
Viruses of the genus Ranavirus (family Iridoviridae) 
present a considerable disease risk to ectothermic 
vertebrates globally (Gray and Chinchar, 2015). They 
have a wide range of susceptible hosts and infect at least 
175 species across 52 families of fish, amphibians and 
reptiles (Price et al., 2017). Ranaviruses are often highly 
virulent and cause systemic infections in amphibians. In 
Europe the emergence of the pathogen is dated back to 
the early 1990s (i.e. Fijan et al., 1991; Cunningham et 
al., 1996) and in the last decades it was responsible for 
several disease outbreaks in the continent in amphibians. 
The spreading of the ranaviral associated diseases across 
Europe may be enhanced by the international trade of 
the potentially infected amphibians as it was assessed in 
the United States of America by Schloegel et al. (2009) 
and other human activities (Price et al. 2016). 

Hungary is situated in the Carpathian Basin, a region 
with high amphibian diversity due to different climatic 
and zoogeographical influences (Vörös et al., 2014). 
Previous studies reported the presence of different 

Ranavirus strains which infected fish species and 
resulted in mass mortality events (e.g. Juhász et al., 
2013; Fehér et al., 2016); however, our knowledge 
about the prevalence between amphibians in the country 
is missing. Here we present a study which aimed to 
conduct a countrywide survey in order to assess the 
prevalence of this emerging pathogen across amphibian 
species and populations in Hungary.

To screen for ranaviruses, we used DNA samples 
extracted from tail or toe clips belonging to 137 
individuals from 8 different amphibian species, 
hosted by the Collection of Genetic Resources of the 
Hungarian Natural History Museum (Fig. 1., Table 1.). 
These samples were collected for phylogeographic and 
population genetic studies (Vörös et al., 2006; Recuero 
et al., 2012; Vörös et al., 2017; Herczeg et al., 2017), 
and were stored in -80 °C. In all cases DNeasy Blood 
and Tissue Kit (Qiagen, Hilden, Germany) was used 
for DNA extraction, following the manufacturer’s 
protocol. Quantitative PCR (qPCR) was performed in 
the MNCN-CSIC lab (Madrid, Spain) following Leung 
et al. (2017) on a MyGo Mini qPCR machine. Negative 
controls and standards with known concentrations of 
ranaviruses were used in each plate (see Leung et al., 
2017). Only the presence or absence of Ranavirus was 
considered, and samples were assigned as positive 
when cycle threshold (CT) was lower than 41.5 and the 
amplification curves presented a robust sigmoidal shape. 
95% confidence intervals of Ranavirus prevalence were 
calculated with Quantitative Parasitology 3.0 (Rózsa et 
al., 2000). Among the 137 analysed individuals 40 tested 
positive for ranaviruses, and the overall prevalence was 
29.2 % (95 % CI: 0.220-0.375). We found Ranavirus 
infection in 5 out of the 8 tested amphibian species 
(Fig. 1, Table 1). The Danube crested newt, Triturus 
dobrogicus (47.4 %; 95 % CI: 0.344-0.605) showed the 
highest prevalence on the species level, in contrast the 
lowest prevalence was experienced in the Marsh frog, 
Pelophylax ridibundus (14.3 %; 95% CI: 0.007-0.554). 
The Common toad, Bufo bufo (33.3 %; 95 % CI: 0.122-
0.629) showed higher prevalence compared to the Fire 
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salamander, Salamandra salamandra (26.9 %; 95 % 
CI: 0.128-0.465) and the Italian crested newt, Triturus 
carnifex (16.7 %; 95 % CI: 0.008-0.599). The detailed 
prevalence per locality is listed in Table 1. 

Here we report the first detection of Ranavirus 
occurrence on amphibians in Central-Eastern Europe. 
While Ranavirus infection caused mass mortalities 
in several countries in Western Europe, the infected 
animals found in Hungary did not show any clinical 
signs of ranavirosis. However, ranaviral infections can 
be sometimes sub-clinical, and certain species may 
serve as natural reservoir hosts (Lesbarrèrres et al., 
2012; Saucedo et al., 2019). The same phenomenon 
was experienced when studying distribution of the 
chytrid fungus Batrachochytrium dendrobatidis (Bd) 
in Hungary (Vörös et al., 2018). Prevalence of Bd 
was 7.46 % on average in the country, but neither Bd-
linked mortalities nor clinical symptoms have been 
associated to the presence of the fungus. Ranaviruses 
are multi-host pathogens that may play a crucial role 
in their range expansion. Accordingly, the distribution 

of ranaviral pathogens in Europe might be much wider 
than it was previously expected. Their occurrence could 
be rather common but outbreaks and mass mortalities 
are rare phenomenon and always exclusively mediated 
by an external cofactor such as human pollution or 
climate change linked to increase of temperature. Price 
et al. (2019) showed a positive effect of temperature 
on the occurrence and severity of ranavirosis in Rana 
temporaria in the United Kingdom, concluding that 
climate warming could have a critical impact on the 
survival of amphibian populations. Although, survival 
of the host depends on many factors, such as life 
history characteristics (Brunner et al., 2005), virus 
dosage (Brunner et al., 2005; Forzán et al., 2015) or 
the composition of skin microbiome (Campbell et al., 
2019).

Within the frame of this study genetic origin of 
Ranavirus found in amphibians was not aimed to be 
determined. Nonetheless, whole genome sequencing 
of Ranavirus isolates from brown bullhead (Ameiurus 
nebulosus) captured at the northern Danube river 

Figure 1. Spatial distribution of sampling sites in Hungary. Circles indicating the sampling locations in which Ranavirus presence 
is marked with red circles while when Ranavirus was not detected is indicated with black circles. N = Sample size of each species 
collected. Pie charts are representing the proportion of positive (red) – negative (white) samples. Illustrations courtesy of Márton 
Zsoldos.
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Table 1. Prevalence of Ranavirus-infected amphibian species in Hungary. Loc = locality in Fig. 1.; CT = cycle threshold; Prev = 
prevalence; CI = confidence intervals, Lat = latitude, Long = longitude.Table 1. Prevalence of Ranavirus-infected amphibian species in Hungary. Loc = locality in Fig. 1.; CT = cycle threshold; 

Prev = prevalence; CI = confidence intervals, Lat = latitude, Long = longitude.                                                                                            
 

Loc Species Sampled 
(infected) 

CT (range) Prev (95% CI) Lat Long 

1 Triturus carnifex 2 (0)   46.9131 16.1920 

2 Triturus carnifex 3 (1) 40.4 33.3 % (0.017-0.864) 46.8648 16.3400 

3 Bufo bufo 1 (0)   46.8998 16.4648 

4 Bufo bufo 1 (1) 40.9 100% (0.050-1.000) 46.9671 16.5082 

5 Triturus dobrogicus 1 (1) 40.1 100% (0.050-1.000) 47.0996 16.6155 

 Triturus carnifex 1 (0)   47.0996 16.6155 

6 Bombina variegata 6 (0)   47.3566 16.5087 

7 Triturus dobrogicus 2 (2) 38.3-39.3 100% (0.223-1.000) 46.6490 17.1631 

8 Triturus dobrogicus 2 (2) 39.8-40.4 100% (0.223-1.000) 46.2252 17.0628 

     46.2252 17.0628 

9 Bufo bufo 1 (1) 41.0 100% (0.050-1.000) 47.3531 17.7791 

10 Bufo bufo 1 (0)   47.2687 17.6948 

11 Bombina variegata 1 (0)   47.1830 17.6826 

12 Bombina variegata 1 (0)   47.2937 17.7520 

13 Bufo bufo 2 (0)   47.0095 17.6303 

 Triturus dobrogicus 2 (0)   47.0095 17.6303 

14 Triturus dobrogicus 6 (2) 38.6-40.0 33.3 % (0.062-0.728) 46.9172 17.8647 

15 Bufo bufo 1 (0)   46.9092 17.8492 

16 Bufo bufo 1 (0)   46.0932 18.1414 

17 Bombina variegata 2 (0)   46.2150 18.6115 

 Bufo bufo 2 (2) 39.5-40.3 100% (0.223-1.000) 46.2150 18.6115 

18 Triturus dobrogicus 1 (1) 38.1 100% (0.050-1.000) 47.2706 18.7272 

19 Bombina bombina 2 (0)   46.9686 18.9495 

     46.9686 18.9495 

20 Triturus dobrogicus 2 (0)   46.7159 19.3910 

     46.7159 19.3910 

21 Triturus dobrogicus 9 (4) 38.9-40.3 44.4 % (0.168-0.748) 47.0673 19.2851 

22 Triturus dobrogicus 9 (4) 37.3-40.9 44.4 % (0.168-0.748) 47.2760 19.2119 

23 Salamandra salamandra 10 (3) 39.7-41.4 30% (0.087-0.619) 47.5700 18.9400 

24 Salamandra salamandra 3 (0)   47.7600 18.9100 

25 Salamandra salamandra 4 (1) 40.7 25% (0.012-0.751) 47.8898 18.9813 

26 Bombina variegata 4 (0)   47.7200 19.0600 

27 Salamandra salamandra 5 (0)   47.9900 19.5100 

28 Salamandra salamandra 2 (2) 39.6-41.5 100% 47.9000 20.0500 

29 Triturus dobrogicus 10 (5) 39.7-40.2 50% (0.222-0.777) 48.4731 20.5428 

30 Bufo bufo 1 (0)   48.3958 20.7411 

31 Salamandra salamandra 1 (1) 39.3 100% (0.050-1.000) 48.5528 21.4527 

32 Triturus dobrogicus 9 (4) 39.2-40.1 44.4 % (0.168-0.748) 48.3678 21.5758 

33 Salamandra salamandra 1 (0)   48.3212 21.2530 

34 Bufo bufo 1 (0)   48.3141 21.3347 

35 Pelophylax esculentus 8 (0)   47.6208 21.0767 

     47.6208 21.0767 35 Pelophylax ridibundus 2 (0)   47.4453 21.1697 

36 Pelophylax esculentus 5 (0)   47.4453 21.1697 

36 Pelophylax ridibundus 5 (1) 41.1 20% (0.01-0.657) 46.4708 20.6235 

37 Triturus dobrogicus 4 (2) 38.2-41.1 50% (0.089-0.902) 46.9131 16.1920 

Total 137 (40)      
 



section and the southern Tisza river section in Hungary 
detected European sheatfish virus (ESV)-like strains 
(Fehér et al., 2016). However, this strain has not been 
detected yet among amphibians. Ranaviral pathogens 
infecting amphibians, e.g. Common midwife toad virus 
(CMTV)-like, are spreading in Europe (Price et al., 
2014), furthermore the Andaran Alytes obstetricians 
virus (AAOV), and the Frog virus 3 (FV3)-like virus 
also infect amphibians in the continent and cause mass 
mortality events (Price et al., 2014; Stöhr et al., 2015). 
The World Organization for Animal Health (OIE) 
lists ranaviruses that infect amphibians as notifiable 
pathogens (Schloegel et al., 2010). Constant monitoring 
actions are needed to screen prevalence and population 
demographics (Campbell et al., 2018). However, direct 
effects of the disease (e.g. population declines) might be 
hard to detect in the absence of observed mass mortality 
events. In our study, low infection intensity (results not 
presented here) was detected and these findings are 
corresponding with a Ranavirus survey of Australian 
endemic amphibians, in which high prevalence and low 
detectability was experienced (Wynne, 2019).
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