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Abstract—The principle of quantitative acoustic microscopy
(QAM) is to form two-dimensional acoustic parameter maps
from a collection of radiofrequency (RF) signals acquired by
raster scanning a biological sample. Despite their relatively simple
structure, i.e. two main reflections, QAM RF signals are currently
sampled at very high frequencies, e.g., at 2.5 GHz for QAM
system employing a single-element transducer with a center
frequency of 250-MHz. The use of such high sampling frequencies
is challenging because of the potentially large amount of acquired
data and the cost of the necessary analog to digital converters. In
this work, we propose a sampling scheme based on the finite rate
of innovation theory that exploits the limited numbers of degrees
of freedom of QAM RF signals and allows the reconstruction of
accurate acoustic maps from a very limited number of samples.

Index Terms—Scanning Acoustic Microscopy, finite rate of
innovation, auto-regressive model

I. INTRODUCTION

Quantitative Acoustic Microscopy (QAM) uses high fre-

quency ultrasound waves to investigate the mechanical prop-

erties of biological tissues at microscopic scale [1]–[4]. Cur-

rently, the acquisition process in QAM requires a raster scan of

the sample, resulting into a large amount of RF data acquired

by transmitting short ultrasound pulses into a thin section

of soft tissue affixed to a microscopy slide. At each spatial

position, the received RF echo consists of two main reflections

due to the water-tissue and tissue-glass interfaces. These

reflections are time shifted, frequency attenuated linearly, and

scaled versions of a reference reflection signal obtained from

a water-glass interface. Two-dimensional (2D) acoustic maps

are thus estimated from an RF data cube using for example

an autoregressive (AR) model for each RF signal [5].

Despite their limited degrees of freedom, QAM RF signals

are currently sampled beyond the Nyquist rate (i.e. approxi-

mately 800 MHz) at 2.5 GHz for 250-MHz scanners extending

from 100 to 400 MHz. This results in a number of practical

issues, such as a large amount of acquired data or the cost and

the complexity of the A/D converters. In our previous study

in [6], we demonstrated that adapting the compressive sensing

framework to QAM in the spatial domain allows to drastically

decrease the amount of acquired data. In this work, we propose

a sampling scheme in the temporal domain able to reduce

drastically the number of samples per RF signal required to

reconstruct accurate acoustic maps in QAM. The proposed

approach is based on the finite rate of innovation (FRI) theory

[7], that provides theoretical guarantees for reconstructing FRI

signals, i.e. described by a limited number of parameters, from

a small number of samples acquired at the innovation rate.

Interestingly, it has been shown that such a reconstruction is

even possible in the case of non-bandlimited signals such as

stream of Diracs [7].

The proposed sampling and reconstruction methods for

QAM RF signals is evaluated on experimental data obtained

from an excised lymph node of a breast cancer patient. The

resulting 2D speed of sound maps are compared to those

classically computed from the fully sample RF data cubes.

We thus show that the sampling frequency currently used in

SAM can be reduced by a factor of 15 (i.e., 20.3% of Nyquist

rate) without degrading the quality of the 2D acoustic maps.

The remainder of this paper is structured as follows. Sec-

tion II gives a brief background on sampling and reconstruc-

tion of FRI signals. Section III introduces the FRI model

proposed for QAM, as well as the AR estimator used to

compute acoustic parameters. Simulation results are reported

in Section IV, before concluding the paper in Section V.

II. BASICS OF FRI SIGNAL SAMPLING AND

RECONSTRUCTION

Signals with a limited number of degrees of freedom occur

in various applications such as astronomy, radar or ultrasound

imaging [8]–[12]. Commonly called signals with FRI, they

have the following τ -periodic parametric form:

x(t) =
∑

k∈Z

L
∑

l=1

alh(t− tl − kτ), (1)

where h(t) is a possibly non-bandlimited pulse considered

known and repeated at times tl and scaled by the amplitudes

al. Starting from the seminal paper of Vetterli et al. [7], a

rich literature exists on the reconstruction of these type of

signals from a limited number of samples. In contrast to the

classical sampling theory based on the well-known Shannon-

Nyquist theorem that relates the number of samples required

to the signal bandwidth, the number of measurements required



for FRI signals is dictated by the rate of innovation, i.e. the

number of parameters defining x(t) over one period. Inter-

estingely, it has thus been shown that even non-bandlimited

signals such as streams of Diracs can be accurately recon-

structed from a limited number of samples [7]. The sampling

and reconstruction process typically consists in (i) properly

choosing a sampling kernel (e.g., sum of sinc functions in the

frequency domain [12]), (ii) uniform sampling, (iii) computing

Fourier series coefficients from the acquired samples and (iv)

estimating the unknown time delays and amplitudes that allows

the perfect reconstruction of the FRI signal. The latter is

commonly achieved using the annihilating filter [13], [14], able

to estimate the signal’s degrees of freedom from the critical

number of sample, i.e. 2L for the model in (1).

III. QAM RECONSTRUCTION FROM SAMPLES AT

INNOVATION RATE

A. Signal model

In QAM, RF signals consists of two main reflections

due the water-tissue and tissue-glass interfaces. They can be

thus modeled by the sum of two time-delayed, frequency-

dependent attenuated version of a reference RF pulse [5]. The

non-attenuated reference pulse, denoted by h hereafter and

assumed to be known, is commonly measured on the same

time as the sample scanning, from a region without sample,

i.e. presenting only one water-glass interface. As in most of

the existing works, the attenuation is considered herein to vary

linearly with the frequency. Written in a τ -periodic version,

the QAM RF signal model is as follows:

x(t) =
∑

m∈Z

2
∑

l=1

alh
(l)(t− tl −mτ)

=
∑

k∈Z

{

1

τ
H
[2πk

τ

]

2
∑

l=1

ale
−j2πktl−2πkβl

τ

}

e
j2πkt

τ (2)

∆
=

∑

k∈Z

X [k] e
j2πkt

τ ,

where h(l) are frequency-dependent attenuated versions of the

reference pulse h, βl are the frequency attenuation coefficients,

al are the amplitudes, tl the time delays, H is the continuous

time Fourier transform of h and k is the frequency variable.

Without loss of generality, we assume herein β1 equal to 0.

Thus, the unknown parameters are a1, a2, t1, t2 and β2. Note

that compared to the model in (1), the QAM model has an ad-

ditional degree of freedom related to the frequency-dependent

attenuation. In (2), the last line represents the Fourier series

expansion of x(t), with X [k] the Fourier series coefficients.

By identification, one can easily relate X [k] to the unknown

parameters, i.e. X [k] = 1
τ
H [2πk/τ ]

∑2
l=1 ale

−j2πktl−2πkβl
τ .

B. Sampling procedure

The sampling procedure used in this work is similar to the

one proposed in [12]. The main idea is to sample uniformly

the demodulated QAM signal using a finite support Sum of

Sincs (SoS) sampling kernel and to relate these sample through

(a) (b)

Fig. 1. Example of SoS sampling kernel in temporal and frequency domain.

a linear model to the Fourier series coefficients X [k]. In the

Fourier domain, the SoS sampling kernel (denoted by g(t) in

the time domain) is given by

G(ω) =
τ√
2π

∑

k∈Z

bksinc

(

ω
2π
τ

− k

)

, (3)

where bk is a smoothing window (Hamming window was used

in our experiments). An example of SoS sampling kernel is

shown in Fig. 1, in both the temporal and frequency domains.

We denote by c[n] the sampled version of x(t) with the

sampling kernel g(t) and a sampling period T :

c[n] =

∫ ∞

−∞

x(t)g∗(t− nT )dt = 〈g(t− nT ), x(t)〉

=
∑

k∈Z

X [k]e
j2πknT

τ G∗
[2πk

τ

] (4)

One may observe that if the sampling frequency and the

sampling kernel are chosen properly so that G∗
[

2πk
τ

]

is

different from zero only for a finite number of 2πk
τ

values,

than the sum in (4) becomes finite. Thus, the Fourier series

coefficients X [k] can be computed from the digital samples

c[n] by applying the inverse of a correction matrix to the

discrete Fourier transform of c[n] (see [12] for more details).

C. Reconstruction method

The computation of the acoustic parameters is based on the

estimation of the amplitudes, delays and frequency attenuation

coefficients given in the QAM model (2). The estimation of

the latter is obtained from the Fourier series coefficients X [k]
through an AR model as suggested in [5]. Defining by Nk the

ratio between X [k] and H [2πk/τ ], we obtain:

Nk =

2
∑

l=1

ale
{2π∆f [−βl−jtl]}

k
=

2
∑

l=1

alλ
k
l , (5)

where ∆f is the frequency spacing and λl stands for

exp{2π∆f [−βl − jtl]}. Denoting by εk the error term and

by sf the AR coefficients, the AR model for QAM proposed

in [5] is:

Nk =

2
∑

l=1

slNk−l + ǫk (6)



The coefficient of the AR model are found using our inverse

model and the acoustic parameters are directly estimates from

the AR parameters as in [5]. For instance, the speed of sound,

c, is estimated using:

c = cw
imag(log(λi1 ))

imag(log(λi1)) + imag(log(λi2 ))
, (7)

where cw is the speed of sound in the coupling medium (i.e.,

water). Eq. (7) is derived from first principles by converting

the phase differences between the reference pulse and each

reflection in the time domain [5].

IV. RESULTS

In this section, the sampling process is firstly illustrated, fol-

lowed by its qualitative and quantitative validation in achieving

reliable 2D acoustic parameter maps.

A. Example of QAM RF signal sampling at innovation rate

In this section we illustrate the sampling procedure of a

QAM RF signal at the innovation rate. The reference signal in

Fig. 2(a) was obtained by averaging 25 neighboring RF signal

selected from a region void of sample. It thus consists in only

one reflection from the water-glass interface. In contrast to

this reference RF signal, the RF QAM signals reflected by the

tissue sample consist of two reflections, as shown in Fig. 2(a).

In addition, the time delays between the reference signal and

two reflections of the QAM signal result from the variation of

the speed of sound during the flight within the different media.

The sampling procedure, which consists of demodulation, SoS

filtering and uniform sampling, was designed to give access to

Fourier coefficients in the 6dB bandwidth highlighted in Fig.

2(b). The resulting samples denoted by c[n] in the previous

section, 13 of them in this example, are shown in Fig. 2(c-d)

for the real and complex part of the sampled signal.

B. Acoustic parameter maps

In this section, we evaluate the quality of the 2D acoustic

maps reconstructed from QAM RF signals sampled following

the proposed scheme against the ones estimated from fully

sampled RF data cubes. Note that only the speed of sound is

considered in this paper, but the results are similar for other

parameters such as the acoustic impedance or the acoustic

attenuation. The experiment was based on data acquired from

an ex vivo lymph node sample obtained from a breast-cancer

patient, with a QAM system operating at 250 MHz center

frequency. The fully sampled volume was obtained by sam-

pling each RF signal at 2.5 GHz, yielding 200 samples at each

scan location. The spatial raster scanning step was 2 by 2µm,

resulting into a data cube of size 1000×600×200 samples. The

same data was sampled using the proposed method with the

same spatial step size but with temporal sampling frequencies

of 162.5 MHz, 137.5 MHz and 112.5 MHz, corresponding

to respectively 13, 11 and 9 samples per QAM RF signal.

These correspond to 20.3%, 17.2% and 14.1% of Nyquist rate

(800 MHz) of the RF signal respectively. Fig. 3 illustrates the

2D speed of sound maps obtained from the four data cubes.

(a) (b)

(c) (d)

Fig. 2. (a) Example of QAM RF signals in the time domain, (b) Fourier
transform of the reference signal in (a) highlighting the 6db bandwidth, (c)
real and (d) imaginary parts of the demodulated sampled signal using SoS
sampling kernel.

Number of samples 13 11 9

Sampling frequency (MHz) 162.5 137.5 112.5

Fraction of Nyquist rate in % 20.3 17.2 14.1

NRMSE 0.142 0.183 0.195

PSNR (dB) 32.05 29.82 29.28

TABLE I
QUANTITATIVE RESULTS COMPUTED BETWEEN THE SOS MAP FROM

FULLY SAMPLED RF DATA CUBE AND THOSE OBTAINED FROM QAM RF
SIGNAL SAMPLED AT LOW RATES: 162.5 MHZ (13 SAMPLES PER RF

SIGNAL), 137.5 MHZ (11 SAMPLES PER RF SIGNAL) AND 112.5 MHZ (9
SAMPLES PER RF SIGNAL).

In spite of the much lower sampling rate, no salient visual

difference exists between the 2D maps, except for a moderate

degradation visible in the 2D maps reconstructed from only 9

samples per RF signal. These observations are quantitatively

confirmed by standard quality metrics (i.e., normalized root

mean square error and peak signal to noise ratio) shown in

Table I.

V. CONCLUSIONS

The objective of this work was to combine a low rate RF

signal sampling procedure with an AR model-based para-

metric acoustic map reconstruction in QAM imaging. Both

approaches were based on a parametric modelisation of the

QAM RF signals with a limited number of degrees of freedom,

the amplitudes, delays and frequency-dependent attenuation

coefficients. We show encouraging results proving that 2D

acoustic maps can be reconstructed despite sampling frequen-

cies more than 15 times lower than the one classically used

within existing imaging systems and more than 5 times lower

than required by the Nyquist criterion. Thus, the proposed

framework could significantly reduce costs and experimental



(a) (b) (c) (d)

Fig. 3. Two-dimensional speed of sound maps obtained from complete data (a), our FRI approach with sampling frequency of 162.5 MHz (b), 137.5 MHz
(c), and 112.5 MHz (d). Quantitative accuracy measurements computed from these speed of sound maps are given in Tab. I.

challenges in current QAM systems because of the current

need for ultra-precise and fast sampling cards.
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