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ABSTRACT 

Our input is a complete graph G on n vertices where each vertex has a strict ranking 
of all other vertices in G. The goal is to construct a matching in G that is “globally 
stable” or popular. A matching M is popular if M does not lose a head-to-head 
election against any matching M’: here each vertex casts a vote for the matching in 
{M,M’} in which it gets a better assignment. Popular matchings need not exist in the 
given instance G and the popular matching problem is to decide whether one exists or 
not. The popular matching problem in G is easy to solve for odd n. Surprisingly, the 
problem becomes NP-hard for even n, as we show here. This seems to be the first 
graph theoretic problem that is efficiently solvable when n has one parity and NP-
hard when n has the other parity. 
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Népszerű párosítások teljes gráfokban 

ÁGNES CSEH – TELIKEPALLI KAVITHA  

ÖSSZEFOGLALÓ 

Adott egy teljes gráf, ahol minden csúcs szigorú listában rangsorolja a szomszédjait. 

Egy M párosítást akkor nevezünk népszerűnek, ha nincsen olyan M’ párosítás, hogy 

több csúcs részesíti előnyben M’-t M-mel szemben, mint fordítva. Nem minden 

inputban létezik népszerű párosítás. Ha a csúcsok száma a gráfban páratlan, akkor 

könnyű eldönteni, hogy az inputon van-e népszerű párosítás. Meglepő módon 

ugyanez a probléma NP-teljes olyan gráfokon, amik páros sok csúcsot tartalmaznak. 

Ez az első olyan gráfelméleti probléma, ahol a csúcshalmaz paritása ilyen 

bonyolultságelméleti különbséget indukál. 
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Popular Matchings in Complete Graphs

Ágnes Cseh1? and Telikepalli Kavitha2??

1 Centre for Economic and Regional Studies, Institute of Economics, Budapest; cseh.agnes@krtk.mta.hu
2 Tata Institute of Fundamental Research, Mumbai; kavitha@tcs.tifr.res.in

Abstract. Our input is a complete graph G on n vertices where each vertex has a strict
ranking of all other vertices in G. The goal is to construct a matching in G that is “globally
stable” or popular. A matching M is popular if M does not lose a head-to-head election against
any matching M ′: here each vertex casts a vote for the matching in {M, M ′} in which it gets a
better assignment. Popular matchings need not exist in the given instance G and the popular
matching problem is to decide whether one exists or not. The popular matching problem in G
is easy to solve for odd n. Surprisingly, the problem becomes NP-hard for even n, as we show
here. This seems to be the first graph theoretic problem that is efficiently solvable when n has
one parity and NP-hard when n has the other parity.

1 Introduction

Consider a complete graph G = (V,E) on n vertices where each vertex ranks all other vertices in a
strict order of preference. Such a graph is called a roommates instance with complete preferences.
The problem of computing a stable matching in G is a classical and well-studied problem. Recall
that a matching M is stable if there is no blocking pair with respect to M , i.e., a pair (u, v) where
both u and v prefer each other to their respective assignments in M .

Stable matchings need not always exist in a roommates instance. For example, the instance given
in Fig. 1 on 4 vertices d0, d1, d2, d3 has no stable matching. (Here d0’s top choice is d1, second choice
is d2, and last choice is d3, and similarly for the vertices.)

d0 : d1 > d2 > d3
d1 : d2 > d3 > d0
d2 : d3 > d1 > d0
d3 : d1 > d2 > d0

d0

d1

d2 d3

1

3

2
3

3
3

1

2

1 2

1

2

Fig. 1. An instance that admits two popular matchings—marked by dotted blue and dashed orange edges—
but no stable matching. The preference list of each vertex is illustrated by the numbers on its edges: a lower
number indicates a more preferred neighbor.

Irving [17] gave an efficient algorithm to decide if G admits a stable matching or not. In this
paper we consider a notion that is more relaxed than stability: this is the notion of popularity. For
any vertex u, a ranking over neighbors can be extended naturally to a ranking over matchings as
follows: u prefers matching M to matching M ′ if (i) u is matched in M and unmatched in M ′ or
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(ii) u is matched in both and u prefers M(u) to M ′(u). For any two matchings M and M ′, let
φ(M,M ′) be the number of vertices that prefer M to M ′.

Definition 1. Let M be any matching in G. M is popular if φ(M,M ′) ≥ φ(M ′,M) for every
matching M ′ in G.

Suppose an election is held between M and M ′ where each vertex casts a vote for the matching
that it prefers. So φ(M,M ′) (similarly, φ(M ′,M)) is the number of votes for M (resp., M ′). A
popular matching M never loses an election to another matching M ′ since φ(M,M ′) ≥ φ(M ′,M):
thus it is a weak Condorcet winner [5, 6] in the corresponding voting instance. This is why popularity
can be regarded as a natural notion of “global stability”.

The notion of popularity was first introduced in bipartite graphs in 1975 by Gärdenfors—popular
matchings always exist in bipartite graphs since stable matchings always exist here [10] and every
stable matching is popular [11]. The proof that every stable matching is popular holds in non-
bipartite graphs as well [4]; in fact, it is easy to show that every stable matching is a min-size
popular matching [14]. Relaxing the constraint of stability to popularity allows us to find globally
stable matchings that may exist in instances that do not admit stable matchings; moreover, even
when stable matchings exist, there may be popular matchings that achieve more “social good” (such
as larger size), which might be relevant in many applications.

Observe that the instance in Fig. 1 has two popular matchings: M1 = {(d0, d1), (d2, d3)} and
M2 = {(d0, d2), (d1, d3)}. However as was the case with stable matchings, popular matchings also
need not always exist in the given instance G. Just take, for example, the same instance as in Fig. 1,
but without vertex d0. The popular roommates problem is to decide if G admits a popular matching
or not. When the graph is not complete, it is known that the popular roommates problem is NP-
hard [9, 12]. Here we are interested in the complexity of the popular matching problem when the
input instance is complete.

Interestingly, several popular matching problems that are intractable in bipartite graphs become
tractable in complete bipartite graphs. The min-cost popular matching problem in bipartite graphs
is such a problem—this is NP-hard in a bipartite graph with incomplete lists [9], however it can
be solved in polynomial time in a bipartite graph with complete lists [8]. The difference is due to
the fact that while there is no efficient description of the convex hull of all popular matchings in a
general bipartite graph, this polytope has a compact extended formulation in a complete bipartite
graph.

It is a simple observation (see Section 2) that when n is odd, a matching in a complete graph G
on n vertices is popular only if it is stable. Since there is an efficient algorithm to decide if G admits
a stable matching or not, the popular roommates problem in a complete graph G can be efficiently
solved when n is odd. We show the following result here.

Theorem 1. Let G be a complete graph on n vertices, where n is even. The problem of deciding
whether G admits a popular matching or not is NP-hard.

So the popular roommates problem with complete preference lists is NP-hard for even n while it
is easy to solve for odd n. Note that the popular roommates problem is non-trivial for every n ≥ 5,
i.e., there are both “yes instances” and “no instances” of size n. It is rare and unusual for a natural
decision problem in combinatorial optimization to be efficiently solvable when n has one parity and
become NP-hard when n has the other parity. We are not aware of any natural optimization problem
on graphs that is non-trivially tractable when the cardinality of the vertex set has one parity, which
becomes intractable for the other parity.

1.1 Background and related work

The first polynomial time algorithm for the stable roommates problem was given by Irving [17] in
1985. Roommates instances that admit stable matchings were characterized in [25]. New polynomial
time algorithms for the stable roommates problem were given in [24, 26].

Algorithmic questions for popular matchings in bipartite graphs have been well-studied in the
last decade [1, 8, 14, 16, 18–20]. Not much was known on popular matchings in non-bipartite graphs.
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Biró et al. [1] proved that validating whether a given matching is popular can be done in polynomial
time, even when ties are present in the preference lists. It was shown in [15] that every roommates
instance G = (V,E) admits a matching with unpopularity factor O(log |V |) and that it is NP-hard
to compute a least unpopularity factor matching. It was shown in [16] that computing a max-weight
popular matching in a roommates instance with edge weights is NP-hard, and more recently, that
computing a max-size popular matching in a roommates instance is NP-hard [3].

The complexity of the popular roommates problem was open for several years [1, 7, 15, 16, 22] and
two independent NP-hardness proofs [9, 12] of this problem were announced very recently. Interest-
ingly, both these hardness proofs need “incomplete preference lists”, i.e., the underlying graph is not
complete. The reduction in [12] is from a variant of the vertex cover problem called the partitioned
vertex cover problem and we discuss the reduction in [9] in Section 1.2 below. So the complexity
status of the popular roommates problem in a complete graph was an open problem and we resolve
it here.

Computational hardness for instances with complete lists has been investigated in various match-
ing problems under preferences. An example is the three-sided stable matching problem with cyclic
preferences: this involves three groups of participants, say, men, women, and dogs, where dogs have
weakly ordered preferences over men only, men have preferences over women only, and finally, women
only list the dogs. If these preferences are allowed to be incomplete, the problem of finding a weakly
stable matching is known to be NP-complete [2]. It is one of the most intriguing open questions in
stable matchings [22, 27] as to whether the same problem becomes tractable when lists are complete.

1.2 Techniques

The 1-in-3 SAT problem is a well-known NP-hard problem [23]: it consists of a 3-SAT formula φ
with no negated literals and the problem is to find a truth assignment to the variables in φ such
that every clause has exactly one variable set to true. We show a polynomial time reduction from
1-in-3 SAT to the popular roommates problem with complete lists.

Our construction is based on the reduction in [9] that proved the NP-hardness of the popular
roommates problem. However there are several differences between our reduction and the reduction
in [9]. The reduction in [9] considered a popular matching problem in bipartite graphs called the
“exclusive popular set” problem and showed it to be NP-hard—when preference lists are complete,
this problem can be easily solved. Thus the reduction in [9] needs incomplete preference lists.

The exclusive popular set problem asks if there is a popular matching in the given bipartite
graph where the set of matched vertices is S, for a given even-sized subset S. A key step in the
reduction in [9] from this problem in bipartite graphs to the popular matching problem in non-
bipartite graphs merges all vertices outside S into a single node. Thus the total number of vertices
in the non-bipartite graph used in [9] is odd. Moreover, the fact that popular matchings always exist
in bipartite graphs is crucially used in this reduction. However in our setting, the whole problem is
to decide if any popular matching exists in the given graph—thus there are no popular matchings
that “always exist” here.

The reduction in [9] primarily uses the LP framework of popular matchings in bipartite graphs
from [18, 19, 21] to analyze the structure of popular matchings in their instance. The LP framework
characterizing popular matchings in non-bipartite graphs is more complex [21], so we use the com-
binatorial characterization of popular matchings [14] in terms of forbidden alternating paths/cycles
to show that any popular matching in our instance will yield a 1-in-3 satisfying assignment for φ.
To show the converse, we use a dual certificate similar to the one used in [9] to prove the popularity
of the matching that we construct using a 1-in-3 satisfying assignment for φ.

Organization of the paper. We discuss preliminaries in Section 2. Section 3 describes the construction
of our complete graph G corresponding to a given a 1-in-3 SAT formula φ. Section 4 studies the
structure of the graph G and Section 5 shows that any popular matching in G yields a 1-in-3
satisfying assignment for φ. Section 6 completes the reduction by showing how to obtain a popular
matching in G from any 1-in-3 satisfying assignment for φ.
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2 Preliminaries

This section contains a characterization of popular matchings from [14]. We also include a simple
proof of the claim stated in Section 1 that when n is odd, every popular matching in G has to be
stable.

Let M be any matching in G = (V,E). For any pair (u, v) /∈ M , define voteu(v,M) as follows:
(here M(u) is u’s partner in M and M(u) = null if u is unmatched in M)

voteu(v,M) =
{

+ if u prefers v to M(u);
− if u prefers M(u) to v.

Label every edge (u, v) that does not belong to M by the pair (voteu(v,M), votev(u,M)). Thus
every non-matching edge has a label in {(±,±)}. For example, if consider the matching marked by
the dashed orange edges in Fig. 1, then (d1, d2) is labeled (+,+), (d2, d3) is labeled (+,−), (d0, d1)
is labeled (+,−), and (d0, d3) is labeled (−,−). Note that an edge is labeled (+,+) if and only if it
is a blocking edge to M . Let GM be the subgraph of G obtained by deleting edges labeled (−,−)
from G. The following theorem characterizes popular matchings in G.

Theorem 2 ([14]). M is popular in G if and only if GM does not contain any of the following with
respect to M :

(1) an alternating cycle with a (+,+) edge;
(2) an alternating path with two distinct (+,+) edges;
(3) an alternating path with a (+,+) edge and an unmatched vertex as an endpoint.

Using the above characterization, it can be easily checked whether a given matching is popular or
not [14]. Thus our NP-hardness result implies that the popular roommates problem is NP-complete.

When n is odd. Recall the claim made in Section 1 that when n is odd, every popular matching
in G has to be stable. A simple proof of this statement is included below.

Observation 1 ([13]) Let G be a complete graph on n vertices, where n is odd. Any popular match-
ing in G has to be stable.

Proof. Since n is odd and G is complete, any popular matching leaves exactly one vertex unmatched.
Let M be a popular matching and let v be the vertex left unmatched in M . Consider a vertex u
adjacent to v. We know that (u,w) ∈ M for some w ∈ V \ {v}, and due to Part (3) in Theorem 2,
no (+,+) edge is incident to w. Since v is adjacent not only to u, but to all vertices in the graph,
this holds for all w ∈ V . Thus M is stable. ut

3 The graph G

Recall that φ is the input formula to 1-in-3 SAT. The graph G that we construct here consists of
gadgets in 4 levels along with 2 special gadgets that we will call the D-gadget and Z-gadget. Gadgets
in level 1 correspond to variables in the formula φ while gadgets in levels 0, 2, and 3 correspond
to clauses in φ. Variants of the gadgets in levels 0-3 and the D-gadget were used in [9] while the
Z-gadget is new.

We will now describe these gadgets: along with a figure, we provide the preference lists of vertices
in this gadget. The tail of each list consists of all vertices not listed yet, in an arbitrary order. Even
though the preference lists are complete, the structure of the gadgets and the preference lists will
ensure that inter-gadget edges will not belong to any popular matching, as we will show in Section 4.
The D-gadget. The D-gadget is on 4 vertices d0, d1, d2, d3 and the preference lists of these vertices
are as given in Fig. 1 with all vertices outside the D-gadget at the tail of each list (in an arbitrary
order). Recall that this gadget admits no stable matching.
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We describe gadgets from level 1 first, then levels 0, 2, 3, and finally, the Z-gadget. The stable
matchings within the gadgets are highlighted by colors in the figures. The gray elements in the
preference lists denote vertices that are outside this gadget. We will assume that D in a preference
list stands for d0 > d1 > d2 > d3.
Level 1. For each variable Xi in the formula φ, we construct a gadget on four vertices as shown in
Fig. 2. The bottom vertices x′i and y′i will be preferred by some vertices in level 0 to vertices in their
own gadget, while the top vertices xi and yi will be preferred by some vertices in level 2 to vertices
in their own gadget. All four vertices in a level 1 gadget prefer to be matched among themselves,
along the four edges drawn than be matched to any other vertex in the graph. This gadget has a
unique stable matching {(xi, yi), (x′i, y′i)}.

xi : yi > y′
i > D > . . .

x′
i : yi > y′

i > D > . . .
yi : xi > x′

i > D > . . .
y′

i : xi > x′
i > D > . . .

xi yi

y′
ix′

i

1 1

2 2
1

22

1

Fig. 2. The variable gadget in level 1.

Level 0. To each clause c = Xi ∨Xj ∨Xk in the formula φ, we create 6 gadgets in level 0. One of
these can be seen in Fig. 3. The top two vertices, i.e. ac1 and bc1, rank y′j and x′k in level 1, as their
respective second choices. Recall that indices j and k are well-defined in the clause c = Xi∨Xj ∨Xk.
Within this level 0 gadget on ac1, b

c
1, a

c
2, b

c
2, both {(ac1, bc1), (ac2, bc2)} and {(ac1, bc2), (ac2, bc1)} are stable

matchings. In the preference lists below (and also for gadgets in levels 2 and 3), we have omitted
the superscript c in their lists for the sake of readability.

a1 : b1 > y′
j > b2 > D > . . .

a2 : b2 > b1 > D > . . .
b1 : a2 > x′

k > a1 > D > . . .
b2 : a1 > a2 > D > . . .

ac
1 bc

1

bc
2ac

2

1 3

1 2
2

13

1

Fig. 3. A clause gadget in level 0.

The gadget on vertices {ac3, ac4, bc3, bc4} is built analogously: the vertex ac3 ranks y′k as its second
choice, while bc3 ranks x′i second. In the third gadget, the vertex ac5 ranks y′i second, while bc5 ranks
x′j second. Observe the shift in i, j, k indices as second choices for vertices ac1, ac3, ac5 (and similarly,
for bc1, bc3, bc5).

The fourth, fifth and sixth gadgets are analogous to the first, second, and third gadgets, respec-
tively, but there is a slight twist. More precisely, the preferences of a′c1 , a′c2 , b′c1 , b′c2 in the fourth gadget
are analogous to the preferences in Fig. 3, except that a′c1 ranks y′k second, while b′c1 ranks x′j second.
Similarly, the second choice of a′c3 is y′i, the second choice of b′c3 is x′k, and finally, a′c5 ranks y′j second,
while b′c5 ranks x′i second. Observe the change in orientation of the indices i, j, k as second choice
neighbors when comparing the first three level 0 gadgets of c with its last three level 0 gadgets. This
will be important to us later.
Level 2. To each clause c = Xi ∨Xj ∨Xk in the formula φ, we create 6 gadgets in level 2. The first
gadget in level 2 is on vertices pc0, pc1, pc2, qc0, qc1, qc2 and their preference lists are described in Fig. 4.
Note that pc2 ranks yj from level 1 as its second choice, while qc2 ranks xk from level 1 second.

The second gadget in level 2 is on vertices pc3, pc4, pc5, qc3, qc4, qc5 and it is built analogously. That
is, pc3 and qc3 are each other’s top choices and similarly, pc4 and qc4 are each other’s top choices, and
so on. The preference list of pc5 is qc3 > yk > qc4 > qc5 > D > . . . and the preference list of qc5 is
pc4 > xi > pc3 > pc5 > D > . . .
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p0 : q0 > q2 > D > . . .
p1 : q1 > q2 > D > . . .
p2 : q0 > yj > q1 > q2 > D > . . .
q0 : p0 > p2 > D > . . .
q1 : p1 > p2 > D > . . .
q2 : p1 > xk > p0 > p2 > D > . . .

pc
0 qc

0

pc
1 qc

1

pc
2 qc

2

1 1

1 1

4 4

2

31

2

2

13

3

Fig. 4. A clause gadget in level 2.

The third gadget in level 2 is on vertices pc6, pc7, pc8, qc6, qc7, qc8 and it is built analogously. In par-
ticular, the preference list of pc8 is qc6 > yi > qc7 > qc8 > D > . . . and the preference list of qc8 is
pc7 > xj > pc6 > pc8 > D > . . .

The fourth gadget in level 2 is on vertices p′c0 , p′c1 , p′c2 , q′c0 , q′c1 , q′c2 and it is totally analogous to the
first gadget in level 2. That is, p′c0 and q′c0 are each other’s top choices and similarly, p′c1 and q′c1 are each
other’s top choices, and so on. In particular, the preference list of p′c2 is q′c0 > yj > q′c1 > q′c2 > D > . . .
and the preference list of q′c2 is p′c1 > xk > p′c0 > p′c2 > D > . . .

Similarly, the fifth gadget in level 2 is on vertices p′c3 , p′c4 , p′c5 , q′c3 , q′c4 , q′c5 and it is totally analogous
to the second gadget in level 2. Also, the sixth gadget in level 2 is on vertices p′c6 , p′c7 , p′c8 , q′c6 , q′c7 , q′c8
and it is totally analogous to the third gadget in level 2.
Level 3. To each clause c = Xi ∨Xj ∨Xk in the formula φ, we create 2 gadgets in level 3. The first
gadget is on vertices sc0, sc1, sc2, sc3, tc0, tc1, tc2, tc3 and the preference lists of these vertices are described
in Fig. 5.

s0 : t1 > q0 > t2 > q3 > t3 > D > t0 > . . .
t0 : s3 > p7 > s2 > p4 > s1 > D > s0 > . . .
s1 : t1 > t0 > D > . . .
t1 : s1 > s0 > D > . . .
s2 : t2 > t0 > D > . . .
t2 : s2 > s0 > D > . . .
s3 : t3 > t0 > D > . . .
t3 : s3 > s0 > D > . . .

sc
0 tc

0

sc
1 tc

1

sc
2 tc

2

sc
3 tc

3

1

2

3

2

5

2

5

2

3

2

1

2

11

11

11

Fig. 5. A clause gadget in level 3.

The second gadget in level 3 is on s′c0 , s′c1 , s′c2 , s′c3 , t′c0 , t′c1 , t′c2 , t′c3 and their preference lists are abso-
lutely analogous to the preference lists of the first gadget in level 3.
The Z-gadget. The Z-gadget is on 6 vertices z0, z1, z2, z3, z4, z5 and the preference lists of these
vertices are given in Fig. 6. The vertices in a set stand for all these vertices in an arbitrary order.
For example, ∪i{xi, yi} denotes all the “top” vertices belonging to variable gadgets in an arbitrary
order.

Note that G is a complete graph on an even number of vertices and so every popular matching
in G has to be a perfect matching.

4 Popular edges in G

Call an edge e in G popular if there is a popular matching M in G such that e ∈M . In this section
we identify edges that are not popular and show that every popular edge is an intra-gadget edge,
connecting two vertices of the same gadget.
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z0 : z4 > z5 > ∪i {xi, yi} > ∪c,i {pc
3i+1, qc

3i, p′c
3i+1, q′c

3i} >
∪c,i {ac

i , bc
i , a′c

i , b′c
i } > z1 > z2 > z3 > D > . . .

z1 : z5 > z4 > ∪i {xi, yi} > ∪c,i {pc
3i+1, qc

3i, p′c
3i+1, q′c

3i} >
∪c,i {ac

i , bc
i , a′c

i , b′c
i } > z0 > z3 > z2 > D > . . .

z2 : z0 > z1 > z3 > z4 > z5 > D > . . .
z3 : z1 > z0 > z2 > z5 > z4 > D > . . .
z4 : z2 > z3 > z5 > z0 > z1 > D > . . .
z5 : z3 > z2 > z4 > z1 > z0 > D > . . .

z0 z1

z2 z3

z4 z5

3 3

3 3

3 3

2

5

2

5

2

5

2

5

2

5

2

5

1

4

1

4

1

4

1

4

1

4

1

4

Fig. 6. The Z-gadget.

The following observation, which is straightforward, will be used repeatedly in our proofs.

Observation 2 Let v be u’s top choice neighbor. If v is matched in M to a neighbor worse than u
then (u, v) is a blocking edge to M .

Lemma 1. For any clause c, no popular matching in G can match sc0 (similarly, tc0) to a neighbor
worse than tc0 (resp., sc0). An analogous statement holds for s′c0 and t′c0 .

Proof. Let M be a popular matching such that (sc0, v) ∈ M for some vertex v such that tc0 > v in
sc0’s list, i.e., sc0 prefers tc0 to v. We claim this implies:

– a (+,+) edge reachable from v via an alternating path in GM that begins with a non-matching
edge incident to v and

– a (+,+) edge reachable from sc0 via an alternating path in GM that begins with a non-matching
edge incident to sc0.

If this is the same (+,+) edge then we have an alternating cycle in GM with a (+,+) edge, a
contradiction to M ’s popularity (by Theorem 2). If these are two different (+,+) edges then there
is an alternating path in GM with two (+,+) edges, again a contradiction to M ’s popularity (by
Theorem 2).

(1) If v is a top choice neighbor for some vertex (such as zk, xj , yj , d1, d2, d3, a
c
i , b

c
i , p

c
0, p

c
1, and so on)

then there is a (+,+) edge incident to v (by Observation 2).
(2) Suppose v is one of sr0, tr0, s′r0 , t′r0 for some r. Assume without loss of generality that v = sr0. Then

either (sr0, tr0) is a (+,+) edge or tr0 is matched in M to a neighbor better than sr0.
Recall tr0’s preference list: every vertex that tr0 prefers to sr0 is either a top choice neighbor or
it is d0. In the former case, there is a (+,+) edge incident to tr0’s partner (by Observation 2)
and in the latter case also there is a (+,+) edge incident to d0 since one of d1, d2, d3 is matched
to a neighbor worse than d0 and so there is a (+,+) edge between this di and d0. Since the
edge (sr0, tr0) is a (+,−) edge, there is a (+,+) edge reachable from sr0 via an alternating path
of length 2.

(3) The only case left is when v is neither a top choice neighbor of some vertex nor one of sr0, tr0, s′r0 , t′r0
for some r. So u is a vertex such as d0 or x′i, y′i or pc3j+2, q

c
3j+2, p

′c
3j+2, q

′c
3j+2 (for j = 0, 1, 2 and

some c). It is easy to see that there is a (+,+) edge reachable from v via an alternating path of
length at most 2. For instance, either (x′i, y′i) is a (+,+) edge or (xi, y′i) ∈M which creates the
alternating path (sc0, x′i)-(y′i, xi)-(yi, ∗), where (xi, yi) is a (+,+) edge.

Similarly, we can argue that there is a (+,+) edge reachable from sc0 via an alternating path in
GM . If tc0 is matched to a neighbor worse than sc0 then the edge (sc0, tc0) is a (+,+) edge. Else tc0 is
matched to a neighbor u better than sc0 and this means there is a (+,+) edge incident to u, as we
argued above in case (2). Hence there is a (+,+) edge reachable from sc0 via an alternating path of
length at most 2 in GM . ut
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Lemma 2. Every popular matching matches the vertices in the D-gadget among themselves.
Proof. Let M be a matching that matches di for some i ∈ {0, 1, 2, 3} to a vertex v outside the
D-gadget. This means at least 2 vertices di and dj in the D-gadget are matched to vertices outside
the D-gadget. So (di, dj) is a (+,+) edge. We now claim there is a forbidden alternating path or
cycle (as given in Theorem 2) to M ’s popularity.

If v is a top choice neighbor or a vertex such as x′i, y′i or pc3j+2, q
c
3j+2, p

′c
3j+2, q

′c
3j+2 (for j = 0, 1, 2

and some c) then there is a (+,+) edge e reachable from v via an alternating path of length at most
2 as seen in the proof of Lemma 1. This creates an alternating path in GM with 2 (+,+) edges:
(dj , di) and e.

The other possibility is that v is sc0, tc0, s′c0 , t′c0 for some clause c. Assume without loss of generality
that v = sc0. Consider the vertex tc0. We know from Lemma 1 that tc0 has to be matched to a neighbor
at least as good as sc0. So we have the following cases:
(1) tc0 is matched to a vertex di′ in the D-gadget: this means there is either an alternating path with

2 (+,+) edges or an alternating cycle with a (+,+) edge:

(sc0, di)
(+,+)
− (di′ , tc0)

(+,+)
− (sc1, ∗) or (sc0, di)

(+,+)
− (di′ , tc0)

(+,−)
− (sc1, tc1)

(−,+)
− (sc0, di).

If sc1 is matched to a neighbor worse than tc0 then the former is an alternating path with two (+,+)
edges: these are (di, di′) and (tc0, sc1). Else sc1 is matched to tc1 and the latter is an alternating
cycle with a (+,+) edge, which is (di, di′).

(2) tc0 is matched to sci for some i ∈ {1, 2, 3}: this means tci is matched to a neighbor worse than sc0
and so (sc0, tci ) is a (+,+) edge and thus we have the following alternating path with two (+,+)
edges (tc1, sc0) and (di, dj):

(∗, tc1)
(+,+)
− (sc0, di)

(+,+)
− (dj , ∗).

(3) tc0 is matched to either pc4 or pc7: we will show that this results in an alternating path with two
(+,+) edges. Assume without loss of generality that tc0 is matched to pc4. Consider the following
alternating path:

(∗, sc3)
(+,+)
− (tc0, pc4)

(+,+)
− (qc5, ∗) or (∗, dj)

(+,+)
− (di, sc0)

(+,−)
− (tc3, sc3)

(−,+)
− (tc0, pc4)

(+,+)
− (qc5, ∗).

Recall that sc3 is the top choice neighbor of tc0 and the vertex pc4 is the top choice neighbor of qc5.
If the vertex sc3 is matched to a neighbor worse than tc0 then the former path is an alternating
path in GM with two (+,+) edges in it: these are (sc3, tc0) and (pc4, qc5). Else (sc3, tc3) ∈ M and
recall that the edge (sc0, tc3) is a (+,−) edge as sc0 prefers tc3 to di. This creates the latter path
which is an alternating path in GM with 2 (+,+) edges in it: these are (di, dj) and (pc4, qc5). ut
The gadget D admits 2 popular matchings: {(d0, d1), (d2, d3)} and {(d0, d2), (d1, d3)}. So if M is

a popular matching then either {(d0, d1), (d2, d3)} ⊂M or {(d0, d2), (d1, d3)} ⊂M .
Lemma 3. Let (u, v) be an edge in G where both u and v prefer d0 to each other. Then (u, v) cannot
be a popular edge.
Proof. Let M be a popular matching in G that contains such an edge (u, v). We know from Lemma 2
that either {(d0, d1), (d2, d3)} ⊂ M or {(d0, d2), (d1, d3)} ⊂ M . So there is always a blocking edge
(di, dj) ∈ {(d1, d3), (d1, d2)} to M .

Observe that both u and v cannot belong to the D-gadget as there is no such pair within D.
If exactly one of u, v belongs to the D-gadget then (u, v) is not a popular edge (by Lemma 2).
So neither u nor v belongs to the D-gadget and this implies that u prefers d0, d1, d2, d3 to v and
symmetrically, v prefers d0, d1, d2, d3 to u.

Consider the following alternating cycle C with respect to M :

(u, v)
(+,−)
− (di′ , di)

(+,+)
− (dj , dj′)

(−,+)
− (u, v),

where (di′ , di) and (dj , dj′) are edges from the D-gadget in M and (di, dj) is a blocking edge. Thus
C is an alternating cycle in GM with a (+,+) edge. This contradicts the popularity of M (by
Theorem 2). ut
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Corollary 1. The edges (sc0, tc0) and (s′c0 , t′c0 ) are not popular edges for any clause c.

Corollary 1 follows from Lemma 3 by setting u and v to sc0 and tc0 (similarly, s′c0 and t′c0 ),
respectively. Let us call u a level i vertex if u belongs to a level i gadget.

Lemma 4. No edge between a level i vertex and a level i+ 1 vertex is popular, for 0 ≤ i ≤ 2.

The proof of Lemma 4 follows from Claims 1-3 proved below.

Claim 1 There is no popular edge between a level 0 vertex and a level 1 vertex.

Proof. Let M be a popular matching in G with such an edge, say (ac1, y′j). We claim this would
create an alternating path in GM with two (+,+) edges in it. Theorem 2 forbids such an alternating
path. Consider the vertex bc1. There are 3 possibilities for bc1’s partner in M .

(1) bc1 is matched to ac2
So (ac2, bc2) is labeled (+,+). Recall that bc2 is ac2’s top choice and the only neighbor that bc2
prefers to ac2 is ac1 (matched to y′j). Consider the following alternating path in GM :

(∗, bc2)
(+,+)
− (ac2, bc1)

(−,+)
− (ac1, y′j)

(+,+)
− (x′j , ∗).

If x′j is matched to a neighbor worse than y′j then the above is an alternating path in GM with
two (+,+) edges: these are (bc2, ac2) and (y′j , x′j). Else replace (x′j , ∗) in the above path with
(x′j , yj)− (xj , ∗): the (+,+) edges here are (bc2, ac2) and (yj , xj).

(2) bc1 is matched to x′k
Either the edge (x′k, y′k) or the edge (xk, yk) will block M . Suppose y′k is matched to a neighbor
worse than x′k in M . Consider the following alternating path in GM :

(∗, y′k)
(+,+)
− (x′k, bc1)

(−,+)
− (ac1, y′j)

(+,+)
− (x′j , ∗).

Either the above is an alternating path in GM with two (+,+) edges or by replacing (x′j , ∗) with
(x′j , yj)− (xj , ∗) (as done in case (1)), we get an alternating path in GM with two (+,+) edges.
If y′k is matched to a neighbor better than x′k in M , i.e., if (xk, y′k) ∈ M then prefix both these
alternating paths with (∗, yk). This will yield an alternating path in GM with (xk, yk) as a
blocking edge and either (x′j , y′j) or (xj , yj) as a blocking edge.

(3) bc1 is matched to a neighbor worse than ac1
The edge (ac1, bc1) is labeled (+,+). Consider the following alternating path in GM :

(∗, bc1)
(+,+)
− (ac1, y′j)

(+,+)
− (x′j , ∗) or (∗, bc1)

(+,+)
− (ac1, y′j)

(+,−)
− (x′j , yj)

(+,+)
− (xj , ∗).

That is, if x′j is matched to a neighbor worse than y′j then consider the first alternating path
above: this is an alternating path in GM with both (bc1, ac1) and (y′j , x′j) as (+,+) edges. Else
(x′j , yj) ∈ M and the second alternating path is an alternating path in GM with (bc1, ac1) and
(yj , xj) as (+,+) edges.

ut

Claim 2 There is no popular edge between a level 1 vertex and a level 2 vertex.

Proof. Let M be a popular matching in G that contains such an edge, say (pc2, yj). Consider the
following alternating path with respect to M :

(pc2, yj)
(+,+)
− (x′j , y′j)

(+,+)
− (xj , ∗).

Since M is a perfect matching, x′j is matched in M . We know that no edge between x′j and a level 0
vertex belongs to M (by Claim 1). Also, M cannot match x′j to a neighbor that it regards worse
than d0 (by Lemma 3). Thus x′j has to be matched to y′j in M and so the above alternating path has
two (+,+) edges: (x′j , yj) and (xj , y′j). This is a contradiction to M ’s popularity (by Theorem 2).

9



Claim 3 There is no popular edge between a level 2 vertex and a level 3 vertex.

Proof. Let M be a popular matching in G that contains such an edge, say (sc0, qc0). Consider the
following alternating path with respect to M :

(sc0, qc0)
(+,+)
− (pc2, qc2)

(+,+)
− (pc0, ∗) or (sc0, qc0)

(+,+)
− (pc2, qc1)

(+,+)
− (pc1, ∗).

The vertex pc2 is matched in M and its partner cannot be a level 1 vertex (by Claim 2) or a neighbor
worse than d0 (by Lemma 3). So either (pc2, qc2) or (pc2, qc1) is in M . This means either the first
alternating path given above or the second one is an alternating path in GM with two (+,+) edges:
(pc2, qc0) and (pc0, qc2) in the former and (pc2, qc0) and (pc1, qc1) in the latter. This is a contradiction to
M ’s popularity (by Theorem 2). ut

Lemma 5. All popular matchings match the 6 vertices of the Z-gadget among themselves.

Proof. Let M be any popular matching in G. It follows from Lemma 3 that M has to pair each of
z2, z3, z4, and z5 to a vertex in the Z-gadget. Let us now show that z0 also has to be matched within
the Z-gadget. Then it immediately follows that z1 also has to be matched within the Z-gadget. We
have the following 3 cases:

(1) Suppose z0 is matched in M to a level 0 neighbor, say bc1. Then (ac1, bc1) is a blocking edge to M .
Lemmas 2, 3, and 4 ensure that ac1 is either matched to z1 or to bc2. We investigate these two
cases below.
• (ac1, z1) ∈M : Here both z0 and z1 are matched to vertices they prefer to all their neighbors

inside the Z-gadget, except for z4 and z5. We know that z4 and z5 must be matched inside
the Z-gadget. There are 3 subcases and in each case there is an alternating cycle in GM with
a blocking edge (ac1, bc1): a contradiction to M ’s popularity (by Theorem 2).

∗ (z4, z2) ∈M : the alternating cycle is (bc1, z0)
(+,−)
− (z4, z2)

(+,−)
− (z1, a

c
1)

(+,+)
− (bc1, z0).

∗ (z4, z3) ∈M : the alternating cycle is (bc1, z0)
(+,−)
− (z4, z3)

(+,−)
− (z1, a

c
1)

(+,+)
− (bc1, z0).

∗ (z4, z5) ∈M : the alternating cycle is (bc1, z0)
(+,−)
− (z4, z5)

(−,+)
− (z1, a

c
1)

(+,+)
− (bc1, z0).

• (ac1, bc2) ∈M : Lemmas 2, 3, and 4 ensure that ac2 is matched to z1 (recall that M is perfect).
This leads to the same 3 subcases as above, except that instead of the edge (z1, a

c
1), there is

the path (z1, a
c
2)− (bc2, ac1) in GM : here (ac2, bc2) is labeled (+,−).

(2) Suppose z0 is matched in M to a level 1 neighbor, say yi.
This case is similar to the previous case. Here the edge (xi, yi) becomes the blocking edge to
M . It follows from Lemmas 2, 3, and 4 that xi is either matched to z1 or to y′i. The latter case
leaves x′i unmatched and the subcases that arise in the former case are analogous to the ones in
case (1).

(3) Suppose z0 is matched in M to a level 2 neighbor, say qc0.
It follows from Lemmas 2, 3, and 4 that (pc0, qc2), (pc2, qc1), and (pc1, z1) are in M . Consider the
alternating path (z0, q

c
0)− (pc2, qc1)− (pc1, z1): it has two blocking edges (pc2, qc0) and (pc1, qc1). This

is again a contradiction to M ’s popularity.

Recall that Lemma 2 showed that all vertices of D must be matched within the gadget. Thus
z0 cannot be matched to a vertex in the D-gadget. The case where z0 is matched in M to a level 3
neighbor does not arise as such an edge would violate Lemma 3. This finishes our proof that any
popular matching M matches the 6 vertices of the Z-gadget among themselves. ut

Lemma 6. The only popular matching inside the Z-gadget is {(z0, z1), (z2, z3), (z4, z5)}.

Proof. The matching {(z0, z1), (z2, z3), (z4, z5)} is stable in the Z-gadget, thus this is a popular
matching. Note that this gadget has no other stable matching.

Let M be any matching that matches the 6 vertices of the Z-gadget among themselves. Suppose
M contains one or more of the edges (zi, zj) where i = j mod 2 (colored black in Fig. 6). Without
loss of generality, let (z0, z2) ∈ M . There are three candidate matchings that we need to check for
popularity: note that none is popular (by Theorem 2).
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– {(z0, z2), (z1, z3), (z4, z5)}: this has the alternating cycle (z2, z0)
(+,+)
− (z1, z3)

(−,+)
− (z5, z4)

(+,−)
−

(z2, z0) with the blocking edge (z0, z1).

– {(z0, z2), (z1, z4), (z3, z5)}: this has the alternating cycle (z0, z2)
(−,+)
− (z3, z5)

(−,+)
− (z1, z4)

(+,+)
−

(z0, z2) with the blocking edge (z0, z4).

– {(z0, z2), (z1, z5), (z3, z4)}: this has the alternating cycle (z2, z0)
(+,−)
− (z1, z5)

(+,+)
− (z3, z4)

(+,−)
−

(z2, z0) with the blocking edge (z3, z5).

Thus we can conclude that M ⊂ {z0, z2, z4}×{z1, z3, z5}. Suppose M contains an unstable edge here
(dotted and gray in Fig. 6), say (z0, z3): among the vertices in the Z-gadget, z3 is the last choice of
z0 and the edge (z0, z2) blocks M . Since z2 has to be matched in M , there are two cases.

– (z1, z2) ∈M : the 4 vertices z0, z1, z2, z3 prefer {(z0, z2), (z1, z3)} to {(z0, z3), (z1, z2)} ⊂M .
– (z2, z5) ∈M : the 4 vertices z0, z2, z3, z5 prefer {(z0, z2), (z3, z5)} to {(z0, z3), (z2, z5)} ⊂M .

Thus in both cases we have a contradiction to M ’s popularity. Analogous proofs hold for other
unstable edges chosen from {z0, z2, z4} × {z1, z3, z5}. Thus the only popular matching inside the
Z-gadget is {(z0, z1), (z2, z3), (z4, z5)}. ut

5 Stable states versus unstable states

In this section we will show how to obtain a 1-in-3 satisfying assignment for the input φ from any
popular matching in G. The following definition will be useful to us.

Definition 2. A gadget A in G = (V,E) is said to be in unstable state with respect to matching M
if there is a blocking edge (u, v) ∈ V (A)× V (A) with respect to M . If there is no such blocking edge
to M then we say A is in stable state with respect to M .

In Figures 2-6 depicting our gadgets, corresponding to matchings that consist of colored edges
within the gadget, the relevant gadget is in stable state. A level 1 gadget in unstable state will encode
the corresponding variable being set to true while a level 1 gadget in stable state will encode the
corresponding variable being set to false. We will now analyze what gadgets are in stable/unstable
state with respect to any popular matching M in G. This will lead to the proof that for any clause
c, exactly one of the level 1 gadgets corresponding to the 3 variables in c is in unstable state.

Lemma 7. For any clause c, the following statements hold:

– all its 6 level 0 gadgets are in stable state with respect to M ;
– both its level 3 gadgets in G are in unstable state with respect to M .

Proof. Consider a level 0 gadget corresponding to clause c, say the one on vertices ac1, bc1, ac2, bc2.
Lemmas 2, 3, 4, and 5 imply that either {(ac1, bc1), (ac2, bc2)} ⊂ M or {(ac1, bc2), (ac2, bc1)} ⊂ M . Thus
there is no blocking edge within this gadget. As this holds for every level 0 gadget corresponding to
c and for every clause c, the first part of the lemma follows.

We will now prove the second part of the lemma. Since M is a perfect matching, the vertices
sc0, t

c
0 (also s′c0 , t′c0 ) have to be matched in M , for all clauses c. It follows from Lemmas 2 and 3 that

both sc0 and tc0 (similarly, s′c0 and t′c0 ) have to be matched to neighbors that are better than d0.
Lemma 4 showed that there is no popular edge between a level 3 vertex and a level 2 vertex. Thus
sc0 is matched to tci for some i ∈ {1, 2, 3}.

If sc0 is matched to tci then sci has to be matched to tc0—otherwise Lemma 3 would be violated
by sci and its partner. So (sci , tci ) blocks M and this holds for every clause c. Similarly, there is a
blocking edge (s′ci , t′ci ) for some i ∈ {1, 2, 3} for every clause c. ut

Lemma 8. For any clause c, at least one of the following two conditions has to hold:

– two or more of its first three level 2 gadgets are in unstable state with respect to M ;
– two or more of its last three level 2 gadgets are in unstable state with respect to M .
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Proof. Suppose both statements are false. Let M be a popular matching such that corresponding to
clause c, at least two among its first three level 2 gadgets are in stable state with respect to M and
at least two among its last three level 2 gadgets are in stable state with respect to M .

Consider the two level 3 gadgets corresponding to c. We know that (sc0, tci ), (sci , tc0) are in M
for some i ∈ {1, 2, 3} and similarly, (s′c0 , t′cj ), (s′cj , t′c0 ) are in M for some j ∈ {1, 2, 3} (see the proof
of Lemma 7). We will now show the existence of an alternating path ρ that will contradict M ’s
popularity.

For this, we claim it suffices to show in stable state the following:
– one among the first three level 2 gadgets with a vertex that either sc0 or tc0 prefers to its partner

in M , and
– one among the last three level 2 gadgets with a vertex that either s′c0 or t′c0 prefers to its partner

in M .
For instance, suppose i = 1 and j = 2. So tc0 prefers pc4 and pc7 to its partner sc1 in M and s′c0

prefers q′c0 to its partner t′c2 in M and t′c0 prefers p′c7 to its partner s′c2 in M . Consider the level 2
gadgets containing pc4, pc7, q′c0 , and p′c7 .

Observe that by our assumption in the first paragraph above, either the gadget of pc4 or the
gadget of pc7 is in stable state, similarly either the gadget of q′c0 or the gadget of p′c7 is in stable state.
In all 4 cases, we will show the existence of an alternating path ρ in GM with two blocking edges
(sc1, tc1) and (s′c2 , t′c2 ), which is a contradiction to M ’s popularity (by Theorem 2).

1. Suppose the gadgets of pc4 and q′c0 are in stable state. So the edges (pci , qci ) ∈M for i = 3, 4, 5 and
the edges (p′cj , q′cj ) ∈ M for j = 0, 1, 2. Consider the following alternating path ρ with respect
to M :

(sc0, tc1)
(+,+)
− (sc1, tc0)

(+,−)
− (pc4, qc4)

(−,+)
− (pc5, qc5)

(+,−)
− (pc3, qc3)

(−,+)
−

(z0, z1)
(+,−)
− (p′c1 , q′c1 )

(−,+)
− (p′c2 , q′c2 )

(+,−)
− (p′c0 , q′c0 )

(−,+)
− (s′c0 , t′c2 )

(+,+)
− (s′c2 , t′c0 ).

We know that (z0, z1) ∈ M (by Lemma 6). Note that ρ is the desired alternating path in GM
with two blocking edges (sc1, tc1) and (s′c2 , t′c2 ).

2. Suppose the gadgets of pc4 and p′c7 are in stable state. So the edges (pci , qci ) ∈M for i = 3, 4, 5 and
the edges (p′cj , q′cj ) ∈ M for j = 6, 7, 8. Consider the following alternating path ρ with respect
to M :

(sc0, tc1)
(+,+)
− (sc1, tc0)

(+,−)
− (pc4, qc4)

(−,+)
− (pc5, qc5)

(+,−)
− (pc3, qc3)

(−,+)
−

(z0, z1)
(+,−)
− (q′c6 , p′c6 )

(−,+)
− (q′c8 , p′c8 )

(+,−)
− (q′c7 , p′c7 )

(−,+)
− (t′c0 , s′c2 )

(+,+)
− (t′c2 , s′c0 ).

Observe that the labels on edges of ρ \M are absolutely identical to the first case and thus ρ is
the desired alternating path in GM with two blocking edges (sc1, tc1) and (s′c2 , t′c2 ).

3. Suppose the gadgets of pc7 and q′c0 are in stable state. So the edges (pci , qci ) ∈M for i = 6, 7, 8 and
the edges (p′cj , q′cj ) ∈ M for j = 0, 1, 2. Consider the following alternating path ρ with respect
to M :

(sc0, tc1)
(+,+)
− (sc1, tc0)

(+,−)
− (pc7, qc7)

(−,+)
− (pc8, qc8)

(+,−)
− (pc6, qc6)

(−,+)
−

(z0, z1)
(+,−)
− (p′c1 , q′c1 )

(−,+)
− (p′c2 , q′c2 )

(+,−)
− (p′c0 , q′c0 )

(−,+)
− (s′c0 , t′c2 )

(+,+)
− (s′c2 , t′c0 ).

Again, observe that the labels on edges of ρ \M are absolutely identical to the first two cases
and ρ is the desired alternating path with two blocking edges (sc1, tc1) and (s′c2 , t′c2 ).

4. Suppose the gadgets of pc7 and p′c7 are in stable state. So the edges (pci , qci ) ∈M for i = 6, 7, 8 and
the edges (p′cj , q′cj ) ∈ M for j = 6, 7, 8. Consider the following alternating path ρ with respect
to M :

(sc0, tc1)
(+,+)
− (sc1, tc0)

(+,−)
− (pc7, qc7)

(−,+)
− (pc8, qc8)

(+,−)
− (pc6, qc6)

(−,+)
−

(z0, z1)
(+,−)
− (q′c6 , p′c6 )

(−,+)
− (q′c8 , p′c8 )

(+,−)
− (q′c7 , p′c7 )

(−,+)
− (t′c0 , s′c2 )

(+,+)
− (t′c2 , s′c0 ).
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As before, the labels on edges of ρ \M are absolutely identical to the above three cases and ρ is
the desired alternating path with two blocking edges (sc1, tc1) and (s′c2 , t′c2 ).

For any (i, j) ∈ {1, 2, 3} × {1, 2, 3}, an analogous construction can be shown.

– Let i = j = 1. So tc0 prefers pc4 and pc7 to its partner sc1 in M and t′c0 prefers p′c4 and p′c7 to its
partner s′c1 in M . We know that either the gadget of pc4 or the gadget of pc7 is in stable state,
and similarly, either the gadget of p′c4 or the gadget of p′c7 is in stable state.
Suppose the gadgets of pc4 and p′c4 are in stable state. So the edges (pci , qci ) ∈M for i = 3, 4, 5 and
the edges (p′cj , q′cj ) ∈ M for j = 3, 4, 5. Consider the following alternating path ρ with respect
to M :

(sc0, tc1)
(+,+)
− (sc1, tc0)

(+,−)
− (pc4, qc4)

(−,+)
− (pc5, qc5)

(+,−)
− (pc3, qc3)

(−,+)
−

(z0, z1)
(+,−)
− (q′c3 , p′c3 )

(−,+)
− (q′c5 , p′c5 )

(+,−)
− (q′c4 , p′c4 )

(−,+)
− (t′c0 , s′c1 )

(+,+)
− (t′c1 , s′c0 ).

Observe again that the labels on edges of ρ \M are absolutely identical to the labels obtained
for the desired alternating paths when i = 1 and j = 2. The path ρ is the desired alternating
path in GM with two blocking edges (sc1, tc1) and (s′c1 , t′c1 ).
The case when the gadgets of pc7 and p′c7 are in stable state was already seen in Case 4 of i = 1
and j = 2. The only difference between the path that we will construct now with the path ρ seen
there is in the last two edges: now we will have (t′c0 , s′c1 ) and (t′c1 , s′c0 ) in M ; thus the blocking
edges to our path will be (sc1, tc1) and (s′c1 , t′c1 ).
The proofs for the remaining two cases: (i) when the gadgets of pc4 and p′c7 are in stable state
and (ii) when the gadgets of pc7 and p′c4 are in stable state are absolutely analogous to the above
case. Thus in all 4 cases, we can show the existence of an alternating path ρ in GM with two
blocking edges (sc1, tc1) and (s′c1 , t′c1 ): a contradiction to M ’s popularity.

– Let i = 1 and j = 3. So tc0 prefers pc4 and pc7 to its partner sc1 in M and s′c0 prefers q′c0 and q′c3 to
its partner t′c3 in M . We know that either the gadget of pc4 or the gadget of pc7 is in stable state,
and similarly, either the gadget of q′c0 or the gadget of q′c3 is in stable state.
The cases when the gadgets of pc4 and q′c0 are in stable state and when the gadgets of pc7 and
q′c0 are in stable state were already seen in Case 1 and Case 3 of i = 1 and j = 2: thus we
can construct analogous alternating paths in these cases. So let us consider the case when the
gadgets of pc7 and q′c3 are in stable state.
So the edges (pci , qci ) ∈M for i = 6, 7, 8 and the edges (p′cj , q′cj ) ∈M for j = 3, 4, 5. Consider the
following alternating path ρ with respect to M :

(sc0, tc1)
(+,+)
− (sc1, tc0)

(+,−)
− (pc7, qc7)

(−,+)
− (pc8, qc8)

(+,−)
− (pc6, qc6)

(−,+)
−

(z0, z1)
(+,−)
− (p′c4 , q′c4 )

(−,+)
− (p′c5 , q′c5 )

(+,−)
− (p′c3 , q′c3 )

(−,+)
− (s′c0 , t′c3 )

(+,+)
− (s′c3 , t′c0 ).

The above path ρ is the desired alternating path in GM with two blocking edges (sc1, tc1) and
(s′c3 , t′c3 ).
The remaining case, i.e., when the gadgets of pc4 and q′c3 are in stable state, is absolutely analogous
to the above case and we can again show an alternating path in GM with two blocking edges
(sc1, tc1) and (s′c3 , t′c3 ).

– Let i = 2 and j = 1. This is a “mirror image” of the very first case considered: when i = 1
and j = 2. The only difference is that we swap primed variables and unprimed variables in ρ.
For example, when the gadgets of qc0 and p′c4 are in stable state, the desired alternating path is
exactly the same as ρ in Case 1 there, except for this swapping of roles. Thus ρ, with blocking
edges (sc2, tc2) and (s′c1 , t′c1 ), would be:

(tc0, sc2)
(+,+)
− (tc2, sc0)

(+,−)
− (qc0, pc0)

(−,+)
− (qc2, pc2)

(+,−)
− (qc1, pc1)

(−,+)
−

(z0, z1)
(+,−)
− (q′c3 , p′c3 )

(−,+)
− (q′c5 , p′c5 )

(+,−)
− (q′c4 , p′c4 )

(−,+)
− (t′c0 , s′c1 )

(+,+)
− (t′c1 , s′c0 ).
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– Let i = j = 2. So sc0 prefers qc0 to its partner tc2 in M and and tc0 prefers pc7 to its partner sc2 in
M and s′c0 prefers q′c0 to its partner t′c2 in M and t′c0 prefers p′c7 to its partner s′c1 in M . We know
that either the gadget of qc0 or the gadget of pc7 is in stable state, and similarly, either the gadget
of q′c0 or the gadget of p′c7 is in stable state.
The cases when the gadgets of pc7 and q′c0 are in stable state and when the gadgets of pc7 and p′c7
are in stable state were already seen in Cases 3 and 4 of i = 1 and j = 2. Let us consider the
case when the gadgets of qc0 and q′c0 are in stable state.
So the edges (pci , qci ) ∈M for i = 0, 1, 2 and the edges (p′cj , q′cj ) ∈M for j = 0, 1, 2. Consider the
following alternating path ρ with respect to M :

(tc0, sc2)
(+,+)
− (tc2, sc0)

(+,−)
− (qc0, pc0)

(−,+)
− (qc2, pc2)

(+,−)
− (qc1, pc1)

(−,+)
−

(z0, z1)
(+,−)
− (p′c1 , q′c1 )

(−,+)
− (p′c2 , q′c2 )

(+,−)
− (p′c0 , q′c0 )

(−,+)
− (s′c0 , t′c2 )

(+,+)
− (s′c2 , t′c0 ).

The path ρ is the desired alternating path in GM with two blocking edges (sc2, tc2) and (s′c2 , t′c2 ).
The proof for the remaining case is absolutely analogous. Thus in all 4 cases, we can show
the existence of an alternating path ρ in GM with two blocking edges (sc2, tc2) and (s′c2 , t′c2 ): a
contradiction to M ’s popularity.
It is easy to see that the remaining cases of (i, j) are absolutely analogous to the ones listed
above and this finishes the proof of the lemma. ut

Recall that there are three level 1 gadgets associated with any clause c: these gadgets correspond
to the three variables in c.

Lemma 9. Let c = Xi ∨Xj ∨Xk. At least one of the level 1 gadgets corresponding to Xi, Xj , Xk is
in unstable state with respect to M .

Proof. Suppose not. That is, assume that for some clause c, all three of its level 1 gadgets are in
stable state. Let c = Xi ∨Xj ∨Xk. So (xr, yr) and (x′r, y′r) are in M for all r ∈ {i, j, k}.

We know from Lemma 8 that either two or more of the first three level 2 gadgets corresponding to
c are in unstable state with respect to M or two or more of the last three level 2 gadgets corresponding
to c are in unstable state with respect to M . Assume without loss of generality that the first and
second gadgets, i.e., those on pci , q

c
i , for 0 ≤ i ≤ 5, are in unstable state with respect to M .

We know from our lemmas in Section 4 that there is no popular edge across gadgets. Thus M
matches the 6 vertices of a level 2 gadget with each other. In particular, it follows from Lemma 3
that for the level 2 gadget on pci , q

c
i for i = 0, 1, 2, we have (i) (pc0, qc0), (pc1, qc1), (pc2, qc2) in M or

(ii) (pc0, qc2), (pc1, qc1), (pc2, qc0) in M or (iii) (pc0, qc0), (pc1, qc2), (pc2, qc1) in M .
There are two unstable states for each level 2 gadget, i.e., either (ii) or (iii) above for the gadget on

pci , q
c
i for i = 0, 1, 2. A level 2 gadget can be in either of these two unstable states in M—without loss

of generality assume that M contains (pc0, qc0), (pc1, qc2), (pc2, qc1) and (pc3, qc5), (pc4, qc4), (pc5, qc3). Observe
that pc2 likes yj more than qc1 and similarly, qc5 likes xi more than pc3. Consider the following alternating
path ρ with respect to M :

(qc2, pc1)
(+,+)
− (qc1, pc2)

(+,−)
− (yj , xj)

(−,+)
− (z0, z1)

(+,−)
− (yi, xi)

(−,+)
− (qc5, pc3)

(+,+)
− (qc3, pc5).

Note that M has to contain (z0, z1) (by Lemma 6). Observe that ρ is an alternating path in
GM with two blocking edges (pc1, qc1) and (pc3, qc3). This is a contradiction to M ’s popularity (by
Theorem 2) and the lemma follows. ut

Lemma 10. Let c = Xi ∨Xj ∨Xk. At most one of the level 1 gadgets corresponding to Xi, Xj , Xk

is in unstable state with respect to M .

Proof. Suppose not. So at least two of the three level 1 gadgets corresponding to Xi, Xj , Xk are in
unstable state with respect to M . Assume without loss of generality that the gadgets corresponding
to variables Xi and Xj are in unstable state. So the edges (xi, y′i), (x′i, yi) are in M , similarly the
edges (xj , y′j), (x′j , yj) are in M .
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Recall that ac5 regards y′i as its second choice neighbor and bc5 regards x′j as its second choice
neighbor. Similarly, b′c5 regards x′i as its second choice neighbor and a′c5 regards y′j as its second
choice neighbor.

In the popular matching M , level 0 vertices are matched within their own gadget. Therefore,
either {(ac5, bc5), (ac6, bc6)} ⊂ M or {(ac5, bc6), (ac6, bc5)} ⊂ M ; similarly {(a′c5 , b′c5 ), (a′c6 , b′c6 )} ⊂ M or
{(a′c5 , b′c6 ), (a′c6 , b′c5 )} ⊂M . Thus the following two observations clearly hold:
– either ac5 or bc5 is matched to its third choice neighbor;
– either a′c5 or b′c5 is matched to its third choice neighbor.

Based on which of these vertices are matched to their third choice neighbors, we have four cases
as shown below. Each of these 4 cases results in a forbidden alternating path/cycle (as given in
Theorem 2), thus proving the lemma.
Case 1. The vertices ac5 and a′c5 are matched to their third choice neighbors. So (ac5, bc6), (ac6, bc5) and
(a′c5 , b′c6 ), (a′c6 , b′c5 ) are in M . Consider the following alternating path ρ with respect to M :

(x′i, yi)
(+,+)
− (xi, y′i)

(−,+)
− (ac5, bc6)

(−,+)
− (z0, z1)

(+,−)
− (b′c6 , a′c5 )

(+,−)
− (y′j , xj)

(+,+)
− (yj , x′j).

Observe that ρ is an alternating path in GM with two blocking edges (xi, yi) and (xj , yj), a
contradiction to M ’s popularity.
Case 2. The vertices ac5 and b′c5 are matched to their third choice neighbors. So (ac5, bc6), (ac6, bc5) and
(a′c5 , b′c5 ), (a′c6 , b′c6 ) are in M . Consider the following alternating cycle C with respect to M :

(bc6, ac5)
(+,−)
− (y′i, xi)

(+,+)
− (yi, x′i)

(−,+)
− (b′c5 , a′c5 )

(−,+)
− (z1, z0)

(+,−)
− (bc6, ac5).

Observe that C is an alternating cycle in GM with a blocking edge (xi, yi), a contradiction to
M ’s popularity.
Case 3. The vertices bc5 and a′c5 are matched to their third choice neighbors. So (ac5, bc5), (ac6, bc6) and
(a′c5 , b′c6 ), (a′c6 , b′c5 ) are in M . Consider the following alternating cycle C ′ with respect to M :

(ac5, bc5)
(+,−)
− (x′j , yj)

(+,+)
− (xj , y′j)

(−,+)
− (a′c5 , b′c6 )

(−,+)
− (z0, z1)

(+,−)
− (ac5, bc5).

Observe that C ′ is an alternating cycle in GM with a blocking edge (xj , yj), a contradiction to
M ’s popularity.
Case 4. The vertices bc5 and b′c5 are matched to their third choice neighbors. So (ac5, bc5), (ac6, bc6) and
(a′c5 , b′c5 ), (a′c6 , b′c6 ) are in M . Consider the following alternating path ρ′ with respect to M :

(y′i, xi)
(+,+)
− (yi, x′i)

(−,+)
− (b′c5 , a′c5 )

(−,+)
− (z0, z1)

(+,−)
− (ac5, bc5)

(+,−)
− (x′j , yj)

(+,+)
− (xj , y′j).

Observe that ρ′ is an alternating path in GM with two blocking edges (xi, yi) and (xj , yj), a
contradiction to M ’s popularity. ut

We have shown that at most one of the level 1 gadgets corresponding to Xi, Xj , Xk is in unstable
state with respect to M . So exactly one of the level 1 gadgets corresponding to Xi, Xj , Xk is in
unstable state with respect to M . This allows us to set a 1-in-3 satisfying assignment to instance φ.
For each variable Xi in φ do:

— if the gadget corresponding to Xi is in unstable state then set Xi = true else set Xi = false.
It follows from our above discussion that this is a 1-in-3 satisfying assignment for φ. We have

thus shown the following result.

Theorem 3. If G admits a popular matching then φ has a 1-in-3 satisfying assignment.

6 The converse

We will now show the converse of Theorem 3, i.e., if φ has a 1-in-3 satisfying assignment S then G
admits a popular matching. We will use S to construct a popular matching M in G as follows. To
begin with, M = ∅.
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Level 1. For each variable Xi do:

– if Xi is set to true in S then add (xi, y′i) and (x′i, yi) to M ;
– else add (xi, yi) and (x′i, y′i) to M .

For each clause c = Xi ∨ Xj ∨ Xk, we know that exactly one of Xi, Xj , Xk is set to true in S.
Assume without loss of generality that Xk = true in S. For the level 0, 2, and 3 gadgets corresponding
to c, we do as follows:

Level 0. Recall that there are six level 0 gadgets that correspond to c. For the first 3 gadgets (these
are on vertices aci , bci for i = 1, . . . , 6) do:

– include (ac1, bc2), (ac2, bc1) from the first gadget;
– include (ac3, bc3), (ac4, bc4) from the second gadget;
– choose either (ac5, bc5), (ac6, bc6) or (ac5, bc6), (ac6, bc5) from the third gadget.

Observe that since the third variable Xk of c was set to be true, cross edges are fixed in the
first gadget (see Fig. 3), while the other stable matching (horizontal edges) is chosen in the second
gadget.

For the fourth and fifth gadgets, we will do exactly the opposite. Also, it will not matter which
stable pair of edges is chosen from the third and sixth gadgets. So for the last 3 level 0 gadgets
corresponding to c (these are on vertices a′ci , b′ci for i = 1, . . . , 6) do:

– include (a′c1 , b′c1 ), (a′c2 , b′c2 ) from the fourth gadget;
– include (a′c3 , b′c4 ), (a′c4 , b′c3 ) from the fifth gadget.
– choose either (a′c5 , b′c5 ), (a′c6 , b′c6 ) or (a′c5 , b′c6 ), (a′c6 , b′c5 ) from the sixth gadget.

Level 2. Recall that there are six level 2 gadgets that correspond to c. For the first 3 gadgets (these
are on vertices pci , qci for i = 0, . . . , 8) do:

– include (pc0, qc2), (pc1, qc1), (pc2, qc0) from the first gadget
– include (pc3, qc3), (pc4, qc5), (pc5, qc4) from the second gadget
– include (pc6, qc6), (pc7, qc7), (pc8, qc8) from the third gadget

In the first three gadgets, because Xk = true, the third one is set to parallel edges, reaching the
stable state, while the first one is blocked by the top horizontal edge and the second one is blocked by
the middle horizontal edge. Include isomorphic edges (to the above ones) from the last three level 2
gadgets corresponding to c, i.e., include (p′c0 , q′c2 ), (p′c1 , q′c1 ), (p′c2 , q′c0 ) from the fourth gadget, and so
on. On this level, the last three gadgets mimic the matching edges from the first three gadgets,
unlike in level 0.

Level 3. For the first level 3 gadget corresponding to c do:

– include (sc0, tc3), (sc1, tc1), (sc2, tc2), (sc3, tc0) in M .

Since the third variable in c was set to be true, the vertices sc0 and tc0 are matched to tc3 and
sc3, respectively—thus the bottom horizontal edge (sc3, tc3) blocks M . Include isomorphic edges (to the
above ones) for the second level 3 gadget corresponding to c, i.e., include (s′c0 , t′c3 ), (s′c1 , t′c1 ), (s′c2 , t′c2 ), (s′c3 , t′c0 )
in M . Once again, the second gadget mimics the matching edges on the first gadget.

Z-gadget and D-gadget. Finally include the edges (z0, z1), (z2, z3), (z4, z5) from the Z-gadget in M .
By Lemma 6, every popular matching in G has to include these edges. Also include (d0, d1), (d2, d3)
from the D-gadget in M .
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6.1 The popularity of M

We will now prove the popularity of the above matching M via the LP framework of popular
matchings initiated in [18] for bipartite graphs. This framework generalizes to provide a sufficient
condition for popularity in non-bipartite graphs [9]. This involves showing a witness α ∈ {0,±1}|V |
such that α is a certificate of M ’s popularity. In order to define the constraints that α has to satisfy
so as to certify M ’s popularity, let us define an edge weight function wM as follows.

For any edge (u, v) in G do:

– if (u, v) is labeled (−,−) then set wM (u, v) = −2;
– if (u, v) is labeled (+,+) then set wM (u, v) = 2;
– else set wM (u, v) = 0. (So wM (e) = 0 for all e ∈M .)

Let N be any perfect matching in G. It is easy to see from the definition of the edge weight
function wM that wM (N) = φ(N,M)− φ(M,N).

Let the max-weight perfect fractional matching LP in the graph G with edge weight function
wM be our primal LP. This is LP1 defined below.

maximize
∑
e∈E

wM (e)xe (LP1)

subject to ∑
e∈δ(u) xe = 1 ∀u ∈ V and xe ≥ 0 ∀ e ∈ E.

If the primal optimal value is at most 0 then wM (N) ≤ 0 for all perfect matchings N in G, i.e.,
φ(N,M) ≤ φ(M,N). This means φ(M ′,M) ≤ φ(M,M ′) for all matchings M ′ in G, since G is a
complete graph on an even number of vertices (so M ′ ⊆ some perfect matching). That is, M is a
popular matching in G.

Consider the LP that is dual to LP1. This is LP2 given below in variables αu, where u ∈ V .

minimize
∑
u∈V

αu (LP2)

subject to

αu + αv ≥ wM (u, v) ∀ (u, v) ∈ E.

If we show a dual feasible solution α such that
∑
u∈V αu = 0 then the primal optimal value is

at most 0, i.e., M is a popular matching.
In order to prove the popularity of M , we define α as follows. For each variable Xr do:

– if Xr was set to true then set αxr
= αyr

= 1 and αx′r = αy′r = −1;
– else set αxr

= αyr
= αx′r = αy′r = 0.

Let clause c = Xi ∨Xj ∨Xk. Recall that we assumed that Xi = Xj = false and Xk = true. For
the vertices in clauses corresponding to c, we will set α-values as follows.

– For every level 0 vertex v do: set αv = 0.
– For the first three level 2 gadgets corresponding to c do:
• set αpc

0
= αqc

0
= 1, αpc

1
= 1, αqc

1
= −1, and αpc

2
= αqc

2
= −1;

• set αpc
3

= −1, αqc
3

= 1, αpc
4

= αqc
4

= 1, and αpc
5

= αqc
5

= −1;
• set αpc

6
= αqc

6
= αpc

7
= αqc

7
= αpc

8
= αqc

8
= 0.

The setting of α-values is analogous for vertices in the last three level 2 gadgets corresponding
to c. For the first level 3 gadget corresponding to c do:

– set αsc
0

= αtc0 = −1, αsc
1

= −1, αtc1 = 1, αsc
2

= −1, αtc2 = 1, and αsc
3

= αtc3 = 1.

17



The setting of α-values is analogous for vertices in the other level 3 gadget corresponding to c.
For the z-vertices do: set αu = 0 for all u ∈ {z0, . . . , z5}. For the d-vertices do:
– set αd0 = αd2 = −1 and αd1 = αd3 = 1.

Properties of α. For every (u, v) ∈M , either αu = αv = 0 or {αu, αv} = {−1, 1}; so αu + αv = 0.
Since M is a perfect matching, we have

∑
u∈V αu = 0. The claims stated below show that α is a

feasible solution to LP2. This will prove the popularity of M .
We need to show that every edge (u, v) is covered, i.e., αu + αv ≥ wM (u, v). We have already

observed that for any (u, v) ∈M , αu + αv = 0 = wM (u, v).

Claim 4 Let (u, v) be a blocking edge to M . Then αu + αv = 2 = wM (u, v).

Proof. Level 1 gadgets that correspond to variables set to true have blocking edges. More precisely,
for every variable Xk set to true, (xk, yk) is a blocking edge to M and we have αxk

= αyk
= 1. Thus

αxk
+αyk

= 2 = wM (xk, yk). Similarly, consider any level 2 or level 3 gadget that is in unstable state:
such a gadget has a blocking edge within it, say (pc0, qc0) or (pc4, qc4) or (sc3, tc3), and both endpoints of
such an edge have their α-values set to 1. For the D-gadget, (d1, d3) is a blocking edge and we have
αd1 = αd3 = 1. There are no blocking edges to M in the Z-gadget or in a level 0 gadget. Thus all
blocking edges are covered. ut

Claim 5 Let (u, v) be an intra-gadget edge that is non-blocking. Then αu + αv ≥ wM (u, v).

Proof. For any edge (zi, zj) where i, j ∈ {0, 1, . . . , 5}, we have αzi +αzj = 0 = wM (zi, zj). Similarly,
all edges within the D-gadget are covered.

For any (aci , bci ), we have αac
i
+αbc

i
= 0 = wM (aci , bci ). Similarly, αac

2i−1
+αbc

2i
= 0 = wM (ac2i−1, b

c
2i),

also αac
2i

+ αbc
2i−1

= 0 = wM (ac2i, bc2i−1) for all i and c.
We also have for all c: αpc

1
+ αqc

2
= 0 = wM (pc1, qc2) while αpc

2
+ αqc

1
= −2 = wM (pc2, qc1) and

αpc
2

+ αqc
2

= −2 = wM (pc2, qc2). It is similar for all other edges within level 2 gadgets and also for
edges within level 3 gadgets. Thus it is easy to see that for all intra-gadget non-blocking edges (u, v),
we have αu + αv ≥ wM (u, v). ut

Claim 6 Let (u, v) be any inter-gadget edge. Then αu + αv ≥ wM (u, v).

Proof. No inter-gadget edge blocks M . The vertices z0 and z1 prefer some neighbors in levels 0, 1, 2
to each other and the α-value of each of these neighbors is either 0 or 1. In particular, αxi

≥ 0 and
αyi
≥ 0, αpc

1
≥ 0 and αqc

0
≥ 0, and so on while αac

i
= αbc

i
= 0 for all i and c. Since αzi

= 0 for all i,
the edges incident to zi are covered for all i.

Consider edges between a level 0 vertex and a level 1 vertex, such as (ac1, y′j) or (bc1, x′k): regarding
the former edge, we have wM (ac1, y′j) = 0 = αac

1
+αy′

j
and for the latter edge, we have wM (bc1, x′k) =

−2 < −1 = αbc
1

+ αx′
k
. It can similarly be verified that every edge between a level 0 vertex and a

level 1 vertex is covered.
Consider edges between a level 1 vertex and a level 2 vertex, such as (pc2, yj) or (xk, qc2): recall

that (pc0, qc2) ∈M and so wM (xk, qc2) = 0; we set αqc
2

= −1 and αxk
= 1, thus αxk

+αqc
2

= wM (xk, qc2).
We have (pc2, yj) = −2 since (pc2, qc0) ∈ M and so this edge is covered. It can similarly be verified
that every edge between a level 1 vertex and a level 2 vertex is covered.

Consider edges between a level 2 vertex and a level 3 vertex, such as those incident to sc0 or tc0:
we have wM (sc0, qc0) = wM (sc0, qc3) = 0 and αsc

0
= −1 while αqc

0
= αqc

3
= 1. Similarly, wM (pc7, tc0) =

wM (pc4, tc0) = −2 and so these edges are covered. It is analogous with edges incident to s′c0 or t′c0 .
Consider any edge e whose one endpoint is in the D-gadget and the other endpoint is outside

the D-gadget. It is easy to see that wM (e) = −2, hence this edge is covered. ut
Thus we have shown the following theorem.

Theorem 4. If φ has a 1-in-3 satisfying assignment then G admits a popular matching.
Theorem 1 stated in Section 1 follows from Theorems 3 and 4. Thus the popular matching

problem in a roommates instance on n vertices with complete preference lists is NP-hard for even n.

Acknowledgment. Thanks to Chien-Chung Huang for asking us about the complexity of the
popular roommates problem with complete preference lists.
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