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Abstract. The efficiency of a query execution plan depends on the accu-
racy of the selectivity estimates given to the query optimiser by the
cost model. The cost model makes simplifying assumptions in order to
produce said estimates in a timely manner. These assumptions lead to
selectivity estimation errors that have dramatic effects on the quality
of the resulting query execution plans. A convenient assumption that
is ubiquitous among current cost models is to assume that attributes
are independent with each other. However, it ignores potential correla-
tions which can have a huge negative impact on the accuracy of the cost
model. In this paper we attempt to relax the attribute value indepen-
dence assumption without unreasonably deteriorating the accuracy of
the cost model. We propose a novel approach based on a particular type
of Bayesian networks called Chow-Liu trees to approximate the distribu-
tion of attribute values inside each relation of a database. Our results on
the TPC-DS benchmark show that our method is an order of magnitude
more precise than other approaches whilst remaining reasonably efficient
in terms of time and space.

Keywords: Query optimisation · Cardinality estimation ·
Bayesian networks

1 Introduction

During query processing [34], each query goes through an optimisation phase 
followed by an execution phase. The objective of the optimisation phase is to 
produce an efficient query execution plan in a very short amount of time. The 
query optimiser draws on the cardinality estimates produced by the cost model 
for each relational operator in a given plan. Bad cardinality estimates propagate 
exponentially and have dramatic effects on query execution time [15]. Cardinality 
estimates are usually made based on a set of statistics collected from the relations 
and stored in the database’s metadata. Such statistics are kept simple in order
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to satisfy the limited time budget the query optimiser is allocated. However they
usually don’t capture attribute dependencies.

Formally, given a query Q(R,J ,A) over a set of relations R, a set of join
predicates J and a set of attribute predicates A, the cardinality of the query is
computed as follows:

|Q(R,J ,A)| = P (J ,A) ×
∏

R∈R

|R| (1)

where P (J ,A) is the selectivity of the query and
∏

R∈R |R| is the number of
tuples in the Cartesian product of the involved relations. The problem is that
P (J ,A) is not available. Moreover estimating it quickly leads to a combinato-
rial explosion. Simplifying assumptions are made in order to approximate the
selectivity whilst ensuring a realistic computational complexity [34].

The first assumption that is commonly made is that attributes are inde-
pendent within and between each relation. This is the so-called attribute value

independence (AVI) assumption. It allows to simplify the computation as follows:

P (A) ≃
∏

AR∈A

P (AR) ≃
∏

AR∈A

∏

ai∈AR

P (ai) (2)

where P (AR) refers to the selectivity concerning relation R whilst P (ai) stands
for the selectivity of a predicate on attribute ai. In practice the AVI assumption
is very error-prone because attributes often exhibit correlations. However it is
extremely practical because each distribution P (ai) can be condensed into a

one-dimensional histogram P̃ (ai).
Next, the join predicate independence assumption implies that join selectivi-

ties can be computed independently, which leads to the following approximation:

P (J ) ≃
∏

Ji∈J

P (Ji) (3)

Assume we are given two relations R and S. We want to join both relations
on their respective attributes R.K and S.F . In this case the selectivity of the
join (denoted J) can be computed exactly [34]:

P (J) = min(
1

|J.R.K|
,

1

|J.S.F |
) (4)

The previous assumption doesn’t usually hold if multiple foreign keys are
included in a join [15]. Finally, the join uniformity assumption states that
attributes preserve their distributions after joins. This allows the following
simplification:

P (J ,A) ≃ P (J ) × P (A) (5)

Most relational databases [2,13,36] assume all the previous assumptions in
conjunction, which leads to the following formula:

P (J ,A) ≃
∏

Ji∈J

min(
1

|Ji.R.K|
,

1

|Ji.S.F |
) ×

∏

AR∈A

∏

ai∈AR

P̃ (ai) (6)



In practice the previous approximation is much too coarse and is frequently
wrong by orders of magnitude. However it only requires storage space that grows
linearly with the number of attributes and doesn’t involve any prohibitive com-
putation. In other words accurate cardinality estimation is traded in exchange
for a low computational complexity. The natural question is if a better trade-off
is possible. That is, one that relaxes any of the previous assumptions.

A lot of work has gone into developing attribute-level synopses [12,32] which
approximate the distribution P (a) of each attribute a. Mostly this involves using
histograms and other well-studied statistical constructs. Although theoretically
sound, these methods do not help in handling commonplace queries that involve
more than one attribute predicate. Furthermore, table-level synopses [27] have
been proposed to capture dependencies between attributes. The problem is that
methods of this kind, such as multi-dimensional histograms, usually require an
amount of storage space that grows exponentially with the number of attributes.
Table-level synopses also includes various sampling methods [25,30,38] where the
idea is simply to execute a query on a sample of the database and extrapolate the
cardinality. Although they don’t handle dependencies across relations, they are
computationally efficient because they don’t require joins. Finally, schema-level

synopses [6,19,23,38] attempt to soften the join uniformity and join predicate
independence assumptions. Although these methods have the potential to han-
dle join-crossing correlations [21], they require a prohibitive amount of compu-
tational resources because of the amount of joins they necessitate.

Accurate schema-level methods based on Bayesian networks have been pro-
posed [10,37]. A Bayesian network factorises a distribution in order to represent
it with a product of lower dimensional distributions. Each lower dimensional dis-
tribution captures a dependency between two or more attributes. For example
the distribution P (hair, nationality) can be factorised as P (hair|nationality)×
P (nationality) because a person’s hair colour is correlated with his national-
ity. The trick is that finding the right factorisation is an NP-hard problem [18].
Moreover the time required to produce estimates increases with the complex-
ity of the factorisation [33]. The method proposed in [10] successfully captures
attribute dependencies across relations but it requires a prohibitive amount of
computational complexity that makes it unusable in practice. [37] propose a sim-
pler method that only attempts to capture dependencies between two relations
at most. Although their proposal is more efficient, it still requires performing a
significant amount of joins. Moreover the factorisation structures used in both
proposals incur an inference procedure that doesn’t run in linear time. We believe
that giving up some of the accuracy of existing proposals leads to methods that
strike a better balance between accuracy and computational complexity. To this
extent we propose to factorise the distribution of attributes only inside each
relation. We argue that having reliable selectivity estimates for single relations
is fundamental for estimating the size of joins [15]. Furthermore we propose to
extend a particular type of Bayesian networks called Chow-Liu trees. These allow
us to use network structures that are efficient space-wise and can be queried in
sub-linear time. Although our approach doesn’t capture as many dependencies



as in [10] and [37], it can be compiled quicker and can produce selectivity esti-
mates in less time. Moreover it is still an order of magnitude more precise than
trivial models that assume independence.

The rest of this paper is organised as follows. Section 2 gives an overview of
existing methods and their associated pros and cons. This is also where we intro-
duce some notions relating to Bayesian networks. Section 3 is where we describe
our model and show how it can efficiently be used for the task of selectivity
estimation. Section 4 compares our model to PostgreSQL’s cost engine and to a
Bernoulli sampling estimator on the TPC-DS benchmark. We explain in what
cases our model succeeds and in what cases it doesn’t bring anything to the
table. Finally, Sect. 5 concludes and points to some research opportunities.

2 Related Work

2.1 Distribution Estimation

The most prominent approach in cost-based query optimisation is to approxi-
mate the distribution of attributes of a given database. This has been an area
of research ever since equi-width histograms were used for summarising a sin-
gle attribute [20]. Equi-height histograms are commonly used because of their
provably lower average error [30]. Meanwhile [16] showed that histograms that
minimise the average selectivity estimation error are ones that minimise variance
inside each bucket. These histograms are usually called V-optimal histograms and
involve a prohibitive mathematical optimisation process. As a compromise, [16]
introduced the notion of biased histograms to find a balance between memorising
exact frequencies and approximating them. Histograms are well understood in
theory and ubiquitously used in practice, however they don’t capture dependen-
cies between attributes.

Multi-column histograms [3,12,27] have been proposed to handle dependen-
cies between two or more attributes. Although they are sound in theory, in prac-
tice they are difficult to build and even more so to update [28]. Moreover they
require storage space that grows exponentially with the number of attributes.

To mitigate the exponential growth problem of multi-dimensional histograms,
one approach is use a factorised representation of a distribution. The idea is to
represent a distribution P (Ai, . . . , An) as a product of smaller conditional dis-
tributions P (Ai|Parents(Ai)). For example the distribution P (A1, A2, A3) can
be estimated as P̂ (A1, A2, A3) = P (A1|A2)P (A3|A2)P (A3). P̂ (A1, A2, A3) is
necessarily an approximation because it doesn’t capture the three-way interac-
tion between A1, A2, and A3. The benefit is that although P̂ (A1, A2, A3) is an
approximation, it requires less storage space. Moreover if A1 and A3 are inde-
pendent then no information is lost. Bayesian networks [18] have been shown to
be a strong method to find such approximations. However, querying a BN is an
NP-hard problem [8] and can take a prohibitive amount of time depending on the
structure of the network. Moreover, off-the-shelf implementations don’t restrict
the structure of the final approximation. This leads to approximations which
either require a prohibitive amount of storage space, or are too slow, or both.



BNs are classically studied in the context of a single tabular dataset. However in
a relational database the data is contained in multiple relations that share rela-
tionships. [10] first introduced probabilistic relational models that could handle
the relational setting. They introduced the notion of a join indicator to relax the
join uniformity assumption. However for structure learning and inference they
use off-the-shelf algorithms with running complexities that are way too pro-
hibitive for a database context. [37] extended this work and proposed to restrict
the dependencies a BN can capture to be between two relations at most. Even
though their procedure is more efficient, it still requires joining relations, albeit
only two at once. Both of these proposals work at a schema-level and require
performing a prohibitive amount of joins. Although existing methods based on
Bayesian networks seem promising, we argue that they are still too complex to
be used at a large scale.

The problem of learning distributions is that they inescapably require a lot
of storage space. A radically different approach that has made it’s mark is to
execute the query on a sample of the database in order to extrapolate the query’s
cardinality.

2.2 Sampling

Sampling is most commonly used to estimate selectivity for a query that per-
tains to a single relation [30]. The simplest method is to sample a relation Ri

with probability pi. The obtained sample ri will then contain |Ri| × pi tuples.
To estimate the selectivity of a query on Ri one may run the query on it’s
associated sample ri and multiply the cardinality of the output by 1

p
. This is

commonly referred to as Bernoulli sampling and works rather well given a suffi-
cient sample size. Adaptive methods [25] have also been proposed to determine
an optimal sample size for each relation. Sampling is attractive because it is
simple to implement and naturally captures dependencies between attributes.
Moreover, sampling can be performed on multiple relations in order to capture
inter-relational attribute dependencies.

Sampling across multiple relations is a difficult task. Indeed [4] showed that
the join of independent uniform samples of relations is not a uniform sample of
the join of the relations. Many methods have been proposed for two-way joins
[29,38]. Their common idea is to use a hash function h(a) → [0, 1] to make sure
joined samples share keys. Say R1 has an attribute A1 which is a foreign key to an
attribute A2 of a relation R2. By applying the same hash function h(a) to both
attributes, one may obtain samples which preserve join relationships by keeping
all the tuples that satisfy h(a) < p. This way all tuples from both relations that
satisfy h(a) < p will be included in the sample. The unbiased estimator for the

size of the result of the join is J(R1, R2) is J(r1,r2)
p

. Although quite strong in

theory, join-aware sampling [24] requires a prohibitive full pass over the involved
relations if no index is available. Moreover, this approach doesn’t necessarily
extend to joins involving more than two relations [1].



2.3 Learning

To completely sidestep the difficulties inherent to query optimisation, learning
procedures that correct their mistakes have been proposed [5,19,35]. In the case
of database optimisation learning has been used to tune various models and
to memorise observed selectivities. This is done by query feedback where the
cost model gets access to the actual cardinalities [5] after the query execution
phase. By comparing the estimates it has made with the actual values it can
make adjustments with the goal of making less mistakes for subsequent queries.
The most successful method in this category is DB2’s LEO optimiser [35]. The
approach LEO takes is simply to memorise the true cardinality of error-prone
parts of executed query plans. This works remarkably well in an environment
where a given query is run repeatedly. However it doesn’t help for estimating the
cardinality of unseen queries. Recently an interesting approach based on deep
learning has also been proposed [19]. Apart from LEO, learning approaches have
not yet matured enough to be used in practice.

2.4 Discussion

All of the previously mentioned methods offer a different compromise in terms
of accurate cardinality estimation, temporal complexity, and spatial complexity.
On the one hand, histograms are precise, quick, and lightweight. However, they
require a prohibitive amount of storage space if one wishes to capture attribute
dependencies. On the other hand, sampling can easily capture attribute depen-
dencies; but it is too slow because either the sample has to be constructed online
or loaded in memory. Finally learning is an original take on the problem but it
doesn’t help for unseen queries. Our contribution is to use Bayesian networks to
factorise the distribution of the attributes of each relation. This way we capture
the most important attribute dependencies and ignore the unimportant ones to
preserve storage space. A huge benefit of our method is that we can optimise
each Bayesian network on a sample of the associated relation to save time with-
out a significant loss in accuracy. The downside is that like most methods we
ignore dependencies between attributes of different relations.

3 Methodology

3.1 Finding a Good Network

A Bayesian network (BN) factorises a probability distribution P (X1, . . . , Xn)
into a product of conditional distributions. For any given probability distribution
P (X ) there exist many possible BNs. For example P (hair, nationality, gender)
can be factorised as P (hair|nationality)P (gender|nationality)P (nationality)
as well as P (hair|(nationality, gender))P (nationality)P (gender) (see Fig. 1).
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Fig. 1. Possible factorisations of P (hair, nationality, gender)

The goal of structure learning is to find a BN that closely matches P (X )
whilst preserving a low computational complexity. Indeed, for any given BN, the
cost of storing it and of computing a marginal distribution P (Xi) depend on it’s
structure.

The classic approach to structure learning is to define a scoring function that
determines how good a BN is – both in terms of accuracy and complexity –
and to run a mathematical optimisation procedure over the possible structures
[11]. The problem is that such kind of procedures are too costly and don’t fit
inside the tight computational budget a database typically imposes. Recently
linear programming approaches that require an upper bound on the number of
parents have also been proposed [17]; in practice these can handle problems with
up to 100 variables which is far from ideal. Finally, one can also resort to using
greedy algorithms that run in polynomial time but don’t necessarily find a global
optimum.

Chow-Liu trees [7] is one such method that finds a BN where dependencies
between two attributes are the only ones considered. Building a Chow-Liu tree
only involves three steps. Initially the mutual information (MI) between each
pair of attributes is computed. These values define a fully connected graph G

where each MI value is translated to a weighed edge. Next, a minimum spanning
tree (MST) of G is retrieved. This can be done in O(nlog(n)) time where n is
the number of attributes. Finally the MST has to be directed by choosing a node
at random and defining it as the root.

We choose to use Chow-Liu trees for two practical reasons. First of all they
are simple to construct. The only part that doesn’t scale well is computing the
MI values. However this can be accelerated by using a coarser representation of
the data such as histograms. Moreover the process can be run over a sample of
a relation. In our experience these two tricks greatly reduced computation time
without hindering the accuracy of the resulting trees. Secondly the output net-
work is a tree – hence there is only one parent per node. This is practical because
retrieving a marginal distribution – in other words inferring – from a tree can
be done in linear time [33]. Moreover, storing the network only requires saving
n − 1 two-dimensional distributions and one uni-dimensional distribution. On
top of this, [7] proves that Chow-Liu trees minimise the KL divergence, meaning
that they are the best possible trees from an information theory perspective. The
downside is that they can’t capture dependencies between more than 2 variables
– for example it only snows if it’s cold and rainy. However in our experience
these kind of dependencies are not so common.



3.2 Estimating the Conditional Probabilities

Once a satisfying structure has been found, the necessary probability distribu-
tions have to be computed. Indeed recall that a Bayesian network is nothing
more than a product of conditional probability distributions (CPD). A CPD
gives the distribution of a variable given the value of one or more so-called par-
ent variables (Table 1). For example Tables 2 and 3 are two CPDs that are both
conditioned on the nationality variable.

Table 1. P (nationality)

American Swedish

0.5 0.5

Table 2. P (hair|nationality)

Blond Brown Dark

American 0.2 0.6 0.2

Swedish 0.8 0.2 0

Table 3. P (gender|
nationality)

Male Female

American 0.5 0.5

Swedish 0.45 0.55

The number of values needed to define a CPD is cp+1 where c is the cardinal-
ity of each variable – for simplicity we assume it is constant – and p is the number
of parent variables. This stems from the fact that each CPD is related to p + 1
variables and that each and every combination of values has to be accounted for.
The fact that Chow-Liu trees limits the number of parents each node has to 1
means that we only have to store c2 values per distribution. Moreover a sparse
representation can be used to leverage the fact that 0s are frequent. However, if
the cardinality of a variable is high then a lot of values still have to be stored.
This can be rather problematic in a constrained environment.

To preserve a low spatial complexity we propose to use end-biased histograms
described in Subsect. 2.1. The idea is to preserve the exact probabilities for the
k most common values of a variable and put the rest of the probabilities inside
j equi-height intervals. Using equi-height intervals means that we don’t have
to store the frequency of each interval. Indeed it is simply 1 −

∑
i=1 P (MCVi)

where P (MCVi) denotes the frequency of the ith most common value. Instead,
by assuming that the values inside an interval are uniformly distributed, we only
have to store the number of distinct values the interval contains. Table 4 shows
what a CPD with intervals looks like. In the example, given that a person is
American, there is probability of 1 − (0.2 + 0.5) = 0.3 that his hair colour is in
the [Dark, Red] interval. Because there are 3 distinct values in the [Dark, Red]

interval, the probability that an American has, say, hazel hair is 1−(0.2+0.5)
3 = 0.1.

Table 4. P (hair|nationality) with k = 2 and j = 1

Blond Brown [Dark, Red]

American 0.2 0.5 3

[British, French] 0.4 0.3 3

Swedish 0.8 0.2 0



Compressing a CPD this way means we only have to store (k + j)2 values
per distribution. If we assume that there are n attributes inside a relation then
storing a Bayesian networks requires (k+j)+(n−1)(k+j)2 values in total – the
first (k + j) corresponds to the network’s root node which is not conditioned on
any other variable. This has the added advantage that we can handle continuous
variables that usually have extremely high cardinalities.

Fortunately, retrieving CPDs inside a relational database can easily be done
with the GROUP BY and COUNT statements. Moreover, the CPDs can be computed
on a sample of the relations to reduce computation time. Whats more, if data
is appended to the database then only the CPDs have to recomputed if one
assumes the structures of the Bayesian networks remain constant through time.
However, if new attributes are added to a relation then the structure of it’s
Bayesian network has to be rebuilt from scratch.

3.3 Producing Selectivity Estimates

As previously mentioned, inference is the task of obtaining a marginal distribu-
tion from a Bayesian network. For example we may want to know the probability
of Swedish people having blond hair (i.e. P (hair = “Blond” ∧nationality =
“Swedish”)). The idea is to treat the obtained probability as the selectivity
of the associated relational query. For each relation involved in a query, we
identify the part of the query that applies to the relation and determine it’s
selectivity. Then, by assuming that attributes from different relations are inde-
pendent, we simply multiply the selectivities together. Although this is a strong
assumption, we argue that capturing table-level dependencies can still have a
significant impact on the overall cardinality estimation. Of course we would be
even more precise if we had determined dependencies between different relations
as in [10,37], but it would necessarily involve joins. In other words our method
offers a different trade-off between accuracy and computational feasibility.

Performing inference over a BN is an NP-hard problem [8]. However, because
we have restricted our BNs to trees, we can make full use of purpose-built algo-
rithms that only apply to trees. The variable elimination (VE) algorithm [9] is
a simple exact inference algorithm that can be applied to any kind of network
topology. Specifically the complexity of VE is O(n exp (w)) where n is the num-
ber of nodes and w is the width of the network [33]. However the width of a tree
is necessarily 1, meaning VE can run in O(n) time. The formula for applying
VE is given in (7), wherein k attributes are being queried out of a total of n.

P (A1 = a1, . . . , Ak = ak) =

n∑

i=k+1

k∏

j=1

P (Aj = aj |Parents(Aj)) (7)

The idea of VE is to walk over the tree in a post-order fashion – i.e. start
from the leaves – and sum up each CPD row-wise. This avoids unnecessarily
computing sums more than needed and ensures the inference process runs in
linear time. The computation can be further increased by noticing that not all



nodes in a BN are needed to obtain a given marginal distribution [18]. Indeed
the VE algorithm only has be run on a necessary subset of the tree’s nodes which
is commonly referred to as the Steiner tree [14]. Extracting a Steiner tree from
a tree can be done in linear time (see Algorithm1).

G

S N

H P

Fig. 2. Steiner tree in blue containing nodes G, N, and H needed to compute H’s
marginal distribution (Color figure online)

In our case we are using CPDs with intervals, meaning that we have to tailor
the VE algorithm around them. Fortunately this is quite simple as we only have
to check if a given value is an interval or not. Range queries can be handled by
interpolating inside the interval whilst for equality queries we can assume that
all distinct values in the interval are equally frequent (Fig. 2).

Algorithm 1. Steiner tree extraction

1: function Walk(node, required, path, relevant)
2: if required is empty then

3: return {}
4: else if node in nodes then

5: required ← required \ {node}
6: relevant ← relevant ∪ path

7: end if

8: path ← path ∪ {node}
9: for child ∈ node.children() do

10: relevant ← relevant ∪ Walk(child, required, path, relevant)
11: end for

12: return relevant

13: end function

14: function ExtractSteinerTree(tree, nodes)
15: nodes ← nodes ∪ tree.root()
16: relevant ← Walk(tree, nodes, {}, {})
17: return tree.subset(relevant))
18: end function



4 Experimental Study

4.1 Setup

We implemented a prototype of our method along with the Bernoulli sampling
described in Sect. 2.2 and the textbook method described in the introduction.
We chose these two methods because they are realistic and are used in practice.
We would have liked to compare our method to previous Bayesian approaches
proposed in [10,37], however we were not able to accurately reproduce their
results given the available information. We expect our method to be less accurate
but much more computationally efficient. Our goal is to quantitatively show why
our method offers a better trade-off than the other two implemented methods.
We ran all methods against a small subset of the queries contained in the TPC-
DS benchmark [31] with a scale factor of 201. We only picked queries that apply
more than one attribute predicate on at least one relation and that exhibit
dependencies. We chose this subset on purpose because our model doesn’t bring
anything new to the table if there is only one predicate. Indeed if there is only
one predicate then our model is equivalent to the textbook approach of using
one histogram per attribute.

We used four criteria to compare each method: (1) The construction time.
(2) The accuracy of the cardinality estimates. (3) The time needed to make a
cardinality estimate. (4) The number of values needed to store the model. We
ran our experiments multiple times to get statistically meaningful results. First
of all we used 10 different sample sizes to determine the impact of sampling.
Then, for each combination of method and sampling size we took measurements
with 10 different seeds. For each measurement we thus calculated it’s mean
and it’s standard deviation. To make the comparison fair we used equi-height
histograms with the same parameters for both the textbook and the Bayesian
networks approaches. Specifically we stored the exact frequencies of the 30 most
common values and approximated the rest with 30 buckets.

4.2 Construction Time

We first of all measured the time it takes to construct each model (see Fig. 3).
Naturally sampling is the method that takes the least time because noth-
ing has to be done once the sample is retrieved from the database. The
textbook and Bayesian network ours, that is) methods necessarily take longer
because they have to perform additional computations after having obtained
the sample. The textbook method only has to build equi-height histograms. The
Bayesian network method requires slightly more involved calculations. It spends
most of it’s time computing mutual information scores and processing GROUP BY

operations. Although these operations are unavoidable, their running time can
be mitigated as explained in Sect. 3.1. Moreover the GROUP BY results used for
computing mutual information scores can be reused for parameter estimation as

1 Specifically we used the following queries: 7, 13, 18, 26, 27, 53, 54, 91.



explained in Sect. 3.2. However for the sake of simplicity we didn’t implement
these optimisations in our prototype. Still, the results we obtained seem better
than those presented in [37] where the authors claim their method can process
a database of 1 in about an hour. Our method can process the same amount of
data in under 8 min.

4.3 Cardinality Estimates

We then compared methods based on their average accuracy. In other words we
ran each method against each query and measured the average error. Although
our method improves the accuracy of cardinality estimation for queries on a
single relation; our goal in this benchmark is to measure how much this will
impact the overall accuracy for general queries over multiple relations. It is
possible that some queries bias the average accuracy because each query returns
a number of rows that can vary in magnitude in regard to the others. Because
of this, typical metrics such as the mean squared error (MSE) can’t be used.
[26] explain why using average multiplicative errors makes the most sense in the
context of query optimisation. For a given number of rows y and an estimate ŷ

we calculated the q-error [22] which is defined as q(y, ŷ) = max(y,ŷ)
min(y,ŷ) .
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Fig. 3. Construction time

The advantage of the q-error is that it returns an error that is independent
of the scale of the values at hand. Moreover the q-error is symmetric will thus
be the same regardless of the fact that we are underestimating or overestimating
the cardinality. For each combination of method and sampling rate we averaged
the q-error over all 8 queries. As previously mentioned we took measurements
with different samples so to reduce any possible bias in the results. The results
are displayed in Fig. 4.

Unsurprisingly, the textbook method produces estimates that are off by sev-
eral orders of magnitude. What is more interesting is that Bayesian networks



10% 8% 5% 3% 1% 0.5% 0.1% 0.05% 0.01% 0.005%
Sampling rate

0

100

101

102

103

A
v
er

a
g
e

m
u
lt

ip
li
ca

ti
v
e

er
ro

r

Average multiplicative error per method

Textbook Bernoulli sampling Bayesian networks

Fig. 4. Average errors

are significantly better than sampling. The reason this occurs is because the
sampling method doesn’t place any uncertainty as to if a value is present in a
relation or not. A value is either in a sample or not. Meanwhile the Bayesian
networks method uses histograms to approximate the frequencies of the least
common values. This has a significant impact on the overall average, at least for
the subset of queries we chose.

4.4 Inference Time

We also measured the average time it takes to estimate the selectivity of a query.
A query optimiser has a very small amount of time to produce a query execution
plan. Only a fraction of this time can be allocated to cardinality estimation. It is
thus extremely important to produce somewhat accurate cardinality estimates
in a timely fashion. We recorded our results in Fig. 5.
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Fig. 5. Cardinality estimation time



As can be seen the main pitfall of the sampling method is that it takes a
considerable amount of time to estimate a cardinality. This is expected because
for each set of predicates a full pass has to be made on the according sample.
Whats more we didn’t even take into account the fact that the necessary samples
have to be loaded in memory beforehand. As for the textbook method, it only has
to read values from a histogram. Meanwhile the Bayesian networks method has
to extract the Steiner tree and perform variable elimination on it as explained
in Sect. 3.3. This is naturally more burdensome than simply looking up values
in a histogram, but it is still on the same order of magnitude in terms of time.

4.5 Disk Usage

Finally we measured the number of values needed to store each model. For
the sampling method each and every sample has to be stored. Meanwhile the
textbook and Bayesian networks methods are synopses and require storing a
significantly lesser amount of values. In our experiments the worse case storage
bounds of both of these methods are pessimistic. For example in our experiments,
the theoretical upper bound textbook method is around 32000 values, but only
53% of the values actually need to be stored (the other 47% are 0s). Moreover
the same occurs for the Bayesian networks method; indeed for a 5% sample only
around 300000 values out of the theoretical 400000 have to be stored. This is
due to the fact that some attributes have a very low number of unique values
which makes the associated histograms smaller than expected.

Table 5. Storage size per method using a 5% sampling rate

Size Sparsity Effective size

Textbook 117KB 47% 62KB

Sampling 412MB 0% 412MB

Bayesian network 615KB 24% 467.4 KB

The numbers presented in Table 5 were obtained by using a 5% sample of
the database. Apart from the sampling method the numbers are more or less the
same when using different sample sizes. Indeed histograms and conditional prob-
ability distributions have a fixed size which doesn’t increase with the amount of
data they synthesise. Meanwhile using sampling means that the whole has to be
stored either in memory or on the disk. We noticed that the higher the dependen-
cies between the attributes, the higher the sparsity of the conditional probability
distributions. This is expected because of soft functional dependencies that lead
the conditioned histograms to possess only a few values.

5 Conclusion

The majority of cost models are blindfolded and do not take into account
attribute dependencies. This leads to cardinality estimation errors that grow



exponentially and have a negative impact on the query execution time. To pre-
vent this we propose a novel approach based on Bayesian networks to relax the
independence assumption. In contrast to prior work also based on Bayesian net-
works we only capture dependencies inside each relation. This allows our method
to be compiled in much less time and to produce selectivity estimates in sub-
linear time. We do so by restricting the structure of the network to a tree and by
compressing each attribute’s conditional probability distributions. We ran our
method on a chosen subset of the TPC-DS benchmark and obtained satisfying
results. Our method is an order of magnitude more accurate than estimates that
assume independence, even though it doesn’t attempt to capture cross-relational
dependencies. Although our method requires storing a few two-dimensional dis-
tributions, the storage requirements are a tiny fraction of those of sampling
methods.

Like other table-level synopses, our model does not capture dependencies
between attributes of different relations. Whats more it doesn’t help in deter-
mining the size of multi-way joins. In the future we plan to work on these two
aspects of the cardinality estimation problem.
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