i2

= mi . Accordingly, si1 and

si2 have length
∑K

k=1 m
[k ]
i1

and
∑K

k=1 m
[k ]
i2

, respectively. Our
assumption of statistical independence (which has now boiled
down to decorrelation, due to Assumption (A3)) among si1 and

si2 implies that E{s[k ]
i1

s[l]�
i2

} = 0
m

[k ]
i 1

×m
[ l ]
i 2

∀k, l. Hence,

S[k,l]
ii = E

{
s[k ]
i s[l]�

i

}
=

[
S[k,l]

i1 i1
0

0 S[k,l]
i2 i2

]
∀k, l . (13)

which is reducible by Definition III.1. We conclude that the
correlation matrices Sii of a JISA model satisfying Assumptions
(A1) to (A7) are irreducible by coupled congruence.

IV. PREVIOUS RELATED IDENTIFIABILITY RESULTS

In this section, we briefly review previous related results.
One can readily verify that if only one dataset is considered

(i.e., K = 1), the SOS of the observations (8) do not provide a
sufficient number of constraints w.r.t. the free model parameters
(e.g., [47, Sec. V.A], [1, Sec. V.A]). Therefore, a single dataset
in (1) is not identifiable given our model assumptions. This
non-identifiability is a multivariate generalization to the well-
known fact that Gaussian processes with i.i.d. samples cannot
be separated blindly (e.g., [8]). For this reason, a large body
of literature has dealt with achieving uniqueness to this single-
set scenario by exploiting various types of diversity, including
non-stationarity, dependence among samples, HOS, complex-
valued data, and additional observational modes. Most of this
literature deals with the mi = 1 case; see, e.g, [9], [13], for
a comprehensive review. The mi ≥ 2 case has received much
less attention in the literature; we refer, e.g., to [4], [5], [19],
[32], [46] and references therein, for some pertinent results, in
the single-set context. In this paper, however, we focus on a
different approach, of showing that a multiset framework may
be sufficient for identifiability, even if none of the “classical”
types of diversity, which guarantee uniqueness and identifiabil-
ity in a single-set setup, are present. In other words, we use a
link between different mixtures as an alternative form of diver-
sity [13]. In order to clarify the relationship between this new
type of diversity and previous single-set results, we demonstrate
in Section VIII a link between the identifiability of piecewise
stationary ISA and the JISA identifiability results in this paper.

For m
[k ]
i = 1 ∀i, k, it has been argued in [48], and later

rigorously proven in [14], [17], [18], that as soon as K ≥ 2,
overdetermined IVA of Gaussian processes with i.i.d. samples
is identifiable, except very particular cases.

The case of JISA with K = 2 datasets deserves special at-
tention, as we now explain. When K = 2, the JISA model
can be reformulated as a GEVD [49, Chapter 12.2, Equa-
tion (53)] (see also [50, Sec. 4.3]). In this case, estimates of
{A[k ]}2

k=1 , which we denote {A[k ]GEVD}2
k=1 , can be obtained

in closed form, from the generalized eigenvectors. Given our

model assumptions, these estimates always exist. Furthermore,
they always achieve exact diagonalization of {X[k,l]}2

k,l=1 :

A−[k ]GEVDX[k,l]A−[l]GEVD� is a diagonal matrix ∀k, l, regard-
less of the size of the blocks on the diagonal of {S[k,l]}2

k,l=1 , i.e.,
even if the input latent data has mi ≥ 2 ∀k. This means that from
the point of view of the JISA model, if K = 2, then m

[k ]
i = 1

∀i, k, and S[k,l] are exactly diagonal ∀k, l. Therefore, in this
case, JISA is tantamount to IVA. Accordingly, the identifiabil-
ity of this special case can be derived directly using algebraic
arguments on the uniqueness of the GEVD: the one-dimensional
subspaces associated with the columns of A[k ]GEVD are uniquely
identified iff the generalized eigenvalues of the GEVD are dis-
tinct. Naturally, this identifiability result coincides with previous
results on IVA [14], [17], [18]. In Section VIII-C, we shall ex-
plain why the uniqueness of the GEVD provides sufficient, but
not necessary, conditions for JISA identifiability.

In [1], we presented supporting evidence, in terms of a balance
of degrees of freedom (d.o.f.), as well as numerical experiments
that demonstrated the invertibility of the FIM, that SOS-based
JISA with m

[k ]
i = mi ≥ 1 ∀k can be identifiable. In this pa-

per, we prove this rigorously, by characterizing all the cases
in which this JISA model is not identifiable, and showing that
non-identifiability occurs only in very particular cases. We point
out that although, in many cases, the same conclusions hold also
when m

[k ]
i �= mi , this is not always the case, as recently demon-

strated in [21]. The full analysis of this more general scenario
will be discussed in a different publication.

V. MAIN RESULT: JISA IDENTIFIABILITY

The main contribution of this paper is providing the neces-
sary and sufficient conditions for the identifiability of a JISA
model satisfying Assumptions (A1) to (A7). In Section II-D
we explained that given Assumptions (A1) to (A7), JISA is
tantamount to CBD. Therefore, the following results on JISA
identifiability also characterize the uniqueness of CBD, when
the matrices in (9) satisfy the constraints corresponding to As-
sumptions (A1) to (A7). Uniqueness and identifiability of these
models were defined in Definitions II.1 and II.2 and Section II-D.
Further implications of the results of this section are discussed in
Sections VIII and IX.

Let us begin with the simpler case, where S[k,l]
ii are nonsin-

gular matrices ∀i, k, l.
Theorem V.1: Consider a JISA model satisfying Assump-

tions (A1) to (A7), and, in addition, S[k,l]
ii are nonsingular ma-

trices ∀i, k, l. This JISA model is not identifiable iff there exists
at least one pair (i, j) ∈ {1, . . . , R}2 , i �= j, for which mj = mi

and

S[k,l]
jj = Ψ[k ]S[k,l]

ii Ψ[l]� ∀k, l (14)

where {Ψ[k ]}K
k=1 are nonsingular mi × mi matrices.

The proof of Theorem V.1 is given in Appendix C.
Theorem V.1 implies that if (14) holds for some pair (i, j),

then span(IK �| Ai), which is the subspace associated with the
ith signal, cannot be distinguished from span(IK �| Aj ), which
is the subspace associated with the jth signal. To see how this
condition on the signal covariances propagates into the mixing



matrices, set (14) in (8b):

X[k,l] = · · · + A[k ]
i S[k,l]

ii A[l]�
i + · · · +

A [k ]
j Ψ [k ] S [k , l ]

i i Ψ [ l ]�A [ l ]�
j︷ ︸︸ ︷

A[k ]
j S[k,l]

jj A[l]�
j + · · ·

(15)

Equation (15) implies that the jth term in (8b) can be re-
garded as having the same covariance matrix S[k,l]

ii as the ith
term, ∀k, l, but with different mixing matrices associated with
it. The non-identifiability arises from the fact that from the
point of view of the CBD, the triplets (A[k ]

j ,A[l]
j ,S[k,l]

jj ) and

(A[k ]
j Ψ[k ],A[l]

j Ψ[l],S[k,l]
ii ) are indistinguishable ∀k, l. Example

VII.1 in Section VII illustrates a scenario that is non-identifiable
by Theorem V.1. Theorems V.1 and (14) will be discussed in
detail in Sections VI and VIII.

We now turn to the more general case, where some of S[k,l]
ii

may be zero.
Theorem V.2: Consider a JISA model satisfying Assump-

tions (A1) to (A7). This JISA model is not identifiable iff there
exists at least one pair (i, j) ∈ {1, . . . , R}2 , j �= i, for which at
least one of the following scenarios holds:

Scenario 1: Without loss of generality (W.l.o.g.), there exists
D = {1, . . . , D}, 2 ≤ D ≤ K, D minimal, such that Sii and
Sjj can be written as

Sii = S[1:D,1:D ]
ii ⊕ S[D+1:K,D+1:K ]

ii (16a)

Sjj = S[1:D,1:D ]
jj ⊕ S[D+1:K,D+1:K ]

jj (16b)

where mi = mj , and there exist D nonsingular matrices Ψ[k ] ∈
Rmi ×mi such that

S[k,l]
jj = Ψ[k ]S[k,l]

ii Ψ[l]� for each k ∈ 𝒟, l ∈ 𝒟 . (17)

Scenario 2: W.l.o.g., there exists 𝒟 = {1, . . . , D}, D ≥ 1,
such that Sii and Sjj can be written as

Sii =
(
⊕D

k=1S
[k,k ]
ii

)
⊕ S[D+1:K,D+1:K ]

ii (18a)

Sjj =
(
⊕D

k=1S
[k,k ]
jj

)
⊕ S[D+1:K,D+1:K ]

jj . (18b)

The following remarks are in order.
The “w.l.o.g.” in Theorem V.2 implies that for each scenario,

and for each pair of (i, j), the order the datasets, which is anyway
arbitrary, can be modified.

For each pair of (i, j), Sii and Sjj may satisfy one or more in-
stances of Scenario 1 and/or Scenario 2. For a specific i, several
instances of Scenario 1 can hold, but only for disjoint datasets,
due to the requirement for minimal D. Several instances of
Scenario 2 may overlap. It is possible to add the condition that
D be maximal in Scenario 2, to avoid this overlap. The key
point is that the model is not identifiable as soon as one of these
scenarios holds, for at least one pair of (i, j).

Scenario 1 in Theorem V.2 implies that if (17) holds for
some pair (i, j), then {span(A[k ]

i )}D
k=1 cannot be distinguished

from {span(A[k ]
j )}D

k=1 . The explanation is essentially the same
as for Theorem V.1; note that Theorem V.1 is a special case
of Theorem V.2, when D = K and there are no zero blocks in
any Sii .

The special structures in Scenario 1 and in Scenario 2 impose
constraints on the dimensions of the signal subspaces, as the
following proposition suggests:

Proposition V.3: If, for fixed i, we can write Sii , without loss
of generality (w.l.o.g.), in the direct sum form (16a) with D = 1
or D = 2, then, for this specific i, mi = 1, that is, S[k,l]

ii are
scalars ∀k, l.

Proof: Let Sii satisfy (16a) with D < K. It follows
from (10) (see also Section III) that S[1:D,1:D ]

ii is subject to

the coupled congruence transformation Z[k ]
ii S[k,l]

ii Z[l]�
ii , where

k, l ∈ 𝒟, and Z[k ]
ii are artbirary nonsingular matrices. In gen-

eral, for arbitrary values of S[k,l]
ii , when D ≥ 3, there do not

exist {Z[k ]
ii }D

k=1 that exactly diagonalize, via coupled congru-

ence, all the blocks of S[1:D,1:D ]
ii . However, for D ≤ 2, such

transformations always exist, as we now explain. When D = 1,
Z[1]

ii can always be chosen to diagonalize S[1,1]
ii , for example,

by singular value decomposition (SVD). For D = 2, this exact
diagonalization always exists by GEVD, as explained in Sec-
tion IV. Either way, the fact that the blocks of S[1:D,1:D ]

ii can
be exactly diagonalized within the JISA/CBD framework im-
plies that from the point of view of the model, the ith signal
in datasets k = 1 : D is one-dimensional. By Assumption (A7),
we conclude that mi = 1. �

In the rest of this section, we prove Theorem V.2. In the proof
of Theorem V.2, we distinguish between two types of cases, as
we now explain.

Case 1: Assume, w.l.o.g., that for some pair (i, j) we can
write Sii and Sjj as in (16), with the smallest D satisfy-
ing 1 ≤ D < K. Clearly, if (16) holds not only for this specific
pair of (i, j) but ∀i, j for the same value of D and for the same
ordering of the datasets, our original JISA problem factorizes
into two disjoint JISA problems that should be handled sepa-
rately, one for mixtures 1 to D, and the other for D + 1 to K. To
avoid this trivial factorization, we assume that this situation does
not occur. Now, (16) implies that the signal covariance matri-
ces in datasets 1 to D, (S[1:D,1:D ]

ii ,S[1:D,1:D ]
jj ), are independent

of (S[D+1:K,D+1:K ]
ii ,S[D+1:K,D+1:K ]

jj ). Therefore, the identifi-
ability of the signal spaces of the ith and jth signals in datasets
1 to D, {span(A[k ]

i )}D
k=1 and {span(A[k ]

j )}D
k=1 , depends only

on the mixtures indexed by 1 to D. Therefore, w.l.o.g., we now
focus on these mixtures. To simplify our discussion, we assume
that S[1:D,1:D ]

ii and S[1:D,1:D ]
jj do not contain zeros. Correlations

that are zero matrices will be handled soon, in Case 2. Given
this assumption, we now apply Theorem V.1 to this smaller JISA
problem that consists only of datasets 1 to D. By Theorem V.1,
if (S[1:D,1:D ]

ii ,S[1:D,1:D ]
jj ) satisfy (14), {span(A[k ]

i )}D
k=1 cannot

be distinguished from {span(A[k ]
j )}D

k=1 . By Definitions II.1
and II.2, in this case, the overall JISA model is not identifiable.

Based on Case 1, we obtain the following result, which
proves Scenario 2 in Theorem V.2.

Proposition V.4: If the direct sum structure in (16) holds with
D = 1 for some pair (i, j), the JISA model is not identifiable.

Proof: Case 1 states that if, w.l.o.g., (16) holds with D = 1,
we should apply Theorem V.1 to the JISA sub-problem that now
consists only of the single mixture indexed by k = 1. Proposi-



tion V.3 states that in this case, mi = 1 = mj . Since any two
non-zero scalars are always proportional, (14) always holds and,
by Theorem V.1, the overall JISA model is not identifiable. �

The following result, together with Case 2, proves
Scenario 1 in Theorem V.2, and therefore concludes our proof of
Theorem V.2.

Case 2: Assume that for some pair (i, j), j �= i, there exists

a pair (k′, l′) such that S[k ′,l ′]
ii = 0 and S[k ′,l ′]

jj �= 0. Then, these

Sii and Sjj cannot satisfy (14) with nonsingular Ψ[k ] ∀k. If,
however, all zero blocks in Sii and Sjj are in the same locations,
they do not impose any constraints, and thus the equivalence
relation (14) may still hold.

We further discuss and exemplify Theorem V.2 in Sections VI
and VII.

VI. DISCUSSION OF JISA IDENTIFIABILITY RESULTS –
INTERPRETATION OF THEOREMS V.2 AND V.1

We identify in Theorems V.1 and V.2 two types of scenarios
associated with non-identifiability. Scenario 1 in Theorem V.2
implies that the model is not identifiable if in D ≥ 2 datasets
there exist at least two independent random processes of the
same size (i.e., mi = mj ) that are not correlated with any of
the other (K − D) datasets, and whose covariances satisfy (14)
or (17). One can readily verify that the transformations in (14)
and (17) represent an equivalence relation. Therefore, the type
of non-identifiability in Theorems V.1 and 1 in Theorem V.2 is
associated with equivalence relations between covariances. A
similar notion of equivalence has already been observed by [17]
in the one-dimensional case, of IVA. The use of equivalence
relations in formalizing the identifiability of blind estimation
problems is well known (e.g., [51]).

If we define “diversity” as any property of the data that
contributes to identifiability (e.g., [13]), then, since pairs of
multivariate random processes with different dimensions (i.e.,
mi �= mj ) are always identifiable in the JISA framework, we
suggest regarding block-based models with distinct multivariate
(or block) dimensions as containing more “diversity” w.r.t. mod-
els in which all random processes (or blocks) have the same
dimension.

Scenario 2 in Theorem V.2 implies that the model is not
identifiable if in D ≥ 1 datasets there exist at least two inde-
pendent random variables that are not correlated with any ran-
dom variables in any of the other (K − 1) datasets. It follows
from Proposition V.3 that for any pair (i, j) satisfying Scenario 2
in Theorem V.2, mi = 1 = mj . This scenario can be regarded as
a multiset parallel to the well-known result in classical BSS, that
one cannot separate random processes when more than one of
them is i.i.d. Gaussian, without additional constraints (e.g., [7]).

From a data fusion perspective, Theorems V.1 and V.2 moti-
vate using all the available datasets, as this may reduce the risk
of non-identifiable scenarios.

VII. ILLUSTRATION AND VALIDATION

The following examples provide some further theoretical in-
sight into Theorems V.1 and V.2. Theorems V.1 and V.2 were
stated with emphasis on the statistically-motivated JISA model.
The following examples emphasize the role of the algebraic as-

pect of our results, via CBD. In all the following examples, we
assume that the data satisfies Assumptions (A1) to (A7), unless
specified otherwise.

Example VII.1: In this example, we show that if the equiv-
alence relation (14) holds, achieving exact CBD (9) does not
necessarily result in signal separation. Let the number of inde-
pendent elements in each mixture be R = 2 such that

S[k,l] �
[
S[k,l]

11 0
0 S[k,l]

22

]
∀k, l (19)

and assume that (14) holds. Let

B[k ] � 1√
2

[
I −Ψ−[k ]

I Ψ−[k ]

]
A−[k ] ∀k . (20)

Using (8) and (20), we achieve exact CBD:

B[k ]X[k,l]B[l]� =

[
S[k,l]

11 0
0 S[k,l]

11

]
�=
[
S[k,l]

11 0
0 S[k,l]

22

]
∀k, l

(21)

where the RHS of (21) has the same block-diagonal structure
as (19), even though the bottom right block of (19) is different
than that of (21). By Definition II.2, the CBD of {X[k,l]} is not
unique. In this case,

B[k ]x[k ] =
1√
2

[
s[k ]
1 − Ψ−[k ]s[k ]

2

s[k ]
1 + Ψ−[k ]s[k ]

2

]
∀k (22)

which does not separate s[k ]
1 from s[k ]

2 ∀k, and hence, this JISA
model is not identifiable. One can readily verify that this exam-
ple equally hold if we replace mi with m

[k ]
i ∀i, k. We mention

that a structure similar to (20) of an unmixing matrix was used
in [52, Ch. 4.5], in an example for non-identifiability of piece-
wise stationary ISA. In Section VIII, we elaborate on the link
between these two models.

Example VII.2: In this example, we illustrate Scenario 2
in Theorem V.2. Let K = 3, R ≥ 3, and

Sii =

⎡
⎢⎣

S[1,1]
ii 0 S[1,3]

ii

0 S[2,2]
ii 0

S[3,1]
ii 0 S[3,3]

ii

⎤
⎥⎦,Sjj =

⎡
⎢⎣

S[1,1]
jj 0 S[1,3]

jj

0 S[2,2]
jj 0

S[3,1]
jj 0 S[3,3]

jj

⎤
⎥⎦

(23)

for some i �= j. This setup is not identifiable, because we can
permute the block rows and columns of Sii and Sjj using the
same permutation to obtain the structure in (18) with D = 1
(by Proposition V.3, we also have mi = mj = 1). However, if
we replace one of these zero blocks with a nonsingular ma-
trix (recall symmetry), we obtain a setup that is identifiable by
Theorem V.2.

Example VII.3: The following structure, with K = 3 and
R = 2, does not satisfy any scenario in Theorem V.2 and is
thus always identifiable.

Sii =

⎡
⎢⎣

S[1,1]
ii S[1,2]

ii 0
S[2,1]

ii S[2,2]
ii 0

0 0 S[3,3]
ii

⎤
⎥⎦, Sjj =

⎡
⎢⎣

S[1,1]
jj 0 0
0 S[2,2]

jj S[2,3]
jj

0 S[3,2]
jj S[3,3]

jj

⎤
⎥⎦

(24)



Furthermore, by Proposition V.3, the blocks of these matrices
are scalars, i.e., mi = 1 = mj .

VIII. DISCUSSION

In this section, we discuss several implications of Theorem
V.1, in a broader context.

A. A Link between JISA and ISA

There exist various types of links between JISA and ISA. In
this section, we focus only on one of these links. More specif-
ically, we now show that previous results on the identifiability
of piecewise stationary ISA can be obtained as a special case
of Theorem V.1. In what follows, we assume that the data satis-
fies Assumptions (A1) to (A7).

Let all A[k ] be identical, i.e., A[k ] � A ∈ RM ×M ∀k. Let
each pair of indices (k, l) be mapped into a single index, i.e.,
(k, l) �→ q. In this case, (8) and (9) rewrite, respectively, as

X(q) = AS(q)A� =
R∑

i=1

AiS
(q)
ii A�

i q = 1, . . . , Q (25)

and

A−1X(q)A−� = S(q) q = 1, . . . , Q (26)

where S(q) � ⊕R
i=1S

(q)
ii , S(q)

ii ∈ Rmi ×mi , A = [A1 | · · · |AR ],
Ai ∈ RM ×mi , and Q is the number of distinct equations in (26).
The factorization in (26) is often referred to as JBD (e.g., [25]).
In analogy to (10), each summand in (25) remains invariant if
a pair (Ai ,S

(q)
ii ) is replaced with (AiZ−1

ii ,ZiiS
(q)
ii Z�

ii) for an
arbitrary nonsingular Zii . In analogy to Definition II.2 (see also,
e.g., [19], [46]),

Definition VIII.1: If, for given {X(q)}Q
q=1 , and given

{mi}R
i=1 , any choice of A and {S(q)}Q

q=1 that satisfy (25) yields

the same R summands AiS
(q)
ii A�

i ∀q, we say that the decom-
position in (25) (and the JBD (26), if applicable) is essentially
unique.

Alternatively, we can restate Definition VIII.1 by replacing
the R summands with the R mi-dimensional signal subspaces
span(Ai). Similarly, Definition III.1 simplifies as:

Definition VIII.2: A sequence {S(q)
ii }Q

q=1 of mi × mi matri-
ces is said to be reducible by simultaneous congruence if there
exists a transformation (nonsingular matrix) T ∈ Rmi ×mi such
that

TS(q)
ii T� =

[
S(q)

i1 i1
0

0α×β S(q)
i2 i2

]
∀q , (27)

where α and β � mi − α are positive integers. Otherwise, the
sequence is said to be irreducible by simultaneous congruence.

One can readily verify that if Sii is irreducible by
coupled congruence (Definition III.1), then the sequence
S[1,1]

ii ,S[1,2]
ii , . . . ,S[K,K ]

ii consisting of its blocks is irreducible
by simultaneous congruence (Definition VIII.2). However, the
converse does not necessarily hold. Applying the same simpli-
fication procedure to (14), such that Ψ[k ] � Φ ∈ Rmi ×mi is an

arbitrary nonsingular matrix ∀k, we obtain

S(q)
jj = ΦS(q)

ii Φ� ∀q . (28)

Equation (28) is an equivalence relation between {S(q)
ii }Q

q=1

and {S(q)
jj }Q

q=1 . Next, due to the symmetry of the congruence

transformation, we impose symmetry on X(q) and S(q) ∀q. Fi-
nally, in accordance with Theorem V.1, the nonsingularity of
S[k,l]

ii translates into assuming that S(q) , and thus also X(q) ,
are positive-definite. Given these assumptions, one can read-
ily verify that (26) summarizes the sufficient statistics of ISA,
when each of the underlying signals is a piecewise stationary
multivariate (mi-variate) Gaussian process with uncorrelated
samples. In this case, S(q)

ii is the covariance of the ith random
vector in the qth stationary interval [26], [47].

Applying all these simplifications to Theorem V.1, we obtain
the following theorem:

Theorem VIII.3: Consider an ISA model whose sufficient
statistics are given by (25), where A ∈ RM ×M is a nonsingu-
lar matrix, and {S(q)

ii }Q
q=1 a sequence of positive-definite real-

valued symmetric mi × mi matrices, irreducible by simultane-
ous congruence (Definition VIII.2), for any i = 1, . . . , R. Then
this ISA is not identifiable, and the JBD (26) is not unique iff
there exists at least one pair (i, j) that satisfies (28) for some
nonsingular mi × mi matrix Φ.

The key point is that Theorem VIII.3, which we have just
obtained by simplifying Theorem V.1, is indeed identical to
the theorem on the identifiability of ISA, and the uniqueness
of JBD, as previously derived in [19] (see also [26], [27]). To
conclude, we have shown that the uniqueness and identifiability
of JBD (26) and of piecewise stationary ISA can be regarded as
special cases of the uniqueness and identifiability of CBD (9)
and stationary JISA.

B. Implications on Block-Based Decompositions

The Q matrices {X(q)} can be stored in a single three-
dimensional M × M × Q array, sometimes referred to as a
third-order tensor. In this case, the decomposition in (25) is
nothing but a special case of a decomposition of a tensor in a
sum of R low-rank block terms [46]. BTD is a class of ten-
sor decompositions that attract increasing interest, due to their
ability to model various latent structures in data. Accordingly,
Theorem VIII.3 is a special case of more general results on the
uniqueness of BTD. The decompositions in (8b) and (9) can-
not be written compactly as a decomposition of single tensor
in a sum of low-rank terms. This is not a flaw: this is simply
because our model is more general. The fact that certain results
on the uniqueness of tensor decompositions are special cases
of results on the uniqueness of a more general class of coupled
block decompositions (8) hints that other fundamental concepts
in the analysis of the uniqueness of tensor decompositions, such
as Kruskal’s rank [53], generalize as well. We point out that
the concept of Kruskal’s rank was generalized in [46] for matri-
ces partitioned column-wise into blocks, however, not for block
elements such as {S(q)

ii }Q
q=1 in (25), which are mi × mi × Q



tensors and not matrices. We leave further discussion of this
topic to future publications.

C. Can JISA Identifiability be Obtained from the GEVD?

In Section IV, we mentioned that when K = 2, we can write
JISA as GEVD, and if the generalized eigenvalues are distinct,
then the one-dimensional subspaces associated with each col-
umn of A[1] and A[2] are guaranteed to be unique. One may
wonder if we can use this result to obtain the uniqueness re-
sults of JISA with K ≥ 3 datasets, by observing the generalized
eigenvalues, for each pair of datasets. The answer is as fol-
lows. Indeed, if all the pairwise generalized eigenvalues are
distinct, then all the one-dimensional subspaces are distinct and
unique, and therefore, also if we collect them into subspaces of
a higher dimension, these higher-dimensional subspaces will re-
main distinct and thus uniquely identifiable. Therefore, this is a
sufficient condition. However, when these generalized eigenval-
ues are not distinct, we can still have identifiability: this follows
directly from (14). One can readily verify that even if each pair
of datasets has some non-distinct generalized eigenvalues, (14)
will not necessarily be satisfied, as soon as K ≥ 3, and mi ≥ 2
for at least one i.

D. Noise

We now briefly discuss our identifiability results in the pres-
ence of additive noise, when Assumptions (A1) to (A7) hold.
A prerequisite for identifiability is that the constraints imposed
by the observations be no fewer than the number of free model
parameters. In the noise free case, the inequality was strict at
K = 2, and satisfied for K ≥ 2, for any value of mi [1]. Clearly,
when the noise parameters have to be estimated as well, the case
K = 2 is never identifiable. Furthermore, the results now de-
pend both on the specific noise model, as well as on the values
of mi . Hence, in the noisy case, this prerequisite has to be tested
individually for each noisy JISA model. As we already know
from our analysis in the previous sections, a sufficient number of
d.o.f. does not guarantee identifiability, and, as we have shown
in this paper, characterizing all the cases of non-identifiability
is not a simple task, even in the absence of noise. Neverthe-
less, it is easy to see that additive noise cannot improve the
identifiability of the model: in the presence of additive noise,
x[k ] = A[k ]s[k ] + n[k ] ∀k, n[k ] being the noise random pro-
cess, (22) will have an additive term B[k ]n[k ] on the RHS ∀k.
Clearly, the non-identifiable mixed sources with arbitrary Ψ[k ]

remain non-identifiable and mixed. The same conclusion will
apply even if we use another filtering approach with better signal
to noise ratio (SNR), instead of B[k ] . It remains to see whether
the noise can add non-identifiable cases when the noise-free
model is identifiable by Theorems V.1 and V.2. This question
cannot be answered using our existing results, and requires a
new analysis, for example, by derivation of the FIM explic-
itly for the noisy case (see, e.g., [54], [55]). Such derivations
are beyond the scope of this paper. Algorithms and analysis
for JISA, in the presence of perturbation due to finite sample
size and/or additive noise, are described, e.g., in [1], [2], [10],
and [11].

IX. CONCLUSION

In this paper, we fully characterized the uniqueness and iden-
tifiability of JISA in a setup in which each dataset is not identi-
fiable individually. We proved that this JISA model is generally
identifiable, except when the SOS of two or more of its under-
lying sources belong to the same equivalence class. Since two
multivariate random processes that have different dimensions
cannot satisfy this equivalence relation, their presence implies
that they are always identifiable within our JISA framework.
This result implies that the presence of terms of different di-
mensions enhances identifiability, and thus can be regarded as
a new type of diversity in the data. This result further moti-
vates models in which the data can be represented in block
form, instead of rank-1 elements. We explained how this re-
sult generalizes and extends known results on the identifiability
and uniqueness of nonstationary ISA and JBD [19]. We con-
jectured that insights from these results can be applied to more
general types of block-based decompositions, and, in particular,
extend the concept of Kruskal’s rank to more elaborate types
of coupled matrix and tensor block decompositions. From a
data fusion perspective, we provided new theoretical evidence
that a link among datasets can achieve uniqueness and identifi-
ability in cases where each dataset is not unique or identifiable
individually. Our results provide further evidence that the con-
cept of irreducibility is a key factor in subspace-based BSS and
in decompositions in sum of low-rank block terms. We have
shown that analysing the identifiability of new signal process-
ing models that are inspired by data fusion leads to the develop-
ment of new theoretical results. These include the identities in
Appendix A on block partitioned matrices. The solutions to the
system of coupled matrix equations in (59) were derived in a
separate publication [23], [24].

APPENDIX A
SOME ALGEBRAIC PROPERTIES

For any matrices A,B,X,Y (with appropriate dimensions),

(B ⊗ A)(Y ⊗ X) = BY ⊗ AX (29a)

(B ⊗ A)� = B� ⊗ A� (29b)

vec(AXB�) = (B ⊗ A)vec(X) (29c)

For any two matrices AM ×P and BN ×Q ,

𝓣M,N (B ⊗ A) = (A ⊗ B)𝓣P,Q (30)

where the commutation matrix 𝓣P,Q ∈ RP Q×P Q satisfies

vec(M�) = 𝓣P,Q vec(M) (31)

for any P × Q matrix M [56]. Equation (29) and (30) can be
found, e.g., in [56] and [57].

Definition A.1 (vecd Operator): For any square matrix X of
size K × K with entries xkk ′ , where k, k′ = 1, . . . , K,

vecd(X) �
[
x11 · · · xK K

]�
. (32)

The vecd(·) operator can be found, e.g., in [58, Eq. (7)].
Definition A.2 (vecbd Operator): For any matrix X of size

α × β, partitioned into K × K blocks such that its (k, k′)th



block Xkk ′ has size αk × βk ′ , where k, k′ = 1, . . . , K, α =
[α1 , . . . , αK ]�, β = [β1 , . . . , βK ]�, α =

∑K
k=1 αk , and β =∑K

k=1 βk ,

vecbdα×β{X} �
[

vec�(X11) · · · vec�(XK K )
]�

. (33)

vecbdα×β{X} is a vector of length α�β, consisting only of
the (vectorized) entries of the block-diagonal of X, where the
rows of X are partitioned according to α and the columns by
β. If α = β then we can write vecbdα{X} � vecbdα×α{X}.
The vecbdα{·} operator can be found, e.g., in [59].

Identity A.3:

(A �| B)�(C �| D) = A�C � B�D . (34)

for any A, B, C, and D, such that all products are defined.
Proof: Let A and B be partitioned column-wise in K blocks,

and C and D in L blocks. Using (29b) we can write

(A �| B)�(C �| D)

=

⎡
⎢⎣

A�
1 ⊗ B�

1
...

A�
K ⊗ B�

K

⎤
⎥⎦
[
C1 ⊗ D1 · · · CL ⊗ DL

]
(35)

whose (k, l)th block A�
k Cl ⊗ B�

k Dl , obtained via (29a), is ex-
actly the (k, l)th block of A�C � B�D. �

Remark A.4: In [18, Identity 6.1], we introduced a special
case of Identity A.3:

(A � B)�(C � D) = A�C ∗ B�D (36)

The more familiar identity (e.g., [60]–[63]),

A�A ∗ B�B = (A � B)�(A � B) , (37)

is thus a special case of Identity A.3 and [18, Identity 6.1].
Identity A.5: Let A ∈ Rμ×α and B ∈ Rν×β be two matrices

partitioned column-wise into K blocks of dimensions μ × αk

and ν × βk , respectively, α =
∑K

k=1 αk , β =
∑K

k=1 βk , α =
[α1 , . . . , αK ]�, β = [β1 , . . . , βK ]�, as follows,

A =
[
A1 · · · AK

]
, Ak ∈ Rμ×αk

B =
[
B1 · · · BK

]
, Bk ∈ Rν×βk (38)

and X = ⊕K
k=1Xkk ∈ Rα×β , Xkk ∈ Rαk ×βk . Then,

(B �| A)vecbdα×β{X} = vec(AXB�) , (39)

where the operator “vecbdα×β{·}” was defined in
Definition A.2.

Proof: Identity A.5 is a special case of [59, Theorem 4.17],
when the partition is only column-wise. Alternatively, set K = 1
and N = 1 in [46, Eq. (2.14)]. �

If we set K = 1 in Identity A.5, that is, X has only one block,
we obtain (29c). If we set αk = 1 = βk ∀k in Identity A.5, that
is, X is a diagonal matrix, we obtain

(B � A)vecd(X)=(B ⊗ A)vec(X)=vec(AXB�) (40)

where the RHS of (40) is by (29c) and the operator “vecd(·)”
was defined in Definition A.1. Identity (40) can be found, e.g.,
in [58, Table III, T3.13] and [60, Eq. (27)].

We briefly explain the link to tensor decomposition. Our proof
of Identity A.5 states that (39) is a vector representation of a
decomposition in terms with multilinear rank (αr , βr ) [46] of a
second-order tensor (i.e., a matrix). Identities (29c) and (40) are
thus two special cases thereof: (29c) and (40) can be regarded,
respectively, as a vectorization of a decomposition in sum of
rank-1 terms, and as a vectorization of a Tucker format [64], of
a second-order tensor. This is not surprising, because both types
of tensor factorizations are special cases of the decomposition
in low multilinear rank terms [46].

APPENDIX B
ANALYZING THE SINGULARITY OF THE FIM

In [1], we have shown (see Footnote 3) that asymptotically,
that is, when the number of samples drawn from the random
variables goes to infinity, for every pair (i, j) with i �= j, the
estimation error of the parameters in the model that we have just
defined is proportional to the inverse of the symmetric positive
semi-definite 2m�

i mj × 2m�
i mj matrix

H =

[
Sjj � S−1

ii ⊕K
k=1𝓣m

[k ]
j ,m

[k ]
i

⊕K
k=1𝓣m

[k ]
i ,m

[k ]
j

Sii � S−1
jj

]
(41)

where the commutation matrix 𝓣P,Q ∈ RP Q×P Q was defined
in (31), and Sjj � S−1

ii is an m�
i mj × m�

i mj matrix whose

(k, l)th block has size m
[k ]
i m

[k ]
j × m

[l]
i m

[l]
j . Using Identity (30)

in Appendix A, we can write

𝓗 =

[
I 0
0 ⊕K

k=1𝓣m
[k ]
i ,m

[k ]
j

]
H

[
I 0
0 ⊕K

k=1𝓣
�
m

[k ]
i ,m

[k ]
j

]
(42)

where

H =
[
Sjj � S−1

ii I
I S−1

jj � Sii

]
. (43)

Matrix H is always well-defined because it is derived (in [1])
based on the assumption that Sii and Sjj are positive-definite
covariance matrices. Matrix 𝓗 and its inverse are the main
ingredients in the closed-form expression for the CRLB and
FIM, as explained in [1]. Therefore, model identifiability boils
down to characterizing all the cases in which H is singular.

For H to be positive-definite,4 we require that for any vector
x of length 2m�

i mj ,

0 < x�Hx = x�V�Vx (44)

where V is such that H = V�V. Conversely, for H not to be
positive-definite, there must exist some non-zero vector x of
length 2m�

i mj such that

0 = x�Hx = x�V�Vx (45a)

⇔ Vx = 0 . (45b)

4The derivations in Appendix B are valid also for complex-valued variables,
when � is replaced with H, wherever applicable.



Based on (44) and (45), we now look for a meaningful fac-
torization of the Gram matrix H = V�V. We propose

H =

[
(S

1
2 �
jj �| S− 1

2
ii )�

(S− 1
2

jj �| S
1
2 �
ii )�

][
S

1
2 �
jj �| S− 1

2
ii S− 1

2
jj �| S

1
2 �
ii

]
(46)

where

V �
[
S

1
2 �
jj �| S− 1

2
ii S− 1

2
jj �| S

1
2 �
ii

]
(47)

has size (m�
i 1K )(m�

j 1K ) × 2m�
i mj . Matrix S

1
2
ii is defined

such that Sii = S
1
2
iiS

1
2 �
ii ; this factorization may be obtained,

e.g., via SVD. The equality in (46) follows from Identity
A.3 in Appendix A. A prerequisite for the nonsingularity of
H is that the number of rows of V be equal to or larger
than the number of its columns. One can readily verify that
when Assumption (A7) holds, this condition is satisfied as
soon as K ≥ 2, because (m�

i 1K )(m�
j 1K ) = Kmi · Kmj ≥

2Kmimk = 2m�
i mj . The fact that this does not hold for K = 1

is yet another proof that a single dataset is not identifiable. Oth-
erwise, satisfying this inequality depends on the specific sizes
of the blocks. For example, if mi = [1, 1, 5]� = mj , this in-
equality does not hold, and this case is not identifiable. In what
follows, we consider only data whose dimensions satisfy the
desired inequality. In these cases, the rank of H may be equal
to 2m�

i mj . In this paper, our goal is thus to determine the addi-
tional structural conditions on H and V such that this rank will
be smaller, in the special case where Assumptions (A1) to (A7)
hold.

Next, we look for a non-zero vector x such that Vx = 0.
W.l.o.g., we look for x in the form

x =
[
μ� −ν� ]� . (48)

Substituting this in (45b), we obtain
[
S

1
2 �
jj �| S− 1

2
ii S− 1

2
jj �| S

1
2 �
ii

][
μ
−ν

]
= 0 (49)

for some non-zero μ and/or ν. We now turn to finding these μ
and ν. As we shall see soon, it is useful to rearrange the elements
of μ and ν in the following structure:

μ �
[

vec�(M[1]) · · · vec�(M[K ])
]

(50a)

ν �
[

vec�(N[1]) · · · vec�(N[K ])
]

(50b)

where the size of each M[k ] and N[k ] is m
[k ]
i × m

[k ]
j . Equa-

tion (50) can be rewritten more compactly as

μ = vecbdm i ×m j
{M} , ν = vecbdm i ×m j

{N} (51)

where the “vecbd” operator was described in Definition A.2
in Appendix A, M � ⊕K

k=1M
[k ] , N � ⊕K

k=1N
[k ] , and the

row × column partition of both M and N is mi × mj . Let
us rewrite (49) as

(S
1
2 �
jj �| S− 1

2
ii )μ = (S− 1

2
jj �| S

1
2 �
ii )ν . (52)

Applying Identity A.5 in Appendix A to (52) yields

vec(S
1
2 �
ii NS− 1

2 �
jj ) = vec(S− 1

2
ii MS

1
2
jj ) . (53)

Removing the “vec” notation, (53) rewrites as

S
1
2 �
ii NS− 1

2 �
jj = S− 1

2
ii MS

1
2
jj . (54)

Since Sii and Sjj are positive-definite, (54) rewrites as

SiiN = MSjj ⇔ S[k,l]
ii N[l] = M[k ]S[k,l]

jj ∀k, l . (55)

Hence, our task of finding μ and ν has been recast into finding
{M[k ],N[k ]}K

k=1 , not all zero, for which equality (55) holds. The
matrix equation (55) can further be simplified if we normalize
Sii and Sjj such that their blocks on the main diagonal are equal
to the identity,

S̃[k,k ]
ii = I

m
[k ]
i

and S̃[k,k ]
jj = I

m
[k ]
j

∀k . (56)

We do so using the transformation

S̃[k,l]
ii = (S[k,k ]

ii )−
1
2 S[k,l]

ii (S[l,l]
ii )−

1
2 � ∀k, l , (57)

which is absorbed by the arbitrary factors discussed in
Section II-A, and thus does not alter the identifiability of the
JISA model in question. Substituting (57) in (55), we obtain

(S[k,k ]
ii )−

1
2 M[k ](S[k,k ]

jj )
1
2

︸ ︷︷ ︸
L [k ]

S̃[k,l]
jj

= S̃[k,l]
ii

L ′ [ l ]︷ ︸︸ ︷
(S[l,l]�

ii )
1
2 N[l](S[l,l]�

jj )−
1
2 . (58)

Substituting (56) in (58) for l = k implies L[k ] = L′[k ] ∀k. Prob-
lem (55) can now be restated as characterizing the non-trivial
solutions of

S̃iiL = LS̃jj ⇔ S̃[k,l]
ii L[l] = L[k ]S̃[k,l]

jj ∀k, l (59)

where L[k ] are m
[k ]
i × m

[k ]
j matrices and L � ⊕K

k=1L
[k ] . For

fixed (k, l), the RHS of (59) is a Sylvester-type homogeneous
matrix equation. When all the indices k, l are considered at
once, the RHS of (59) is a system of coupled Sylvester-type ho-
mogeneous matrix equations, in K unknowns {L[k ]}K

k=1 . The
left-hand side (LHS) of (59) can be described as a single struc-
tured Sylvester-type homogeneous matrix equation, in a single
structured unknown L. Problem (59) is simpler than (55) be-
cause L replaces both M and N, reducing by half the number
of unknowns. The JISA identifiability problem can now be re-
stated as characterizing the minimal set of additional conditions
on S̃ii and S̃jj such that {L[k ]}K

k=1 are not all zero and (59)
holds, given the rank and irreducibility constraints imposed by
Assumptions (A1) to (A7).

APPENDIX C
NON-TRIVIAL SOLUTIONS TO (59)

Here, we characterize the non-trivial solutions of (59)
when S[k,l]

ii ∈ Rmi ×mi are nonsingular matrices ∀i, k, l,
and Assumptions (A1) to (A7) hold. The generalization to zero-
valued blocks is explained in detail in Section V. Hence, we can
assume that Sii and Sjj , as well as their normalized forms S̃ii

and S̃jj , are irreducible by coupled unitary transformations, as



follows from Section III. The solutions are given by the follow-
ing lemma, whose proof can be found in [23] (the lemma in [23]
is more general, here we adapt it for the specific data in hand).

Lemma C.1: Let S̃jj ∈RK mj ×K mj and S̃ii ∈RK mi ×K mi ,
i �= j, K ≥ 2, be two symmetric matrices, irreducible by cou-
pled unitary transformations, whose (k, l)th blocks, S̃[k,l]

jj ∈
Rmj ×mj and S̃[k,l]

ii ∈ Rmi ×mi , k, l = 1, . . . ,K, are nonsingu-
lar matrices. Let L[k ] ∈ Rmi ×mj be fixed matrices such that (59)
holds. Then either L[k ] = 0mi ×mj

∀k, or L[k ] = νO[k ] ∀k with
ν ∈ R and O[k ] orthogonal ∀k (implicitly, mi = mj ).

By Lemma C.1, a non-trivial solution to (59) exists iff

S̃[k,l]
jj = O[k ]S̃[k,l]

ii O−[l] ∀k, l , (60)

which is possible only if mi = mj ∀k. It remains to re-
state Lemma C.1 in terms of the unnormalized covariances
S[k,l] . Substituting (57) in (60),

S[k,l]
jj = ((S[k,k ]

jj )
1
2 O−[k ](S[k,k ]

ii )−
1
2 )·

· S[k,l]
ii ((S[l,l]

ii )−
1
2 �O[l](S[l,l]

jj )
1
2 �) , (61)

and setting

Ψ[k ] � (S[k,k ]
jj )

1
2 O−[k ](S[k,k ]

ii )−
1
2 , (62)

we obtain (14). Finally, Proposition III.2 guarantees that irre-
ducibility by coupled unitary transformation of S̃jj and S̃ii

(which is a prerequisite in Lemma C.1) is a necessary and suf-
ficient condition for their unnormalized forms Sjj and Sii to
be irreducible by coupled congruence. This concludes the proof
of Theorem V.1.
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