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Abstract. This short philosophical discussion piece explores the rela-
tion between two common assumptions: first, that at least some cognitive
abilities, such as inventiveness and intuition, are specifically human and,
second, that there are principled limitations to what machine-based com-
putation can accomplish in this respect. In contrast to apparent common
wisdom, this relation may be one of informal association. The argument
rests on the conceptual distinction between intensional and extensional
equivalence in the philosophy of computing: Maintaining a principled
difference between the processes involved in human cognition, includ-
ing practices of computation, and machine computation will crucially
depend on the requirement of intensional equivalence. However, this re-
quirement was neither part of Turing’s expressly extensionally defined
analogy between human and machine computation, nor is it pertinent
to the domain of computational modelling. Accordingly, the boundaries
of the domains of human cognition and machine computation might be
independently defined, distinct in extension and variable in relation.

Keywords: Computer models · Artificial Intelligence · Intensional vs
extensional equivalence · Turing computability · Limits of computation.

1 The problem: delimiting cognition and computation

Much of the presumed contrast between human and machine abilities with re-
spect to computation rests on the assumption that the constraints on machine
abilities lie in the formal nature of the operations of digital computers, and that
the cognitive privilege of human beings lies in those aspects of cognition which
are not covered by the computational properties of those machines and thereby
escape their specific formal constraints. It will be impossible, the argument goes,
to provide computer-based models of these aspects of cognition either because
they are fundamentally not computational in nature or because they are de facto
not amenable to models based on Turing-computable functions.1

? This is a slightly revised and extended version of a Computability in Europe confer-
ence submission. The author extends his gratitude to Paula Quinon, Pawe l Stacewicz
and his other colleagues at ICFO.

1 As a disclaimer, I have to add that I am an outsider to the debates in the philosophy
of mathematics in general and computation in particular. My main research area
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Both the computer analogy and its limitations are grounded in Alan Turing’s
(1936) endeavour of modelling his theoretical machine, the Logical Computing
Machine (LCM, later known as the Turing Machine), on the behaviour of hu-
man computers: breaking down complex mathematical operations into elemen-
tary arithmetical routines that can be accomplished with only a modicum of
mathematical skills. Hence, only a small subset of human cognitive abilities is
involved in computing, thus conceived. On this level, and notwithstanding the
possibility that all higher-order abilities are ultimately realised by lower-order
processes, human computation is distinguished from higher-order human math-
ematical skills precisely by not involving inventiveness, intuition, creativity or
any other hard-to-formalise abilities. Moreover, not the inner nature and hence
the mode of realisation of computational skills in human beings are addressed by
the model but only the analogy in rule-governed behaviour between human com-
puters and the LCM. Given the local and restricted analogy to human cognitive
abilities, the question is whether or not concrete machines based on the LCM,
i.e., digital computers, might in principle become able to accomplish mathemat-
ical and other cognitive tasks that lie beyond the domain of that computational
analogy, so that they may cover all domains of (human) cognition.

For the sake of argument, I will work with the assumption that the domain
of human cognition is larger than what is covered by that restricted analogy,
whereas, by the same token, the domain of machine computation remains con-
fined to that restricted analogy. The burden of proving otherwise lies on the
project of Artificial Intelligence. It amounts to demonstrating that the domain
of human cognition can in fact be captured by that prima facie restricted anal-
ogy, either because all aspects of human cognition can be shown to be Turing-
computable or because the computational method can be made to transcend the
confines of Turing-computability. Either way, the analogy is taken to be one of
equivalence between the operations involved in human and machine computation
in the first place, independent of whether the analogy is positive or negative.

More implicit in these debates is the question of the nature of the requisite
equivalence: if it is supposed to hold between the internal operations of the sys-
tems under comparison, it will be intensional in kind, and hence will require that
their concrete internal structure and operations are identical in every relevant
respect. Intensionality is the quality of a couple of terms of not merely referring
to the same subject matter but of doing so in the same way, on the grounds of
the same internal states of the persons or systems uttering them. (This basic dis-
tinction in philosophical semantics goes back to the sense / reference dichotomy
introduced by Frege 1892, and is has been central to the notion of an autonomous
domain of intentional phenomena ever since.) However, if intensional equivalence
is required in the present context, it will likely never come to pass, since the –
neuronal, analog versus electronic, digital – modes of realisation are and will
remain different in kind even if and when referring to the same subject matter.
Conversely, if the equivalence merely has to hold between the formal descriptions

is the history and philosophy of Artificial Intelligence (AI) and cognitive science.
Hence, I will have very little to say about the mathematical matters involved here.
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of the outward effects of the operations involved, and hence on the level of their
functions, it will be extensional in kind. It can therefore be demonstrated to
hold with respect to all those levels of human cognition which can be subsumed
under the same kind of formal description. (For the notion of intensionality in
mathematics and computation, see Feferman 1985 for foundational work and
Antonutti and Quinon in press for contemporary debates.)

On this background, the argument against equivalence is either that it can-
not be accomplished at all because it cannot be intensional, or that it can be
extensional but then will remain restricted to those domains of human cognition
which can be subject to formal descriptions – which presumes that there are
other domains to which this condition does not apply. I will address the sec-
ond argument first before providing more detail on the intensional/extensional
distinction, as it will have a bearing on the latter.

2 The domain of human invention

Besides the well-rehearsed arguments pro and contra cognition being an intrin-
sically and irreducibly embodied phenomenon, a paradigm of the debates con-
cerning the potential non-formal constituents of human cognition is the question
of mathematical intuition and invention (which I, for the sake of argument, will
treat as one package). Against a view of cognition which equates cognitive with
computational processes in their entirety, one can provide at least two distinct
cases for the relevance of invention and intuition to mathematics, with various
possible shades between them:

i.1 According to the weak, ‘hypothetico-deductive’ version (which might well be
compatible with scientific and mathematical orthodoxy), mathematical in-
vention and intuition are analogous to the role of invention and intuition
in the empirical sciences as conceived of by Einstein, Popper and other
non-inductivists, and as such are well-circumscribed in their roles. They are
important to the context of discovery, where hypotheses might be formed
rather freely and informally, and even independent of established standards
of rationality (Kekulé famously claimed he dreamt up the benzene ring),
and then put to the test. The testing belongs to the context of justifica-
tion though, where fundamental principles apply that are not subject to
human inventiveness and that operate in more determinate fashion. Hence,
there are constraints on human invention, either in the empirical world or in
mathematical principles.

i.2 According to the strong, ‘constructivist’ version, there are no principled lim-
its to mathematical invention and intuition, as virtually all mathematical
principles are human inventions, apart from the law of non-contradiction
and a few other elementary logical principles at most. Possibly even as far
down as number concepts (which, however, can be found to some extent in
some animals, see Dehaene 2011; Fabry 2018), but certainly on the level of
higher-order principles, mathematics is a human invention. (For example,



4 H. Greif

it has been a matter of debate whether the number zero was discovered or
invented by Indian mathematicians.) This view has an analogy in construc-
tivist approaches to the empirical sciences, according to which everything
that epistemologically matters, including the conceptions of the objects un-
der investigation and their properties, are subject to human invention. Either
way, there are no principled constraints on what human ingenuity could ac-
complish, only practical ones.

Hence, if there are principled constraints on human inventiveness according to i.1,
these can be described or circumscribed by a set of fundamental principles that
can be expressed in formal terms. This does not imply that human inventiveness
is ultimately equally reducible to formal descriptions but that there are boundary
conditions to it that can be thus described. It thereby becomes bound to a certain
domain whose extension can be determined in principle. There may well be non-
formal constituents of human cognition, and these may well resist computational
modelling, but their kind and scope will be circumscribed by principles that may
in turn be at least partly amenable to computational modelling. If, however, there
are no principled constraints on human inventiveness according to i.2, there will
neither be a need for circumscribing the boundaries of its domain in formal
terms, nor will there be a possibility to do so. Any and all formal terms and
principles that human thinkers could devise will then arise from intrinsically
non-formal origins.

With respect to computational models of human cognition, these two ap-
proaches will have quite distinct prima facie implications. The models might be
powerless with respect to providing insight into human cognition in i.2 precisely
because human inventiveness is so powerful. Provided enough time, resources
and the right sort of invention, they could be made to fit in any way that comes
to pass. The questions would then be whether they still were to be computational
models, given the open-ended nature of human inventiveness, and whether they
still were to be models, given that the specific epistemic quality of models in
science lies in creating partial, constrained analogies between distinct systems
that help to generate predictions and theories (this is the classic view of models
in science established by Hesse, 1966).

In i.1, any model of human cognition will be subject to the set of principled
formal constraints identified for the domain of human invention at a minimum,
and at at a maximum will remain constrained to Turing’s computational anal-
ogy. Either way, the type of equivalence relation involved will be open to debate.
Extensional equivalence might be admitted on the level of the restricted anal-
ogy between machine computation and the sub-domain of human cognition that
passes as computation on Turing’s terms, but it will only do so on the functional,
not the realisation level. It might also be admitted to the modelling of the prin-
ciples that delimit the domain of non-formal constituents of human cognition.
However, intensional equivalence would remain out of reach unless cognitive pro-
cesses could be proven to be computational processes, which would undermine
the very premiss of i.1 though and amount to strong computationalism.
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3 The limits of computation

The implications of i.1 and i.2 on questions of computational modelling are
merely prima facie because they follow by implicature and association rather
than logically. Neither of the above accounts says anything about the compu-
tational analogy involved. Instead, both presuppose that it is tightly limited by
default. They then offer contrasting resolutions to those limitations. The reason-
ing is that, if there are constituents of human cognition which are not formal in
nature, a computational model of these constituents, for being formal in nature,
will be inadequate. However, first, modelling relations are not identity relations
but partial analogies to begin with. Second, the partialness of these analogies
may change over time, precisely because new modelling methods, formal or other,
might be invented without being (fully) predictable. Hence, i.1 and i.2 might be
right about human cognition without being right about computation.

To make this point clear, I suggest to resort to a reconstruction of Turing’s
original definition of computation (which he famously never made fully explicit):

c.1 The domain of computable functions is exhausted by the functions that are
‘effectively calculable’ in such a way that they can be solved, in principle,
by a logical computing machine (LCM), as described in Turing (1936).

c.2 A LCM comprises of a finite set of symbols, a finite set of possible states, a
transition function and a potentially infinite memory.

Hence, everything that an LCM or ‘Turing Machine’ can solve is computable.
This is has often been taken to amount to the claim that everything that any
machine can solve is Turing-computable, and hence that every machine is compu-
tationally equivalent to a Turing Machine. Most notably, Robin Gandy’s “Thesis
M” (1980), which is derived from Turing’s thesis, states that “whatever can be
calculated by a machine can be calculated by a Turing machine” (Copeland,
2009, p. 10) and, conversely, “anything that a machine can do is computable”
(Hodges, 2008, pp. 86-7). Either way, this is a notably stronger claim than
Turing-computability as originally conceived, which did not concern the prin-
cipled abilities or limitations of machines qua machines.

Still, Thesis M has given rise to a “maximal” programme of reasoning about
the nature of computation, which has been continued towards the notion of con-
ceivable machines that could, in principle, solve more than the set of functions
computable by LCMs. This notion raises question of whether or not we should
still refer to whatever goes on in those more powerful machines as computa-
tion, and why we should or should not do so. If we take Turing’s definition at
face value, computability is always relative to the design of his LCM, and it
would take some justification to argue, with reference to Turing, for something
as computation that is not covered by his definition.

However, to complement Turing’s own restrictive concept of computability,
he introduced notion of an ‘oracle’, which could solve all the functions that an
LCM cannot solve. Still, there are two divergent interpretations of what an oracle
could be and accomplish (as Turing was notoriously vague on this point, too):
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o.1 If a machine is necessarily restricted to computable operations in terms of
Turing’s LCM, there will be principled limitations on conceiving and building
a machine that could solve any non-computable problem. If there is an oracle,
it will not be a machine (Hodges’ interpretation).

o.2 If a machine were possible that solves non-Turing-computable functions, Tur-
ing’s oracle could become a real machine in principle. There will be no es-
sential limitations on what a machine could possibly accomplish, but that
machine would not be a LCM (Copeland’s interpretation).

Matching this distinction against the distinction between different readings of
the role of invention and intuition in mathematics, we end up with two contrast-
ing ‘no principled limitations’ claims concerning human inventiveness (i.2) and
machine abilities (o.2) respectively, and with two less contrasting ‘principled
limitations’ claims (i.1 and o.1). The parallelism of these claims is superficial
though, since the limitations or the lack thereof may play out differently on the
human and machine sides, for want of a necessary connection between them. If
we juxtapose the positions discussed under “i.n” and “o.n”, the following land-
scape of hypotheses emerges, with not all of its elements being equally plausible:

h.1 If mathematical principles are human inventions (as in i.2), and if human
beings could build a machine that solves non-Turing-computable functions
that captured non-Turing-computable elements of the human mind (as in
o.2), this machine would not be a Turing Machine but an oracle-machine.
Strong AI would be possible but it would not be Turing-Machine-based AI.

h.2 If mathematical principles are human inventions (as in i.2), and if human
beings could not possibly build machines that solve non-Turing-computable
functions that captured non-Turing-computable elements of the human mind
(as in o.1), it might still be possible in principle to invent other, yet unspec-
ified but non-mechanical routes to solving those functions. There would be
no machine-based route to Strong AI.

h.3 If at least some fundamental mathematical principles are not human in-
ventions (as in i.1), and if the principled constraints on what a machine
could provide in terms of computational solutions are restricted to Turing-
computability, the constraints in question will be strict for machines (as in
o.1) while being differently and less narrowly defined for humans. Strong AI
would not be possible. We can only build Turing Machines.

h.4 If at least some fundamental mathematical principles are not human in-
ventions (as in i.1), and if the principled constraints on what humans and
machines alike could provide in terms of computational solutions were wider
than the constraints of Turing-computability (as in o.2), the constraints on
machine models might coincide with the boundaries imposed on human in-
ventiveness. Strong AI would be possible, but an oracle-machine could not
be more powerful than what human beings can accomplish.

I have again left out strong computationalism, according to which, on the most
extreme interpretation, human beings could invent a machine (either of the Tur-
ing or of the oracle kind) that would potentially be more powerful than whatever
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human cognition could achieve. Second in the order of implausibility is h.2, as
it envisions the possibility of inventing artefacts that are not machines in any
known meaning of the word and that are capable of problem-solving in equally
unforseeable ways. But then, Turing (1950, p. 442) made a point of using his
LCM for pushing the envelope of the meaning of the word “machine” at a time
when there were no computing machines.

4 Concluding remarks

I have no proof or other formal conclusion to end on but merely one observation,
a morale, another observation and yet another morale: First, the relation between
the limits of computation and the limits of human inventiveness remains an open
question, with each side of the equation having to be solved independently.

Second, it will be worthwhile to expressly acknowledge and address the re-
lation between human and machine abilities as an open question, and as multi-
faceted rather than as a strict dichotomy. Any possible decision for one position
or another will have rich and normatively relevant implications. On most of the
more tenable accounts outlined above, the domains of human cognition and ma-
chine computation will be distinct in kind and extension, but this will be not
a matter of a priori metaphysical considerations but of empirical investigation
and actual, concrete human inventions.

Third, whatever the accomplishments of AI are and may come to be, inten-
sional equivalence is not going to come to pass. In fact, several of the classical
philosophical critiques of AI build on the requirement that the same cognitive
functions would have to be accomplished in the same way in machines as in
human beings for AI to be vindicated. Even if questions of AI are not involved,
different kinds of computing machines – for example analog, digital and quan-
tum computers – might provide identical solutions to the same functions, but
the will do so in variant ways. Hence, intensional equivalence will remain out of
reach here, too.

Fourth, intensionality is an interesting and relevant concept in mathemat-
ics and partly also in computing, to the extent that one is concerned with the
question of what mathematical objects are to human beings (which was the
explicit guiding question for Feferman 1985). However, intensional equivalence
might prove to be too much of a requirement when it comes to comparing realisa-
tions of computational processes in human beings and various types of machines.
Extensional equivalence will have to suffice. It might become a more nuanced
concept once we define the analogies involved with sufficient precision and move
beyond the confines of pure Turing-computability. After all, Turing’s computer
analogy builds on extensional equivalence between human and machine opera-
tions. This kind of equivalence and its possible limitations are essential to the
very idea of computer modelling. This leaves open the possibility of other re-
lations of extensional equivalence to hold between different types or levels of
systems, computational or other.
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