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Belnap–Dunn four-valued logic is one of the best known logics for handling elementary

information items coming from several sources. More recently, a conceptually simple

framework, namely a two-tiered propositional logic augmented with classical modal

axioms (here called BC logic), was suggested by the second author and colleagues, for
the handling of multisource information. It is a fragment of the non-normal modal logic
EMN, whose semantics is expressed in terms of two-valued monotonic set functions called
Boolean capacities. We show BC logic is more expressive than Belnap–Dunn logic by
proposing a consequence-preserving translation of Belnap–Dunn logic in this setting. As
special cases, we can recover already studied translations of three-valued logics such as
Kleene and Priest logics. Moreover, BC logic is compared with the source-processor logic of
Avron, Ben Naim and Konikowska. Our translation bridges the gap between Belnap–Dunn
logic, epistemic logic, and theories of uncertainty like possibility theory or belief functions,
and paves the way to a unified approach to various methods for handling inconsistency
due to several conflicting sources of information.

1. Introduction

Reasoning with inconsistent information is a topic that has emerged in the last thirty years as a key issue in logic-based 
Artificial Intelligence, because the usual approach in mathematics according to which from a contradiction everything fol-
lows is not useful in practice. Due to the large amount of data available today, inconsistencies are unavoidable, and people 
often cope with inconsistent information in daily life. Many works have been published proposing approaches to deal with 
inconsistent knowledge bases in such a way as to extract useful information from it in a non-explosive way. See [52,12,15]
for surveys.

Belnap–Dunn four-valued logic [32,10,9] is one of the earliest approaches to this problem. It is based on a very natural 
set-up whereby several sources of information tentatively declare some elementary propositions to be true or false. The 
set of truth-values thus collected for each proposition from all sources is summarized by a so-called epistemic truth-value
referring to whether sources are in conflict or not, informed or not about this elementary proposition. There are four such 
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epistemic truth-values, two of which refer to ignorance and conflict. Truth tables for conjunction, disjunction, and negation 
are used to compute the epistemic status of other more complex formulas. This logic underlies both Kleene three-valued 
logic [40] (recovered when no conflict between sources is observed) and the three-valued Priest Logic of Paradox [46,47]
(when sources are never ignorant and always assign truth-values to each elementary proposition). In the former logic, the 
truth-value referring to the idea of “contradiction” is eliminated, while in the latter, the truth-value referring to the idea of 
“ignorance” is eliminated. Belnap–Dunn logic uses all four values forming a bilattice structure, in which one partial ordering 
expresses relative strength of information (from no information to too much information), and the other partial ordering 
represents relative truth (from false to true).

In recent works [20,21], we have focused attention on three-valued logics of uncertainty or inconsistency (paraconsistent 
logics). We were able to express them in a two-tiered propositional logic called MEL [8], which adopts the syntax of a 
fragment of epistemic logic, and borrows axioms of the KD logic. MEL can be viewed as the simplest logical framework 
for reasoning about incomplete information and at the semantic level it expresses the all-or-nothing version of possibility 
theory [28]. This kind of two-tiered logic dates backs to works by Hájek and colleagues [38] who tried to capture probability 
and other uncertainty logics, using a two-tiered logic, with propositional logic at the lower level and a multivalued logic at 
the higher level. The idea is that the degree of truth of an atomic statement p is probable is the degree of probability of p. 
This scheme has been systematized in [34,18]. The logic MEL is in the same vein, albeit using propositional logic at both 
levels, and a modal language.

In the MEL logic, it is possible to express that an atomic proposition, or its complement, is unknown (when translating 
Kleene logic, for instance), or that it is contradictory (when translating Priest Logic of Paradox, for instance). The main merit 
of such translations in [20,21] is to lay bare the meaning of the various three-valued connectives usually defined by means 
of truth tables, and especially to exhibit the limited expressive power of such three-valued logics. Namely, modalities can 
only appear in front of literals in the translations. These results facilitate the practical use of three-valued logics and the MEL 
logic seems to offer a unified logical framework for all of them, where only usual binary truth-values are needed. In this 
paper we focus on the case of Belnap–Dunn logic, for which we propose a similar translation into a two-tiered propositional 
setting that borrows axioms from a non normal modal logic and supports both ideas of conflict and ignorance. Indeed, the 
setting of KD logics is not general enough to capture Belnap–Dunn approach.

A more general modal framework for multiple source information, here called BC logic, first outlined by the second 
author [24], and proved sound and complete in [30], is recalled. It is based on a fragment of the non-normal modal logic 
EMN [17]. At the semantic level this logic accounts for the notion of Boolean capacity, i.e., set functions valued on {0, 1}
that are monotonic under inclusion. This logic brings us closer to uncertainty theories and can encompass variants of 
probabilistic and belief function logics, for instance the logic of risky knowledge [43], where the adjunction rule is not valid. 
Our framework seems to be tailored for reasoning from multiple source information.

Then, we show that our two-tiered propositional setting related to the EMN logic can encode Belnap–Dunn four-valued 
logic, namely that the four truth-values in this logic are naturally represented by means of capacities taking values on {0, 1}. 
We provide a consequence-preserving translation of this four-valued logic into BC. Thus, we construct a bridge between 
Belnap–Dunn logic and uncertainty theories. As special cases, we recover our previous translations of Kleene logic for 
incomplete information [20] and Priest Logic of Paradox [21].

This translation is not a gratuitous exercise. BC logic has potential to support a number of inconsistency handling ap-
proaches and to act as a unifying framework for several logics of uncertainty and conflicting information; so, it is important 
to show that the best known logic for inconsistency handling is encompassed. The framework of BC logic is more expres-
sive than the one of Belnap–Dunn logic, because it does away with the assumption that sources provide information about 
propositional variables only, and it does not require truth-functionality assumptions. The source-processor logic of Avron 
et al. [6] also does away with the first restriction but it still requires a weak form of truth functionality. We discuss the 
connections between that setting and ours. The BC logic has thus potential to encompass various approaches to inconsis-
tency-tolerant formalisms, and is easier to relate to information fusion methods that are proposed in uncertainty theories 
[26], due to the use of monotonic set functions. For instance, a possible extension of Belnap set-ups with belief functions 
was already suggested in [23].

This paper is organized as follows. Section 2 presents the propositional logic of Boolean capacities BC and shows its 
capability to capture the notion of information coming from several sources. Section 3 recalls Belnap–Dunn four-valued 
logic from the point of view of its motivation, its syntactical inference and its semantics, as well as some of its three-valued 
extensions, i.e., Kleene and Priest logics. Section 4 contains the main results pertaining to the translation of Belnap–Dunn 
logic into BC. Results in this section were more succinctly announced in a former conference paper [22]. Section 5 shows 
how Kleene and Priest logic translations in [20,21] can be retrieved by translating additional axioms or inference rules 
into BC. Section 6 discusses some related approaches that deal with conflicting information, including the general source 
processor logic of [6]. We provide some proofs about Belnap–Dunn logic in Appendix A, for the sake of self-containedness.

2. The logic of Boolean capacities and multisource information management

In this section, we consider a general approach to the handling of pieces of incomplete and conflicting information com-

ing from several sources. We show, following an intuition already suggested in [5,24,30], that if we represent each body of 
information items supplied by one source by means of a set of possible states of affairs, the collective information supplied 



by the sources can be modeled in a lossless way by a monotonic set function called a capacity, that takes value on {0, 1}. 
These set functions can serve as natural multi-source semantics for a simple non-normal modal logic in which we shall cap-
ture Belnap–Dunn four truth-values as already suggested in [24]. This logic, formally studied in [30] is driven by what we 
believe is the minimal set of axioms to express multisource reasoning. It can naturally serve as a target language to express 
Belnap–Dunn, Kleene and Priest logics, as well as the source processor logic of Avron et al. [6], and other approaches as well.

2.1. Boolean capacities and multisource information

Consider a set of states of affairs Ä which may be the set of interpretations of a propositional language. The complement 
of a subset A ⊆ Ä is denoted by Ac .

Definition 1. A capacity (or fuzzy measure) is a mapping γ : 2Ä → [0, 1] such that γ (∅) = 0; γ (Ä) = 1; and if A ⊆ B then 
γ (A) ≤ γ (B).

This capacity is supposed to inform us about what the state of the world, say s, is. The value γ (A) can be interpreted 
as the degree of support of a proposition of the form s ∈ A. For a textbook on (numerical) capacities, see Grabisch [37]. 
A Boolean capacity (B-capacity, for short) is a capacity with values in {0, 1} [30]. It can be defined from a usual capacity 
and any threshold λ > 0 as β(A) = 1 if γ (A) ≥ λ and 0 otherwise.

The useful information in a B-capacity consists of its focal sets. A focal set E is such that β(E) = 1 (hence not empty) and 
β(E \ {w}) = 0, ∀w ∈ E . Let Fβ be the set of focal sets of β . Fβ collects all minimal sets for inclusion such that β(E) = 1. 
Fβ is thus an antichain (no inclusion between sets). We can check that β(A) = 1 if and only if there is a subset E of A
in Fβ with β(E) = 1. So, the focal sets of a Boolean capacity are the necessary and sufficient information to recover the 
capacity.

We can interpret a Boolean capacity as the information provided by a set of sources. Consider n sources providing 
information in the form of non-empty sets E i ⊆ Ä that are supposed to contain the actual world s after each source. In 
other words, E i can be viewed as the epistemic state of the source i: it is only known from source i that the real state of 
affairs s should lie in E i . A capacity β can be built from these pieces of information letting β(A) = 1 when ∃i such that 
E i ⊆ A and 0 otherwise. Then β(A) = 1 really means that there is at least one source i that claims that s ∈ A is true (that 
is, s ∈ A is true in all states of affairs in E i ). This way of synthesizing information is not destructive, since it preserves every 
non-redundant initial piece of information: the set of focal sets Fβ is clearly included in {E1, E2, . . . , En} as it contains 
minimal sets E i for inclusion.

Given a proposition s ∈ A, there are four epistemic statuses based on the information from sources, that the capacity can 
express:

• Support: β(A) = 1 and β(Ac) = 0. Then s ∈ A is asserted by at least one source and negated by no other one.
• Rejection: β(Ac) = 1 and β(A) = 0. Then s ∈ A is negated by at least one source and asserted by no other one.
• Ignorance: β(A) = β(Ac) = 0. No source asserts nor negates s ∈ A.

• Conflict: β(A) = β(Ac) = 1. Some sources assert s ∈ A, some negate it.

Important special cases of Boolean capacities are [30]:

• when there is a single focal set: Fβ = {E}. This is equivalent to having β minitive, i.e., β(A ∩ B) = min(β(A), β(B)). It is
then a necessity measure [27]. There is only one source and its information is incomplete, but there is no conflict.

• when the focal sets are singletons {w1}, {w2}, . . . , {wn}. This is equivalent to having β is maxitive, i.e., β(A ∪ B) =
max(β(A), β(B)). All sources have complete information, so there are conflicts, but no ignorance. Letting E =

{w1, w2, . . . , wn}, then β(A) = 1 if and only if A ∩ E 6= ∅; so, formally β is a possibility measure [27]. But here E is

a conjunction of non-mutually exclusive elements (fully informed sources), not a possibility distribution.
• β is both maxitive and minitive if and only if its unique focal set is a singleton. This is usually called a Dirac function,

representing complete (deterministic) information.

2.2. The multisource set-up in the propositional setting

This approach can be described in more syntactic terms. Consider a standard propositional language L with variables V =

{a, b, c, . . . } and connectives ∧, ∨, ¬, for conjunction, disjunction and negation, respectively. We denote the propositional 
formulas of L by letters p, q, r. The truth set is {0, 1} and we denote by v : V → {0, 1} a truth-assignment. The set of 
interpretations of L is Ä. The set of models of p is denoted by [p] ⊆ Ä. The information provided by each source can then 
equivalently take the form of a consistent set K i of propositional formulas claimed to be true. If we assume each source is 
logically sophisticated,1 then K i is equivalently modeled by the set E i of its models. Moreover, for any formula p, source 

1 That is, is capable to reason according to propositional logic.



i declares that p is true (1) whenever K i ⊢ p, false (0) whenever K i ⊢ ¬p, and is silent otherwise. Then, we can again 
compute the status of all propositions with respect to the sources, using propositional inference, i.e., decide whether any 
proposition p is

• supported if for some source i, K i ⊢ p and K i ⊢ ¬p for no other source;
• rejected if for some source i, K i ⊢ ¬p and K i ⊢ p for no other source;
• unknown if p is neither supported nor rejected, i.e., for all sources j, K j 0 p and K j 0 ¬p;

• conflicting if p is both supported and rejected, i.e., for some source i, K i ⊢ p and for another one j, K j ⊢ ¬p.

This setting is somewhat similar to the one of Konieczny and Pino-Pérez [41,42] who consider the problem of syntax-
independent merging of sets of propositional formulas that may contradict each other. Their aim is to compute a unique 
consistent closed set of formulas as the result of the merging process. They provide rationality axioms to do so, and ex-
amples of merging operations that follow these principles. However thus doing, the method is destructive, namely, it does 
away with some pieces of information provided by sources, in order to restore consistency. In contrast, the capacity-based 
information processing set-up proposed here, while it is also syntax-independent, is non-destructive. Indeed, all information 
items provided by the sources remain unaltered (unless redundant): we do not solve inconsistency, we only confine it to 
some conclusions.

Example 1. This example is inspired by one proposed by Revesz [50] in the literature on knowledge base merging. There are 
three variables {a, b, c}. There are three sources which declare the following formulas and their consequences as being true:

• K1 = {a ∨ c, ¬b} with models E1 = {100, 001, 101}
• K2 = {¬a, (b ∨ ¬c) ∧ (c ∨ ¬b)} with models E2 = {000, 011}
• K3 = {a, b} with models E3 = {110, 111}

where models are denoted by triples of truth-values for a, b, c in this order. The reader can check that, following our 
approach, c is unknown (implied by none of the bases), a ∧ b is conflicting (implied by K3 but ¬a ∨ ¬b is implied by K2), 
a ∧ b ∧ c is rejected (implied by none of the bases but its negation is implied by K1 and K2) as well as a ∧ ¬b (implied by 
none of the bases but its negation is implied by K2 and K3), a ∨ b and a ∨ c are supported (implied by K3 , but rejected by 
none).

2.3. The logic BC

In this section, we recall the logical framework for multiple source information, proposed in [24,30], which accounts 
for the above capacity-based framework. Consider a two-tiered propositional language L✷ based on another propositional 
language L. The atomic propositions of L✷ form the set V¤ = {✷p : p ∈L}. The language L✷ , whose formulas are denoted 
by Greek letters φ, ψ, . . . , is then of the form:

• If p ∈L then ✷p ∈L✷;

• if φ, ψ ∈L✷ then ¬φ ∈L✷ , φ ∧ ψ ∈L✷ .

Note that the language L is embedded inside (but disjoint from) L✷ . As usual ✸p stands for ¬✷¬p. It defines a very
elementary fragment, proposed by Banerjee and Dubois [7,8], of a modal logic language.

A minimal epistemic logic with conflicts using the language L¤ defined above has been proposed [24]. It is a two-tiered 
propositional logic augmented with some modal axioms:

(PL) All axioms of propositional logic for L✷-formulas;

(RM) ¤p →¤q if ⊢ p → q in PL;
(N) ¤p, whenever p is a propositional tautology;
(P) ♦p, whenever p is a propositional tautology.

The only inference rule is modus ponens: If ψ and ψ → φ then φ.
This is a fragment of the non-normal logic EMN [17]. In particular the axiom (RE): ✷p ≡ ✷q if and only if ⊢ p ≡ q is 

valid. Note that the two dual modalities ✷ and ✸ play the same role. Namely the above axioms remain valid if we exchange 
✷ and ✸. So these modalities are not distinguishable.

Semantics of non-normal logics are usually expressed in terms of neighborhoods, which attach a family of subsets of
interpretations to each possible world [17]. Here we do not need this complex semantics since modalities are not nested. 
Capacities on the set of interpretations Ä of the language L encode a set of subsets A such that β(A) = 1, which is a special 
case of world-independent neighborhood containing Ä and closed under inclusion (after axiom RM).



We call this formalism BC logic, where BC stands for Boolean capacities.2

Models in this logic are Boolean capacities. A BC-model of an atomic formula ✷p for this modal logic is then a Boolean 
capacity β such that β([p]) = 1. The satisfaction of BC-formulas φ ∈L✷ is then defined recursively as usual:

• β |= ✷p, if and only if β([p]) = 1;

• β |= ¬φ, β |= φ ∧ ψ are defined in the standard way.

Satisfiability can be equivalently expressed in terms of the focal sets of β , as follows:

β |= ✷p iff ∃E ∈ Fβ , E ⊆ [p].

So one might as well define a model in this logic as any antichain of subsets that form a family of focal sets of a capacity, 
thus laying bare the multiple-source nature of this logic. The antichain condition can be relaxed to any n-tuple of non-empty 
subsets (E1, . . . , En), ∀n > 0. However, several such tuples may generate the same Boolean capacity.

Semantic entailment is defined classically, and syntactic entailment is classical propositional entailment taking RM, N, P 
as axiom schemata: Ŵ ⊢BC φ if and only if Ŵ ∪ {all instances of RM, N, P } ⊢ φ (classically defined). It has been proved that 
BC logic is sound and complete wrt Boolean capacity models [30]. In fact, axiom RM clearly expresses the monotonicity of 
capacities, and it is easy to realize that a classical propositional interpretation of L✷ that respects the axioms of BC can be 
precisely viewed as a Boolean capacity. BC is a special case of modal logic of uncertainty with a two-layered syntax in the 
sense of [34,18].

2.4. Special case: incomplete information

A first important special case of BC is when there is only one source with epistemic state E . Then the corresponding 
capacity N , called necessity measure in possibility theory [27], is minitive and defined by N(A) = 1 if E ⊆ A and 0 otherwise. 
The logic BC particularized to necessity measures is the logic MEL [8]. The following KD axioms and inference rule are valid 
in MEL under this restriction to a single source:

• All axioms of propositional logic for L✷-formulas.

• (K ): ✷(p → q) → (✷p → ✷q).

• (N): ✷p, whenever p is a propositional tautology.
• (D): ✷p → ✸p.

• Modus Ponens: If φ, φ → ψ then ψ .

Axiom (C): ✷(p ∧ q) ≡ (✷p ∧ ✷q), which is the adjunction axiom (the Boolean form of the minitivity axiom) is valid in this 
system. Satisfiability reduces to E |= ✷p if and only if E ⊆ [p]. This logic is sound and complete for this standard system 
of modal axioms of the logic KD. Note that the conflicting situation cannot be expressed using necessity measures since 
it never holds that N([p]) = N(¬[p]) = 1. In previous publications, we have shown that Kleene logic can be encoded in 
MEL [20]. Classical logic can be encoded in MEL as well, if we restrict the language to conjunctions of atomic propositions 
✷p ∈L✷: it has been shown that {✷p1, . . . , ✷pk} ⊢ ✷q in MEL if and only if {p1, . . . , pk} ⊢ q in classical logic [8].

Given a Boolean capacity β , let Ni denote the Boolean capacity induced by the single focal set E i . Then, it is easy to
check that the Boolean capacity induced by the tuple (E1, . . . , En) is of the form β(A) = maxni=1 Ni(A) [30]. Denote by ✷i

the KD modality associated to the necessity measure Ni . As a consequence, for any capacity of BC-model, there are KD 
models {E1, . . . , En} and KD modalities ✷1, . . .✷n such that β |=BC ✷p if and only if ∃i ∈ {1, . . . , n} such that E i |=K D ✷i p.

We can also consider dropping axiom K in MEL. In that case, only Axiom D remains, which still entails that ✷p ∧ ✷¬p

is always a contradiction, while ✸p ∨ ✸¬p is a tautology. In terms of Boolean capacities, axiom D corresponds to requiring 
that a Boolean capacity β is dominated by its conjugate βc(A) = 1 − β(Ac), i.e., β(A) ≤ βc(A), for all A ⊆ Ä. We call such 
a Boolean capacity pessimistic while its conjugate βc is then said to be optimistic [29]. For pessimistic (resp. optimistic) 
capacities, it is equivalent to have min(β(A), β(Ac)) = 0 (resp. max(β(A), β(Ac)) = 1) for all A ⊆ Ä.

Pessimistic Boolean capacities were characterized by means of their focal sets in [29]:

Proposition 1. A Boolean capacity obeys min(β(A), β(Ac)) = 0 for all A ⊆ Ä if and only if its focal sets intersect.

Viewing the focal sets as information coming from various sources, it is clear that the sources leading to pessimistic 
Boolean capacities are globally coherent since the information items do not contradict each other. If there were two non 

2 In [30], it is called QC logic, where QC stands for qualitative capacities, i.e., mappings γ : 2Ä → L, where L is a finite bounded chain with bottom 
0 and top 1. A logic for qualitative capacities would extend the one for Boolean ones using atomic formulas of the form ✷λp standing for γ ([p]) ≥ λ,

for λ ∈ L \ {0}. QC logic is a natural name for this multimodal setting, while here we use ✷λp with a fixed λ, which comes down to using a Boolean

capacity. Such a QC logic would be to BC logic what generalized possibilistic logic GPL [31] is to the logic of necessity measures MEL [8], mentioned in the

introduction.



overlapping focal sets E and F there would be some set A containing E and disjoint from F , and then min(β(A), β(Ac)) = 1. 
So, no conflict situation (E i ⊆ A, E i ⊆ Ac for some i 6= j) can be expressed by pessimistic capacities. However, information 
items from the sources can be incomplete.

Remark 1. In BC, we can define a new modality ¥ such that ¥p ≡ ✷p ∧ ✸p whose dual is ¨p ≡ ✷p ∨ ✸p. It is clear 
that (¥, ̈ ) satisfies the axioms of BC and also axiom D. It reflects the fact that given any B-capacity β , the set function 
β∗(A) = min(β(A), βc(A)), ∀A ⊂ Ä is a pessimistic B-capacity [29].

2.5. Special case: conflicting information

An opposite interesting special case is when the focal sets are singletons {w1}, . . . , {wn}. This situation corresponds to n
totally informed but conflicting sources, each of which is capable of asserting that any proposition p is true or false, while 
they are in total disagreement. Then, as seen earlier, the corresponding Boolean capacity 5 is a possibility measure defined 
by 5(A) = 1 if and only if ∃w i ∈ A, which is equivalent to 5(A) = 1 if and only if A ∩ E 6= ∅, with E = {w1, . . . , wn}.

In previous publications, we have shown that Priest logic can be encoded in MEL [19–21], provided that 5([p]) = 1 is 
understood as “at least one source in E supports p” and is expressed as ✸p, contrary to the convention used here for BC 
logic. The fact that in Priest logic p ∨ ¬p is a tautology is then expressed by the fact that ✸p ∨ ✸¬p is a tautology in 
MEL. As we use possibility measures for modeling conflict, the situation of ignorance cannot be expressed using possibility 
measures under this convention since it never holds that 5([p]) = 5(¬[p]) = 0.

Consider dropping axiom K, and adding only D to BC axioms from the MEL setting devoted to Priest Logic. Then, keeping 
the convention of β([p]) = 1 as ✷p when β is pessimistic, and ✸p if it is optimistic, we note that axiom D now reflects 
the property max(β(A), β(Ac)) = 1 as characteristic of optimistic capacities. We can specify this notion using focal sets (a 
result not highlighted in [29]):

Proposition 2. A Boolean capacity obeys max(β(A), β(Ac)) = 1 for all A ⊆ Ä if and only if it possesses at least one focal set that is a 
singleton disjoint from the other focal sets.

Proof. If no focal set E i is a singleton, then one can choose A such that neither A nor its complement contain any E i

(splitting each focal set into two non-empty parts). Then β(A) = β(Ac) = 0. Suppose β has one singleton focal set. Then, it 
can only be disjoint from the other ones since Fβ is an antichain. Thus, for any set A, either A contains w1 and β(A) = 1

or A does not, hence it contains another focal set, and β(Ac) = 1. ✷

In terms of information supplied by sources, Proposition 2 tells that an optimistic capacity corresponds to a set of 
sources, at least one of which is fully informed and contradicts all other sources, which ensures that optimistic Boolean 
capacities account for conflicting sources and forbid ignorance (at least one source always informs about any proposition p). 
We can notice that the role of axiom K is not more essential in the modeling of conflicting information than for incomplete 
information.

In the following we try to show that the framework of Boolean capacities and its logic are capable of accounting for 
some previous logical approaches to the handling of inconsistent and incomplete information due to conflicting sources. We 
start with one of the oldest approaches, the four-valued logic of Dunn and Belnap.

3. Belnap–Dunn four-valued logic

Belnap–Dunn logic [32,10,9] handles both incomplete and inconsistent information coming from several sources. Forty
years later, it remains one of the most influential approaches to this problem. This logic is also mathematically important 
as it has focused attention on a specific algebraic structure called a bilattice, that has been extensively studied and used 
for non-monotonic reasoning and logic programming [36,33,13]. This section recalls the intuition behind this logic, and 
presents both its four-valued semantics and its syntax, as well as its connections with a three-valued logic of incomplete 
information (Kleene logic) and another three valued paraconsistent logic (Priest Logic of Paradox). Indeed, Belnap–Dunn 
four-valued logic can be viewed, from the point of view of its truth tables, as an augmented Kleene logic: on top of the 
truth-value supposed to represent ignorance, one adds another truth-value representing conflict. However, this four-valued 
logic can also be considered as more basic than Kleene logic as it has less inference rules from a syntactic point of view 
[51]. Likewise, adding the excluded middle law to Belnap–Dunn logic yields Priest Logic of Paradox [48]. The material in 
this section is scattered in various publications [32,10,9,48,35], and it is useful to present a synthesis in a single place.

3.1. The Belnap multisource set-up

Belnap [10,9] considers an artificial information processor, fed from a variety of sources, and capable of answering queries 
on propositions of interest. In this context, inconsistency threatens, all the more so as the information processor is supposed 
never to subtract information. The basic assumption is that the computer receives information about atomic propositions in 



Table 1

Belnap–Dunn negation, disjunction and conjunction.

¬

F T

U U

C C

T F

∨ F U C T

F F U C T

U U U T T

C C T C T

T T T T T

∧ F U C T

F F F F F

U F U F U

C F F C C

T F U C T

a cumulative way from outside sources, each asserting for each atomic proposition whether it is true, false, or being silent 
(hence ignorant) about it. The notion of epistemic set-up is defined as an assignment, of one of four so-called epistemic 
truth-values, here denoted by T,F,C,U, to each atomic proposition a, b, . . . :

1. Assigning T to a means the computer has only been told that a is true (1) by at least one source, and false (0) by none.
2. Assigning F to a means the computer has only been told that a is false by at least one source, and true by none.
3. Assigning C to a means the computer has been told at least that a is true by one source and false by another.
4. Assigning U to a means the computer has been told nothing about a.

In Belnap’s epistemic setting, the role of the computer is not to interpret the information provided by the sources, but 
just to store it. In particular, any piece of information supplied is viewed as a logical atom to which an epistemic qualifier 
is attached as per the above rules. Having attached an epistemic truth-value to all atoms of the language L, this assignment 
can be extended to all formulas in L using the truth tables in Table 1.

If {0, 1} is the set of usual truth-values (as assigned by the information sources to atoms), then the set V4 = {T,F,C,U}

of epistemic truth-values coincides with the power set of {0, 1}, letting T = {1}, F = {0}, C = {0, 1}, U = ∅, according to the 
convention initiated by Dunn [32]. Then, the empty set corresponds to no information received, while {0, 1} represents the 
presence of conflicting sources, some claiming the truth of a some its falsity. C expresses an excess of truth-values, the set 
{0, 1} being viewed as expressing 0 and 1 at the same time.

Belnap’s approach relies on two orderings in V4 = {T,F,C,U}, equipping it with two lattice structures:

• The information ordering, ❁ whose meaning is “less informative than”, such that U ❁ T ❁ C; U ❁ F ❁ C. This ordering
reflects the inclusion relation of the sets ∅, {0}, {1}, and {0, 1}. It is in fact also in agreement with the specificity ordering
of possibility theory [24]. It intends to reflect the amount of (possibly conflicting) data provided by the sources. U is at
the bottom because (to quote) “it gives no information at all”. C is at the top because (following Belnap) it gives too
much information. It yields the information lattice, a Scott approximation lattice with join and meet defined by union
and intersection of sets of truth-values (in this lattice, the maximum of T and F is C).

• The truth ordering, <t , representing “more true than” according to which F <t C <t T and F <t U <t T, each chain reflect-
ing the truth-set of Kleene’s logic. In other words, ignorance and conflict play the same role with respect to F and T

according to this ordering. It yields the logical lattice, based on the truth ordering, and the interval extension of ∧, ∨
and ¬ from {0,1} to 2{0,1} \ {∅}, as appears in Table 1. In this lattice, the maximum of U and C is T and their minimum

is F.

Remark 2. The convention for representing epistemic stances in the previous section, in agreement with possibility theory 
[27], is opposite to Dunn’s, as the set {0, 1} represents the hesitation between true and false and means 0 or 1, just like an 
epistemic state E is a disjunction of possible worlds. Then, conflict is expressed by the empty set of truth-values (reflecting 
the fact that a conflicting formula has no model). Under this convention, subsets of {0, 1} represent constraints on mutually 
exclusive truth-values. Denoting by π a Boolean possibility distribution, U can be encoded by π(0) = π(1) = 1 (represent-

ing ignorance), C by π(0) = π(1) = 0 representing the contradiction (corresponding to no possible truth-value left). The 
information ordering between epistemic truth-values induced by this convention is the same as in the Belnap–Dunn setting, 
using the opposite inclusion ordering between subsets of {0, 1}.

3.2. The syntax

Consider the previously introduced propositional language L with variables V = {a, b, c, . . . } with connectives ∧, ∨, ¬, 
for conjunction, disjunction and negation, respectively. Formulas p in L are generated as usual. However, as explained 
above, connectives of negation, conjunction and disjunction are defined truth-functionally in Belnap–Dunn four-valued logic, 
following the rules of the bilattice (see Table 1).

Belnap–Dunn four-valued logic has no tautologies, hence no axioms. It can be defined only via a set of inference rules, 
as those that can be found in [48,35]:

Definition 2. Let a, b, c ∈ V . The Belnap–Dunn four-valued logic is defined by no axiom and the following set of rules

(R1) :
a ∧ b

a
(R2) :

a ∧ b

b
(R3) :

a b

a ∧ b
(R4) :

a

a ∨ b



(R5) :
a ∨ b

b ∨ a
(R6) :

a ∨ a

a
(R7) :

a ∨ (b ∨ c)

(a ∨ b) ∨ c

(R8) :
a ∨ (b ∧ c)

(a ∨ b) ∧ (a ∨ c)
(R9) :

(a ∨ b) ∧ (a ∨ c)

a ∨ (b ∧ c)
(R10) :

a ∨ c

¬¬a ∨ c

(R11) :
¬(a ∨ b) ∨ c

(¬a ∧ ¬b) ∨ c
(R12) :

¬(a ∧ b) ∨ c

(¬a ∨ ¬b) ∨ c
(R13) :

¬¬a ∨ c

a ∨ c

(R14) :
(¬a ∧ ¬b) ∨ c

¬(a ∨ b) ∨ c
(R15) :

(¬a ∨ ¬b) ∨ c

¬(a ∧ b) ∨ c

The syntactic inference Ŵ ⊢B p, where Ŵ ⊆ L is a set of formulas, means that p can be derived from Ŵ using the above 
inference rules.

These rules express that conjunction is idempotent, and it yields a more specific proposition than each of the conjuncts 
(R1, R2, R3); disjunction is idempotent and it yields a less specific proposition than its disjuncts (R4, R5, R6). Disjunction is 
associative (R7), conjunction is distributive on disjunction (R8) and conversely (R9). Negation is involutive (R10, R13) and 
De Morgan Laws are satisfied (R11, R12, R14, R15). It makes it clear that the underlying algebra is a De Morgan algebra.

Formulas in this logic can be put in normal form, by applying the above rules. Namely, distributivity, idempotence and 
De Morgan laws imply that a formula can be expressed as a conjunction of clauses: p = p1 ∧ . . . ∧ pn , where the pi ’s are 
disjunctions of literals li j = a or ¬a, for a ∈ V .

3.3. The semantics

Consider again the four epistemic truth-values {F, U, C, T} forming the bilattice V4 . A Belnap–Dunn valuation is a map-

ping v4 : L 7→ V4 constructed from an assignment of epistemic truth-values V → V4 to atoms and the truth tables of 
Table 1. Let Ŵ ⊆ L and p ∈ L, then we define the semantic consequence relation by means of the truth ordering ≤t as 
follows:

Ŵ ²B p iff ∃p1, . . . , pn ∈ Ŵ, ∀v4, v4(p1) ∧ . . . ∧ v4(pn) ≤t v4(p)

Usually, semantic inference is defined via the preservation of truth, and more generally of designated truth-values. In 
Belnap–Dunn setting natural designated truth-values are {C,T}, since in their set-theoretic encoding under Dunn’s conven-
tions both include 1. An alternative consequence relation can thus be defined by:

Ŵ ²C p iff ∀v4, if ∀pi ∈ Ŵ, v4(pi) ∈ {C,T} then v4(p) ∈ {C,T}

Due to the fact that U and C play the same role in the bilattice, Font [35] proves that the consequence relation Ŵ ²C p

is equivalent to Ŵ ²U p, defined by:

Ŵ ²U p iff ∀v4, if ∀pi ∈ Ŵ, v4(pi) ∈ {U,T}, then v4(p) ∈ {U,T}

using {U, T} as designated truth-values. Font [35] also independently proves that Ŵ ²B p iff both Ŵ ²U p and Ŵ ²C p. Thus, 
each of the consequence relations ²C and ²U is equivalent to ²B . We give explicit proofs in Appendix A, in the case of two 
premises, for the sake of self-containedness.

It should be clear that Belnap–Dunn logic has neither tautologies nor contradictions, e.g., a ∨ ¬a is not a tautology, nor 
is a ∧ ¬a a contradiction.

Example 2. a ∨ b 2B a ∨ ¬a since for instance it fails if v4(b) = T and v4(a) = v4(¬a) = U. Also a ∧ ¬a 2B b ∨ ¬b, since for 
instance it fails if v4(a) = C, v4(b) = U.

The agreement between the Hilbert-style axiomatization of Belnap–Dunn logic and the above semantics is proved by 
Pynko [48] and Font [35]:

Theorem 1. Belnap–Dunn logic is sound and complete with respect to the bilattice semantics with designated truth-values {C,T}, that 
is Ŵ ⊢B p iff Ŵ ²B p.

3.4. Special cases

Two special cases of Belnap–Dunn logic, namely Priest Logic of Paradox [46,47] and Kleene logic [40], that use the same 
language, can be obtained by adding an axiom and an inference rule respectively.

In Priest Logic of Paradox [46,47], the truth-set is restricted to the three linearly ordered truth-values P3 = {F, C, T}, 
and the designated set of truth-values is {C,T}; it comes down to merging U and F in Belnap V4 . The truth tables for 



conjunction, disjunction and negation are obtained from the restriction of Belnap–Dunn truth tables to P3 . It is then clear 
that, letting v3 denote a three-valued truth assignment ranging on P3 , we have ∀a ∈ V , v3(a ∨ ¬a) ∈ {C,T}, which gives 
intuition for the following result by Pynko [48]:

Proposition 3. A Hilbert system for Priest Logic of Paradox is obtained by Belnap–Dunn logic inference rules plus axiom a ∨ ¬a.

Semantic inference in the Logic of Paradox is then defined by:

Ŵ ²P p iff ∀v3, if v3(pi) ∈ {C,T},∀pi ∈ Ŵ then v3(p) ∈ {C,T}

Any sentence of the form p ∨ ¬p is then clearly a tautology, since v3(p ∨ ¬p) ∈ {C,T} for any proposition p in the Logic of 
Paradox. In fact all tautologies of propositional calculus can be recovered, but modus ponens does not hold in this logic.

On the other hand, the strong Kleene logic is another extension of Belnap–Dunn logic that uses as truth-set a Kleene 
lattice K3 = {F, U, T} (merging C and T). This logic has the same truth tables as the Logic of Paradox, if we identify U and 
C. However there is one designated truth-value T,3 so that semantic inference ²K is of the form

Ŵ ²K p iff ∀v3, if ∀pi ∈ Ŵ, v3(pi) = {T}, then v3(p) = {T}

By adding one rule to Belnap–Dunn logic, we get a Hilbert system for Kleene logic, as recently explained by Albuquerque 
et al. [1], correcting a claim in [35].

Proposition 4. A Hilbert system for strong Kleene logic is obtained by Belnap–Dunn logic inference rules plus the rule of suppression 
of contradictions:

SC:
a ∨ (b ∧ ¬b)

a
.

To get an intuition of why this is so, we borrow some remarks from [1]. First, it is easy to realize the duality between 
Priest and Kleene logic as p ⊢K q if and only if ¬q ⊢P ¬p, since

v3(p) = T implies v3(q) = T ⇐⇒ v3(¬q) ∈ {F,U} implies v3(¬p) ∈ {F,U}.

This is in contrast with Belnap–Dunn logic where p ²B q if and only if ¬q ²B ¬p. It is easy to see that rule (SC) is semanti-

cally valid in strong Kleene logic. Conversely, suppose p ⊢K q, that is, ¬q ⊢P ¬p, using completeness of the Logic of Paradox. 
It means that there are some atomic formulas ai, i = 1, . . . , n such that ¬q ∧

∧n
i=1(ai ∨ ¬ai) ⊢B ¬p in Belnap–Dunn logic.

It also reads p ⊢B q ∨
∨n

i=1(ai ∧ ¬ai), and, using (SC) q ∨
∨n

i=1(ai ∧ ¬ai) implies q. So, inference relation ⊢K is captured by
Belnap–Dunn logic rules (R1–15) plus (SC).

It is interesting to notice, as done in [1], that rule (SC) is equivalent to the resolution rule

RR:
a ∨ b, c ∨ ¬b

a ∨ c
.

This is because on the one hand (a ∨b) ∧ (c∨¬b) ⊢B (a ∧c) ∨(a ∧¬b) ∨ (b ∧c) ∨ (b ∧¬b) (distributivity) using (R1–15), which 
implies (a ∧ c) ∨ (a ∧ ¬b) ∨ (b ∧ c), using (SC), which in turn implies a ∨ c using (R1–15). So (R1–15) + (SC) implies (RR). 
Conversely, the premisse of (SC) also reads (a ∨ b) ∧ (a ∨ ¬b) using (R1–15). Then (SC) is (RR) where a = c. The inference 
system made of the 15 rules of Belnap–Dunn logic plus resolution is thus sound and complete with respect to semantic 
entailment in strong Kleene logic.

Remark 3 (Nothing but the truth). As a consequence, modus ponens is valid in Kleene logic, noticing that from {b, ¬b ∨
c}, one can deduce {b ∨ c, ¬b ∨ c} from (R4), and then c using (RR). However, adding modus ponens to the 15 rules 
of Belnap–Dunn logic does not yield Kleene logic. It corresponds to using T as the single designated value for semantic 
inference in Belnap–Dunn setting, while keeping the four epistemic truth-values. This four-valued logic, preserving “nothing 
but the truth” (and called NBT), has been studied in [51,45].

Remark 4 (Kleene logic of order). The following inference rule holds in strong Kleene logic:

R16:
a ∧ ¬a

b ∨ ¬b

since a ∧ ¬a ⊢B (a ∨ b) ∧ (¬a ∨ ¬b) which entails b ∨ ¬b, using (RR). It also holds in NBT logic. Although R16 reflects a 
known property of Kleene algebras, it is insufficient to recover Kleene logic when added to Belnap–Dunn logic rules as 

3 http://plato .stanford .edu /entries /truth -values/.



explained in [1], contrary to what is claimed in [35]. In fact, (R16) is valid in both Priest and Kleene logics as well as the 
rule:

R17:
(a ∧ ¬a) ∨ c

(b ∨ ¬b) ∨ c

Adding R17 to Belnap–Dunn logic rules (R1–15) provides a Hilbert style system for the so-called Kleene logic of order K≤

which considers consequences common to both the Logic of Paradox and the strong Kleene logic (see Th. 3.4 in [1]). It has 
the same three-valued truth set as strong Kleene and Priest logics (say V3 , as C and U are equal in K≤), and semantic 
entailment is of the form

Ŵ ²≤ p iff v3(∧pi∈Ŵpi) ≤ v3(p)

iff ∀v3, if v3(pi) ∈ {C,T} ∀pi ∈ Ŵ, then v3(p) ∈ {C,T}

and ∀v, if v3(pi) = T ∀pi ∈ Ŵ, then v3(p) = T.

Other extensions of Belnap–Dunn logic are studied in [51,45,1].

4. A Translation of Belnap–Dunn logic into BC

In previous papers [20,21], we have proposed a consequence-preserving translation of Kleene and Priest logics in the
two-tiered logic MEL [8] with semantics in terms of necessity and possibility measures. These results strongly suggest that 
Belnap–Dunn logic can be in turn expressed in BC. Indeed, Belnap–Dunn truth-values described in the previous section can 
be expressed by means of pairs (β(A), β(Ac)) introduced in Section 2, restricting A to sets of classical models [a] of atomic 
formulas a, namely:

• v4(a) = T is interpreted as β([a]) = 1 and β([¬a]) = 0

• v4(a) = F is interpreted as β([a]) = 0 and β([¬a]) = 1

• v4(a) = U is interpreted as β([a]) = 0 and β([¬a]) = 0

• v4(a) = C is interpreted as β([a]) = 1 and β([¬a]) = 1

Based on this intuition, the translation of Belnap–Dunn logic into BC naturally follows. Results of this section were already 
announced in the conference paper [22].

4.1. Principle of the translation

As mentioned in Section 2, ✷p is encoding β([p]) = 1 for a Boolean capacity, which clearly means that at least one 
source (corresponding to a focal set in Fβ ) asserts p. The case where β([¬p]) = 0 thus corresponds to ✸p = ¬✷¬p, which 
clearly means that no source is asserting ¬p. Hence, formulas in BC can be related to Belnap–Dunn truth-values [24]:

• ✷p ∧♦p holds when β([p]) = 1 and β([¬p]) = 0 (related to the epistemic truth-value T).
• ✷¬p ∧♦¬p holds when β([¬p]) = 1 and β([p]) = 0 (related to the epistemic truth-value F).
• ♦p ∧♦¬p holds when β([p]) = 0 and β([¬p]) = 0 (related to the epistemic truth-value U).
• ✷p ∧ ✷¬p holds when β([p]) = 1 and β([¬p]) = 1 (related to the epistemic truth-value C).

Belnap–Dunn approach first assigns epistemic truth-values to atomic propositions only. We can encode these truth-qualified 
atoms into the modal language of BC as follows. Let T denote the translation operation that takes a partial Belnap–Dunn 
truth-value assignment of the form v4(a) ∈ 2 ⊆ V4 to atomic propositional formulas, (indicating their epistemic status w.r.t 
a set of sources), and turns it into a modal formula in the logic BC. For instance:

T (v4(a) = T) = ✷a ∧♦a T (v4(a) = F) = ✷¬a ∧♦¬a (1a)

T (v4(a) = U) = ♦a ∧♦¬a T (v4(a) = C) = ✷a ∧ ✷¬a (1b)

T (v4(a) ≥t C) = ✷a T (v4(a) ≤t C) = ✷¬a (1c)

T (v4(a) ≥t U) = ♦a T (v4(a) ≤t U) = ♦¬a (1d)

(where ≥t refers to the truth ordering). In Belnap–Dunn logic, since valuations of propositions other than elementary ones 
are obtained via truth tables, the translation of V4-truth-qualified formulas will be carried out by respecting the truth tables 
of the logic. However, not all formulas of L✷ can be reached via the translation: as we shall see, only literals can appear in 
the scope of modalities.



Table 2

Translation table for negation, conjunction and disjunction.
T v4(¬a) v4(a ∧ b) v4(a ∨ b)

= T ✷¬a ∧ ✸¬a ✷a ∧♦a ∧ ✷b ∧♦b ✷a ∨ ✷b ∨ (✸a ∧ Ub) ∨ (✸b ∧ Ua)

= F ✷a ∧ ✸a ✷¬a ∨ ✷¬b ∨ (✸¬a ∧ Ub) ∨ (✸¬b ∧ Ua) ✷¬a ∧♦¬a ∧ ✷¬b ∧♦¬b

≥t U ✸a ✸a ∧ ✸b ✸a ∨ ✸b

≥t C ✷a ✷a ∧ ✷b ✷a ∨ ✷b

≤t U ✸¬a ✸¬a ∨ ✸¬a ✸¬a ∧ ✸¬a

≤t C ✷¬a ✷¬a ∨ ✷¬a ✷¬a ∧ ✷¬a

4.2. Translating formulas from Belnap–Dunn logic to BC

We can proceed to the translation of Belnap–Dunn truth tables into BC. First consider negation. It is easy to check that

T (v4(¬a) = T) = T (v4(a) = F)

T (v4(¬a) = F) = T (v4(a) = T)

T (v4(¬a) = x) = T (v4(a) = x),x ∈ {U,C}

T (v4(¬a) ≥t x) = T (v4(a) ≤t x),x ∈ {U,C}

For compound formulas built with conjunction and disjunction, we get:

T (v4(p ∧ q) = T) = T (v4(p) = T) ∧ T (v4(q) = T)

T (v4(p ∨ q) = T) = T (v4(p) = T) ∨ T (v4(q) = T)

∨(T (v4(p) = U) ∧ T (v4(q) = C)) ∨ (T (v4(p) = C) ∧ T (v4(q) = U))

T (v4(p ∧ q) ≥t x) = T (v4(p) ≥t x) ∧ T (v4(q) ≥t x)

T (v4(p ∨ q) ≥t x) = T (v4(p) ≥t x) ∨ T (v4(q) ≥t x)

T (v4(p ∧ q) ≤t x) = T (v4(p) ≤t x) ∨ T (v4(q) ≤t x)

T (v4(p ∨ q) ≤t x) = T (v4(p) ≤t x) ∧ T (v4(q) ≤t x)

with x ∈ {U,C}. For elementary formulas ¬a, a ∨ b, a ∧ b, we give explicit translations using the truth tables of Belnap–Dunn 
logic in Table 2. For simplicity we shorten ♦a ∧♦¬a as Ua (a is unknown). Then, some translations can be simplified as for 
the expressions of T (v4(a ∨ b) = T) and T (v4(a ∧ b) = F). The first one is of the form (as per the above results):

(✷a ∧♦a) ∨ (✷b ∧♦b) ∨ (✷a ∧ ✷¬a ∧ Ub) ∨ (Ua ∧ ✷b ∧ ✷¬b).

Developing (✷a ∧♦a) ∨ (✷a ∧✷¬a ∧Ub) simplifies into ✷a ∨ (✸a ∧Ub) and likewise exchanging a and b. The result appears 
on Table 2 line 2, last column. The result for v4(a ∧ b) obtains similarly on line 3, column 3 of this table.

Beyond their technicalities, these translations lay bare the price paid by assuming a truth-functional approach to multiple 
source reasoning, namely we cannot really assign an epistemic status to genuine compound Boolean formulas. For instance, 
consider the translation T (v4(a ∧ b) = T) = ✷a ∧ ♦a ∧ ✷b ∧ ♦b. It says that attaching the epistemic truth-value T to a 
conjunction of atoms in Belnap–Dunn logic just comes down to having the Boolean atom a confirmed by one source (✷a) 
and not disconfirmed by other ones (♦a), and likewise for the Boolean atom b, which is unsurprising. But it tells nothing 
about the epistemic status of the Boolean formula a ∧ b. In some sense, the truth-functional conjunction in Belnap–Dunn 
logic becomes trivial in BC, since in BC, the truth-functionality statement v4(a ∧b) = v4(a) ∧ v4(b) (Table 1) just tells us that 
the conjunction of ✷a ∧♦a and ✷b ∧♦b is ✷a ∧♦a ∧ ✷b ∧♦b; it does not inform about the truth of ✷(a ∧ b) ∧♦(a ∧ b). In 
fact, in BC, we do not have that ✷a ∧♦a ∧ ✷b ∧♦b ⊢ ✷(a ∧ b) ∧♦(a ∧ b) (by lack of adjunction axiom). The same comment 
applies to the other translations.

4.3. Belnap–Dunn logic inference in BC

We have two designated values: T and C. So, for inference purposes, we only have to consider the translation of ex-
pressions of the form T (v4(p) ≥t C). Since T (v4(a) ≥t C) = ✷a, and T (v4(¬a) ≥t C) = ✷¬a for literals, the other formulas 
being translated via Belnap–Dunn truth tables, this translation sends Belnap–Dunn logic into the following fragment of the 
language of BC:

L
B
✷ = ✷a|✷¬a|φ ∧ ψ |φ ∨ ψ

where no negation appears in front of ✷.

Conversely, from the fragment LB
✷ we can go back to Belnap–Dunn logic. Namely any formula φ in LB

✷ can be translated 
into a formula θ(φ) of the propositional logic language by means of the following translation rules:



• θ(✷a) = a

• θ(✷¬a) = ¬a

• θ(ψ ∧ φ) = θ(ψ) ∧ θ(φ)

• θ(ψ ∨ φ) = θ(ψ) ∨ θ(φ)

We remark, only using the properties of classical logic, that ✷a ∨✷¬a is not a tautology in BC. More generally, no tautologies
can be expressed in the above fragment. This is coherent with the fact that Belnap–Dunn logic has no theorems. Likewise, 
✷a ∧ ✷¬a is not a contradiction in BC. Now we show that the inference rules of Belnap–Dunn logic are valid in BC via the
proposed translation.

Theorem 2. Let 
φ

ψ
be any of the rules of Belnap–Dunn logic. Then, the following inference rule

T (v4(ψ) ≥t C)

T (v4(φ) ≥t C)

holds in BC.

Proof. The result easily follows by the definition of the translation. In order to give an example, let us show why the 
translation of rule (R11) is valid in BC. At first, we translate T (v4(¬(a ∨b) ∨ c) ≥t C). By the translation rules for disjunction 
and negation given previously, we get T (v4(¬(a ∨ b)) ≥t C) ∨ T (v4(c) ≥t C) and then [T (v4(a) ≤t C) ∧ T (v4(b) ≤t C)] ∨
T (v4(c) ≥t C). Then, by the rules on atomic propositions given in Table 2, we get (✷¬a ∧ ✷¬b) ∨ ✷c. Now, the consequent 
T (v4((¬a ∧ ¬b) ∨ c) ≥t C) gives exactly the same expression, that is, once translated, antecedent and consequent are the 
same. ✷

As a consequence we can mimick syntactic inference of Belnap–Dunn logic in BC, provided that we restrict to formulas 
in LB

✷ .

4.4. Capacity semantics of the Belnap–Dunn fragment of BC

The restriction of the scope of modalities to literals required by the translation of Belnap–Dunn logic into BC also af-
fects the set of B-capacities that can act as a semantic counterpart of the logic. We can check that semantic inference in 
Belnap–Dunn logic can be expressed in the modal setting of BC by constraining the capacities that can be used as models 
of LB

✷ formulas. Namely, consider a Belnap set-up where each source i provides a set T i of atoms considered true, a set F i
of atoms considered false, where T i ∩ F i = ∅. Should the source behave like a propositional reasoner, this information would 
correspond to a partial model, which is a special kind of epistemic state of rectangular shape, namely:

E i = [(
∧

a∈T i

a) ∧ (
∧

b∈F i

¬b)].

As there are n sources, we could consider n-tuples of partial models (E1, . . . , En), and restrict to capacities with such 
rectangular focal sets.

In fact, Belnap sources are not propositional reasoners, and pieces of atomic information they provide cannot be ex-
pressed by their propositional conjunctions. This is as if there were, behind each source i, as many primitive sources as the 
number of atoms in T i ∪ F i . This is expressed by the use of atoms in LB

✷ , of the form ✷ℓ where ℓ is a literal. As we cannot 
put ✷ in front of conjunctions nor disjunctions, we should use capacities whose focal sets are of the form [a], a ∈ ∪n

i=1T i

and [¬b], b ∈ ∪n
i=1F i to interpret formulas in LB

✷ . We call such capacities atomic.

Considering the Belnap–Dunn valuation v4 associated to the information supplied by n sources, there is a one-to-one 
correspondence between Belnap–Dunn valuations and atomic B-capacities α induced by this information:

Proposition 5. For each Belnap–Dunn valuation v4 , there exists a unique atomic B-capacity αv4 such that v4 |= p if and only if 
αv4 |= T (v4(p) ≥t C).

Proof. Given Belnap–Dunn valuation v4 , define T = {a : v4(a) = T or C}, F = {a : v4(a) = F or C}, and let α([a]) = 1 if a ∈ T , 
α([¬a]) = 1 if a ∈ F . Clearly, if a ∈ T , then v4 |= a and α |= T (v4(a) ≥t C) = ✷a. If a ∈ F , then v4 |= ¬a and α |= T (v4(¬a) ≥t

C) = ✷¬a. The remainder follows using truth tables of Belnap–Dunn logic translated into BC. ✷

In the other way around,

Proposition 6. For any B-capacity β , there is a single Belnap–Dunn valuation vβ

4 such that β |= φ ∈ LB
✷ if and only if vβ

4 (θ(φ)) ∈
{C, T}.



Proof. Given a B-capacity β , define a Belnap–Dunn valuation vβ

4 (a) = T if β([a]) = 1 and β([¬a]) = 0, vβ

4 (a) = F if β([a]) = 0

and β([¬a]) = 1, vβ

4 (a) = C if β([a]) = 1 = β([¬a]), vβ

4 (a) = U if β([a]) = β([¬a]) = 0. The reader can check the equivalence
for φ = ✷a, ✷¬a, ✷a ∨ ✷b, ✷a ∧ ✷b etc. ✷

However there are several Belnap set-ups inducing a given Belnap–Dunn valuation v4: for instance only two sources are 
enough to model the four values [44]. We thus introduce an equivalence relation on the set of B-capacities, whereby two of 

them are equivalent if they correspond to the same four-valued truth assignment: β ∼B β ′ if and only if vβ

4 = v
β ′

4 .

Proposition 7. For any B-capacity β , there exists an atomic B-capacity α such that β ∼B α.

Proof. Indeed, consider β with focal sets E1, . . . En . Let T i = {a ∈ V : E i ⊆ [a]} and F i = {b ∈ V : E i ⊆ [¬b]}. The focal sets 
of α are based on such literals and form the family Fα = {[a] : a ∈ ∪n

i=1T i} ∪ {[¬b] : b ∈ ∪n
i=1F i}, an antichain. Then, it is

obvious that vβ

4 (a) = T if and only if there is a source i such that E i ⊆ [a], if and only if a ∈ Fα , if and only if vα
4 (a) = T,

and so on for the other three epistemic truth-values. ✷

From Proposition 7 we can conclude that for any B-capacity β , there exists an atomic B-capacity α ∼B β such that 
β |= φ ∈ LB

✷ if and only if α |= φ. It is precisely the unique atomic capacity encoding the Belnap valuation vβ

4 . The atomic 
capacity α uses only a small part of the information conveyed by β .

4.5. Main result

We then can establish the fact that our translation of Belnap–Dunn logic into BC is consequence-preserving:

Theorem 3. Let Ŵ be a set (conjunction) of formulas in propositional logic interpreted in Belnap–Dunn logic, and p another such 
formula. Then Ŵ ⊢B p if and only if {T (v4(q) ≥t C) : q ∈ Ŵ} ⊢BC T (v4(p) ≥t C).

Proof. Suppose Ŵ ⊢B p. Then from Theorem 2, all inference rules of Belnap–Dunn logic become valid inferences in BC using 
the translations of their premises and conclusions. So the inference can be made in BC. Conversely, by completeness of 
BC, suppose ∀β , if β |= T (v4(q) ≥t C), ∀q ∈ Ŵ then β |= T (v4(p) ≥t C). Using Proposition 7, for all B-capacities β , ∃α ∼B β , 
where α is atomic, such that ∀q ∈ Ŵ, α |= T (v4(q) ≥t C) if and only if β |= T (v4(q) ≥t C) and α |= T (v4(p) ≥t C) if and only 
if β |= T (v4(p) ≥t C). Then, we have that if v4(q) ≥t C, ∀q ∈ Ŵ then v4(p) ≥t C for the Belnap–Dunn valuation v4 associated 
to α. So Ŵ |=B p. By completeness of Belnap–Dunn logic, Ŵ ⊢B p follows. ✷

It is important to notice that Belnap logic actually corresponds to a very small fragment of the BC logic. Indeed, due to 
the restriction of the language to literals in the scope of the ✷ modality, no modal axiom of BC can be expressed in LB

✷ . 
Moreover since no formula in this language contains a negation in the front of ✷, Belnap logic is thus mapped to the 
positive fragment of propositional logic where only conjunction and disjunction appears (atoms of the form ✷¬a can be 
considered positive since negation is internalized, and ✷¬a is logically independent from ✷a in BC).

Example 1 (continued). The sources in the case of Belnap logic can only inform about a, b, c. It is clear that K1 ⊢ ¬b, K2 ⊢ ¬a, 
K3 ⊢ a and K3 ⊢ b. So it is clear that based on this information, a and b both have epistemic truth value C, while c has truth 
value U. Using the truth tables, it can be seen that a ∧ b is conflicting (C), a ∧ b ∧ c is rejected (F), a ∨ b as well as a ∧ ¬b

are conflicting (because a and b are C) and a ∨ c is supported (T). These results are similar to those of the BC approach, 
with some differences due to the fact that Belnap sources are less expressive and the truth tables are less discriminant. 
For instance, we have shown that the BC approach supports a ∨ b and rejects a ∧ ¬b, but the two logics give the same 
conclusions on other formulas cited above.

5. Recovering Kleene and Priest fragments of MEL

In this section, we show how to recover our previous translations of three-valued Kleene logic and the Logic of Para-
dox into MEL [20,21], from our translation of Belnap–Dunn logic into BC, by translating into BC the properties that must 
be added to Belnap–Dunn logic in order to recover these logics (as explained in subsection 3.4). We also consider the 
translation of Kleene logic of order.

5.1. Strong Kleene logic as the logic of incomplete atomic information

Since Ŵ ⊢K p in strong Kleene logic stands for Ŵ ⊢B+SC p, we must enforce the translation of the (SC) rule as an inference 
rule in the LB

✷-fragment of BC logic. It is rather clear that the translation of (SC) into BC reads



(SCK): (✷a ∧ ✷¬a) ∨ ✷b ⊢ ✷b

The above inference rule is equivalent to ✷a ∧ ✷¬a ⊢ ✷b ∧ ¬✷b = ⊥ in BC. In other words, ✷a ∧ ✷¬a is a contradiction, 
and we can simplify logical expressions in disjunctive normal form in the language LB

✷ , deleting the products containing 
✷a ∧ ✷¬a.

In terms of capacity semantics, the validity of (✷a ∧ ✷¬a) ⊢ ⊥ enforces the constraints

min(β(A),β(Ac)) = 0,∀A = [a],a ∈ V ,

i.e., A is a set of models of a propositional atom. The capacities serving as models for BC + (SCK) are pessimistic, excluding
conflicting knowledge, which comes down to banning the epistemic value C.

Alternatively to (SC) we can add the resolution rule (RR) to the rules of Belnap–Dunn logic, whose translation into LB
✷ is

(RK): {✷a ∨ ✷b,✷c ∨ ✷¬a} ⊢ ✷b ∨ ✷c.

One way of recovering (SCK) in the logic BC is to enforce ✷p ∧ ✷¬p to be a contradiction for any p ∈ L, which comes 
down to adding axiom D to BC . In that case, ✷a ∧♦a = ✷a in BC + D, and the basic translation schemes for truth-assigned 
Belnap–Dunn logic atoms reduce to the ones in [20] for Kleene logic:

T (v4(a) = T) = ✷a; T (v4(a) = F) = ✷¬a; (3a)

T (v4(a) = U) = ♦a ∧♦¬a; (3b)

T (v4(a) ≥t U) = ♦a; T (v4(a) ≤t U) = ♦¬a. (3c)

It becomes clear that reasoning in Kleene logic with designated truth-value T is equivalent to reasoning in BC + D since 
(SCK) and (RK) hold in BC + D and can be used in LB

✷ . This is summarized by the following specialization of Theorem 3, 
saying that there is a consequence-preserving translation into BC + D of Kleene logic with designated truth-value T (note 
that T (v4(q) ≥ C) = T (v3(q) = T) under axiom D).

Theorem 4. Let Ŵ be a set (conjunction) of formulas in propositional logic interpreted in Kleene logic, and p another such formula. 
Then Ŵ ⊢K p if and only if {T (v4(q) ≥ C) : q ∈ Ŵ} ⊢BC+D T (v4(p) ≥ C).

In [20], Kleene logic was translated into the same fragment LB
✷ of L✷ , albeit into MEL, namely BC + {K , D}. Theorem 4

shows we can drop axiom K, which is not surprising as the latter cannot be expressed in the language LB
✷ . In fact, axiom K

uses disjunction in the scope of modalities and is instrumental in deducing ✷(p ∧ q) from ✷p and ✷q. But such formulas 
have no counterpart in Kleene logic. Actually, ✷(a ∧ b) /∈ LB

✷ . Axiom D cannot be expressed inside LB
✷ either, but it can be 

added to BC in order to ensure the validity of inference rules (SCK) and (RK) in LB
✷. It is then clear that MEL was more than 

what was needed to express Kleene logic and inference ⊢K while BC + D is sufficient as it coincides with MEL for language 
LB

✷ and allows for resolution in this fragment.

Nevertheless, the translation into MEL [20] can be semantically described in terms of necessity measures, i.e., hav-
ing unique rectangular focal sets representing incomplete information coming from a single source, which is the simplest 
semantics for incomplete non-contradictory information, while BC + D has pessimistic B-capacities for models. So the 
translation into MEL [20] is the simplest from a semantic point of view. However, in the latter translation, information from 
sources is interpreted in terms of knowledge or belief, due to axiom K, while, if we use BC + D, this is not the case as it 
is no longer possible to infer ✷(p ∧ q) from ✷p and ✷q, thus remaining more in the spirit of Belnap set-ups, where pieces 
of information are just collected (see Belnap and Wansing [54] response to the paper [23], where they argue against the 
interpretation of information items in terms of beliefs). In terms of capacities, adding axiom K comes down to restricting 
pessimistic capacities to necessity measures.

Remark 5. Modus ponens is a consequence of the resolution rule (RR) and its translation into BC according to Belnap and 
Kleene logics is

{✷a,✷¬a ∨ ✷b} ⊢BC+D ✷b.

However, if we add modus ponens to the 15 rules of Belnap–Dunn logic, we do not get Kleene logic, but only the four-
valued logic NBT already mentioned in Remark 3 [45]. The translation of a formula p from NBT into BC is T (v4(p) = T). In 
particular, asserting an atomic formula a in NBT translates into ✷a ∧ ✸a. See Table 2 first line for conjunction and disjunc-
tion. The target modal language allows negation in front of boxes (as ✸a stands for ¬✷¬a). As explained in Remark 1 the 
modalities ¥a = ✷a ∧ ✸a and ¨a = ✷a ∨ ✸a are dual and obey axiom D. In particular, it can be checked that ¥a ∧¥¬a ⊢ ⊥

in BC. The translation of the modus ponens rule of NBT is of the form ¥a ∧ (¥¬a ∨¥b) ⊢ ¥b, which is valid in BC. This is 
because T (v4(a ∧ (¬a ∨ b)) = T) is provably equivalent to ¥a ∧ (¥¬a ∨ ¥b) (see Proposition 10 in Appendix A). The logic 
NBT can thus be translated into BC as well. But the translation of the resolution rule (RR) using modality ¥ is not valid in 
BC, just as (RR) is not valid in NBT.



5.2. Complete conflicting information

To recover the translation of Priest Logic of Paradox into MEL [21] from the translation of Belnap’s, we must add to BC 
an axiom that is the translation of the new axiom a ∨ ¬a added to Belnap–Dunn logic. Based on our translation principles 
for Belnap–Dunn logic, it follows that T (v4(a ∨ ¬a) ≥t C) = ✷a ∨ ✷¬a, which must be added as an (unusual) axiom to the 
Belnap fragment of BC.

More generally, we can strengthen BC by adding the axiom Dd: ✸p → ✷p, the converse of D. Capacities that are models 
of this axiom are optimistic, i.e., such that max(β(A), β(Ac)) = 1. It is known from Proposition 2 that the focal sets of such 
β include a singleton, which comes down to letting the truth-value U disappear in Belnap–Dunn logic, since the case of a 
proposition being ignored by the set of sources (β(A) = β(Ac) = 0) cannot happen: it is ruled out by the presence of a focal 
singleton.

Translating formulas of Priest logic (Belnap–Dunn’s plus axiom a ∨ ¬a) to BC + Dd yields:

T (v4(a) = T) = ✸a; T (v4(a) = F) = ✸¬a; (4a)

T (v4(a) = C) = ✷a ∧ ✷¬a; (4b)

T (v4(a) ≥t C) = ✷a; T (v4(a) ≤t C) = ✷¬a. (4c)

while T (v4(a) = U) = ✸a ∧ ✸¬a = ⊥ in BC + Dd . Stating elementary formula a in Priest logic is translated into ✷a in 
BC. But since ✷a ∧ ✷¬a is no longer a contradiction, we cannot use modus ponens in BC + Dd in order to infer ✷b from 
{✷a, ✷¬a ∨ ✷b}.

We thus get for the translation of Priest logic, the logic BC restricted to language LB
✷ with the supplementary axiom

✷a ∨✷¬a. But this axiom is not in the spirit of modal logics. Due to the symmetric roles of C and U in the bilattice, and the
corresponding symmetry of modalities ✷ and ✸ in BC, we can modify our translation principles by switching the modalities

✷ and ✸ and express Priest logic inference inside BC + D. It comes down, as pointed out in [21], to replacing C by U,

assuming the same conventions as for the translation of Kleene logic, albeit now considering both U and T as designated
truth-values. It forces to changing the target sublanguage LB

✷ of L✷ into LB
✸ containing only atoms ✸a, ✸¬a and their

combinations via ∧ and ∨. Note that LB
✷ ∩LB

✸ = ∅. It leads to translating the assertion of a proposition p in Priest logic as
T (v3(p) ∈ {T, U}) and adding axiom ✸a ∨ ✸¬a (an avatar of axiom D) to be used in LB

✸ .

This is summarized by the following theorem, saying that there is a consequence-preserving translation into BC + D of 
Priest logic, viewed as Kleene logic with designated truth-values T, U. It is another specialization of Theorem 3 [21]:

Theorem 5. Let Ŵ be a set (conjunction) of formulas in propositional logic interpreted in Priest logic (rules R1–R15, plus axiom a ∨¬a), 
and p another such formula. Then Ŵ ⊢P p if and only if T (v3(Ŵ) ∈ {T, U}) ⊢BC+D T (v3(p) ∈ {T, U}).

A similar comment as in the previous subsection, regarding the impossibility to write axiom K in the target propositional 
language for Priest logic, applies. The above results show that this axiom is not required. Using it in BC enforces a semantics 
in terms of Boolean possibility measures whose focal sets are singletons corresponding to an arbitrary number of completely 
informed hence inconsistent sources. The above results show that pure paraconsistency already prevails when only one of 
the sources is completely informed and disagree with the other ones.

5.3. Kleene logic of order

Kleene logic of order (discussed in Remark 4) is recovered from Belnap’s adding the Kleene inference rule (R17) [51]. 
Translated into BC, it yields T (v4((a ∧¬a) ∨c) ≥t C) ⊢ T (v4((b ∨¬b) ∨c) ≥t C), that is, (✷a ∧✷¬a) ∨✷c ⊢BC (✷b ∨✷¬b) ∨✷c. 
The proper logic to capture this logic is BC plus a generalization of the translation of (R16), i.e., ✷a ∧ ✷¬a ⊢ ✷b ∨ ✷¬b:

(K LO ) : ✷p ∧ ✷¬p ⊢ ✷q ∨ ✷¬q.

Note that in this form (KLO) is equivalent to (✷p ∧ ✷¬p) ∨ ✷r ⊢BC (✷q ∨ ✷¬q) ∨ ✷r, since the former is retrieved if r = ⊥. 
They are not equivalent when p, q, r are literals. Adding (KLO) to BC, and applying the deduction theorem (remember BC is 
a propositional logic), we get the equivalent statement (✷a → ✸a) ∨ (✸b → ✷b). It means that either axiom D holds or its 
converse (Dd: ✸p → ✷p) hold, or both.

In terms of Boolean capacities, (KLO) reads

∀A, B ⊆ Ä,min(β(A),β(Ac)) ≤ max(β(B),β(Bc)) (5)

We show that in this case, β is either optimistic or pessimistic.

Proposition 8. The inequality ∀A, B ⊆ Ä, min(β(A), β(Ac)) ≤ max(β(B), β(Bc)) holds if and only if either ∀A ⊆ Ä, β(A) ≤ βc(A)

or ∀A ⊆ Ä, β(A) ≥ βc(A) or yet β is a Dirac function.



Proof. Suppose property (5) holds and there exists B such that β(B) = β(Bc) = 0; then β(A) = β(Ac) = 0 holds for all 
A ⊆ Ä, and β is pessimistic. Alternatively, suppose there exists A such that β(A) = β(Ac) = 1. Then β(B) = β(Bc) = 1 holds 
for all B ⊆ Ä, and β is optimistic. Otherwise, for all A ⊆ Ä, A ⊆ Ä, β(A) = 1 if and only if β(Ac) = 0. It means that its 
unique focal set is a singleton, i.e., it is a Dirac function (equivalently, a standard truth-assignment), and β = βc . ✷

The semantic entailment of Kleene logic of order clearly indicates that p ⊢≤ q if and only if both p ⊢K q and p ⊢P q. 
In BC, it means that the inference of a BC formula from another one should be valid for both optimistic and pessimistic 
Boolean capacity models. So one may conjecture the following result:

Claim Let Ŵ be a set (conjunction) of formulas in Belnap–Dunn logic, and p another such formula. Then Ŵ ⊢≤ p if and 
only if T (v3(Ŵ) ∈ {T, U}) ⊢BC+D T (v3(p) ∈ {T, U}) and {T (v3(q) = T) : q ∈ Ŵ} ⊢BC+RK T (v3(q) = T).

Suppose Ŵ = {p1, . . . pn} where pi = ∨
ki
j=1ℓi j , and ℓi j are literals. Likewise p = ∨k

j=1ℓ j . Then one may claim that Ŵ ⊢≤ p

if and only if ∧n
i=1 ∨

ki
j=1 ✷ℓi j ⊢BC+D ∨k

j=1✷ℓ j and ∧n
i=1 ∨

ki
j=1 ✸ℓi j ⊢BC+D ∨k

j=1✸ℓ j .

6. Some related inconsistency management approaches

The logic of Boolean capacities presupposes an information set-up where sources provide information about formulas,

not just atoms of the language. Each source has an epistemic state that can be of the form of a set of propositions, or a set 
of possible worlds. Namely, each source is a propositional reasoner that provides classically consistent information. A source 
can directly compute, for any proposition, whether it supports it, rejects it, or can neither reject nor support it. Information 
collected from the sources via an existential strategy, like in Belnap set-ups, is encoded by a Boolean capacity instead of 
truth-values, and can be computed by the inference system of the logic BC. We have shown that Belnap–Dunn logic can be 
expressed in BC. In this section we show that it is also true to a large extent for some other inconsistency management 
approaches.

6.1. The source-processor logic

Avron et al. [6] are also concerned with extending the Belnap set-ups by dispensing with the constraint that sources pro-
vide information about atomic formulas only. In agreement with Dunn’s convention, they assume that truth-values assigned 
by sources to each formula p are collected in a subset d(p) ⊆ {0, 1}. Namely:

• d(p) = ∅ if no source declared p true or false (U);
• d(p) = {1} if some source declared p true and none declared it false (T);
• d(p) = {0} if some source declared p false and none declared it true (F);
• d(p) = {0, 1} if some source declared p false and another one declared it true (C).

Function d is called a valuation processor, and it follows a number of conditions:

• (d1): 0 ∈ d(¬p) if and only if 1 ∈ d(p)

• (d2): 1 ∈ d(¬p) if and only if 0 ∈ d(p)

• (d3): 1 ∈ d(p ∨ q) if 1 ∈ d(p) or 1 ∈ d(q)

• (d4): 0 ∈ d(p ∨ q) if and only if 0 ∈ d(p) and 0 ∈ d(q)

• (d5): 1 ∈ d(p ∧ q) if and only if 1 ∈ d(p) and 1 ∈ d(q)

• (d6): 0 ∈ d(p ∧ q) if 0 ∈ d(p) or 0 ∈ d(q)

It is clear that a valuation processor can be expressed in terms of Boolean capacities (we write β(p) for β([p]), for
simplicity). We can translate the statement 1 ∈ d(p) by β(p) = 1 and 0 ∈ d(p) by β(¬p) = 1 in our capacity-based setting; 
also 1 /∈ d(p) by β(p) = 0, and 0 /∈ d(p) by β(¬p) = 0. Then:

• d(p) = ∅ reads β(p) = β(¬p) = 0;

• d(p) = {1} reads β(p) = 1, β(¬p) = 0;

• d(p) = {0} reads β(p) = 0, β(¬p) = 1;

• d(p) = {0, 1} reads β(p) = β(¬p) = 1.

Let us check if the requirements (d1–d6) are sanctioned by the approach based on capacities.

• (d1) and (d2) trivially hold in the language of capacities. Indeed, 0 ∈ d(¬p) reads β(¬¬p) = β(p) = 1, and likewise,

1 ∈ d(¬p) reads β(¬p) = 1.

• (d3) and (d6) respectively read: β(p ∨ q) = 1 if β(p) = 1 or β(q) = 1, and β(¬p ∨ ¬q) = 1 if β(¬p) = 1 or β(¬q) = 1,

which holds due to the monotonicity of β . The two conditions are equivalent due to (d1–d2).



Table 3

Disjunction and conjunction for general source-processor logic.
∨̃ F U C T

F {F,C}∗ {T,U} {C}∗ {T}

U {T,U} {T,U} {T} {T}

C {C}∗ {T} {C}∗ {T}

T {T} {T} {T} {T}

∧̃ F U C T

F {F} {F} {F} {F}

U {F} {F,U} {F} {F,U}

C {F} {F} {C}∗ {C}∗

T {F} {F, U} {C}∗ {T,C}∗

Table 4

Non-deterministic disjunction and conjunction in the capacity-based approach.
∨̃ F U C T

F V {T,U} {T,C} {T}

U {T,U} {T,U} {T} {T}

C {T,C} {T} {T,C} {T}

T {T} {T} {T} {T}

∧̃ F U C T

F {F} {F} {F} {F}

U {F} {F,U} {F} {F,U}

C {F} {F} {F,C} {F,C}

T {F} {F, U} {F,C} V

• (d4) and (d5) respectively read: β(¬p ∧ ¬q) = 1 if and only if β(¬p) = 1 and β(¬q) = 1, and β(p ∧ q) = 1 if and only
if β(p) = 1 and β(q) = 1, again two equivalent conditions due to (d1–d2). They generally do not hold for capacities. In fact
we only have, due to the monotonicity condition, that β(p ∨ q) = 0 implies β(p) = 0 and β(q) = 0 and β(p ∧ q) = 1

implies β(p) = 1 and β(q) = 1, i.e., the two conditions
– (d4’) 1 /∈ d(p ∨ q) implies 1 /∈ d(p) and 1 /∈ d(q)

– (d5’) 1 ∈ d(p ∧ q) implies 1 ∈ d(p) and 1 ∈ d(q)

This is the major difference between our setting and the source-processor logic setting.

These authors justify the equivalences (d4–d5) by assuming that after collecting truth-values in d(p) the origin of these 
truth-values is forgotten. As a consequence, if for instance 1 ∈ d(p) and 1 ∈ d(q), then since under these truth-values p ∧ q

should have truth-value 1, it follows that 1 ∈ d(p ∧ q). However, β(p) = 1 and β(q) = 1 implies β(p ∧ q) = 1 only for 
necessity measures.

Besides, in the capacity-based approach, there are limit conditions β(⊥) = 0 and β(⊤) = 1. However, after (d4–d5), one 
may have that 1 ∈ d(⊥), i.e., β(⊥) = 1, which, by monotonicity, would yield β(p) = 1 for all propositional formulas p. This 
situation cannot occur with capacities. In terms of truth value collector, the limit condition of capacities reads:

(dlim) : d(⊥) = {0};d(⊤) = {1}.

Likewise we could think of a condition dual to (d5) in the form

(d5¬) : 1 /∈ d(p ∨ q) if and only if 1 /∈ d(p) and 1 /∈ d(q),

that is, β(p) = 0 and β(q) = 0 if and only if β(p ∨ q) = 0, but this condition only holds for possibility measures. Requiring 
both (d5) and (d5¬) turns β into a mere Boolean truth-assignment function.

Avron et al. [6] show that their framework leads to what they call the “most general source processor logic”, in the 
form of a four-valued matrix (V, D, O) with V = V4 , the Belnap–Dunn four-valued truth set, D = {T,C} the designated 
truth-values, and O containing three extended connectives denoted by ¬̃, ∨̃, ∧̃, with non-deterministic truth tables for the 
latter two connectives given on Table 3. In contrast with the general source-processor logic, the non-deterministic truth 
tables computed from our approach (replacing (d4–d5) by (d4’–d5’)) are more imprecise than the truth tables in Table 3.

There are four (starred) entries in each truth table of Table 3 that are not in agreement with the capacity-based approach, 
approximated by the truth tables reported in Table 4:

• T∧̃T is totally indeterminate. Indeed, assigning T to p and q reads β(p) = 1 = β(q), and β(¬p) = 0 = β(¬q). It does not
induce any constraint on β(p ∧ q) nor on β(¬p ∨ ¬q) except if p = ¬q, and then it yields F (lost by the truth table).
Likewise, by De Morgan duality, F∨̃F is indeterminate.

• C∨̃C = {T,C}: in terms of capacities, it is β(p) = β(q) = β(¬p) = β(¬q) = 1. Hence β(p ∨ q) = 1 but there is no con-
straint on β(¬p ∧ ¬q). So only two cases remain for p ∨ q : C if β(¬p ∧ ¬q) = 1 and T if β(¬p ∧ ¬q) = 0. Likewise, by
De Morgan duality, C∧̃C = {F,C}.

• C∧̃T = {F,C}: in terms of capacities, it is β(p) = β(¬p) = 1 and β(q) = 1, β(¬q) = 0. Hence β(¬p ∨ ¬q) = 1 but there
is no constraint on β(p ∧ q). So only two cases remain for p ∧ q : C if β(p ∧ q) = 1 and F if β(p ∧ q) = 0. Likewise, by
De Morgan duality, C∨̃F = {T,C}.

• In contrast, U∧̃C = {F} like in Belnap–Dunn logic. Indeed it reads β(p) = β(¬p) = 0 and β(q) = β(¬q) = 1. It implies by
monotonicity β(p ∧ q) = 0 and β(¬p ∨ ¬q) = 1, so {F}.

It can be argued that (up to the limit condition (dlim)) our approach is the least constrained one for reasoning about 
sources, in the sense that, given n sources providing n pieces of information in the form of sets of possible worlds 



{E1, . . . , En} the set of derived propositions corresponding to {A : β(A) = 1} is precisely the neighborhood ∪n
i=1{A : E i ⊆ A}. 

In contrast, the general source-processor logic also derives conjunctions of the E ′
i s (due to (d4–d5)). In particular, Avron et 

al. [6] consider the case of a general source processor with complete information, understood as the situation where each 
atom of the language is informed by at least one source. It means that 1 ∈ d(ℓi) for one literal pertaining to each propo-
sitional variable pi (ℓi = pi or ℓi = ¬pi ). As a consequence of (d5), 1 ∈ d(∧k

i=1ℓi) so that by (d5) and (d6) again for any 
formula p, either 1 ∈ d(p) or 0 ∈ d(p), and epistemic truth-value U is never assigned. In our capacity logic, this situation 
is not enough to rule out truth-value U. Complete information in the capacity-based approach requires that one source can 
assign truth-value 1 or 0 to all formulas, i.e., has complete information (see Proposition 2).

Another difference with our approach is their use of a sequent calculus for the logic. The motivation for going beyond 
classical logic is the same as ours when using a modal framework, namely, the fact that in the multisource problem, the 
truth of p (in the sense of T) is not equivalent to the falsity of ¬p (in the sense of F), and the difficulty to express disjunctive 
knowledge. So, these authors use sequents of the form p1, . . . , pn ⇒ q1, . . . , qm , understood as

“either 1 /∈ d(p1) or . . . or 1 /∈ d(pn) or 1 ∈ d(q1) or . . . or 1 ∈ d(qm)”.

They propose logical rules that express properties (d1–d6) using sequents, and show that the obtained logic exactly accounts 
for the partial truth tables in Table 3. In the BC logic, the above sequent can be expressed as claiming the truth of:

✸¬p1 ∨ · · · ∨ ✸¬pn ∨ ✷q1 ∨ · · · ∨ ✷qm

or equivalently, ✷p1 ∧ · · · ∧ ✷pn ⊢ ✷q1 ∨ · · · ∨ ✷qm . However, there is one major difference between the logic BC and the 
source-processor logic using sequents: the capacity-based approach is not truth-functional, in the sense that applying the 
partial truth tables in Table 4 using an appropriate sequent system will produce results that are sometimes weaker than the 
BC logic. For instance, even if β(p) = β(¬p) = 1 still we have β(⊥) = 0, because ✷⊥ and ✸⊥ are contradictions in BC. In 
the source processor logic, due to (d5), 1 ∈ d(p) and 1 ∈ d(¬p) imply 1 ∈ d(⊥) which prevents p ∧¬p from being considered 
false. Using the non-deterministic truth table induced by capacities in Table 4, we also get a completely indeterminate result 
for p ∧ ¬p since T∧̃T = V .

6.2. Propositional logic approaches

Other approaches to inconsistency handling seem to be representable inside the logic BC. For instance, a very standard 
approach is the use of all maximal consistent subsets K i, i = 1, . . . , n of formulas in an inconsistent propositional base 
K , in order to circumvent the problem of explosive classical consequences of K (Rescher and Manor [49]). The set of 
consequences of K is defined by the union or the intersection of the sets of consequences of the bases K i . Viewing each 
maximal consistent base K i as a source, a proposition p is deduced in the existential approach if K i ⊢ p for some source i, 
and, in the universal approach, if K i ⊢ p for all i = 1, . . . , n.

This method can be captured by Boolean capacities with disjoint focal sets E i = [K i], i = 1, . . . , n. First encode the propo-
sitional logic base K = {p1, . . . , pm} in BC, letting K✷ = {✷p1, . . . , ✷pm}. Then, apply to K✷ the inference rule

MC: ✷p,✷q ⊢ ✷p ∧ q whenever p ∧ q 6= ⊥.

Let ClMC (K✷) be the deductive closure of K✷ using inference rule MC. Consider the capacity β such that β(A) = 1 if 
[p] ⊆ A for some ✷p ∈ ClMC (K✷). It is clear that this capacity has disjoint focal sets E i , one for each maximal consistent
subset K i of K . It is then possible to apply the inference rules of BC to ClMC (K✷). The set {p : ClMC (K✷) ⊢BC ✷p} is the
set of consequences of K in the sense of the existential closure in the maximal consistent subset approach. Besides if K is

consistent, β has just one focal set [K ], and we recover the classical deductive closure of K .

Note that, in contrast, the deductive closure of K✷ , obtained directly using the inference rules of BC, is more cautious 
than in classical logic as the atoms it contains are {✷p : ∃i, pi ⊢ p}, even if K is consistent. The universal approach to the 
maximum consistent subset method cannot be directly expressed in BC, because the necessity modality in the latter logic 
is used to express the epistemic truth-value T of Belnap, which has an existential flavor.

Another inconsistency handling method that can be recovered by the BC logic is the one proposed by Benferhat et al. 
[11], that is halfways between the existential approach to maximal consistent subset entailment and the universal approach. 
The idea is to define a so-called argumentative inference from a possibly inconsistent propositional base K defining K ⊢arg p

whenever there is a consistent subset C ⊆ K such that C ⊢ p and there is no consistent subset C ⊆ K such that C ⊢ ¬p, 
which corresponds to assigning epistemic truth-value T to p when K ⊢arg p [23]. Clearly, it can be easily seen that we have 
K ⊢arg p if and only if K✷ ⊢BC ✷p ∧ ✸p, which suggests a possible connection with the NBT logic of Rivieccio [51,45], i.e., 
using Belnap–Dunn bilattice with only designated value T.

7. Conclusion

In this paper, we have pursued our work towards a better understanding of a class of many-valued logics dealing with 
inconsistent or incomplete information processing. We have shown that just like Kleene logic and Priest’s Logic of Paradox, 



we can capture Belnap–Dunn four-valued logics in a simple higher-order propositional logic BC couched in the language of 
modal logic involving only depth-1 formulas. The natural semantics for this propositional logic is in terms of all-or-nothing 
set functions that can capture both incomplete and inconsistent pieces of information. The set function semantics is akin to 
neighborhood semantics [17].

The logic BC can capture general information collection set-ups not confined to atomic propositions. In that sense the 
logic BC is a general (seemingly the weakest possible) setting for modeling incomplete and inconsistent information having 
as particular instance Belnap–Dunn four-valued logic. The use of set functions beyond possibility and necessity measures to 
interpret the BC logic, thus dropping axiom K, is in agreement with the fact that propositions in this four-valued logic cannot 
be viewed as S5-like beliefs. We have indicated that our framework may be used to capture some other approaches to 
inconsistent and incomplete information handling, basically those starting from an inconsistent set of Boolean propositions 
(for instance, using maximal consistent subsets), or yet the generalized Belnap set-ups considered by Avron et al. [6]. In 
previous works, we showed that several three-valued logics of incomplete information (including Łukasewicz and Nelson 
logics [20]) and several paraconsistent three-valued logics (including Jaśkowski and Sobociński’s logics [21]) can be captured 
in the setting of MEL. It could be of interest to pursue this effort, using BC as a setting, towards more general paraconsistent 
settings (like the Logics of Formal Inconsistency [16] or ideal paraconsistent logics of Arieli et al. [4]), but also four-valued 
logics richer than Belnap’s.

Besides, the use of set functions clarifies the connection between Belnap–Dunn four-valued logic and uncertainty model-

ing. In this sense, our paper paves the way to graded or numerical extensions of Belnap-like inconsistency handling methods 
(for instance modeling the reliability of the sources) in agreement with uncertainty theories (as suggested in [23] and more 
recently in [25]). It may also bridge the gap with modal versions of probabilistic logic (Hamblin [39], Burgess [14], see also 
the pioneering survey by Walley and Fine [53], and more recently, the logic of risky knowledge [43]) where axiom K is not 
valid.

Along the same line, recent works in argumentation theory try to find a ranking of arguments in terms of degrees of 
acceptability, computed from an attack relation between arguments extracted from an inconsistent propositional base [3]. On 
this basis, the propositional base is ranked in terms of relative plausibility, according to which a formula is more plausible 
than another if supported by an argument that is more acceptable than any argument that supports the other formula [2]. 
This plausibility ranking is consistent with logical inference in the sense that if p implies q then p is not more plausible 
than q. Expressed in our terminology, these new argumentation-based ranking logics essentially compute a capacity, which 
is in agreement with the spirit of our BC logic, albeit more expressive.

From the logical standpoint, an infinite set of logics extending the Belnap–Dunn one has been defined in [51]. Some of 
them, that use the 4 truth values seem to be captured as well by our setting, as suggested in the previous sections. Other 
extensions consist in adding the generalized ex-falso quodlibet rules: (p1∧¬p1)∨...(pn∧¬pn)

q
with n = 1, . . . , ∞ to Belnap–Dunn 

logic inference rules. A infinite chain of intermediate logics between Belnap–Dunn and strong Kleene logics is obtained. 
However, most of these logics cannot be interpreted in terms of multisource settings, and require a semantics with many 
more than four truth-values, thus escaping our Boolean capacity setting.
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Appendix A. Proofs

Equivalence between inference rules in Belnap–Dunn logic. We give some results concerning the equivalence ²B=²C=²U [35], 
thus completing the discussion in Subsection 3.3.

Lemma 1. p ²U q iff p ²C q.

Proof. Suppose p ²U q. It means that ∀v4, if v4(p) ∈ {U,T} then v4(q) ∈ {U, T}. Let us show that p ²C q as well. For all v
such that v4(p) = U, the condition for p ²C q is not violated as it cannot be applied. If v4(p) = T and v4(q) = T, p ²C q is 
not violated either. Suppose v4(p) = T and v4(q) = U. Then v4 violates the condition for p ²C q. However if such a valuation 
exists, exchanging C and U in the assignment of atoms by v4 , preserving assignments T and F, there exists another valuation 
v ′
4 such that v ′

4(p) = T and v ′
4(q) = C. But v ′

4 then violates p ²U q which thus does not hold. It contradicts our assumption. 
So assignments such that v4(p) = T and v4(q) 6= T are in agreement neither with p ²U q nor p ²C q. The only possibility for 
v4 to be in agreement with p ²U q is that v4(p) = T = v4(q) = T, or v4(p) = U and v4(q) ≥t U, or v4(p) = C and v4(q) ≥t C. 
So, ²U and ²C correspond to the same pairs (p, q). ✷

Lemma 2. Ŵ ²B p iff both Ŵ ²U p and Ŵ ²C p.

Proof. We show it for two premises, i.e., consider the case when v4(p1) ∧ v4(p2) ≤t v4(p). The interesting cases are when 
(v4(p1), v4(p2), v4(p)) are of the form (T, C, C), (T, U, U), (C, C, C), (U, U, U), and (T, T, T) (otherwise v4(p1) ∧ v4(p2) = F). 



Then, it is obvious that p1 ∧ p2 ²U p and p1 ∧ p2 ²C p. For the converse, suppose that p1 ∧ p2 ²U p and p1 ∧ p2 ²C p, but 
v4(p1) ∧ v4(p2) £t v4(p). The latter condition holds in the following cases only:

• if v4(p) = C and v4(p1) = T, v4(p2) = U, which violates p1 ∧ p2 ²U p,

• if v4(p) = U and v4(p1) = T, v4(p2) = C, which violates p1 ∧ p2 ²C p,

• if v4(p) = F and v4(p1) > F, v4(p2) > F, which violates both. ✷

Proposition 9. Let p1 = ∨ili , p2 = ∨ jl j . Then, p1 ²B p2 iff p1 ²U p2 .

Proof. One direction is trivial. Let us suppose that p1 ²U p2 and at the same time that p1 2B p2 . It means that there exists 
v such that v4(p1) £t v4(p2). Either v4(p1) >t v4(p2), or v4(p1) = C and v4(p2) = U. In the first case, due to the fact that 
p1 ²U p2 this is only possible if v4(p1) = T and v4(p2) = U. Thus,

• either there exists a literal l∗ in p1 such that v4(l∗) = T and l∗ /∈ p2 . But if this is the case, we can define v∗
4(l

∗) = T, 
v∗
4(l) = C for l 6= l∗ , and contradict our hypothesis p1 ²U p2

• or there exist literals l, l′ ∈ p1 and v∗
4 with v∗

4(l) = C, v∗
4(l

′) = U (so that v∗
4(l ∨ l′) = T). The two literals cannot be both

in p2 . Then we can define v∗
4(l) = C for l 6= l∗ , and contradict our hypothesis p1 ²U p2 because v∗

4(p2) = C (if l′ /∈ p2 or 
if v∗

4(l
′) = C) or v∗

4(p2) = F if l′ ∈ p2 , v∗
4(l

′) = U.

In the other case, there exists v∗
4 , such that v∗

4(p1) = C and v∗
4(p2) = U, which means that there exists l∗ ∈ p1 with v∗

4(l
∗) =

C while v∗
4(l) ∈ {F, C} for other literals in p1 , and l′ ∈ p2 with v∗

4(l
′) = U while v∗

4(l) ∈ {F, U} for other literals in p2 . ✷

On modus ponens in NBT. (See Remark 5 of Subsection 3.4.)

Proposition 10. T (v4(a ∧ (¬a ∨ b))) = T) is equivalent to ¥a ∧ (¥¬a ∨¥b) in BC.

Proof. T (v4(a ∧ (¬a ∨b)) = T) = T (v4(a) = T) ∧T (v4(¬a ∨b) = T) = (✷a ∧✸a) ∧[(✷¬a ∧✸¬a) ∨ (✷b ∧✸b) ∨ (✷a ∧✷¬a ∧
✸b ∧ ✸¬b) ∨ (✸a ∧ ✸¬a ∧ ✷b ∧ ✷¬b)] = ¥a ∧ (¥¬a ∨ ¥b), since (✷a ∧ ✸a) is inconsistent with ✷¬a = ¬✸a, and with

✸¬a = ¬✷a. ✷

As ¥a ∧¥¬a ⊢ ⊥, ¥a ∧ (¥¬a ∨¥b) can be further simplified as ¥a ∧ ¥b that implies ¥b. So the modus ponens of the 
NBT logic can be justified in BC.
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