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Abstract

This study investigates how the stability of the turning process changes when the tangential component of the cutting force is also taken into
account as a compressive force acting on the cutting tool. The tool is modelled by a cantilever beam; the mathematical model is based on the
Euler-Bernoulli beam theory. The effect of compression appears through the lateral stiffness of the tool. Two cases are separated in connection
with the compressive force: constant and varying forces. Since compression reduces the natural frequency of the cutting tool, this also affects the
stable region of the turning operation.
c© 2018 The Authors. Published by Elsevier Ltd.
Peer-review under the responsibility of the International Scientific Committee of the 8th CIRP Conference on High Performance Cutting
(HPC 2018).
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1. Motivation

During machining processes, unexpected vibrations called
chatter might occur due to the regenerative effect, which gener-
ally results in noise or tool break and affects the quality of the
machined surface. This is because either the cutting tool or the
workpiece or both are flexible and the chip thickness varies due
to the relative vibrations of the tool and the workpiece.

In case of turning, the regenerative effect is modelled by a
time delayed system. The general mechanical model was con-
structed by Tobias [1] and Tlusty [2]. The tool cuts the surface

Nomenclature

cy modal damping
h0 intended chip thickness
h instantaneous chip thickness
IE bending stiffness of the cutting tool
ky modal stiffness
Kx,y cutting-force parameters
L length of the cutting tool
m modal mass
w chip width
τ time delay
ζ damping ratio
ωn natural angular frequency
Ω spindle speed

that was machined in the previous cut, and the chip thickness is

described by the current and the previous position of the tool.
The time delay between two succeeding cuts is equal to the
period of the workpiece rotation.

The objective of this study is to take into account the possi-
ble appearance of compressive effect on the cutting tool, which
somewhat modifies the natural frequency of the bending vibra-
tion of the tool. There have been related results in the literature:
Budak et al. [3] and Stepan et al. [4] have investigated how
the workpiece dynamics changes due to mass removal and the
variation of the tool position in turning. Bayly et al. [5] dealt
with low frequency vibration in drilling to find agreement with
drilling tests in the presence of large longitudinal cutting forces.
Roukema and Altintas [6] and Heisig and Neubert [7] consid-
ered lateral vibration of drilling tools under compression. Beri
et al. [8,9] have examined how the lateral stiffness of a can-
tilever beam changes under compression, tension and torsion,
respectively.

In case of turning, there exist certain tool-workpiece ar-
rangements where the tangential component of the cutting force
acts on the cutting tool as a compressive force, which modifies
the natural frequency of the system. The tool is modelled by
a cantilever beam that is considered to be prismatic, homoge-
neous, linearly elastic and inextensible. Its mathematical model
is based on the Euler-Bernoulli beam theory and the effect of
compression appears through the lateral stiffness of the tool. To
provide a wider picture about the influence of compression on
the stability of the turning process, two cases are investigated:
constant and varying forces. The latter case is in connection
with the regenerative effect. Since compression decreases the
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Figure 1. (a) Tool-workpiece arrangement where the tangential component of the cutting force acts on the tool as compression. (b) Mechanical model of surface
regeneration in turning operation.

lateral stiffness and modifies the bending natural frequency of
the cutting tool, it has a destabilizing effect, that is, it reduces
the stable region of the turning process. To support our numeri-
cal results, some analytical formulas are also presented on how
the lobe structure will change by the variation of the compres-
sive component of the cutting force.

2. Modelling and Analysis

In order to perform the stability calculation, the mechanical
model of the turning operation of a flexible cutting tool is con-
sidered as shown in Fig.1. The governing equation of the 1 DoF
model assumes the form

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) =

Fy(t)
m

, (1)

where ζ = cy/(2mωn) and ωn =
√

ky/m. Here, ky = ky(Fx) is
the lateral stiffness of the cutting tool in the y direction depend-
ing on the tangential component of the cutting force Fx, which
acts as a compressive force. Based on the Euler-Bernoulli beam
theory, the stiffness ky of the clamped tool under compression
Fx is expressed by [8] in the form

ky =
α3IE

tan(αL) − αL
(2)

where α =
√

Fx/IE. Equation (2) can be approximated by the
power series

ky =
3IE
L3 −

6
5L

Fx − O(F2
x) , (3)

where only the first two components are considered since even
the Euler buckling load Fcr = π2IE/(4L2) is satisfactorily ap-
proximated by ky = 0.

In Eq. (1), the widely used cutting force characteristic [1] is
applied:

Fx(t) = Kxwhq(t) , (4)

Fy(t) = Kywhq(t) , (5)

where q is the cutting force exponent, which represents a strong
nonlineraity and plays significant role in determining the chatter

free cutting conditions. In the literature, there exist many sug-
gestions for the value of exponent q (see [10–16]) to provide an
accurate estimation for the cutting force characteristics.

In the mechanical model depicted in Fig.1.(b), it is assumed
that the tool does not leave the surface, that is, the instantaneous
chip thickness h(t) > 0 during the turning operation. The chip
thickness

h(t) = h0 + y(t − τ) − y(t) (6)

can be obtained by taking into account the regenerative effect,
that is, the cutting tool meets the surface that was formed in
the previous cut (see Fig.1(b).) Here, τ is the regenerative time
delay that is approximated by

τ =
60
Ω

(7)

where the constant spindle speed Ω is given in (rpm).

2.1. Type of Compression

In connection with the compressive force Fx, two cases are
separated: constant and varying forces. In the first case, Fx is
considered to be constant, thus it affects only the lateral stiff-
ness of the cutting tool by a constant value through Eq. (3). In
the latter case, let us consider that the tangential force Fx is
proportional to the normal force Fy:

Fx(t) =
Fy(t)
σ

(8)

where σ = 0.3 is a typical value in the literature (see for exam-
ple [18]). Substitution of Eqs. (5) and (6) into (8) yields

Fx(t) =
Kyw
σ

(h0 + y(t − τ) − y(t))q (9)

where Fx is proportional to the chip width w and the regenera-
tive effect also appears. We note that the expansion of the lateral
stiffness (see Eq. (3)) gives

ky = ky0 −
ky1

σ
Kyw(h0 + y(t − τ) − y(t))q , (10)

where ky0 = 3IE/L3 and ky1 = 6/(5L). By means of Eqs. (1),
(5) and (6), the equation of motion of the system can be written
in the form

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) =

Kyw
m

(h0 + y(t − τ) − y(t))q . (11)
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Figure 2. Dimensionless stability diagram where notation ¬ shows the stable
region of the system subjected to no compression and notation  shows the
stable region of the system subjected to large constant compression (Fx = 8000
N). The damping ratio is ζ = 0.05 and the length of the tool is L = 0.10 m.
Here, fn0 = ωn0/(2π) is the basic natural frequency.

By considering the equilibrium position y(t) = y0 in Eq. (11),
one obtains

y0 =
Kywhq

0

ky0 −
ky1

σ
Kywhq

0

. (12)

This constant steady-state corresponds to the deflection of the
tool when no vibrations occur during the operation, that is, it
means the stationary case. The linearisation about the equilib-
rium position gives the variational system [18]

η̈(t) + 2ζωnη̇(t) + (ω2
n + H)η(t) = H(η(t − τ) − η(t)) , (13)

where η means the small perturbation about the equilibrium.
Here, ω2

n = (ky0 − ky1Kywhq
0/σ)/m and the specific cutting co-

efficient H = Kywqhq−1
0 (1 + ky1y0/σ)/m .

The stability analysis of the system Eq. (13) is performed by
the D-subdivision method [17], which gives two formulas

H =
(ω2 − ω2

n)2 + 4ζ2ω2
nω

2

2(ω2 − ω2
n)

(14)

and

Ω =
30ω

jπ − arctan
(
ω2−ω2

n
2ζωωn

) , j ∈ N0 (15)

where ω is the frequency of the arising regenerative vibrations.
These two expressions provide parametric stability boundary
curves, called D-curves, that represents dynamic loss of stabil-
ity (Hopf-bifurcation).

3. Results

When the tangential force Fx is either constant or zero, the
natural angular frequency ωn is also constant in accordance
with Eq. (3) and H is simply equal to H̄ = Kywqhq−1

0 /m in Eq.
(13) (see in Ref.[18]). In the stability charts, the dimensionless
chip width w̄ = H̄/ω2

n0 is used where ωn0 =
√

ky0/m denotes
the basic natural angular frequency.

The dimensionless D-curves can be constructed by using the
analytical expressions Eqs. (14) and (15) shown in Fig.2. w̄
is proportional to the chip width w, thus only the practically
relevant domain w̄ > 0 is depicted. The vertical dotted lines
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Figure 3. Dimensionless stability diagram of the system subjected to varying
compression. The numerical valuesσ = 0.3 , ζ = 0.05 , q = 0.6 , h0 = 0.005 m
and L = 0.1 m are used. Here, fn0 = ωn0/(2π) is the basic natural frequency.

(see Fig.2) are asymptotes, which can be obtained from Eqs.
(3) and (15)

Ω0
asy = lim

ω→ωn
Ω =

1
j

60
2π

√
ky0 − ky1Fx

m
. (16)

The horizontal dotted lines describe the minimum points of the
lobes where the turning process is still stable independently to
the cutting speed. These are determined by Eq. (14) using the
method of local minima. It can be seen that the constant com-
pressive force provides a shifted stability map. The map moves
left and down because the lateral stiffness of the cutting tool
decreases, which affects the natural angular frequency, too. Ac-
cordingly, even a large constant compression force has negligi-
ble destabilizing effect.

In contrast, in case of varying compression (see Subsec.2.1.),
H and the natural angular frequency ωn also depend on the chip
width w, which leads us to a nonlinear expression in w (see
Eq.(14)). Hence, we are only able to provide the D-curves nu-
merically. The dimensionless stability map can be seen in Fig.3.
Similarly to Eq. (16), the asymptotes can easily be calculated.
Since the natural angular frequency is a function of the chip
width w, the asymptotes will also depend on w described by the
closed form analytical formula

Ωv
asy =

1
j

60
2π

√
ky0 −

ky1

σ
Kywhq

0

m
. (17)

Since the natural angular frequency decreases as w̄ increases
(see in Fig.3), the asymptotes are bent to the left. There is a
critical value where both the asymptotes and the D-curves meet,
which can be expressed by

w̄cr =
5Lσq
6h0

. (18)

This value means the static loss of stability of the cutting tool,
that is, the lateral stiffness of the tool decreases to zero, which
results in the buckling of the tool and tool breakage.

In Fig.4., the stability diagrams of the varying and the zero
compression cases are merged for different damping ratio val-
ues. The lobe structure is shifted down and deflected both to
the left and also somewhat to the right compared to the non-
compressed case. Basically, the varying compressive force has
a large scale destabilizing effect but it might also broaden the
reference (non-compressed) stable region slightly at relatively
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Figure 4. Dimensionless stability charts where notation ¬ shows the sta-
ble region of non-compressed system and notation  shows the stable re-
gions of the system subjected to varying compression. The numerical values
σ = 0.3 , q = 0.6 , h0 = 0.005 m and L = 0.1 m are used. Here, fn0 = ωn0/(2π)
is the basic natural frequency.

small damping ratios as shown in the enlarged panel of Fig.4
(a). As the damping ratio grows, the stable region significantly
reduces in contrast to the reference case. This means, for exam-
ple, that the available maximum values of the chip width w are
reduced in the stable pockets of the charts.

4. Conclusion

The paper brings up the classical topic of the stability of the
turning operation, which can be described by a 1 DoF dynami-
cal model. The cutting force can be resolved to a normal force
Fy and a tangential force Fx that acts on the cutter as compres-
sion in certain tool-workpiece configurations. This study inves-
tigated two cases: constant and varying compressive forces.

Based on the Euler-Bernoulli beam theory, the lateral stiff-
ness of the cutting tool can be calculated, which also describes
the variation of the natural angular frequency of the tool. By us-
ing constant compression, the lobe structure is slightly shifted

to the left and down compared to the non-compressed case.
In contrast, under the effect of the varying compression, the

stability map is shifted down and deflected both to the left and to
the right compared to the non-compressed case. This predicts a
non-negligible reduction of the size of the stable pockets, which
serves as a basis for future experimental verification. These
phenomena may become relevant when slender tools are used
for turning inside lengthy tubes.
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