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ABSTRACT

This paper studies a new ultrasound image restoration method

based on a non-linear forward model. A Hammerstein polynomial-

based non-linear image formation model is considered to identify

the system impulse response in baseband and around the second har-

monic. The identification process is followed by a joint deconvolu-

tion technique minimizing an appropriate cost function. This cost

function is constructed from two data fidelity terms exploiting the

linear and non-linear model components, penalized by an additive

ℓ1-norm regularization enforcing sparsity of the solution. An alter-

nating optimization approach is considered to minimize the penal-

ized cost function, allowing the tissue reflectivity function to be esti-

mated. Results on synthetic ultrasound images are finally presented

to evaluate the algorithm performance.

Index Terms— non-linear model, system identification, har-

monic ultrasonic imaging, optimization, ADMM, polynomial Ham-

merstein model, deconvolution.

1. INTRODUCTION

Ultrasound (US) imaging is an effective, low cost, harmless and non-

invasive medical imaging modality [1]. It is therefore widely used

for clinical diagnosis (mainly for soft tissue applications related to

cardiovascular and various cancers), blood flow velocity assessment

and obstetrics. However, because of instrumentation constraints, US

images suffer from a relatively low contrast, reduced spatial reso-

lution and signal-to-noise ratio. Specifically, US images are con-

taminated by an intrinsic noise called speckle, which appears as a

granular texture in the image. It is well known that speckle deeply

reduces the general image quality in terms of contrast and resolu-

tion and increases the margin of inaccuracy in diagnostic analysis.

Improving US image quality through post-processing image restora-

tion techniques is therefore an important research area. Note that

instrumentation approaches or pre-processing methods such as non-

conventional beamformers have been also explored in the context

of US [2]. In addition to the aforementioned limitations of ultra-

sound imaging, the propagation of ultrasound in many tissues is

non-linear. Consequently, the resulting signals are combination of

linear and non-linear components. This paper explores a deconvo-

lution approach based on a new non-linear image formation model.

This model is able to express different degrees of nonlinearity gen-

erated by the tissues themselves or by ultrasound contrast agents [3].

Most of the existing US image restoration methods use the first or-

der Born approximation and consequently assume that the tissue re-

flectivity function (TRF) is related to the US radiofrequency (RF)

image through a 2D convolution with the system point spread func-

tion (PSF) [4–7]. However, this forward model widely explored in

the literature does not exploit the non-linear relationships that can

exist between the unknown TRF and the observed image. We pro-

pose herein a new image restoration method originating from a study

of non-linear ultrasonic wave propagation in a medium [1]. More

specifically, we investigate a different perspective for US image de-

convolution, i.e., we estimate the TRF by eliminating the contribu-

tion of the system excitation and the PSF using a non-linear image

formation model. The non-linearity considered in this work results

from a polynomial Hammerstein model allowing PSF identification.

More specifically, we focus in this paper on identification methods

for a generalized polynomial Hammerstein model based on an expo-

nential swept-sine input signal, allowing one-path estimation of the

unknown linear filters. This identification method, originally pro-

posed by Farina et al. [8] and further explored by Novak et al. [9]

and Rebillat et al. [10], allows the TRF of the explored medium to

be estimated. The proposed estimation method optimizes a joint

cost function based on both the linear and non-linear components

of the model using the alternating direction method of multipliers

(ADMM). The remainder of the paper is organized as follows. Sec-

tion 2 describes the non-linear model considered in this study and

the corresponding parameter identification approach. Section 3 in-

troduces the proposed image restoration framework and the corre-

sponding ADMM algorithm. Simulation results are reported in Sec-

tion 4 before concluding the paper.

2. PROBLEM STATEMENT

2.1. Nonlinear Model

The use of non-linear models in US imaging is mainly motivated

by the strong non-linearities that are caused by the interaction be-

tween the US waves and some particular tissues. Therefore, several

non-linear models can be found in the literature for non-linear US

simulation [11] or for the analysis of US images, such as Volterra se-

ries [12], neural networks [13] or Hammerstein models [14]. These

models depend on unknown parameters or kernels to be estimated

from the data. In this paper, we use the non-parametric general-

ized polynomial Hammerstein model due to its generic structure:

this non-linear system can be represented by N parallel branches,

each branch being composed of a non-linear static polynomial ele-

ment followed by a linear impulse response block. All branches have

a common excitation x(t). The relationship between the input x(t)
and the output y(t) is given hereafter

y(t) =
N∑

n=1

gn(t) ∗ xn(t) (1)



where ∗ denotes convolution and gn(t) is the impulse response of

the nth branch. In this work, gn(t) includes both the system PSF

at the corresponding order n and the TRF representing the true im-

aged field topography. In this work, the number of system branches

is limited to two, i.e., a linear component resulting from the linear

image formation model and a second one associated with the first

harmonic resulting from the non-linear interactions in the field. For

N = 2 and taking into account the transducer’s limited bandwidth

(both in reception and emission), the model in (1) can be reformu-

lated as

y(t) = x(t) ∗ g1(t) + x
2(t) ∗ g2(t) + n(t) (2)

where g1(t) and g2(t) are the system impulse response in baseband

and arround the first harmonic and n(t) is an additive white Gaus-

sian noise (AWGN). A schematic representation of the model in (2)

is shown in Fig. 1.

Fig. 1. Schematic representation of the non-linear generalized polynomial

Hammerstein model considered in this work.

2.2. System identification

This work assumes that the excitation x(t) is known such that the

identification process only concerns the estimation of g1(t) and

g2(t) from y(t) and x(t). The estimation of the model impulse

responses in (2) has been already explored in the literature and de-

pends on the nature of the excitation x(t) (see, e.g, [15] for a sine

wave excitation or [16] for a random excitation). Assuming the

model input x(t) is known and observing the output signal y(t),
the identification approach used herein is based on the convolution

between the output of the non-linear system and the inverse filter

associated with the input. This work focuses on a swept-sine signal

x(t). In this case, the identification process has an analytical solu-

tion obtained from the instantaneous frequency step parametrization

during one time step [9,10,17]. The analytical inverse filter, denoted

by x̂(t), is a matched filter, i.e., the time-reversed signal associated

with the input x(t). As explained in [9], the convolution between

the system output y(t) and the estimated input x̂(t) allows the

excitation x(t) to be removed from (2). Indeed, the result of this

so-called "non-linear convolution" can be written

z(t) = y(t) ∗ x̂(t) =
2∑

n=1

gn(t + ∆tn) (3)

where ∆tn is the temporal gap between the non-linear impulse re-

sponse (IR) (n = 2) and the fundamental IR (n = 1). One of the

main advantages of this convolution is that it allows the system IRs

to be estimated in one path, i.e., the result of the convolution is a set

of IRs separated in time with a delay ∆tn. This separation allows

the IRs of the two branches g1(t) and g2(t) to be estimated after

time windowing. The two estimated IRs are then used in the next

section for estimating the TRF of the US image.

3. ULTRASOUND IMAGE DECONVOLUTION

The non-linear model and its identification presented in Section 2

have been included in a US image deconvolution framework allow-

ing the system excitation and the PSF to be separated from the TRF.

The proposed TRF restoration method follows two steps. First, the

excitation is eliminated through the identification presented in Sec-

tion 2.2. In a second step, a deconvolution procedure cancelling the

effect of the PSF is processed. The proposed deconvolution method

combines two data fidelity terms, related to the two branches (fun-

damental and first harmonic) of the non-linear propagation model.

A time windowing operation is used to separate the two system IRs

and form the two RF signals. The envelops of these two signals are

computed for each column of the image and are concatenated into

two vectors g1 ∈ R
N×1 and g2 ∈ R

N×1 representing the linear

and non-linear image components (where N is the number of image

pixels). The proposed deconvolution method assumes that the two

vectors g1 and g2 are related with the unknown TRF r ∈ R
N×1

by convolutions with h1 and h2 associated with the system 2D PSF

in baseband (linear propagation) and around the first harmonic (non-

linear propagation). The optimization problem related to image de-

convolution can then be formulated as the minimization of the sum

of three terms: two data fidelity terms associated with g1 and g2
and an ℓ1-norm regularization. Note that the ℓ1-norm is a common

choice in order to promote a sparse solution and was used in sev-

eral applications including US image restoration [18,19]. We finally

have to solve the following problem

min
r

1

2
‖g1 −H1r‖

2
2 +

1

2
‖g2 −H2r‖

2
2 + µ‖r‖1 (4)

where H1,H2 ∈ R
N×N are two 2D convolution matrices corre-

sponding to the convolutions between the unknown TRF r with h1
and h2. In this paper, the classical assumption of cyclic boundary

condition for 2D convolution is considered, i.e., H1 and H2 are

block circulant matrices with circulant blocks. We also assume that

the TRFs associated with the linear and non-linear components g1
and g2 are the same as in [20]. To solve (4), we use the alternating

direction method of multipliers (ADMM) whose principles can be

found in [21, 22]. The ADMM is able to solve the following prob-

lem

min
u,v

f1(u) + f2(v)

s.t. Au + Bv = c (5)

where f1 and f2 are closed convex functions and A,B and u,v, c
are matrices and vectors of correct sizes. The ADMM is iteratively

alternating minimizations over the variables u and v [22]

For k = 0, . . .
uk+1 ∈ argminu LA(u,v(k),λ(k))

vk+1 ∈ argminv LA(u(k+1),v,λ(k))

λ(k+1) = λ(k) + β(Au(k+1) + Bv(k+1) − c)

(6)

where LA(u,v,λ) is the augmented Lagrangian function related to

the optimization problem in (5), β is the penalty parameter for the

linear constraint, and λ is the Lagrangian multiplier attached to the

linear constraints. The following parametrization is chosen in order

to transform (4) into (5)





f1(u) =
1

2

2∑

n=1

‖gn −Hnu‖
2
2, f2(v) = µ‖v‖1

A = IN ,B = −IN , c = 0N

(7)

with IN the identity matrix of sizeN×N and 0N a vector containing

N zeroes. The augmented Lagrangian associated with (4) is

LA(u,v,λ) = f1(u) + f2(v) +
β

2
‖u− v − λ/β‖22. (8)



The solution of this problem can be iteratively reformulated using

the following three steps.

Step 1: Update u

u
k+1 ∈ argmin

u

1

2

2∑

n=1

‖gn−Hnu‖
2
2+

β

2
‖u−v

k−λ
k/β‖22. (9)

This step admits an analytical solution implemented in practice in

the Fourier domain (denoted by F ), as shown below

u
k+1 = F−1

{
F

{
HT

1 g1 + HT
2 g2 + βvk − λk

}

F∗ {h1}F {h1} + F∗ {h2}F {h2} + βIN

}

.

(10)

Step 2: Update v

v
k+1 ∈ argmin

v

µ‖v‖1 +
β

2
‖uk+1 − v − λ

k/β‖22. (11)

The solution for (11) can be obtained using the classical soft-

thresholding operator (denoted as soft [5]), leading to

v
k+1 = softµ‖v‖1

β

(v + λ
k/β). (12)

Step 3: Update of the Lagrangian operator λ

λ
k+1 = λ

k + β(uk+1 + v
k+1). (13)

4. SIMULATION RESULTS

4.1. System identification

We analyze in this subsection the capability of seperating two im-

pulses responses g1(t) and g2(t) following (3). For illustration pur-
pose, we considered an exponential swept-sine excitation, i.e., an

exponential chirp with starting frequency f1 = 1MHz and stopping
frequency f2 = 10MHz and two impulse responses g1(t) and g2(t)
to be estimated. The output of the non-linear system has been gen-

erated by convolution between a column of the TRF image in Fig.

3 (a) and two PSFs in baseband and around the first harmonic. The

central frequency was fixed at f0 = 3.5MHz. The identification

process discussed in Section 2.2 allows the two time-shifted IRs to

be estimated in one path, as illustrated in Fig. 2 showing a typical

example of non-linear convolution signal z(t). Note that the time

shift ∆t2 − ∆t1 represents a controllable transition parameter from

f1 to 2f1 for the instantaneous frequency of the exponential chirp.

After identification of g1(t) and g2(t), these functions are used to

form the cost function f1(u) in (7) in order to estimate the unknown

TRF.

Fig. 2. Example of non-linear convolution z(t), where the two IRs g1(t)
and g2(t) are well separated (with a separation of∆t2 −∆t1) allowing the

linear and non-linear components to be estimated.

4.2. Image restoration

The proposed non-linear model-based deconvolution method was

tested on simulated data with a controlled ground truth TRF. US

images, g1 and g2, were obtained by 2D convolution between two

spatially invariant US PSF (in baseband and around the first har-

monic, with baseband and harmonic frequencies f0 = 3.5MHz
and 2f0 = 7MHz) and the TRF. The TRF corresponds here to

a simple medium representing three round hypoechoic inclusions

into a homogeneous medium. The pixels located inside and out-

side the inclusion were generated independently according general-

ized Gaussian distributions (GGDs) with different parameters. The

images were finally contaminated by an AWGN corresponding to

a blurred-signal-to-noise ratio of 40 dB. The results obtained using

the proposed method are compared to those obtained by a classical

linear deconvolution method, having as input a non-linear forward

model controlled by a parameter α that determines the degree of

non-linearity of the input. Specifically, α is defined by

α =
‖g2‖

2
2

‖g1‖22
. (14)

In this case, the optimization problem becomes

min
r

1

2
‖s−H1r‖

2
2 + µ‖r‖1 (15)

where s ∈ RN×1 is a weighted sum (depending on α) between the

linear and the non-linear images g1 and g2. The TRF, baseband

PSF and first harmonic PSF are shown in Figs. 3 (a, b, c) respec-

tively. Figs. 4 (a, b) show the simulated observed B-mode image

(log-compressed envelope image of the corresponding beamformed

RF image commonly used for visualization purpose in US imaging)

obtained from the TRF convolved with the two PSFs in baseband

and arround the first harmonic respectively. The estimated TRF us-

ing the classical US image restoration approach following (15) is

shown in Fig. 4 (c) (for α = 0.01). Fig. 4 (d) displays the estimated

TRF using the proposed method. The quality of the deconvolution

can be appreciated by comparing the estimated TRFs obtained with

the two methods. The density of the estimated TRF inside the inclu-

sions is higher with the proposed method. Visual results are com-

plemented by quantitative performance measures, i.e., by the struc-

tural similarity (SSIM) [23] and the NRMSE (see Table 1). The

proposed method provides estimates of the imaged medium’s reflec-

tivity that are closer to the reference image while taking advantage

of the blurred data corresponding to the linear and the non-linear

branches of the considered model.

(a)

(b) (c)

Fig. 3. (a) TRF phantom, (b, c) US PSF in baseband frequency and around

the first harmonic (with baseband frequency f0 = 3.5MHz).



(a) (b)

(c) (d)

Fig. 4. (a, b) Blurred image with baseband and first harmonic PSF, (c)

Estimated TRF using the classical approach for β = 0.0012, µ = σ2 and

α = 0.01, (d) Estimated TRF using the proposed method.

Index α SSIM(%) NRMSE(%)

Proposed method - 97.10 0.68

Classical method [19]

0 97.16 0.69

0.01 97.05 0.69

0.05 93.22 0.87

0.1 83.14 1.38

0.5 32.55 7.01

Table 1. Performance measures for different values of the degree of

non-linearity α
.

5. CONCLUSION

In presence of non-linearities affecting a medium of interest, stan-

dard linear image processing techniques can have serious limitations

leading to image anomalies. The origin of these anomalies is due to

the fact that linear models cannot explain the non-linear interactions

between the imaged medium and the observed image. This paper

showed the interest of considering non-linear models and dedicated

image processing strategies to estimate the tissue reflectivity from

an ultrasound image. Our results are encouraging and open up new

prospects. Future works will be devoted to apply the proposed ap-

proach to in vivo data taking into consideration that the reflectivity

depends on the type of the interaction between the tissues and the

beamformed waves. It would be also interesting to consider blind

deconvolution methods allowing a spatially variant PSF to be esti-

mated.
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