
Chapter 4.2

Bayes Nets and Rationality*

Stephan Hartmann†

Summary

Bayes nets are a powerful tool for researchers in statistics and artificial intelli-
gence. This chapter demonstrates that they are also of much use for philosophers
and psychologists interested in (Bayesian) rationality. To do so, we outline the
general methodology of Bayes nets modeling in rationality research and illustrate
it with several examples from the philosophy and psychology of reasoning and
argumentation. Along the way, we discuss the normative foundations of Bayes nets
modeling and address some of the methodological problems it raises.

1 Introduction

Bayes nets (or “Bayesian networks”) are a powerful tool for researchers in statistics and
artificial intelligence. The reason for this are the many scientific virtues of Bayes nets.
One of these virtues is their representational power: Bayes nets represent in an intuitive
way the conditional independencies that hold between variables. Exploiting these
conditional independencies, Bayes nets allow for a compact representation of a joint
probability distribution over n variables: what would ordinarily, for binary variables
without any additional constraints, require the specification of 2n−1 parameters, here
needs significantly less. This has enormous practical advantages and hence initiated the
development of probabilistic expert systems and other technical applications. Another
virtue of Bayes nets is their algorithmic power: Bayes nets come with efficient algorithms
to derive from the joint distribution whatever marginal or conditional probability one
is interested in. Last but not least, the theory of Bayes nets is very elegant, and not
much is needed to successfully apply it to new problems.

These are some of the reasons why Bayes nets have already found so many ap-
plications in various parts of science and engineering. The goal of this chapter is to
demonstrate that Bayes nets are also of much use for philosophers and psychologists in
the field of (Bayesian) rationality. We will see that Bayes nets can be naturally integrated
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into the Bayesian framework and help solving problems which would otherwise be
hard to address. In the following pages, we will outline the general methodology of
Bayes nets modeling in rationality research and elaborate on the various functions
of these models. The methodology will then be illustrated by analyzing a number
of problems and questions from the philosophy and psychology of reasoning and
argumentation.

The remainder of this chapter is organized as follows: Section 2 provides a concise
introduction to the theory of Bayes nets. Section 3 introduces Bayesian rationality.
Here we distinguish between the general Bayesian framework and the models which
are constructed within the framework to address a specific problem or question from
rationality research. Bayes nets play a role in the latter, but not in the former. We illus-
trate the methodology by examining a number of increasingly complex confirmation
scenarios. Section 4 considers two examples from the philosophy and psychology of
reasoning and argumentation in more detail. We will see that Bayes nets models help
the rationality researcher to reconstruct certain reasoning and argumentation schemes
and to identify possible holes in an argument (and to suggest a remedy). The section
closes with the sketch of a general theory of Bayesian argumentation with a special
focus on the role of indicative conditionals. It builds heavily on the use of Bayes nets.
Section 5, finally, closes with a short outlook.

2 Bayes Nets in a Nutshell

A Bayes net organizes a set of variables into a directed acyclic graph (“DAG”). A DAG
is a set of nodes and a set of arrows between those nodes. The only constraint is that
there are no closed paths formed by following the arrows. A “root node” is a node
with outgoing arrows only, a “parent” of a given node is a node from which an arrow
points at the given node, and a “descendant” of a node is one which is pointed at by a
corresponding arrow. Each node represents a propositional variable, which can take
any number of mutually exclusive and jointly exhaustive values. To make a DAG into
a Bayes net, one more step is required: we need to specify the prior probabilities for
the variables in the root nodes and the conditional probabilities for the variables in all
other nodes, given any combination of values of the variables in their respective parent
nodes.

The arrows in a Bayes net carry information about the conditional independence
relations between the variables in the DAG. This information is expressed by the
Parental Markov Condition:

PMC A variable represented by a node in a Bayes net is independent of all variables
represented by its non-descendant nodes, conditional on all variables represented
by its parents.

Here is an illustration: Consider the Bayes net in Figure 1, involving the three
propositional variables A, B, and C. Node C is a root node. It is the parent of A and B,
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Figure 1: The “common cause” network.

CB A

Figure 2: The chain network.

and A and B are the children of C. Applying PMC, we find that A ⊥⊥ B |C (read: A is
independent of B given C). One also says that C screens off A from B.

Compare this Bayes net with the one in Figure 2. Here B is the parent of C and
C is the parent of A. Node A is a child of C and at the same time a descendant of B.
Interestingly, applying PMC, we find that A ⊥⊥ B |C also. The networks in Figures
1 and 2 therefore represent the same conditional independence structure. That is, if a
modeler has reason to assume that A ⊥⊥ B |C, then this conditional independence can be
represented in a Bayes net in two ways. To single out one of them, further information
is needed.

Finally, let us consider the Bayes net in Figure 3. Here the variables A and B are the
parents of C. Applying PMC, we find that A ⊥⊥ B, i.e., A is unconditionally independent
of B (one could also write A ⊥⊥ B |∅, where ∅ represents the empty set). Hence, the
conditional independence structure instantiated in the Bayes net in Figure 3 differs
from the one in Figures 1 and 2.

Conditional independence structures can be investigated in general, and there is a
rich literature on the topic. Most importantly, conditional independence structures (i.e.,
the three-place relation · ⊥⊥ · | · ) satisfy the so-called semi-graphoid axioms (A. P. Dawid
1979; Spohn 1980), which can be used to derive new conditional independencies from
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Figure 3: The collider (or “common effect”) network.
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already known ones.1 This is important as it is easy to see that PMC does not allow
us to identify all conditional independencies that hold in a DAG. Consider the Bayes
net in Figure 2. Here PMC implies only that A ⊥⊥ B |C. However, it also seems to be the
case that B ⊥⊥ A |C, which does not follow from PMC. This conditional independence
follows from A ⊥⊥ B |C and the symmetry axiom (which is one of the semi-graphoid
axioms). Applying the semi-graphoid axioms to find all conditional independencies is
rather cumbersome, and so it would be helpful to have one criterion that identifies all
conditional independencies in a DAG in a straightforward way. This is the d-separation
criterion, which is explained in textbooks such as Darwiche 2014 and Pearl 1988.

While conditional independence structures can be studied abstractly, we are only
interested in probabilistic conditional independence structures. For these, it is helpful
to recall that two propositional variables A and B are probabilistically independent
with respect to a probability measure P if and only if P(A, B) = P(A)P(B) for all
values of A and B. Equivalently, A and B are probabilistically independent with respect
to a probability measure P if and only if P(A |B) = P(A) for all values of A and B,
where P(A |B) stands for the conditional probability of A given B, which is defined as
P(A, B)/P(B) if P(B) > 0.2

Generalizing this definition, two propositional variables A and B are probabilistically
independent given the variable C with respect to a probability measure P if and only
if P(A, B |C) = P(A |C)P(B |C) for all values of A, B, and C. It is easy to see that this
definition is equivalent to the following one: A and B are probabilistically independent
given C with respect to a probability measure P iff P(A |B, C) = P(A |C) for all values
of A, B, and C. That is, once the value of C is known, learning the value of B does not
change the probability of A (provided that all conditional probabilities are defined).

While conditional independencies can be read off from the network structure, a
probability distribution defined over the DAG is needed to make specific probabilistic
inferences. To do so, we express the joint probability distribution over a set of variables
A1, . . . , An which is organized into a DAG in terms of the prior probabilities of all root
notes and the conditional probabilities of all child nodes, given any combination of
values of the variables in their respective parent nodes. Let pa(Ai) denote the set of
parents of Ai. Then an application of the chain rule of the probability calculus yields
the following expression (“the product rule”) for the joint probability distribution over
all variables:3

P(A1, . . . , An) =
n

∏
i=1

P
(

Ai |pa(Ai)
)

= P
(

A1 |pa(A1)
)
· P

(
A2 |pa(A2)

)
· · · P

(
An

∣∣pa(An)
)
. (1)

Let us illustrate the application of Equation 1 with the DAG in Figure 3. To make the

1For a textbook exposition, see Darwiche 2014, Section 4.4, and Pearl 1988, Section 3.1.
2We follow the convention, adopted, e.g., in Bovens and Hartmann 2004, to represent propositional

variables in italics and their values in roman script. For instance, the variable A has the values A and ¬A.
Here and in the remainder we also use the shorthand notation P(A, B) for P(A∧ B).

3If Aj is a root node, then pa(Aj) is the empty set (∅) and P(Aj |pa
(
Aj)

)
= P(Aj).
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DAG a Bayes net, we assume that all variables are binary (with their values represented
by A, ¬A, etc.) and specify the (unconditional) probabilities of all root nodes, i.e.,
P(A) = a and P(B) = b, and the conditional probabilities of the child node given the
four combinations of values of the two variables in its respective parent nodes, i.e.,

P(C |A, B) = α, P(C |A,¬B) = β,
P(C |¬A, B) = γ, P(C |¬A,¬B) = δ.

The product rule (i.e., Equation 1) then allows us to compute whatever marginal or con-
ditional probability we are interested in. For example, one easily sees that P(A, B, C) =
P(A)P(B)P(C |A, B) = abα and that P(A,¬B, C) = P(A)P(¬B)P(C |A,¬B) = abβ,
where we have used the shorthand notation x := 1−x, which we will also use below.

Similarly, one can calculate P(A |B, C) and P(A |C) and show that the two prob-
abilities are not identical. That is, A and B are unconditionally independent, but
conditionally dependent, given C. Fixing the value of the “common effect” variable C
renders the “causes” A and B dependent.4

3 Bayesian Rationality

Bayesianism is the leading theory of uncertain reasoning.5 Its starting point is the
psychological truism that people believe contingent propositions such as “It will rain
tomorrow” more or less strongly: they assign a certain degree of belief to a proposition.
But what are rational degrees of belief? How can they be combined? And how should
one change them if new evidence becomes available? To address these questions, we
need a calculus for the representation of degrees of belief (i.e., a theory about the statics
of rational belief), rules for changing them (i.e., a theory about the dynamics of rational
belief), and a normative foundation for both.

Before moving on, it is useful to distinguish between the Bayesian framework and
the models which are constructed within this framework. While the framework lays
out the general features of Bayesian rationality and comes with a normative foundation,
the models represent specific reasoning situations and help the researcher to tackle
concrete problems. These models often involve Bayes nets.

4We sometimes use causal language when talking about various Bayes nets. And indeed, causal
intuitions help when it comes to construct a Bayes net model, which typically respects the “causal
direction.” For instance, we always draw an arrow from the hypothesis variable to the corresponding
evidence variable. Note, however, that all we need for the applications discussed in this chapter is that a
Bayes net represents a joint probability distribution. Hence the causal language is, strictly speaking, only
of heuristic value here (see Chapter 7.1 by Pearl, in this volume).

5Section 5 of this volume surveys the various contenders. See also Chapter 4.7 by Dubois & Prade (in
this volume) and Halpern 2003. Oaksford and Chater 2007 discusses topics in the psychology of reasoning
from a Bayesian point of view. Hájek and Hartmann 2010 and Hartmann and Sprenger 2010 survey
Bayesian epistemology and Sprenger and Hartmann 2019 investigates various topics from the philosophy
of science from a Bayesian point of view.
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3.1 The Bayesian Framework

Let us begin with the static part of Bayesianism. Here Bayesians identify degrees of belief
with probabilities. As a consequence, the probability calculus puts specific constraints
on the degrees of belief of an agent. For instance, if a rational agent assigns a degree
of belief of .3 to the proposition “It will rain tomorrow,” then this agent has to assign
a degree of belief of .7 to the proposition “It will not rain tomorrow,” as the latter
proposition is the logical negation of the former and the probability of a proposition
and its negation sum up to 1. More generally, a probability distribution P is defined
over a Boolean algebra B of propositions, which comes with rules for the combination
(∧ and ∨) and negation (¬) of propositions. In a first step, the agent fixes the algebra,
i.e., she identifies all relevant propositions.6 In the second step, the agent specifies a
joint probability distribution over the algebra B. As a result, the beliefs of the agent are
coherent.

Turning to the dynamic part, Bayesians specify rules for changing (“updating”)
probabilities once new information becomes available. Let us assume, for example, that
an agent has partial beliefs about the propositions A, B, and C. They are represented
by propositional variables A, B, and C, and a prior probability distribution P is defined
over them. The agent then learns that A is the case. That is, the new probability of A,
i.e., P′(A), is 1. Here P′ denotes the new (“posterior”) probability distribution of the
agent. So far we only know the new value of the probability of A. But what are, for
example, the new probabilities of B and C? And what is the full new joint probability
distribution over A, B, and C? Bayesians argue that in this case the agent should update
her probability distribution according to the principle of Conditionalization (“Bayes’
Theorem”), i.e., she should set

P′(X) = P(X |A)

for any proposition X in the algebra B under consideration.
But why should we identify degrees of belief with probabilities? And why should

one update according to Conditionalization? That is, what is the normative foundation
of the Bayesian framework? There are different ways to provide such a normative
foundation, and it is a strength of Bayesianism that it is supported by a wide variety
of such arguments. The two most popular types of arguments are pragmatic (“Dutch
book arguments”) and epistemic (“epistemic utility theory”). They are explained in
Chapter 4.1 by Hájek & Staffel (in this volume).

It is interesting to note that the dynamic part of Bayesianism (i.e., Conditionalization)
can also be justified in a different way. To do so, we assume that the agent wants to be
as conservative as possible with regard to changing her beliefs. That is, the agent is
undogmatic and willing to modify her beliefs once new information comes in, but she
wants to make sure that overall her beliefs change as little as possible. This seems to be
psychologically plausible and is also part of other theories of belief revision (such as
AGM). More specifically, the principle of Conservativity demands that an agent who

6“Relevant” means relevant for the specific problem or question the agent is interested in.
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learns a new item of information make sure that the new probability distribution P′

takes this new information into account as a constraint, but also requests that P′ differ
as little as possible from the old (prior) probability distribution P.

Making this idea precise requires the specification of a measure of the distance
between two probability distributions. It turns out that the most interesting and
useful measures do not satisfy the axioms of a mathematical distance (i.e., of a metric
space). For instance, the Kullback–Leibler divergence is not symmetrical and violates
the triangle inequality. However, minimizing the Kullback–Leibler divergence yields
Conditionalization if one takes into account the constraint that the probability of some
proposition in the algebra shifts to 1 (see Diaconis and Zabell 1982 and Eva, Hartmann,
and Rad forthcoming).

It is instructive to note an analogy to Newtonian mechanics here. Newtonian me-
chanics, too, provides a modeling framework. It specifies a static part (mass points etc.)
and a dynamic part (Newton’s Second Law as a general dynamical law). Furthermore,
there are justifications for both parts. What is more, the Newtonian framework comes
with various assessment criteria and a (perhaps somewhat implicit) methodology for
model construction (see Giere 1990). This also holds for Bayesian modeling, which is
the topic of the following subsection. Before that, however, we introduce Bayesian Con-
firmation Theory (BCT), which is the central philosophical application of Bayesianism.
Its most general aspects are part of the Bayesian framework.

While qualitative confirmation theories formulate criteria that inform us whether
or not a piece of evidence E confirms a hypothesis H (Sprenger 2011), quantitative
theories of confirmation (such as BCT) also tell us how much E confirms H. According
to BCT, an agent starts with a subjective degree of belief that a certain hypothesis H
is true—the prior probability P(H) of the hypothesis. In the next step, a more or less
expected piece of evidence, E, comes in. While E was uncertain before, it now becomes
certain. To make sure that the beliefs of the agent remain coherent, the agent updates
the probability of H and assigns a posterior probability P′(H) to the hypothesis using
Conditionalization, i.e., P′(H) = P(H |E). This can also be expressed as

P′(H) =
P(H)

P(H) + P(¬H)x
,

with the likelihoods p := P(E |H) and q := P(E |¬H) and the likelihood ratio x := q/p.
Now E confirms H iff the posterior probability P′(H) (after learning E) is greater than
the prior probability P(H). Evidence E disconfirms (or “falsifies”) H iff the posterior
is smaller than the prior. If P′(H) = P(H), then E is irrelevant for H. Equivalently,
E confirms H iff the likelihood ratio x < 1, E disconfirms H iff x > 1, and E is irrelevant
for H iff x = 1. For more on BCT, see Crupi 2016 and Huber 2007 and Chapter 4.3 by
Merin (in this volume), which also discusses how to measure evidential relevance.

3.2 Bayesian Models

The general framework just described cannot be applied directly to concrete problems
and questions. To do so, the agent has to specify (i) the relevant variables and (ii) their
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relations. This may involve a considerable amount of modeling, as it isn’t always clear
which variables are the relevant ones.7 Besides, different methodological values may
conflict. One may, for example, favor a rather simple, intuitive, and understandable
model. This can be achieved by taking into account only a small number of variables.
Sometimes it is also possible to effectively combine various variables into one macro-
variable. On the other hand, one might also want to account for the details of a
reasoning scenario, and additional propositions might be needed for this. The modeler
has to decide what to do. The same holds for the assumed relations between the
variables. Are two variables really strictly (conditionally) independent? This may be
controversial, and strict independencies are hard to come by.

However, once the modeler has decided what the relevant variables and their rela-
tions are, Bayes nets come in and help with the representation and the computations.8

We will see that certain independence assumptions can do a lot of work and, if prop-
erly motivated, reduce the amount of subjectivity that one might complain about in
a Bayesian model, due to the considerable freedom one otherwise has to fix a prior
probability distribution. The structural constraints imposed in a Bayes net alone already
contribute a great deal to the solution of a problem, and in the study of Bayesian
rationality, probabilistic models often have Bayes nets as integral parts. Besides, once
the Bayes net is fixed, the problem or question that prompted the construction of the
model can be addressed by powerful mathematical machinery.

It has long been noted that models are an indispensable part of science.9 They
have important (pragmatic and epistemic) functions in the research process, and this
also holds for the Bayes net models we are considering in this chapter. Here is a (non-
exhaustive) list of the functions of Bayes net models in rationality research: (1) Models
help to apply the (Bayesian) theory. We mentioned already that not much follows from
the general framework for a particular problem or question; it requires the model and
the specification of details. (2) Models help to test the (Bayesian) theory. Once the model
is constructed, its consequences can be confronted with empirical data. Note, however,
that Bayes net models are normative models, which raises additional problems (see
Colyvan 2013 and Titelbaum forthcoming). (3) Models help to solve concrete problems,
as many examples show (see also the illustrations in Section 4). (4) Models accommodate
and explain experimental data. (5) Models help the researcher to reconstruct and analyze
various reasoning and argumentation schemes and check their rationality. (6) Bayes net
models provide a compact and intuitive representation of a reasoning and argumentation
situation and help with the bookkeeping of the variables and their relations.

7It would be very helpful to have an automated way to extract the relevant variables and their relations
from potentially large data sets. For attempts in this direction, see Chalupka, Bischoff, Perona, and
Eberhardt 2016.

8The choice of the variables, and which relations between them one assumes, may also be suggested by
considerations about which Bayes net provides a good representation.

9See Frigg and Hartmann 2016/2020 for a survey of the corresponding philosophy of science literature.
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3.3 Modeling Confirmation Scenarios

Large parts of the literature on BCT are only concerned with scenarios involving two
variables—one representing the hypothesis (H) and the other representing the evi-
dence (E). However, while much can be learned from focusing on simple scenarios (see,
e.g., Earman 1992 and Howson and Urbach 2006), it is clear that actual confirmation
scenarios are much more complex and may raise new and intricate issues which do
not show up in scenarios involving only two variables. If we want to reconstruct and
analyze more complex confirmation scenarios, then Bayes nets prove to be extremely
helpful. Without the use of Bayes nets, it is hard to keep track of the various dependen-
cies and independencies and to properly evaluate what is going on, as the following
example illustrates.

We consider the testing of a hypothesis with partially reliable measurement instruments. To
begin with, we consider a situation where the evidence is uttered by a partially reliable
information source. This information source could be a measurement instrument
(which outputs a binary result, e.g., a positive or negative X-ray) or the testimony of a
witness (e.g., in a murder case), again modeled as a binary variable, such as “I saw the
suspect on the crime scene” or “I didn’t see the suspect.”

Such scenarios can be modeled by fixing the rates of false positives and false
negatives of the information source. The rate of false positives ( fp) measures how
often an instrument outputs “true” when in fact the hypothesis is false. Similarly, the
rate of false negatives ( fn) measures how often an instrument outputs “false” when
in fact the hypothesis is true. Ideally, both rates are zero, but in realistic cases this is
almost never the case. To proceed, it is easy to see that fp and fn are related to the
likelihoods mentioned above: fp = P(E |¬H) = q and fn = P(¬E |H) = 1−p. While
these likelihoods (or rates) are often available, e.g., in medical testing, this is not always
the case (e.g., for witness reports). This suggests that one might want to construct more
complex models for the information-gathering process of an agent.

Here is a simple example. Consider an agent who entertains the hypothesis H
(“Paul is the murderer”). She then receives a witness report Rep (which is the evidence)
to the effect that Paul indeed is the murderer. The agent then assumes—and this is
a modeling assumption—that the witness is either reliable or not: If the witness is
reliable, then she is fully reliable and therefore always tells the truth. That is, if Paul
is the murderer she reports that he is the murderer, and if Paul is not the murderer
she reports that Paul is not the murderer. However, if she is not reliable, then she is a
randomizer, i.e., she reports with a certain probability a (the so-called randomization
parameter) that Paul is the murderer, independently of whether or not Paul is the
murderer. Finally, the agent assumes that it is uncertain whether or not the witness is
reliable and assigns a prior probability to the proposition Rel (“The witness is reliable”).

Next we represent this situation with the (“collider”) Bayes net in Figure 4 and set
P(H) = h, P(Rel) = r, and

P(Rep |H, Rel) = 1, P(Rep |¬H, Rel) = 0,
P(Rep |H,¬Rel) = a, P(Rep |¬H,¬Rel) = a.
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Figure 4: A Bayes net representing the test of a hypothesis with a partially reliable
information source.

With this, we calculate P′(H) = P(H |Rep), i.e., the posterior probability of the hypoth-
esis after receiving a positive witness report:

P′(H) =
P(H, Rep)

P(Rep)
=

∑Rel P(H, Rel, Rep)
∑H,Rel P(H, Rel, Rep)

=

=
∑Rel P(H)P(Rel)P(Rep |H, Rel)

∑H,Rel P(H)P(Rel)P(Rep |H, Rel)
=

h(r+ar)
h(r+ar) + har

=
h(r+ar)
hr + ar

. (2)

It is interesting to note that this model can be simulated by a two-variables model (using
the variables H and Rep) with the corresponding likelihoods p := P(Rep |H) = r + ar
and q := P(Rep |¬H) = ar. From this, one also sees that p > q (for r > 0). Hence, as
expected, Rep always confirms H. From Equation 2 we obtain that P′(H) = P(H) for
r = 0. Likewise, for r = 1, we find that P′(H) = 1. This makes sense: if a perfectly
reliable information source tells us that H is true, then H is true.

Because this three-variables model can be simulated by a two-variables model, it
is not strictly necessary to study it in detail. However, the model allows us to reduce
the likelihoods p and q to some parameters that are easier to grasp and interpret
(i.e., a and r). The model therefore provides (or suggests) a mechanism that generates
the likelihoods, but once these likelihoods are known, one can proceed with the
two-variables model.

Things get more interesting when one studies more complex scenarios. Let us
assume, for instance, that the agent receives two positive reports from two partially
reliable information sources. We can then distinguish two scenarios and ask which of
them provides more confirmation for the hypothesis in question. In the first scenario,
the two reports are independent from each other. This is modeled by fixing two root
nodes Rel1 and Rel2 (see Figure 5). In the second scenario, we assume that the reports are
dependent and model this by working with only one root node Rel, which is a parent
of both Rep1 and Rep2 (see Figure 6). One would expect that the first scenario provides
more confirmation, ceteris paribus, as the two reports are independent. Here, the
ceteris paribus clause makes sure that the priors of H and Rep (and of Rep1 and Rep2,
respectively) are the same and that the randomization parameter is the same in both
scenarios. But is this really the case? Do independent positive reports always result in
more confirmation? A detailed analysis shows that the answer to this question is “no”:
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Figure 5: A Bayes net representing the test of a hypothesis with two independent
instruments.

Rep1

H

Rel

Rep2

Figure 6: A Bayes net representing the test of a hypothesis with two dependent
instruments.

the second scenario provides more confirmation if the values of a and r are sufficiently
small.10

Extending and generalizing these ideas, Landes (forthcoming) provides a systematic
assessment of the variety-of-evidence thesis. This is the claim that more varied evidence
confirms more strongly than less varied evidence. Landes explores in detail under
which conditions the thesis holds. Further applications of the simple witness model
described above can be found in the psychological literature (see, e.g., Hahn, Merdes,
and von Sydow 2018 and Harris, Hahn, Madsen, and Hsu 2016).

There are many other applications of Bayes nets in BCT. For instance, Dardashti,
Hartmann, Thébault, and Winsberg (2019) investigate whether so-called analogue
simulations can be used to confirm a theory. The (very rough) idea is this: A theory T
predicts a phenomenon φ, but for certain (practical) reasons the prediction cannot
be directly tested. However, it turns out that there is another theory T′, which is in
important respects analogous to T and which predicts the analogous phenomenon φ′.
Fortunately, the prediction of φ′ can be tested. The observation of φ′ then confirms T′,
but does it also confirm T (as some authors argue for some cases)? Using the machinery
of Bayes nets, Dardashti, Hartmann, Thébault, and Winsberg (2019) show that this is
indeed the case, given that certain conditions hold. Further applications concern the use
of Bayes nets in legal reasoning. For example, Lagnado and collaborators (e.g., Connor

10For details and an explanation, see Bovens and Hartmann 2004.
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Desai, Reimers, and Lagnado 2016 and Fenton, Neil, Yet, and Lagnado forthcoming)
use Bayes nets to represent complex legal scenarios, demonstrating the power and the
flexibility of the approach (see also Chapter 11.4 by Prakken, in this volume).

4 Bayesian Reasoning and Argumentation

Confirmation theory and the analysis of confirmation scenarios are an important focus
of Bayesianism. Bayesianism provides a clear criterion for when it is rational for an
agent to claim that a piece of evidence supports a given hypothesis, and Bayes nets
help to apply this theory to concrete cases so that the theory can be put to work.
At this point, however, it is important to note that epistemic rationality comprises
more than confirmation theory. In many cases of reasoning and argumentation it is
not immediately clear that such scenarios can be reconstructed (or represented) as
confirmation scenarios. Interestingly, though, often it is possible. We illustrate this
point with the sketch of a Bayesian account of argumentation (see also Chapter 5.5 by
Hahn & Collins and Chapter 5.6 by Woods, both in this volume).

The starting point of Bayesian argumentation is the observation that the premises
and conclusions in typical real-life arguments are uncertain to the agent. We are
more or less convinced of the premises of an argument, given the evidence we have
for them (and our background knowledge), and this uncertainty transfers to the
argument’s conclusion. This holds whether the underlying argument scheme is valid
or not. Hahn and Oaksford (2007) have observed that even so-called logical fallacies
(such as the argument scheme Denying the Antecedent) can be powerful in the sense
that they can increase an agent’s degree of belief in the conclusion of the argument.
Hahn and Oaksford argue convincingly that it is not only the logical structure that
is important when it comes to assessing the strength of an argument, but also the
content of the premises (see also Hahn and Hornikx 2016). Generalizing from these
insights, Eva and Hartmann (2018b) develop a general theory of Bayesian argumentation
according to which “Argumentation is learning.” This slogan connects argumentation
with confirmation, and we will sketch the corresponding theory now. Some of its
applications and further developments are discussed in the following subsections.

We consider an agent (Agent 1) who entertains a set of propositions with a prior
probability distribution P defined over it. This can be represented by a Bayes net. Now
another agent (Agent 2) wants to convince Agent 1 of some proposition. She decides
to do so in an indirect way by manipulating the beliefs of Agent 1 about the premises
of an argument. More specifically, Agent 2 aims at getting Agent 1 to increase her
degree of belief in some of the premises. To make sure that her overall degrees of belief
are coherent, Agent 1 then updates on that new information, which leads to a new
probability of the conclusion. Hence the slogan “Argumentation is learning.” If the
new probability of the conclusion is greater than the old one, then the argument has
some force; if not, then not. Note that the possible logical relationship between the
premises and the conclusion plays a role in the updating process. This has been noted
long ago by Suppes (1966) and Adams (1996).
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As an illustration, consider modus ponens, i.e., the rule

A→ C
A

C

and assume that the agent has a prior probability distribution P defined over the two
variables. To reconstruct the argument in Bayesian terms, we assume that the agent
learns the premises of the argument with certainty. We can then use Conditionalization
to compute the new probability of C. Representing the conditional A→ C by the
corresponding material conditional ¬A∨C finally yields

P′(C) = P(C |A,¬A∨C) =
P(A, C,¬A∨C)

P(A,¬A∨C)
= 1.

Hence the argument succeeds. As a result, the agent increases the probability of the
conclusion to 1 and thus becomes certain that C is true. In less ideal circumstances,
for example, if the probability of the minor premise does not increase to 1 but to
some value smaller than 1, one finds that the probability of the conclusion in a modus
ponens argument increases, but never reaches 1. Interestingly, for valid arguments
this always holds: if the conditional is learnt with certainty and the probability of
the minor premise increases, then the probability of the conclusion of the argument
increases. This is not the case for invalid arguments, which is a reason to prefer valid
ones (see Adams 1996). If the argument scheme is invalid, then it depends on the prior
probability distribution of the agent whether or not the probability of the conclusion
increases. We will come back to this in Subsection 4.3. But before, let us illustrate
Bayesian argumentation with two examples which also illustrate the importance of
Bayes nets.

4.1 The No Alternatives Argument

Consider the following argument:

A scientist entertains a theory H which satisfies several desirable conditions.
Unfortunately, however, the theory cannot be tested empirically because it
is mathematically too difficult to derive predictions from the theory or it
is impossible to experimentally test the predictions of the theory. At this
point, the scientist argues as follows: “Look, my colleagues and I tried hard
to find an alternative to H which also satisfies the desirable conditions, but
despite a lot of effort and brain power, we did not succeed. This supports
the claim that H is true.” That is, the scientist argues that an observation
about the performance of the scientific community can provide a reason in
favor of a scientific theory.

This is the No Alternatives Argument (NAA). Quite recently, it has been put forward
by defenders of string theory, which is a candidate for the most fundamental theory
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of physics that arguably provides a unified account of all four fundamental forces
of nature (i.e., gravity, electromagnetism, and the weak and strong nuclear forces).
Unfortunately, string theory lacks direct empirical confirmation, and no one expects
this situation to change in the foreseeable future. This raises the question why scientists
stick to a theory that is not (and perhaps never will be) confirmed by empirical data.

In his recent book String Theory and the Scientific Method (2013), R. Dawid sug-
gests that the NAA is convincing, given certain conditions, and R. Dawid, Hartmann,
and Sprenger (2015) provide a Bayesian analysis of the NAA. We present a slightly
simplified version of their reconstruction and consider the following argument:

P1: Theory H satisfies several desirable conditions.

P2: Despite a lot of effort, the scientific community has not yet found an alternative
to H that also satisfies these conditions.

C: Hence we have one good reason in favor of H.

Let F be the proposition “The scientific community has not yet found an alternative
to H.” One then has to show that F confirms H. Using BCT, we therefore have to
show that P′(H) = P(H |F) > P(H). Note that F is neither a deductive nor an inductive
consequence of H. Hence there cannot be a direct probabilistic dependence between the
corresponding propositional variables. It is therefore natural to look for a third variable
that facilitates the dependence. One possibility is a “common cause” structure with
the two “effects” H and F and a so-far-unknown “common cause” variable Y which
screens off H and F from each other. Such a structure seems appropriate as it renders
H and F dependent if the agent does not know the value of Y, and H and F become
independent once this value is known. But what could this variable be? We need to
find another active variable about which the agent has beliefs and which is related to
H and F in a simple and easy-to-justify way. (We certainly want to avoid that the result
depends too much on the idiosyncrasies of the specific model.) R. Dawid et al. (2015)
suggest the introduction of the multi-valued variable Y which has the following values:

Yi: There are i distinct alternative theories which satisfy the desirable conditions.

Here, i runs from 0 to some maximal value N. Each Yi is a statement about the number
of existing theories that satisfy the same conditions as H. It is easy to see that Y screens
off F from H: Once we know the value of Y, learning F does not tell us anything new
about the probability of H. To assess it, all that matters is that we know how many
equally suitable candidate theories there are. Y facilitates the probabilistic dependence
between F and H, since if there is only a small number of alternative theories, this
would provide an explanation for why the scientists have not yet found any, i.e., it
would explain F. In addition, if there are only a few alternative theories, this should
also probabilistically impact our belief in the available theory. We finally arrive at the
Bayes net depicted in Figure 7 and formulate the following four plausible conditions:

NAA1: ∀i ≥ 0, yi := P(Yi) ∈ [0, 1).
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Figure 7: A Bayes net depicting the No Alternatives Argument.

NAA2: hi := P(H |Yi) are monotonically decreasing in i.

NAA3: fi := P(F |Yi) are monotonically decreasing in i.

NAA4: H and F are conditionally independent given Y, i.e., P(H | F, Yi) = P(H |Yi).

It can then be shown that the following theorem holds:

Theorem 1 Let P be a probability distribution satisfying the conditions NAA1–NAA4. Then
F confirms H, i. e., P(H |F)> P(H), iff there exists a pair (i, j) with i> j such that (1) yi yj > 0,
(2) fi < fj, and (3) hi < hj.

This theorem allows for an assessment of the NAA. One may, for example, question
NAA1. Are we really uncertain about the number of alternatives? Doesn’t the under-
determination thesis in philosophy of science tell us that the number of alternatives to
a given theory is always infinite? If this is so, then a rational agent should set y∞ = 1
and the NAA does not go through. A defender of the NAA will therefore have to
argue why y∞ (and all other yi, for that matter) should be assigned values smaller
than 1. It has to be shown, then, that an agent can never be certain about the number
of appropriate alternatives to a given theory.

Here is another issue. The NAA relies on how well F probes the variable Y. Note
that there can be several complicating factors. For one, there might be an alternative
explanation for why the scientific community has not yet found an alternative. For
instance, R. Dawid et al. (2015) introduce an additional node D representing the
difficulty of finding an alternative theory. The observation of F then may only confirm D,
i.e., that it is very difficult to find an alternative theory. However, D is probabilistically
independent of H and hence the observation of F may not confirm the theory in
question.

Note also that the NAA relies on it being possible to establish F in the first place.
However, it is a nontrivial task to find agreement amongst the members of the scientific
community about the existence or nonexistence of alternative theories. And even if
there is agreement, this is only probative of the number of existing alternatives, i.e., the
value of the variable Y, provided that the scientific community has attempted to explore
the space of alternative theories and has considered all problems one may encounter in
this endeavor.
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We conclude that the formal reconstruction of the NAA using Bayes nets helps
the reasoner to put all assumptions on the table and highlights issues that need to be
addressed to make the argument, if at all possible, convincing.

4.2 No Reason For Is a Reason Against

Next, consider the following argument:

You are interested in the question whether or not God exists. To address
this question, you consider all arguments for the existence of God you can
find in the literature. After a careful examination of them, you come to
the conclusion that none of them is convincing. From this observation you
conclude that you have a reason against the existence of God because no
reason for is a reason against.

This is the No Reason For Argument (NRF). While this reasoning may have some
plausibility, it is not clear whether the argument is a good argument. To find out, we
follow Eva and Hartmann (2018a) and provide a Bayesian reconstruction of the NRF
which proceeds analogously to the NAA and which allows us to ask whether learning
the premises of the argument increases the probability of its conclusion.

We consider the hypothesis H and introduce the proposition F which says “I have
not yet found a good argument in favor of H.” Furthermore, let Y be a propositional
variable whose values are the propositions Yi: “There are exactly i good arguments in
favor of H” (i ≥ 0). It is plausible that an agent can be uncertain about the value of Y.
Many rational agents would surely plead ignorance as to whether or not there are any
undiscovered good arguments for the existence of God (and if so, how many). Again,
knowledge of the value of Y renders F independent of H: if I know that there are five
good arguments for the existence of God, then the fact that I haven’t yet found any
one of them should be irrelevant to my belief in the existence of God. Furthermore,
if I learn that there are more good arguments for God’s existence than I previously
thought, then that should raise my degree of belief in the existence of God. Finally,
the more arguments there are for God’s existence, the more likely it is that I find one.
These considerations motivate the following conditions:

NRF1: ∀i ≥ 0, yi := P(Yi) ∈ [0, 1).

NRF2: hi := P(H |Yi) are monotonically increasing in i.

NRF3: fi := P(F |Yi) are monotonically decreasing in i.

NRF4: H and F are conditionally independent on Y, i.e., P(H | Yi, F) = P(H |Yi).

NRF1–NRF4 are structurally near-identical to the conditions imposed on the NAA.
The corresponding Bayes net model is also analogous. The only difference is that the hi
are now monotonically increasing in i. Accordingly, the proof for the following theorem
is analogous to the proof of Theorem 1.
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Theorem 2 Let P be a probability distribution satisfying the conditions NRF1–NRF4. Then
F disconfirms H, i. e., P(H |F) < P(H), iff there exists a pair (i, j) with i > j such that
(1) yi yj > 0, (2) fi > fj, and (3) hi < hj.

We contend that Theorem 2 constitutes, under certain special circumstances, a full
Bayesian vindication of the NRF argument. On the basis of this reconstruction, one
can analyze how good specific NRF arguments are (for details, see Eva and Hartmann
2018a).

4.3 Towards a General Theory of Reasoning and Argumentation

The examples given in the last two subsections illustrate the slogan “Argumentation is
learning” mentioned above. Both examples involved the learning of a proposition, and
the learning was modeled using Conditionalization. Note, however, that many argu-
ment schemes involve indicative conditionals of the form “If A, then C” as premises,
which are notoriously difficult to deal with. In the introduction to this section we repre-
sented an indicative conditional by the corresponding material conditional ¬A∨C. This
was convenient, as it allowed us to condition on it. However, the material conditional
faces many problems, and it is even debated whether indicative conditionals can be
modeled as propositions at all (for details, see Douven 2018 and Chapter 6.1 by Starr,
in this volume). It is therefore advisable to look for a more general updating method
which can be applied to both propositional and nonpropositional evidence. A general
theory of Bayesian argumentation cannot work without such a method. To address this
problem, Eva, Hartmann, and Rad (forthcoming) develop the distance-based approach to
Bayesianism that builds on the above-mentioned principle of Conservativity. Learning
the indicative conditional “If A, then C” from a perfectly reliable information source
then suggests the constraint P′(C |A) = 1. The full posterior probability distribution P′

follows by minimizing a suitable distance measure (such as the Kullback–Leibler diver-
gence) between P′ and P. Eva and Hartmann (2018b) apply this proposal to Bayesian
argumentation and show how Bayes nets can be used to model, for example, disablers
in an argument.

5 Outlook

In this chapter, we have introduced the theory of Bayes nets, we have shown how
Bayes net models can be constructed within the Bayesian framework, and we have
presented a number of examples from the philosophy and psychology of reasoning and
argumentation that illustrate the power of the approach. However, Bayes nets have also
been used in other areas of rationality research (such as the study of decision making)
and there is no doubt that a whole range of further problems can be addressed with
this methodology.

It is also worth noting that Bayes nets can be used with other theories of uncertainty
as well. For example, Spohn (2012, Chapter 7) shows that ranking theory satisfies the
semi-graphoid axioms. Other authors investigate conditional independence structures
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for imprecise probabilities (see, e.g., Cozman 2012; Halpern 2003, Chapter 4). Hence
nothing hinges on the Bayesian framework which we used in this chapter. At the same
time it is true that most applications of Bayes nets in rationality research studied so far
presuppose the Bayesian framework, which is easy to use and has a solid normative
foundation. It would be interesting to construct analogous models in other frameworks
and to compare the resulting analyses with the corresponding Bayesian analyses (see
also Colombo, Elkin, and Hartmann forthcoming). This will lead to further progress in
rationality research.
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