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Abstract
We consider linearly weighted versions of the least core and the (pre)nuceolus and
investigate the reduction possibilities in their computation. We slightly extend some
well-known related results and establish their counterparts by using the dual game.
Our main results imply, for example, that if the core of the game is not empty, all
dually inessential coalitions (which can be weakly minorized by a partition in the dual
game) can be ignored when we compute the per-capita least core and the per-capita
(pre)nucleolus from the dual game. This could lead to the design of polynomial time
algorithms for the per-capita (and other monotone nondecreasingly weighted versions
of the) least core and the (pre)nucleolus in specific classes of balanced games with
polynomial many dually essential coalitions.

Keywords Per-capita (pre)nucleolus · Least core · Computation

1 Introduction

The nucleolus (Schmeidler 1969) is one of the major single-valued solution concepts
for transferable utility cooperative games. It seemingly depends on all coalitional val-
ues, but a closer look reveals the inherent high redundancy in its definition. Indeed,
as Brune (1983), and later Reijnierse and Potters (1998) have proved: in any n-player
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game there are at most 2n − 2 coalitions which actually determine the nucleolus.
Unfortunately, the identification of these nucleolus-defining coalitions is no less labo-
rious as computing the nucleolus itself. On the other hand, if special properties of
the game enable us to specify a priori a polynomial size characterization family of
coalitions for the nucleolus, then we can compute it in polynomial time (in the number
of players).

There are several classes of balanced games for which polynomial time nucleolus
algorithms are available in the literature. The key to the efficiency of some of these
algorithms (e.g. in case of assignment games) is Huberman’s (1980) theorem stat-
ing that in a balanced game all nucleolus-defining coalitions are essential (cannot be
weaklymajorized by a partition) in the game, hence the inessential ones can be ignored.
Although typically not explicitly mentioned, but several other known polytime algo-
rithms (e.g. in case of fixed-tree games) rely on the dual counterpart of Huberman’s
result: in computing the nucleolus of a balanced game, all dually inessential coalitions
(which can be weakly minorized by a partition in the dual game) can be ignored.

Our aim is to investigate what kinds of weighted versions of the nucleolus can
also be computed by taking into account only coalitions in these families. Since the
abovementioned reducibility results require nonemptiness of the core, our domainwill
also be the class of balanced games. We are mostly concerned about the per-capita
nucleolus (Grotte 1970, 1972), so we restrict our study to linear weight systems. On
the other hand, we allowweights that depend not only on the size, but also on the value
of the coalitions. In particular, we allow the weight of a coalition to be equal to its
value (provided it is positive), thus some of our results also apply to the proportional
nucleolus of a balanced game (with only positive coalitional values).

The nucleolus is based on the coalitional surplusses (the difference between the
payoff to and the value of the coalition). This measure, however, does not take into
account neither the size, nor the value (or any other characteristic that maybe important
for an application) of the coalitions. Various weighted nucleoli (based on weighted
surplus measures) were considered by several authors, but mostly from an axiomati-
zation point of view, see e.g. (Derks and Peters 1998; Derks and Haller 1999; Kleppe
2010; Kleppe et al. 2016; Calleja et al. 2018). We address issues in connection with
their computation.

In general, a linearly weighted nucleolus can be determined by the very same
methods as the (standard) nucleolus, only straightforward adjustments are needed that
only negligibly effect the performance. This is particularly true for the most frequently
applied sequential linear programming approach pioneered by Kopelowitz (1967) (for
a recent implementation finely tuned even for large games, see (Nguyen and Thomas
2016)).On the other hand, and in contrast to the rich literature on the computation of the
(standard) nucleolus in specific classes of games, we can only mention the algorithm
by Huijink et al. (2015) that computes the per-capita nucleolus in bankruptcy games.
One of our results might shed light on a possible reason for this phenomenon. We
demonstrate (in Example 3) that the family of essential coalitions is not sufficient to
determine the per-capita nucleolus, not even in a balanced game, soHuberman’s (1980)
reducibility result cannot be used in the computation of the per-capita nucleolus.

Wefind, however, that if we compute the nucleolus of a balanced game from the dual
coalitional values, Huberman’s idea works, not just for the (standard) nucleolus (that
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Weighted nucleoli and dually essential coalitions 1089

is implicitly the basis for many known efficient algorithms), but also for the per-capita
and other monotone nondecreasingly weighted nucleoli. We prove (in Theorem 4) that
if the core of the game is not empty, all dually inessential coalitions (thosewhich can be
weaklyminorized by a partition in the dual game) can be ignoredwhenwe compute the
per-capita (or other monotone nondecreasingly weighted versions of the) nucleolus
from the dual game. We believe that this observation could become the theoretical
basis for various polynomial time algorithms (yet to be) designed for the per-capita
nucleolus in specific classes of balanced games known to have polynomialmany dually
essential coalitions (e.g. assignment games, fixed-tree games). Other candidates for
this endeavour might be the well-known classes of games whose duality relations are
discussed by Oishi and Nakayama (2009). The usefulness of looking at the dual games
also in the axiomatizations of solutions is underlined by Oishi et al. (2016).

The organization of the paper is as follows. We collect the necessary general pre-
liminaries and introduce the linear weight systems in the next section. In Sect. 3, we
discuss weighted least cores, since computing them is the first step in finding the
weighted (pre)nucleoli. We present properties of the weight function under which
the family of essential coalitions is sufficient to determine the weighted least core,
and also when the family of dually essential coalitions is sufficient to determine the
weighted least core in the dual game of a balanced game. In Sect. 4, we present the
weighted primal and dual versions of the lexicographic center procedure (Maschler
et al. 1979) that sequentially reduces the set of allowable payoffs until it shrinks to the
(pre)nucleolus allocation, and discuss which properties of the weight systemmake the
inessential coalitions, or in the dual version the dually inessential coalitions redundant
in these sequential optimization processes when applied to balanced games. In Sect. 5
we discuss how and when we can refine our results by combining the primal and dual
restricted descriptions of the standard/per-capita least core/(pre)nucleolus. In that last
section we also illustrate the simplification potential of applying dual (in)essentiality
on the 5-player (balanced) cost game discussed by Suzuki and Nakayama (1976).

2 Preliminaries

A transferable utility cooperative game on the nonempty finite set N of players is
defined by a coalitional function v : 2N −→ R that satisfies v(∅) = 0. The function
v specifies the worth of every coalition S ⊆ N . We shall denote by

N = {S ⊆ N : S �= ∅, N }

the collection of nontrivial coalitions. The player set N will be fixed throughout the
paper, so we drop it from the notation and refer to v as the game. The game v is called
superadditive, if S ∩ T = ∅ implies v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ⊆ N ; and
subadditive, if its negative −v is superadditive.

Given a game v, a payoff vector x ∈ R
N is called efficient, if x(N ) = v(N );

coalitionally rational, if x(S) ≥ v(S) for all S ⊆ N ; where, by the standard notation,
x(S) = ∑

i∈S xi if S �= ∅, and x(∅) = 0.We denote byEf(v) the set of efficient payoff
vectors called the preimputation set, and byCo(v) the set of efficient and coalitionally
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rational payoff vectors called the core of the game v. Games with a nonempty core
are called balanced.

The excess e(S, x, v) = v(S) − x(S) is the usual measure of gain (or loss if
negative) to coalition S ⊆ N in game v if its members depart from allocation x ∈ R

N

in order to form their own coalition. Note that in any game v, e(∅, x, v) = 0 for all
x ∈ R

N , and the core is the set of efficient allocations which yield nonpositive excess
for all nontrivial coalitions. It will be more convenient to use the negative excess
f (S, x, v) := −e(S, x, v), we call it the surplus of coalition S at allocation x in game
v.

The dual game (N , v∗) of game (N , v) is defined by v∗(S) = v(N ) − v(N\S)

for all S ⊆ N . Notice that v∗(∅) = 0, so v∗ is indeed a game, and v∗(N ) = v(N ),
so Ef(v∗) = Ef(v) for any game v. The name dual is explained by the relation
v∗∗(S) = v(S) for all S ⊆ N .

Since N\S ∈ N for each S ∈ N , and

f (S, x, v) = − f (N\S, x, v∗) for all x ∈ Ef(v) = Ef(v∗), (1)

the core of a game coincides with the anticore (where the inequalities are reversed) of
its dual game, that is,

Co(v) = Co∗(v∗) := {
x ∈ Ef(v∗) : f (T , x, v∗) ≤ 0 ∀ T ∈ N

}
. (2)

We call (2) the dual description of the core.
Wewill investigatewhich families of nontrivial coalitions are sufficient to determine

a solution in a game and which coalitions are redundant. Two types of coalitions will
be considered.

Coalition S ⊆ N is called inessential in game (N , v), if its value can be weakly
majorized by a proper partition, i.e. if v(S) ≤ v(S1) + · · · + v(Sk) for some partition
S = S1 ∪ · · · ∪ Sk with k ≥ 2. A coalition is essential in a game if it is not inessential.
Observe that an inessential coalition has a weakly majorizing partition consisting only
of essential coalitions. Notice that all 1-player coalitions are essential in any game.We
denote by E (v) ⊆ N the family of essential coalitions in game v. It is straightforward
that all inessential coalitions are redundant for the core, i.e.

Co(v) = Co(E (v), v) := {x ∈ Ef(v) : f (T , x, v) ≥ 0 ∀ T ∈ E (v)}. (3)

Observe that the core Co(v) = Co(N , v) is described by 1 + |N | = 2|N | − 1
linear constraints but in the restricted description Co(E (v), v) the number of linear
constraints is 1 + |E (v)| that could be significantly smaller than 2|N | − 1.

The dual description (2) of the core also has a reduced form. Coalition S ⊆ N is
called dually inessential in game (N , v), if it is anti-inessential in the dual game, i.e. it
has a proper partition S = S1 ∪ · · · ∪ Sk with k ≥ 2 such that v∗(S1)+· · ·+ v∗(Sk) ≤
v∗(S). A coalition is dually essential in a game if it is not dually inessential. Observe
that a dually inessential coalition has a minorizing partition in the dual game that
consists only of dually essential coalitions. Notice that all 1-player coalitions are
always dually essential. We denote by E ∗(v∗) ⊆ N the family of dually essential
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coalitions. It is straightforward that all dually inessential coalitions are redundant for
the core, i.e.

Co(v) = Co∗(E ∗(v∗), v∗) := {x ∈ Ef(v∗) : f (T , x, v∗) ≤ 0 ∀ T ∈ E ∗(v∗)}. (4)

The above remark on the significant reduction possibility in the size of the (dual) core
description applies here too.

The standard surplus (excess) does not take into account neither the size, nor the
value (or any other characteristic that maybe important for an application) of the
coalitions. More general excess functions were considered by several authors, but we
restrict ourselves to the weighted versions that preserve the linearity of the measure
with respect to the payoff variables.

In the sequel we assign a (maybe coalition specific) positive weight q(S) > 0 to
each nontrivial coalition S ∈ N , and define the q-weighted surplus (q-surplus for
short) of nontrivial coalition S ∈ N at allocation x ∈ R

N in game v to be

fq(S, x, v) = x(S) − v(S)

q(S)
∀ S ∈ N . (5)

Note that no matter which system {q(S) > 0 : S ∈ N } of weights is used,
Co(v) = {x ∈ Ef(v) : fq(S, x, v) ≥ 0 ∀ S ∈ N },

i.e., the core is the set of efficient allocations which yield nonnegative q-surplus for
all nontrivial coalitions.

We say that a weight function is subadditive, if S ∩ T = ∅ implies q(S) + q(T ) ≥
q(S ∪ T ) for all S, T ∈ N ; superadditive, if the inequality is reversed; additive,
if both subadditive and superadditive; monotone nondecreasing, if S ⊂ T implies
q(S) ≤ q(T ) for all S, T ∈ N ; and monotone nonincreasing, if the inequality is
reversed.

We consider two surplus-based solutions: the least core and the (pre)nucleolus.
The weighted versions of both solutions (formally defined later) are obtained if we
replace the standard surplusmeasure f with theweighted surplus fq in their respective
definitions. As special cases we get

– the (standard) least core and nucleolus, if we take the monotone and subadditive
(but not superadditive) weight function q(S) = 1 for all S ∈ N ;

– the per-capita least core and nucleolus, if we take themonotone and additiveweight
function q(S) = |S| for all S ∈ N ;

– for positive-valued game v (i.e. v(S) > 0 for all S �= ∅), the proportional least
core and nucleolus, if we take the weight function q(S) = v(S) for all S ∈ N .

3 Weighted least cores

The least core LC(v) of a game v was first formally treated by Maschler et al. (1979)
as the set of all efficient allocations that maximize the minimum surplus of nontrivial
coalitions, i.e.,

123



1092 T. Solymosi

LC(v) := argmax
x∈Ef(v)

min
S∈N

f (S, x, v).

Recall that in any game the least core is a nonempty polytope.
Given a positive weight function q, the q-weighted least core LCq(v) (q-least core

for short) is defined analogously as the set of all efficient allocations that maximize
the minimum q-surplus of nontrivial coalitions, i.e.,

LCq(v) := argmax
x∈Ef(v)

min
S∈N

fq(S, x, v),

or equivalently, in a more operational form,

α1
q(v) := max

x∈Ef(v)
min
S∈N

fq(S, x, v)

LCq(v) := {x ∈ Ef(v) : fq(S, x, v) ≥ α1
q(v) ∀ S ∈ N }. (6)

Observe that for any game v andweight function q, the uniformly guaranteed q-surplus
level α1

q(v) is well defined, the q-least core is a nonempty polytope, and Co(v) �= ∅ if
and only if α1

q(v) ≥ 0. In a balanced game v, LCq(v) ⊆ Co(v), and LCq(v) = Co(v)

if and only if α1
q(v) = 0.

We will also consider certain restricted versions when only coalitions coming from
a nonempty family M ⊆ N are taken into account. The family M will always be
“rich enough” so that the restricted q-least coreLCq(M , v)will always be a nonempty
polytope like the unrestricted one LCq(v) = LCq(N , v). For the same reason, also
in the restricted case α1

q(M , v) will always be well defined.
The linearity of the q-surplus in the payoff variables allows us to compute α1

q(v)

with the following LP with all variables x ∈ R
N and α ∈ R unrestricted in sign:

α → max
x(N ) = v(N )

x(S) −q(S)α ≥ v(S) ∀ S ∈ N
(7)

Clearly, this LP has optimal solution(s), its optimum value equals to α1
q(v), and its

optimal solutions are of the form (x, α1
q(v)) with some q-weighted least core payoff

vector x ∈ LCq(v).
Since v(N ) = v∗(N ) and N also contains N\S for each S ∈ N , if we subtract

from the efficiency equation the inequalities related to the subcoalitions and reverse
the direction of optimization by substituting α = −β, we get an equivalent LP in
terms of the dual game:

β → min
x(N ) = v∗(N )

x(T )−q(N\T )β ≤ v∗(T ) ∀ T ∈ N
(8)

Notice that unless q(T ) = q(N\T ) for all T ∈ N , the inequalities in (8) can not be
expressed in terms of the q-surplus in the dual game, since in the inequality related to
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T variable β is multiplied by the weight q(N\T ) of the complement coalition. Thus,
unlike for the core, the q-least core of a game typically can not be obtained by simply
reversing the inequalities in the definition of the q-weighted least core of the dual
game. Since the general weighted version of relation (1) is

q(S) fq(S, x, v) = −q(N\S) fq(N \ S, x, v∗) for all x ∈ Ef(v) = Ef(v∗), (9)

and f (S, x, v) = q(S) fq(S, x, v), we introduce a transformed version of theweighted
surplus in the dual game:

gq(T , x, v∗) := f (T , x, v∗)
q(N\T )

= x(T )

q(N\T )
− v∗(T )

q(N\T )
.

Then the dual description of the q-weighted least core is

LC∗
q(v

∗) = argmin
x∈Ef(v∗)

max
S∈N

gq(S, x, v∗),

or equivalently, in a more operational form,

β1
q (v

∗) := min x∈Ef(v∗) max T∈N gq(T , x, v∗)
LC∗

q(v
∗) := {x ∈ Ef(v∗) : gq(T , x, v∗) ≤ β1

q (v
∗) ∀ T ∈ N }. (10)

Clearly, β1
q (v

∗) = −α1
q(v). Observe that for the standard least core LC(v) (when

q(S) = 1 for all S ∈ N ) the dual description simplifies to

LC∗(v∗) = argmin
x∈Ef(v∗)

max
S∈N

f (S, x, v∗),

that is a straightforward counterpart of its definition. It should be emphasized, however,
that in general the transformed weighted surplus gq(S, x, v∗) must be used in the dual
description.

The following characterizations of weighted least-core allocations in terms of bal-
anced collections can be easily obtained by standard LP duality arguments applied to
the LP descriptions (7) or (8).

Proposition 1 An efficient payoff allocation x belongs to the q-weighted least core of
game v if and only if the family of nontrivial coalitions that satisfy either type of the
following two properties contains a (minimal) balanced collection

1. At x, the coalition minimizes fq(S, x, v) over all coalitions S ∈ N in game v;
2. At x, the coalition maximizes gq(T , x, v∗) over all coalitions T ∈ N in the dual

game v∗.

For the standard least core, the first type of characterization (in terms of v) is well-
known (cf. e.g. Peleg and Sudhölter 2003, p.183).

There is a close relationship between the two types of (minimal) balanced col-
lection(s) mentioned in Proposition 1. If, at a q-weighted least core allocation x ,
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we replace all coalitions of a (minimal) balanced collection contained in the family
S 1(x) of coalitions with minimum q-surplus fq(S, x, v) with their complements, we
get a (minimal) balanced collection contained in the family T 1(x) of coalitions with
maximum transformed dual q-surplus gq(N\S, x, v∗), and vice versa.

We now identify families of redundant coalitions for weighted least cores.

Theorem 1 1. In a balanced game v, all inessential coalitions are redundant for
LCq(v) with a subadditive weight function q. In particular, for the standard
least core LC(v) = LC(E (v), v), and for the per-capita least core LCpc(v) =
LCpc(E (v), v).

2. In a nonbalanced game v, all inessential coalitions are redundant for LCq(v)

with a superadditive weight function q. In particular, for the per-capita least core
LCpc(v) = LCpc(E (v), v).

3. In any game v, all inessential coalitions are redundant for LCq(v) with an addi-
tive weight function q. In particular, for the per-capita least core LCpc(v) =
LCpc(E (v), v).

Proof For all three claims, let S ∈ N \E (v) be inessential in game v, because of the
partition S = S1 ∪ S2 with S1, S2 ∈ E (v) and v(S) ≤ v(S1)+v(S2). For simplicity of
notation, we assume (without loss of generality) that the weakly majorizing partition
consists only of k = 2 subcoalitions. Then at any x ∈ R

N , we have the inequalities

v(S1) + q(S1)α ≤ x(S1)
v(S2) + q(S2)α ≤ x(S2)

v(S1) + v(S2) + [q(S1) + q(S2)]α ≤ x(S)

v(S) + q(S)α ≤ x(S)

(11)

where the third one is the sum of the first two. By the above assumption, v(S) ≤
v(S1) + v(S2), so the third inequality implies the last one, hence that is redundant for
the system in (7), if [q(S1) + q(S2)]α ≥ q(S)α. This condition clearly holds, if

1. α ≥ 0 (i.e. v is balanced) and q is a subadditive weight function.
2. α < 0 (i.e. v is not balanced) and q is a superadditive weight function.
3. q is an additive weight function.

Since S1, S2 ∈ E (v), the above argument can be independently done for any inessential
S ∈ N \E (v). The claims for the special least cores follow from the properties of
their respective weight functions. ��

As the following example demonstrates, the second and third statements in Theo-
rem 1 are not true for the standard least core LC.

Example 1 Consider the following game on player set N = {1, 2, 3, 4} given by
v(N ) = v(14) = v(24) = v(124) = v(134) = v(234) = 18, v(34) = 12,
v(12) = v(123) = 6, and v(R) = 0 for all other coalitions R ∈ N .

It is easily checked that v is superadditive, but not balanced, e.g. 12v(12)+ 1
2v(134)+

1
2v(234) = 21 > 18 = v(N ). Themaximumuniformly guaranteed surplus isα1(v) =
−2, the standard least core is a singleton LC(v) = {x = (2, 2, 0, 14)}. Indeed,
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at allocation x , the family of coalitions with smallest surplus (= −2) is S 1(x) =
{12, 14, 24, 123, 134, 234} that is the union of the (minimal) balanced collections
{12, 134, 234}, {14, 123, 234}, and {24, 123, 134}, so by Proposition 1, x ∈ LC(v).
The uniqueness of this least core allocation comes from the “full rank nature” of
S 1(x).

On the other hand, if we take into account only the essential coalitions E (v) =
{1, 2, 3, 4, 12, 14, 24, 34} in (6), we get another uniform surplus level α1(E (v), v) =
− 6

5 , and another (singleton) least core LC(E (v), v) = {y = ( 125 , 12
5 ,− 6

5 ,
72
5 )}.

Indeed, at allocation y, the family of essential coalitions with smallest surplus (= − 6
5 )

isS 1(E (v), y) = {3, 12, 14, 24} that is itself a (minimal) balanced collection of “full
rank”, so by Proposition 1, y ∈ LC(E (v), v), and y is the unique E (v)-restricted least
core allocation.

In contrast, and as an illustration of the second statement in Theorem 1,
the uniformly guaranteed per-capita surplus is α1

pc(v) = − 3
4 , the (singleton)

per-capita least core is LCpc(v) = {z = ( 94 ,
9
4 ,− 3

4 ,
57
4 )}. Indeed, at allo-

cation z, the family of coalitions with smallest per-capita surplus (= − 3
4 ) is

S 1
pc(z) = {3, 12, 14, 24, 123, 134, 234} that is the union of the balanced collec-

tions {3, 12, 14, 24} and the above S 1(x), so by Proposition 1, z ∈ LCpc(v). Since
{3, 12, 14, 24} ⊂ E (v) and it is itself a “full rank” (minimal) balanced collection, the
restriction to the family of essential coalitions gives the same α1

pc(E (v), v) = − 3
4

and (singleton) least core LCpc(E (v), v) = {( 94 , 9
4 ,− 3

4 ,
57
4 )} as in the unrestricted

case. ��
Let us see redundant coalitions in the dual descriptions of weighted least cores.

Theorem 2 In a balanced game v, all dually inessential coalitions are redundant for
LCq(v) = LC∗

q(v
∗) with a monotone nondecreasing weight function q. In particular,

for the standard least core LC(v) = LC∗(E ∗(v∗), v∗), and for the per-capita least
core LCpc(v) = LC∗

pc(E
∗(v∗), v∗).

Proof Let T ∈ N \E ∗(v∗) be dually inessential, because of the partition T = T1∪T2
with T1, T2 ∈ E ∗(v∗) and v∗(T1) + v∗(T2) ≤ v∗(T ). For simplicity of notation, we
assume (without loss of generality) that the weakly minorizing partition consists only
of k = 2 subcoalitions. Then at any x ∈ R

N , we have the inequalities

x(T1) ≤ v∗(T1) + q(N\T1)β
x(T2) ≤ v∗(T2) + q(N\T2)β
x(T ) ≤ v∗(T1) + v∗(T2) + [q(N\T1) + q(N\T2)]β
x(T ) ≤ v∗(T ) + q(N\T )β

(12)

where the third one is the sum of the first two. By the above assumption, v∗(T1) +
v∗(T2) ≤ v∗(T ), so the third inequality implies the last one, hence that is redundant
for the system in (8), if [q(N\T1) + q(N\T2)]β ≤ q(N\T )β. This condition clearly
holds if β = −α ≤ 0 (i.e. v is balanced) and the weight function q is monotone
nondecreasing, because then (N\T1) ∩ (N\T2) = N \ T �= ∅ implies q(N\T ) ≤
min{q(N\T1), q(N\T2)} ≤ q(N\T1) + q(N\T2).
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Since T1, T2 ∈ E ∗(v∗), the above argument can be independently done for any
dually inessential T ∈ N \E ∗(v∗). The claims for the special least cores follow from
the fact that their respective weight functions are monotone nondecreasing. ��

As the following example demonstrates, balancedness of the game in Theorem 2
is needed for both the standard least core LC and the per-capita least core LCpc.

Example 2 Consider the dual game v∗ of the 4-player nonbalanced game v in Exam-
ple 1: v∗(N ) = v∗(14) = v∗(24) = v∗(123) = v∗(124) = v∗(134) = v∗(234) = 18,
v∗(4) = v∗(34) = 12, v∗(12) = 6, and v∗(R) = 0 for all other coalitions R ∈ N .

In the dual description (10) for the standard least core, the minimum uniformly
guaranteed transformed dual surplus is β1(v∗) = 2, and the set of optimal solutions is
the singleton LC∗(v∗) = {x = (2, 2, 0, 14)}, that is, of course, the same as LC(v) in
Example 1. We can also check it directly by the second characterization in Proposi-
tion 1. At allocation x , the family of coalitions with largest transformed dual surplus
(= 2) is T 1(x) = {1, 2, 4, 13, 23, 34} that is the union of the partitions {1, 2, 34},
{1, 4, 23}, and {2, 4, 13}, so x ∈ LC∗(v∗) indeed. The uniqueness comes from the
“full rank nature” of T 1(x). Notice that T 1(x) consists of the complements of the
coalitions inS 1(x) in Example 1 and β1(v∗) = −α1(v).

On the other hand, if we take into account only the dually essential coalitions
E ∗(v∗) = {1, 2, 3, 4} in (10), we get another minimum uniformly guaranteed
transformed dual surplus level β1(E ∗(v∗), v∗) = 3

2 , and another (singleton) opti-
mal solution set LC∗(E ∗(v∗), v∗) = {s = ( 32 ,

3
2 ,

3
2 ,

27
2 )}. At this allocation,

T 1(E ∗(v∗), s) = {1, 2, 3, 4} that is itself a partition of “full rank”, so from Proposi-
tion 1 we get that s ∈ LC∗(E ∗(v∗), v∗), and s is the unique such allocation.

In the dual description (10) for the per-capita least core, the minimum uniformly
guaranteed transformed dual surplus is β1

pc(v
∗) = 3

4 , and the set of optimal solutions

is the singleton LC∗
pc(v

∗) = {z = ( 94 ,
9
4 ,− 3

4 ,
57
4 )}, that is, of course, the same as

LCpc(v) in Example 1. We can also confirm this by the second characterization in
Proposition 1. Indeed, at allocation z, the family of coalitions with largest transformed
dual per-capita surplus (= 3

4 ) is T
1
pc(z) = {1, 2, 4, 13, 23, 34, 124} that is the union

of the partitions {1, 2, 34}, {1, 4, 23}, {2, 4, 13}, and the (minimal) balanced collection
{13, 23, 34, 124}, so t ∈ LC∗

pc(v
∗) indeed. The uniqueness comes again from the “full

rank nature” of T 1
pc(z). Notice also here that T 1

pc(z) consists of the complements of
the coalitions inS 1

pc(z) in Example 1 and β1
pc(v

∗) = −α1
pc(v).

On the other hand, since only the single-player coalitions are dually essential
and gpc(k, ., v∗) = f (k,.,v∗)

3 = 1
3g(k, ., v

∗) for each k ∈ N , the E ∗(v∗)-restricted
optimization in the per-capita case gives the same set of optimal solutions as in
the standard case. Thus, LC∗

pc(E
∗(v∗), v∗) = {s = ( 32 ,

3
2 ,

3
2 ,

27
2 )}. Only the opti-

mum value is scaled β1
pc(E

∗(v∗), v∗) = 1
2 = 1

3β
1(E ∗(v∗), v∗). At this allocation,

T 1
pc(E

∗(v∗), s) = {1, 2, 3, 4} that is itself a partition of “full rank”, so from Proposi-
tion 1 we get that s ∈ LC∗

pc(E
∗(v∗), v∗), and s is the unique such allocation. ��
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4 Weighted nucleoli

The (pre)nucleolus (Schmeidler 1969) is a nonempty set of (pre)imputations that con-
sists of a single element, called the (pre)nucleolus allocation. The following alternative
definition (Maschler et al. 1979) will serve us better here.

For game (N , v) and weight function q, the q-weighted prenucleolus Nuq(v) (q-
prenucleolus for short) is defined as the outcome of the following procedure:

Let X0 := Ef(v) and Σ0 := N ,Δ0 := {N }.
For r = 1, . . . , ρ define recursively
αr
q := maxx∈Xr−1 minS∈Σr−1 fq(S, x, v),

Xr := {x ∈ Xr−1 : minS∈Σr−1 fq(S, x, v) = αr
q},

Δr := {S ∈ Σr−1 : maxx∈Xr fq(S, x, v) = αr
q},

Σr := Σr−1 \ Δr , Δr := Δr−1 ∪ Δr

where ρ is the first value of r for which Σr = ∅.

(13)

The final set Xρ is the q-prenucleolusNuq(v) of game v. We refer to the unique vector
ηq in Xρ as the q-prenucleolus-allocation.

By straightforward adjustments of the arguments given by Maschler et al. (1979)
one can easily see that

– ρ is well defined and finite;
– α1

q(v) = α1
q < α2

q < · · · < α
ρ
q are well defined;

– LCq(v) = X1 ⊇ X2 ⊇ · · · ⊇ Xρ are nonempty polytopes;
– Δ1 ∪ Δ2 ∪ · · · ∪ Δρ forms a partition of N ,
– if S ∈ Δk then v(S) + q(S)αk

q = ηq(S),

where α1
q(v) and LCq(v) are defined in (6). Notice the difference between α1

q(v), a
characteristic of the game, and α1

q , a number determined by the algorithm (13).
We will also consider certain restricted versions, but only to a nonempty family of

coalitions M ⊆ N that is “rich enough” so that all above statements will hold true
also in the restricted cases.

We now identify families of redundant coalitions for weighted prenucleoli. The
following theorem is a slight generalization of Huberman’s (1980) theorem on the
standard (pre)nucleolus that is fundamental for the efficient computability of the
(pre)nucleolus in various types of balanced games with polynomially many essen-
tial coalitions, as it is the case e.g. in assignment games (Solymosi and Raghavan
1994).

Huberman (1980) proves that

– in a balanced game, all inessential coalitions are redundant for the nucleolus.

Recall that for balanced games the prenucleolus is the same as the nucleolus.

Theorem 3 In a balanced game v, all inessential coalitions are redundant forNuq(v)

with a monotone nonincreasing weight function q. In particular, for the standard
prenucleolus Nu(v) = Nu(E (v), v).
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1098 T. Solymosi

Proof Let S ∈ N \E (v) be inessential in game v, because of the partition S = S1∪ S2
with S1, S2 ∈ E (v) and v(S) ≤ v(S1) + v(S2). For simplicity of notation, we assume
(without loss of generality) that the weakly majorizing partition consists only of k = 2
subcoalitions.

We prove that in all iterations r = 1, . . . , ρ of algorithm (13) the (inequality or
equality) constraint related to S is redundant, because it is implied by the constraints
related to S1 and S2.

Since iteration r = 1 determines α1
q(v) and the q-weighted least core, the redun-

dancy of inequalities related to inessential coalitions in a balanced game was shown in
claim 1 of Theorem 1 using (11) even under the weaker assumption of subadditivity
on the weight function. Observe that the same argument proves our claim in any other
iteration r > 1 in which all subcoalitions in the weakly majorizing essential partition
are still unsettled (i.e. Si ∈ Σr−1 for all i = 1, . . . , k), hence all related constraints
are inequalities like in (11).

Suppose now that at the beginning of iteration r > 1 coalition S is still not settled
(i.e. S ∈ Σr−1), but there are both settled and unsettled subcoalitions in the weakly
majorizing essential partition. For simplicity, let S1 ∈ Δr−1 be settled, and S2 ∈ Σr−1

be still unsettled. If S1 got settled at the end of iteration j ≤ r − 1, i.e. S1 ∈ Δ j , then
the related constraints in the optimization problem of iteration r are

v(S1) + q(S1)α ≤ x(S1)
v(S2) + q(S2)α ≤ x(S2)

v(S1) + v(S2) + [q(S1) + q(S2)]α ≤ x(S)

v(S) + q(S)α ≤ x(S)

(14)

By the above assumption, v(S) ≤ v(S1)+v(S2), so the sum of the first two constraints
implies the third one, because (i) in iteration r variable α to be maximized satisfies
α ≥ αr−1

q ≥ α
j
q ; (ii) for a balanced game we have α

j
q ≥ α1

q ≥ 0; and (iii) in
case of a monotone nonincreasing weight function, q(S) ≤ min{q(S1), q(S2)} ≤
q(S1) + q(S2).

Finally, suppose that at the end of some iteration r ≥ 1 coalition S becomes
settled (i.e. S ∈ Δr ). This is equivalent to saying that all subcoalitions in the weakly
majorizing essential partition have become settled by the end of that iteration. For
simplicity, let S2 ∈ Δr be the last one to become settled. Then all related constraints
become equalities in (14), the redundancy of the last constraint, however, follows in
the same way, for all subsequent iterations.

In all three cases the constraints related to S1 and S2 imply the constraint related to
S, hence algorithm (13) yields the same outcomes even if we discard S from all con-
siderations. Since S1, S2 ∈ E (v), the above arguments can be independently repeated
for any inessential S ∈ N \E (v), and the theorem follows.

The constant q(S) = 1 for all S ∈ N weight function is monotone nonincreasing,
so we get Huberman’s (1980) theorem on the redundancy of inessential coalitions for
the standard (pre)nucleolus in balanced games as a corollary. ��

For completeness, we present (without proof) a characterization of weighted
prenucleoli in terms of balanced collections. It is a slight generalization of the charac-
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Weighted nucleoli and dually essential coalitions 1099

terization given by Wallmeier (1984) for q-prenucleoli with monotone nondecreasing
and symmetric (i.e. q(S) = q(|S|) for all S ∈ N ) weight function, that, in turn
is a straightforward generalization of Kohhlberg’s (1971) criterion for the standard
prenucleolus. Streamlined versions of Kohlberg’s (1971) characterization are given in
(Groote Schaarsberg et al. 2013) and (Nguyen 2016) for the standard (pre)nucleolus,
and in (Huijink et al. 2015) for the per-capita (pre)nucleolus. Similar characteriza-
tions in more general and abstract settings that accommodate the weighted versions
discussed here can be found in (Maschler et al. 1992) and (Potters and Tijs 1992).

Proposition 2 An efficient payoff allocation x belongs to the q-weighted prenucleolus
of game v if and only if the family of nontrivial coalitions whose q-surplus at x is at
most t is a balanced (or an empty) collection for any t ∈ R.

The following example demonstrates that Huberman’s (1980) redundancy result
cannot be applied for the per-capita (pre)nucleolus, we can not only use essential
coalitions, not even in a balanced game (in which case the per-capita prenucleolus
coincides with the per-capita nucleolus). This could partly explain why there are
much fewer special-purpose algorithms proposed in the literature for the per-capita
(pre)nucleolus than for the standard (pre)nucleolus. A recent exception is the algorithm
by Huijink et al. (2015) for the per-capita nucleolus of bankruptcy games.

Example 3 Consider the 4-player balanced superadditive game: v(N ) = 12, v(12) =
v(34) = v(123) = v(124) = v(134) = v(234) = 6, v(14) = 4, and v(R) = 0 for all
other coalitions R ∈ N . Let the weight function be q(S) = |S| for all S ∈ N .

The first iteration of algorithm (13) gives α1
q = 0, so X1 = LCq(v) = Co(v), and

Δ1 = {12, 34}. The second iteration gives α2
q = 1 andΔ2 = {14, 123, 124, 134, 234}.

The third iteration gives α3
q = 3 and Δ3 = {1, 2, 3, 4, 13, 23, 24}, and the algorithm

stops. Thus, ρ = 3. The only allocation in X3 (in fact, already in X2) is (3, 3, 3, 3),
it is the per-capita prenucleolus. It is easily checked also by Proposition 2. Indeed,
S 1 = Δ1,S 2 = Δ1 ∪ Δ2,S 3 = Δ1 ∪ Δ2 ∪ Δ3 are all balanced families.

Let us now consider only the essential coalitions E (v) = {1, 2, 3, 4, 12, 14, 34} and
initiate algorithm (13) with Σ0 := E (v) instead of N . Then the first iteration gives
again α1

q = 0, so X1 = LCq(E (v), v) = Co(E (v), v) = Co(v), and Δ1 = {12, 34}.
On the other hand, the second iteration gives α2

q = 2 and Δ2 = {2, 3, 14}. The third
iteration gives α3

q = 4 and Δ3 = {1, 4}, and the algorithm stops. Thus, ρ = 3.
The only allocation in X3 (in fact, already in X2) is (4, 2, 2, 4), it is the per-capita
prenucleolus of the E (v)-restricted game. It is easily checked also by the restricted
version of Proposition 2. Indeed, S 1 = Δ1, S 2 = Δ1 ∪ Δ2, S 3 = Δ1 ∪ Δ2 ∪ Δ3
are all balanced families, consisting only of essential coalitions. ��

Analogously to how we obtained the dual description (10) of the q-weighted least
core from its definition (6), given a game (N , v) and weight function q, we can
alternatively get the q-weighted prenucleolus Nuq(v) from the dual game (N , v∗)
as the outcome of the following procedure, that we call the dual description of the
q-prenucleolus:
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Let Y 0 := Ef(v∗) and Σ̂0 := N , Δ̂0 := {N }.
For r = 1, . . . , ρ̂ define recursively

βr
q := minx∈Yr−1 maxT∈Σ̂r−1 gq(T , x, v∗),

Yr := {x ∈ Yr−1 : maxT∈Σ̂r−1 gq(T , x, v∗) = βr
q},

Δ̂r := {T ∈ Σ̂r−1 : minx∈Yr gq(T , x, v∗) = βr
q},

Σ̂r := Σ̂r−1 \ Δ̂r , Δ̂r := Δ̂r−1 ∪ Δ̂r

where ρ̂ is the first value of r for which Σ̂r = ∅.

(15)

Let Nu∗
q(v

∗) denote the last payoff set Y ρ̂ determined by algorithm (15) performed
on the dual game (N , v∗) and η̂q the single element of Nu∗

q(v
∗).

It is easily seen that

– ρ̂ is well defined and finite;
– β1

q (v
∗) = β1

q > β2
q > · · · > β

ρ̂
q are well defined;

– LC∗
q(v

∗) = Y 1 ⊇ Y 2 ⊇ · · · ⊇ Y ρ are nonempty polytopes;
– Δ̂1 ∪ Δ̂2 ∪ · · · ∪ Δ̂ρ forms a partition of N ;
– if T ∈ Δ̂k then η̂q(T ) − q(N\T )βk

q = v∗(T ),

where β1
q (v

∗) and LC∗
q(v

∗) are defined in (10).
The inherent relations between algorithm (13) performed on v and algorithm (15)

performed on v∗ are detailed as follows:

– ρ̂ = ρ;
– for all r = 1, . . . , ρ̂ = ρ we have βr

q = −αr
q ;

– for all r = 1, . . . , ρ̂ = ρ we have Yr = Xr ; in particular, LC∗
q(v

∗) = Y 1 = X1 =
LCq(v) and Y ρ̂ = Xρ consists of the unique q-prenucleolus-allocation η̂q = ηq ;

– for each r = 1, . . . , ρ̂ = ρ, the family Δ̂r consists of the complements of the
coalitions in Δr .

We now identify a family of coalitions which are redundant in the dual description
of weighted prenucleoli of a balanced game.

Theorem 4 In a balanced game v, all dually inessential coalitions are redundant
for Nuq(v) with a monotone nondecreasing weight function q. In particular, for the
standard prenucleolusNu(v) = Nu∗(E ∗(v∗), v∗) and for the per-capita prenucleolus
Nupc(v) = Nu∗

pc(E
∗(v∗), v∗).

Proof Let T ∈ N \E ∗(v∗) be dually inessential in game v, because of the partition
T = T1 ∪ T2 with T1, T2 ∈ E ∗(v∗) and v∗(T1) + v∗(T2) ≤ v∗(T ). For simplicity of
notation, we assume (without loss of generality) that the weakly minorizing partition
consists only of k = 2 subcoalitions.

We prove that in all iterations r = 1, . . . , ρ of algorithm (15) the (inequality or
equality) constraint related to T is redundant, because it is implied by the constraints
related to T1 and T2.

Since iteration r = 1 determines β1
q (v

∗) and the q-weighted least core, the redun-
dancy of inequalities related to dually inessential coalitions in a balanced game was
shown in Theorem 2. Observe that the same argument proves our claim in any other
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iteration r > 1 in which all subcoalitions in the weakly minorizing dually essential
partition are still unsettled (i.e. Ti ∈ Σ̂r−1 for all i = 1, . . . , k), hence all related
constraints are inequalities like in (12).

Suppose now that at the beginning of iteration r > 1 coalition T is still not settled
(i.e. T ∈ Σ̂r−1), but there are both settled and unsettled subcoalitions in the weakly
minorizing dually essential partition. For simplicity, let T1 ∈ Δ̂r−1 be settled, and
T2 ∈ Σ̂r−1 be still unsettled. If T1 became settled at the end of iteration j ≤ r − 1,
i.e. T1 ∈ Δ̂ j , then the related constraints in the optimization problem of iteration r are
the following:

x(T1) = v∗(T1) + q(N\T1)β j
q

x(T2) ≤ v∗(T2) + q(N\T2)β j
q + q(N\T2)(β − β

j
q )

x(T ) ≤ v∗(T ) + q(N\T )β
j
q + q(N\T )(β − β

j
q )

(16)

By the above assumption, v∗(T1) + v∗(T2) ≤ v∗(T ), so the sum of the first two
constraints implies the third one, because (i) in iteration r variable β to be minimized
satisfies β ≤ βr−1

q ≤ β
j
q ; (ii) for a balanced game we have β

j
q ≤ β1

q ≤ 0; and (iii) in
case of a monotone nondecreasing weight function, (N\T1) ∩ (N\T2) = N \ T �= ∅
implies q(N\T ) ≤ min{q(N\T1), q(N\T2)} ≤ q(N\T1) + q(N\T2).

Finally, suppose that at the end of some iteration r ≥ 1 coalition T becomes
settled (i.e. T ∈ Δ̂r ). This is equivalent to saying that all subcoalitions in the weakly
minorizing dually essential partition have become settled by the end of that iteration.
For simplicity, let T2 ∈ Δ̂r be the last one to become settled. Then all related constraints
become equalities in (16), the redundancy of the last constraint, however, follows in
the same way, for all subsequent iterations.

In all three cases the constraints related to T1 and T2 imply the constraint related
to T , hence algorithm (15) yields the same outcomes even if we discard T from all
considerations. Since T1, T2 ∈ E ∗(v∗), the above arguments can be independently
repeated for any dually inessential T ∈ N \E ∗(v∗), and the theorem follows.

The claims for the particular (pre)nucleoli follow immediately from the monotone
nondecreasing nature of the respective weight functions. ��

Note that since the constant q(S) = 1 for all S ∈ N weight function is mono-
tone nondecreasing, we get the dual counterpart of Huberman’s (1980) theorem that
states the redundancy of dually inessential coalitions for the standard (pre)nucleolus
in balanced games. This is the implicit basis of various known efficient nucleolus algo-
rithms, e.g. (Megiddo 1978; Granot et al. 1996; Brânzei et al. 2005; van den Brink
et al. 2011).

We emphasize that in Theorem4, balancedness of the game is a necessary condition.
To make the point, let us consider the nonbalanced dual game in Example 2: in that
game the (standard/per-capita) least core consists of a unique allocation that is precisely
the (standard/per-capita) prenucleolus.

For completeness, we present a Kohlberg-type characterization of weighted prenu-
cleoli in terms of the dual game. It is the dual counterpart of the characterization in
Proposition 2, and the analogue of the second characterization of weighted least core
allocations in Proposition 1.

123



1102 T. Solymosi

Proposition 3 An efficient payoff allocation x belongs to the q-weighted prenucleolus
of game v if and only if the family of nontrivial coalitions whose transformed dual q-
surplus gq(., x, v∗)at x is at least t is a balanced (or an empty) collection for any t ∈ R.

We omit the proof, since the standard LP duality arguments that prove Proposition 2
can be straightforwardly adjusted to the dual description (15).

We use the balanced game in Example 3 to illustrate how Theorem 4 can help in
calculating, for example, the per-capita (pre)nucleolus. Recall that in that game we
could not use only the essential coalitions, discarding all inessential coalitions lead to
a different allocation. Now we demonstrate that we, however, can omit all coalitions
that are inessential in the dual game.

Example 4 Consider the dual game of the 4-player balanced superadditive game in
Example 3: v∗(N ) = v∗(13) = v∗(14) = v∗(24) = v∗(123) = v∗(124) =
v∗(134) = v∗(234) = 12, v∗(23) = 8, and v∗(R) = 6 for all other coalitions
R ∈ N . Let the weight function be q(S) = |S| for all S ∈ N .

The first iteration of algorithm (15) gives β1
q = 0, so Y 1 = LC∗

q(v
∗) = Co(v), and

Δ̂1 = {12, 34}. The second iteration gives β2
q = −1 and Δ̂2 = {23, 1, 2, 3, 4}. The

third iteration gives β3
q = −3 and Δ̂3 = {13, 14, 24, 123, 124, 134, 234}, and the

algorithm stops. Thus, ρ̂ = 3. The only allocation in Y 3 (in fact, already in Y 2) is
(3, 3, 3, 3), it is the per-capita prenucleolus (cf. Example 3). It is easily checked also by
Proposition 3. Indeed,T 1 = Δ̂1,T 2 = Δ̂1∪Δ̂2,T 3 = Δ̂1∪Δ̂2∪Δ̂3 are all balanced
families. Notice that Δ̂1, Δ̂2, and Δ̂3 consists of, respectively, the complements ofΔ1,
Δ2, and Δ3, computed in Example 3. Furthermore, βr

q = −αr
q for r = 1, 2, 3.

Let us now take only the dually essential coalitions and initiate algorithm (15)
with Σ̂0 := E ∗(v∗) = {1, 2, 3, 4, 12, 23, 34} instead of N . Then the first iteration
gives again β1

q = 0, so Y 1 = LC∗
q(E

∗(v∗), v∗) = Co(E ∗(v∗), v∗) = Co(v), and
Δ̂1 = {12, 34}. The second iteration gives β2

q = −1 and Δ̂2 = {1, 2, 3, 4, 23}, and
the algorithm stops. Thus, now ρ̂ = 2. The only allocation in Y 2 is (3, 3, 3, 3), it is the
per-capita prenucleolus of the E ∗(v∗)-restricted game, that is the same as the above
output of algorithm (15) run with the unrestricted dual input, that, in turn, coincides
with the per-capita prenucleolus of the game v (cf. Example 3). It is easily checked
also by the restricted version of Proposition 3. Indeed,T 1 = Δ̂1,T 2 = Δ̂1 ∪ Δ̂2 are
both balanced families, consisting only of dually essential coalitions. ��

5 Final remarks

We considered linearly weighted versions of the least core and the (pre)nuceolus and
identified characterization sets for these solutions, i.e. families of coalitions that are
sufficient to determine the given solution. We demonstrated that almost all of our
results require the game to be balanced. We extended some known related results and
established their counterparts by using the dual game.

As corollaries for the best-known special cases, we found that in a balanced
game (N , v), the family of essential coalitions E (v) (whose value cannot be weakly
majorized by a partition of N in the game v) is a characterization set for the standard
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least core, for the per-capita least core, and for the standard (pre)nucleolus (Theorems
1 and 3), but not for the per-capita (pre)nucleolus (Example 3). By analogous argu-
ments, we showed that if the dual game (N , v∗) is anti-balanced, the family of dually
essential coalitions E ∗(v∗) (whose value cannot be weakly minorized by a partition
of N in the dual game v∗) is a characterization set for the standard least core, for
the per-capita least core, for the standard (pre)nucleolus, and also for the per-capita
(pre)nucleolus (Theorems 2 and 4).

5.1 Refinements

Based on the above summary of our results the following questions arise naturally:
when, if at all, does the intersection of the families of essential and dually essential
coalitions forms a characterization set for the standard least core, for the per-capita
least core, and for the standard (pre)nucleolus?

First of all, let us specify what it means to combine the primal and dual reduced
descriptions, since the first one is in terms of v but the second one is in terms of the
dual game v∗.

Suppose coalition S ⊆ N is dually inessential because of the partition S = S1 ∪
· · · ∪ Sk with k ≥ 2 weakly minorizes its value in the dual game, i.e.

v∗(S1) + · · · + v∗(Sk) ≤ v∗(S). (17)

Rewritten in terms of v, inequality (17) means

v(N\S1) + · · · + v(N\Sk) − (k − 1)v(N ) ≥ v(N\S). (18)

Notice that coalitions N\S1, . . . , N\Sk are all supersets of N\S, but each player in S
belongs to exactly k − 1 of them. We call such a family of coalitions an antipartition
of N\S, since it consists of the complements of the coalition in a partition of S. We
say that the antipartition is weakly majorizing if inequality (18) holds. Summarizing,
if coalition S is dually inessential then its complement N\S has a weakly majorizing
antipartition.

For the antipartition of N\S in (18) we clearly have

x(N\S1) + · · · + x(N\Sk) − (k − 1)x(N ) = x(N\S) for all x ∈ R
N . (19)

Subtracting (18) from (19) gives

f (N\S1, x, v) + · · · + f (N\Sk, x, v) ≤ f (N\S, x, v) for all x ∈ Ef(v). (20)

Recall that if S is inessential because it has a weakly majorizing partition

v(T1) + · · · + v(Tj ) ≥ v(S) (21)

for the surpluses we also have

f (T1, x, v) + · · · + f (Tj , x, v) ≤ f (S, x, v) for all x ∈ Ef(v), (22)
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andHuberman (1980) proved that in a balanced game all such coalitions can be ignored
when we compute the standard (pre)nucleolus, and since computing the least core is
the first step in the nucleolus procedure, also when we compute the standard least core.
The structural identity of (20) and (22) explains why the complements of all dually
inessential coalitions can be ignored when we compute the standard (pre)nucleolus
and the standard least core from values of the balanced game v.

Now we can turn to our highlighted question on the possibility of combining the
two reduction possibilities. We say that the core of balanced game (N , v) is full-
dimensional if dimCo(v) = |N | − 1, or equivalently, if N is the only tight coalition
over the entire core. Solymosi and Sziklai (2016) proved (in terminology of this paper)
that

– if the core of balanced game (N , v) is full-dimensional then all inessential
coalitions and the complements of all dually inessential coalitions can be ignored
when we compute the standard (pre)nucleolus and the standard least core from
the values of v.

For a better understanding of the key issues, we supplement that paper by the following
example. We demonstrate that without full-dimensionality of the core we might need
to keep some of the aforementioned (individually redundant) coalitions.

Example 5 Consider the 4-player balanced superadditive game: v(N ) = 8, v(1) =
v(2) = v(3) = v(4) = v(24) = 0, v(13) = 2 and v(R) = 4 for all other coalitions
R ∈ N . The dual game: v∗(N ) = v∗(234) = v∗(134) = v∗(124) = v∗(123) =
v∗(13) = 8, v∗(24) = 6 and v∗(R) = 4 for all other coalitions R ∈ N .

Notice that the core is not full-dimensional. In fact, dim(Co(v)) = 1 since v(12)+
v(34) = v(N ) as well as v(14) + v(23) = v(N ), thus x(12) = x(34) = x(14) =
x(23) = 4 over the entire core.

It is easily checked that Co(v) = LC(v) = {(y, 4 − y, y, 4 − y) : 1 ≤ y ≤ 4} and
(2, 2, 2, 2) is the standard (pre)nucleolus allocation. We get the same outcomes if we
take into account only the essential coalitions E (v) = {1, 2, 3, 4, 12, 13, 14, 23, 34}
in algorithm (13) with the standard weight function q(S) = 1 for all S ∈ N . Alter-
natively, we can run this same standard algorithm (13) only with the complements
F (v) = {234, 134, 124, 123, 34, 23, 14, 13, 12} of the dually essential coalitions
E ∗(v∗) = {1, 2, 3, 4, 12, 14, 23, 24, 34}, listed respectively.

The intersection E (v)∩F (v) = {12, 13, 14, 23, 34} of these two characterization
sets, however, is not sufficient to determine the correct solutions. Indeed, if we run
the standard algorithm (13) with Σ0 = E (v) ∩ F (v) we get α1 = 0, but the set of
optimal solutions X1 = {(y, 4 − y, y, 4 − y) : 1 ≤ y < ∞} is a halfline. Since we
dropped all 3-player coalitions and coalition 24 as inessentials and also dropped all
1-player coalitions as complements of dually inessential coalitions, no constraint is
left to guarantee nonnegativity for x2 and x4. Thus, the intersection E (v)∩F (v) is not
a characterization set for the standard least core and for the standard (pre)nucleolus.

Let us illustrate why this happens andwhy this can happen only when the core is not
full-dimensional, see (Solymosi and Sziklai 2016) for a general proof.We dropped, for
example, coalition 124 because it is weakly majorized by its partition v(12)+ v(4) ≥
v(124). But we also dropped coalition 4 because it is weaklymajorized by its antiparti-
tion v(124)+v(34)−v(N ) ≥ v(4). Since no other partitionweaklymajorizes coalition
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124 and no other antipartitionweaklymajorizes coalition 4, we cannot leave them both
out at the same time. Each one is redundant in the system because the other one is
present. Notice that by combining the two weak majorizations we get v(4) + v(12) +
v(34) − v(N ) ≥ v(4), that implies v(12) + v(34) ≥ v(N ). Thus, the grand coalition
is also weakly majorized, so N is not the only tight coalition over the entire core. ��

Now let us see our combined reducibility question for the per-capita least core.
Example 5 gives a negative answer here too, at least in case the core of the balanced
game is not full-dimensional. Indeed, recall from Sect. 3 that for any weight function
q, LCq(v) = Co(v) if and only if α1

q(v) = 0, and observe that this holds whenever
the core is not empty and not full-dimensional. On the other hand, one can show that

– if the core of balanced game v is full-dimensional then the intersection of the
family E (v) of essential coalitions and the familyF (v) of the complements of the
dually essential coalitions is a characterization set for the per-capita least core,
or more generally, for any weighted least core with an subadditive and monotone
nondecreasing weight function.

We omit the details, but underline that the key for being able to combine the proofs of
Theorem 1 and 2 (rewritten in terms of v) is also what Solymosi and Sziklai (2016)
proved: if the core of the balanced game v is full-dimensional then for every inessential
coalition there is a weakly majorizing partition in E (v) ∩ F (v) and for the comple-
ment of every dually inessential coalition there is a weakly majorizing antipartition in
E (v) ∩ F (v).

We conclude this section by highlighting from a different perspective what is the
crucial difference between the standard and the per-capita solutions,why the analogous
arguments work for the per-capita least core but fail to carry further for the per-capita
(pre)nucleolus.

Take the weakly majorizing antipartition of coalition N\S in (18). If the weight
function q is monotone nondecreasing, from (20) we get

f (N\S1, x, v)

q(N\S1) +· · ·+ f (N\Sk, x, v)

q(N\Sk) ≤ f (N\S, x, v)

q(N\S)
for all x ∈ Co(v), (23)

because all members of the antipartition are supersets of N\S and all q-surpluses are
nonnegative in the core. This implies that all the terms on the left side are less than or
equal to the q-surplus of N\S throughout algorithm (13), therefore N\S is redundant
even for the q-(pre)nucleolus.

In comparison, take the weakly majorizing partition of S in (21). If the weight
function q is subadditive, from (22) we can only derive that

f (T1, x, v)

q(T1)
≤ f (T1, x, v) + · · · + f (Tj , x, v)

q(T1) + · · · + q(Tj )
≤ f (S, x, v)

q(S)
for all x ∈ Co(v),

(24)

if, at x ∈ Co(v), coalition T1 has the smallest q-surplus among the members of the
partition. This inequality, however, might not hold for all q-surpluses in the partition.
Consequently, although the inessential coalition S can be ignored in the first iteration
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of algorithm (13), but it could become important in later iterations. This explains,
in particular, why inessential coalitions might be left out in the computation of the
per-capita least core, but might not be dropped in the computation of the per-capita
(pre)nucleolus.

5.2 Cost games

Naturally all our results carry over for cost games and their dual games, only the
straightforward adjustments required by “the smaller, the better” nature of the out-
comes must be made. To avoid duplications in terminology, we consider cost game
c = v∗ as the dual game of its dual game v = c∗ that is a usual profit game we worked
with so far. Hence we are interested in the anti-solutions of cost games.

For illustration, we use the 5-player cost game set up by Suzuki and Nakayama
(1976) to analyze the cost allocation problem related to a cooperative water develop-
ment project in Japan. Interested in the (anti-)nucleolus allocation, the authors found
that only one iteration in the ususal sequential LP optimization procedure was needed
(already the least anti-core turned out to be a singleton), and concluded that the (anti-
)nucleolus was fully determined by the family of the (n − 1 = 4)-player coalitions.
This real life example also allows us to demonstrate that working with the dual game
explicitly and applying the simplification possibilities in the dual descriptions might
have some bite. Specifically, we will see that we can arrive at that same result “almost
by inspection”, moreover, from the gained “structural insight” we can readily con-
clude that in this particular cost game the per-capita (anti-)nucleolus coincides with
the standard (anti-)nucleolus.

The 5-player cost game c analyzed by Suzuki and Nakayama (1976) and its dual
game c∗ are as follows (for ease of presentation we multiplied each value by 10):

c∗(S) S c(S)

−1164 1 . . . . 0
−1167 . 2 . . . 0
3670 . . 3 . . 4897
5041 . . . 4 . 7476
4425 . . . . 5 7498

−2464 1 2 . . . 0
2387 1 . 3 . . 4400
3572 1 . . 4 . 7005
3597 1 . . . 5 6940
2387 . 2 3 . . 4864
3464 . 2 . 4 . 5463
3099 . 2 . . 5 5122
8177 . . 3 4 . 11065
7898 . . 3 . 5 11083
8679 . . . 4 5 12090

c∗(S) S c(S)

989 1 2 3 . . 4400
1996 1 2 . 4 . 5181
2014 1 2 . . 5 4902
7957 1 . 3 4 . 9980
7616 1 . 3 . 5 9615
8215 1 . . 4 5 10692
6139 . 2 3 4 . 9482
6074 . 2 3 . 5 9507
8679 . 2 . 4 5 10692

13079 . . 3 4 5 15543
5581 1 2 3 4 . 8654
5603 1 2 3 . 5 8038
8182 1 2 . 4 5 9409
13079 1 . 3 4 5 14246
13079 . 2 3 4 5 14243
13079 1 2 3 4 5 13079
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One needs only a hand calculator (and some patience) to check that c is subadditive. It
turns out that c is, in fact, strictly subadditive except at coalition 123, so all coalitions
but 123 are anti-essential in this cost game. Since there is only negligible redundancy
with respect to partitions, we cannot utilize the primary restriction possibilities here.
Even deciding whether c is anti-balanced or not would require some computer help.

It would be also difficult and tedious to detect in the cost game c itself the other
kind of exploitable redundancies and identify coalitions that are weakly minorized by
an antipartition. But we can easily calculate the dual cost game c∗ and then check
again “with paper and pencil” at which coalitions it is strictly superadditive.

In our case it turns out that there are only a couple of essential coalitions in c∗:
the single-player coalitions (as always) and coalitions 15, 134, 135, 245, 1245, 1345,
2345. (Interestingly, every other coalition is found to be strictly majorized by a parti-
tion that consists only of single-player coalitions and coalition 15, foreshadowing the
importance of the single-player coalitions also in the solutions.) Thus, balancedness
of c∗ can be decided from the restricted system (below on the left), or equivalently,
from the more transparent 0-normalized system (below on the right):

c∗(S) x(S)

−1164 ≤ x1 . . . .

−1167 ≤ . x2 . . .

3670 ≤ . . x3 . .

5041 ≤ . . . x4 .

4425 ≤ . . . . x5
3597 ≤ x1 . . . x5
7957 ≤ x1 . x3 x4 .

7616 ≤ x1 . x3 . x5
8679 ≤ . x2 . x4 x5
8182 ≤ x1 x2 . x4 x5
13079 ≤ x1 . x3 x4 x5
13079 ≤ . x2 x3 x4 x5
13079 = x1 x2 x3 x4 x5

c∗
0(S) x0(S)

0 ≤ x01 . . . .

0 ≤ . x02 . . .

0 ≤ . . x03 . .

0 ≤ . . . x04 .

0 ≤ . . . . x05
336 ≤ x01 . . . x05
410 ≤ x01 . x03 x04 .

685 ≤ x01 . x03 . x05
380 ≤ . x02 . x04 x05
1047 ≤ x01 x02 . x04 x05
1107 ≤ x01 . x03 x04 x05
1110 ≤ . x02 x03 x04 x05
2274 = x01 x02 x03 x04 x05

Since the 0-normalized essential coalitional values seem to strongly depend on the
number of players and c∗

0(N ) is quite large compared to the other values, the equal
split allocation η0i = 2274

5 = 454.8 for i = 1, . . . , 5 is a natural candidate for a core
element. The nonnegativity of all surpluses at η0 is more than clear, so η0 is indeed in
the core of c∗

0.
As c∗

0 turned out to be balanced, we can also determine its least core and nucleolus
from the restricted system. Since the single-player coalitions are easily found to have
the minimum surplus at η0 and they form a “full rank” partition of N , we conclude that
the least core of c∗

0 is a singleton and η0 is the nucleolus allocation. Scale retransfor-
mation ηi = c∗(i) + η0i for i = 1, . . . , 5 gives that the nucleolus allocation in c∗ (the
anti-nucleolus allocation in c) is η = (−709.2, −712.2, 4124.8, 5495.8, 4879.8),
precisely (10 times of) what Suzuki and Nakayama (1976) computed.
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Observe that above we just solved (based on Theorem 2 from a restricted set of
constraints) the following optimization problem (the counterpart of (8)) for our anti-
balanced cost game c:

β → max
x(N ) = c∗(N )

x(T )−q(N\T )β ≥ c∗(T ) ∀ T ∈ N
(25)

with the standard weight function q(T ) = 1 for all T ∈ N , and found that the
single-player coalitions determine the positive optimum value and the (unique) opti-
mal solution. Since for any monotone decreasing weight function S ⊂ T implies
q(N\S) ≥ q(N\T ), the importance of the inequalities related to the smaller coali-
tions could only increase among the constraints. Thus, in such cases the payoff vector
in the optimal solution to (25) must be the same as in the standard case. In particular,
we get that in the 5-player cost game of Suzuki and Nakayama (1976) the per-capita
(anti-)nucleolus allocation is the same as the standard (anti-)nucleolus allocation.
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