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Abstract

This study aims to provide an analysis of the complementarity principle in quantum theory through
the establishment of partial structural congruence relations between the quantum and Boolean
kinds of event structure. Specifically, on the basis of the existence of a categorical adjunction be-
tween the category of quantum event algebras and the category of presheaves of variable Boolean
event algebras, we establish a twofold complementarity scheme consisting of a generalized/global
and a restricted/local conceptual dimension, where the latter conception is subordinate to and
constrained by the former. In this respect, complementarity is not only understood as a relation
between mutually exclusive experimental arrangements or contexts of co-measurable observables,
as envisaged by the original conception, but it is primarily comprehended as a reciprocal rela-
tion concerning information transfer between two hierarchically different structural kinds of event
structure that can be brought into partial congruence by means of the established adjunction. It
is further argued that the proposed category-theoretic framework of complementarity naturally
advances a contextual realist conceptual stance towards our deeper understanding of the micro-
physical nature of reality.
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1 On the Structure of the Complementarity Concept

The concept of complementarity was introduced in quantum mechanics by Niels Bohr in
his lecture at the International Congress of Physics, held in the Italian city of Como, in
1927, although the essential ideas reach back to 1925. He proposed the complementarity
doctrine as the new framework for the ordering of physical experience in the microscopic
domain. Apart from being conceived as an inseparable aspect of quantum theory, Bohr
himself envisaged his views on complementarity as forming also part of a wider regulative
epistemological principle which is required whenever a sharp distinction between the (ob-
serving) subject and the (observed) object cannot be made. The closing sentence of his
Como lecture is telling: “I hope, however, that the idea of complementarity is suited to
characterize the situation, which bears a deep-going analogy to the general difficulty in
the formation of human ideas, inherent in the distinction between subject and object” [5,
p. 590].

In his numerous articles on the topic, Bohr strove to develop the concept of comple-
mentarity into a definite viewpoint, nonetheless, he never provided an exact definition or
a sharp formulation [26, Sect. 3]. Instead, he expressed the concept of complementarity
qualitatively in various terms on different occasions, according to the physical situation un-
der consideration. In the early phase of the interpretation of quantum physics, Bohr used
complementarity to characterize a binary relation between, for example, physical pictures
such as the particle picture and the wave picture, or physical variables such as position and
momentum, or physical descriptions such as the space-time description and the dynamical
description based on the consideration of conservation laws. As a view about the nature
of physical pictures, complementarity declares that each atomic system has a wave aspect
and a particle aspect both of which being equally fundamental from a classical viewpoint
but yet mutually incompatible within a single quantum phenomenon. As a view about the
assignment of physical variables, it designates that conjugate quantities, like position and
momentum, cannot be ascribed exact simultaneous values; the corresponding quantitative
limits are to be specified by Heisenberg’s indeterminacy relations. As a view about physical
descriptions, it asserts that there are mutually exclusive conditions for the unambiguous
use of the kinematical concepts involving detailed space-time coordination and dynamical
concepts involving conservation laws of momentum and energy (the latter sometimes being
referred to as a “requirement of causality”). The incompatibility between spatio-temporal
(t, r) and dynamical concepts (E,p) is traced back to the unavoidable presence of Planck’s
quantum of action in the atomic domain, imposing an in principle uncontrollable transfer
of momentum and energy to fixed scales and synchronized clocks needed to define the
reference frame for specifying exact trajectories.

In his later writings, demarcated essentially by the time of Bohr’s [6] reply to the EPR
incompleteness argument, his viewpoint of complementarity gradually converges towards a
preferred expression of complementarity as a relationship between phenomena demanding
mutually exclusive experimental arrangements. No doubt, Bohr’s concept of a quantum
phenomenon forms the logical basis for his expounded notion of complementarity. Ac-
cording to Bohr, the fundamental difference with respect to the analysis of phenomena in
classical and in quantum physics is that in the latter the ‘measured system’, the ‘measuring
apparatus’ and their ‘mutual interaction’ constitute an indivisible whole in such a manner
that analysis into disjoint elements is not admissible without destroying or altering the
original phenomenon. “The essential wholeness of a proper quantum phenomenon”, writes
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Bohr, “finds indeed logical expression in the circumstance that any attempt at its well-
defined subdivision would require a change in the experimental arrangement incompatible
with the appearance of the phenomenon itself” [7, p. 291]. In this respect, he strongly
advocated that the use of the word “phenomenon” must exclusively refer to “observations
obtained under specified circumstances, including an account of the whole experiment”
[9, p. 317]. Thus, for Bohr, a quantum phenomenon is not fully specified until the whole
experimental procedure is determined.

The general epistemological thesis advanced by Bohr towards this direction, especially
as regards the ordering and subsequent synthesis of phenomena, consists in conditionalizing
the meaning of theoretical concepts to the context of a possible experiment. It is only
by knowing the experimental conditions that the concepts used for the description of
experimental results can become relevant in the context of a physical inquiry.

In this connection, Bohr clearly realized that an unambiguous interpretation of the
quantum mechanical formalism can be achieved only by an equally unambiguous descrip-
tion of the phenomena, with the experimental arrangement specified in classical terms, at
least to the degree that it functions as a measuring instrument:

In the system to which the quantum mechanical formalism is applied,
. . . some ultimate measuring instruments, like the scales and clocks which de-
termine the frame of space-time coordination on which, in the last resort, even
the definitions of momentum and energy quantities rest must always be de-
scribed entirely on classical lines, and consequently kept outside the system
subject to quantum mechanical treatment.

. . . It is just in this sense that phenomena defined by different concepts, cor-
responding to mutually exclusive experimental arrangements, can unambigu-
ously be regarded as complementary aspects of the whole obtainable evidence
concerning the objects under investigation [8, pp. 316-317].

With this terminology, the complementary aspects between conjugate variables, wave-
particle pictures, or physical descriptions, as previously specified, can be derived from a
primary notion of complementarity, by referring to phenomena appearing under mutually
exclusive experimental arrangements, constituting also Bohr’s ultimate formulation on the
issue. In Bohr’s own words:

The impossibility of combining phenomena observed under different experi-
mental arrangements into a single classical picture implies that such appar-
ently contradictory phenomena must be regarded as complementary in the
sense that, taken together, they exhaust all well-defined knowledge about the
atomic objects [10, p. 25].

Bohr’s preceding expression of “apparently contradictory phenomena”, elsewhere being
characterized as “apparently incompatible” [7, p. 291], when referred to complementary
aspects of the same object, can only mean incompatible on classical considerations alone.
Any two phenomena, then, can be called complementary if, by referring to the same object,
they are mutually exclusive in the sense that the two corresponding experimental arrange-
ments employed for the manifestation of the phenomena and the information which they
yield are incompatible, while at the same time being jointly necessary for an exhaustive
as possible description of the object concerned as allowed by quantum theory.
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Despite divergent views in the philosophical outlook of Bohr’s approach to quantum
mechanics, as offered by various Bohr scholars [4, 22, 27, 40], there is a consensus in recent
research literature that the combination of the two aforementioned features concerning
“mutual exclusiveness” and “joint completion” captures the gist of quantum complemen-
tarity [14, 18, 36, 41]. As an illustration, let us consider concisely the most characteristic
example of complementary phenomena involving the measurement of the position and mo-
mentum observables. According to the original conception of complementarity, position
and momentum cannot both be sharply defined in one and the same measurement context.
For, the context needed for a measurement of the position observable is not compatible
with that needed for a measurement of the momentum observable. This suggests that
they should be measured independently, using mutually exclusive experimental arrange-
ments, thus rendering the notions of position and momentum complementary in the sense
that they are not simultaneously applicable as precisely defined quantities. Yet, this holds
true for any conjugate pair of observables A and B satisfying the canonical commutation
relation [A,B] = i~I. The existence of complementary physical quantities and relations
is ubiquitous, reflecting an essential feature of the quantum mechanical formalism. In
this respect, the complementarity principle may be viewed as a distinct consequence of it,
highlighting certain remarkable implications of the theory, suitably specified. If, therefore,
the complementarity concept is projected into the Hilbert space formulation of quantum
mechanics, we arrive at an explicit characterization of the functioning of complementarity
in quantum theory that may attract general acceptance. On this basis, the structure of
the hard core of complementarity may be decomposed as follows:

(i) A quantum mechanical observable is well-defined within the experimental arrange-
ment or measurement context serving to measure that observable.

(ii) Upon specifying an experimental arrangement and, therefore, selecting an observable
to be measured, atomic propositions referring to the properties of a quantum me-
chanical system acquire, within the associated measurement context, determinate
truth values [33], thus, forming a Boolean subalgebra in the non-Boolean logical
structure of the system.

(iii) Simultaneous assignment of exact or sharp values to pairs of complementary observ-
ables, be it by preparation or measurement procedures, is impossible. Nonetheless,
simultaneous assignment of approximate or unsharp values to such observables is
feasible within the limits allowed by the uncertainty or indeterminacy relations.1

(iv) Complementary sharp observables correspond to different mutually exclusive exper-
imental arrangements, defining different aspects of reality, which cannot be unified
in a single classical Boolean picture.

(v) Each complementary aspect of reality, thus defined, is jointly necessary for a com-
prehensive account of the quantum phenomenon.

1The possibility of describing simultaneous (or joint) unsharp measurements of pairs of complementary
observables requires the extension of the standard formalism of quantum mechanics by allowing observables
to be represented by positive-operator-valued measures (POVMs). The consideration of a POVM charac-
terizes a “coarse grained” or “smeared” version of a sharp observable providing, in effect, representations
of observables describing imperfect or approximate joint measurements. As expected, the measuring inac-
curacies imposed in such joint measurements ought to be in accordance with Heisenberg’s indeterminacy
relations. For a general introduction to the formalism of POVMs, the interested reader may consult [13].
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It is worth noting that in recent years the complementarity concept has been shown to
underlie many aspects of quantum information technology, ranging from quantum super-
dense coding [17] to information complementarity [51] and from the security of quantum
cryptography [23] to quantitative complementarity relations in interferometry [12] and
delayed-choice experiments [38]. In this respect, our attempt to expand and accommo-
date the idea of complementarity within a formal description of quantum mechanics may
have implications in all preceding areas.

In this work we aim to establish that the concept of complementarity, pertaining to
any non-Boolean quantal physical description, is mathematically formalized, conceptually
further clarified and physically extended, through the categorical notion of adjunction that
has been recently proved to exist between the category of quantum event algebras and the
category of presheaves on Boolean event algebras (Zafiris [45], see also Zafiris & Karakostas
[50] for a more detailed treatment including in addition the involved logical aspects). To
this end, in Section 2, we provide a category-theoretic representation of a quantum algebra
of events via the adjunction of suitably qualified functors of Boolean probing frames to it,
capable of carrying all the information encoded in the former. In Section 3, we demonstrate
that this Boolean frames–quantum adjunction embodies the semantics of complementar-
ity and, furthermore, explicates its functioning through a twofold scheme consisting of
a generalized/global and a restricted/local conceptual dimension. The crucial notion of
adjunction, which does not have a set-theoretic counterpart, provides the mathematical
means of relating relations and, thus, establishing local or partial structural congruences
between the quantum and Boolean kinds of event structure. It is precisely this fact which
allows an extended interpretation of the quantum complementarity principle by relating
internally and bi-directionally the variable and local Boolean with the quantum global
level of structure. In light of the proposed interpretative framework, complementarity
is not only understood as a relation between mutually exclusive experimental arrange-
ments or contexts of co-measurable observables, as envisaged by the original conception,
but it is primarily comprehended as a reciprocal relation concerning information transfer
between two hierarchically different structural kinds of event structure–the Boolean and
quantum kinds of structure–that can be brought into partial congruence by means of the
established adjunction. Finally, in Section 4, we explicate the global and local dimension
of complementarity, clarify their interdependence, and develop certain further conceptual
aspects of the twofold complementarity scheme. We also include an appendix where we
briefly compare our category-theoretic representation scheme of quantum event algebras
with other categorial approaches by putting emphasis on the complementarity issue.

2 Universal Solution to the Functorial Representation of a

Quantum Event Algebra via Boolean Frames

2.1 Conceptual framework

The complementarity scheme developed in the sequel is motivated by the physically signif-
icant observation that whereas the totality of all experimental/empirical facts associated
to a quantum mechanical system can only be represented in a globally non-Boolean logical
structure, the acquisition of every single fact depends on a locally Boolean context. An
intuitive understanding of this insight may be advanced by pointing out that although
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Kochen-Specker’s [35] theorem in quantum logic excludes the possibility of a global two-
valued truth-functional assignment on the non-Boolean structure of a quantum system,
nonetheless, there always exists a local two-valued truth-functional assignment with respect
to a complete Boolean algebra of projection operators on the Hilbert space of the system.
In more detail, in virtue of the spectral resolution theorem for self-adjoint operators, each
observable, represented by such an operator, is associated with the Boolean algebra of
projection operators that spectrally resolve it, identified in terms of a local Boolean sub-
algebra of the global non-Boolean event algebra of a quantum system. Therefore, given
a set of observables of a quantum system, there always exists a complete Boolean sub-
algebra of projection operators with respect to which a local two-valued truth-functional
assignment is viable, if and only if the given observables commute or, equivalently, they
are simultaneously measurable. It should be underlined that such a complete Boolean
algebra of projection operators bears the status of a logical structural invariant character-
izing a whole commutative algebra of observables that can be simultaneously spectrally
resolved, and hence be value definite. Since in the lattice of quantum events there exist
complementary or incompatible physical magnitudes non-commuting with any considered
commutative algebra of observables, there exists a multiplicity of possible Boolean alge-
bras of orthogonal projections furnishing an invariant of this kind only in the context of
all commuting observables in question.

In this manner, the conceptual framework surrounding the notion of complementarity
should pertain to the fact that in the quantum domain there does not exist a unique and
universal logical structural invariant with respect to which all possible observables can be
spectrally resolved simultaneously, but, in contradistinction, there is a multiplicity of such
invariants attached only to commutative subalgebras of observables. Therefore, although a
quantum event structure is globally non-Boolean, it can be qualified spectrally, and hence
be accessed experimentally, only in terms of Boolean event structures operating as logical
structural invariants of co-measurable families of physical magnitudes (cf. also Svozil [43,
Sect. 12.9.11]). Consequently, a complete Boolean algebra of projection operators in its
function as a spectral invariant of a commutative subalgebra of quantum observables fur-
nishes the role of a Boolean logical frame with respect to which a quantum event can be
qualified and lifted to the empirical level. Thus, the consideration of each local Boolean
frame at any temporal moment serves as a natural pre-condition for establishing a local
invariant logical structure for the event evaluation of all co-measurable observables form-
ing this context. Due to the absence of a global, uniquely defined Boolean frame over a
quantum event structure, it is necessary to consider all possible local ones together with
their interrelations. From this perspective, the crucial problem is if there exists a univer-
sal way to specify a quantum event structure via the literal adjunction of local spectral
invariants to it, objectified by variable local Boolean frames, under their intended physical
interpretation as probing frames for the manifestation and concomitant classification (or
contextualization) of quantum events.

We advance the view that the conceptual net of ideas enveloping the notion of com-
plementarity pertains exactly to the possibility of existence of a universal solution to the
preceding problem. The existence of a universal solution essentially renders the global or-
thomodular lattice structure of quantum events empirically inert without the adjunction
of local spectral invariants to it. The role of these invariants is to induce partial or local
structural congruences with Boolean event structures pertaining to all typical contexts of
measurement. Intuitively, the multiplicity of applicable local Boolean frames allows the
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filtration and separation of several resolution sizes and types of quantum observable grain
depending on the qualification of the corresponding spectral orthogonal projections. The
objective of a universal solution is to derive the non-directly accessible quantum kind of
event structure by means of all possible partial structural congruences with the directly
accessible Boolean kind of event structure, forced by means of adjoining local spectral
invariants as probing frames to the former. In this setting, the major role is subsumed by
all possible structural relations allowed among the probing Boolean frames, the spectra
of which may be disjoint or nested or overlapping and interlocking together nontrivially.
The condition that distinct Boolean frames may have nontrivial intersections or, more
generally, nontrivial pullback compatibility relations with respect to a global quantum
event structure partly extends the semantics of complementarity beyond the standard
standpoint concerning disjoint Boolean frames. As outlined however in Sect. 1, it is the
proposed category-theoretic analysis of quantum complementarity, based on the existence
of a categorical adjunction between the category of quantum event algebras and the cat-
egory of presheaves of variable Boolean event algebras, which broadens the scope of the
complementarity concept and is pertinent to the present approach. In turn, the univer-
sality of the existence of such a categorical adjunction poses the necessity to formulate
the problem in functorial terms, i.e., non-dependent on the artificial choice of particular
Boolean frames adjoined to a quantum event algebra.

2.2 Functorial representation of quantum event algebras via Boolean

frames

Category theory provides a general theoretical framework for the study of structured
systems in terms of their mutual relations and admissible transformations. Contrary to the
atomistic approach of set theory which crucially depends on the concept of elements-points
and the membership relationship of a variable x in a set X, x ∈ X, in category theory
the notion of morphism or arrow undertakes primary role. A morphism, for instance,
f : A → B in a category C expresses one of the many possible ways in which the object
A relates to the object B within the context of category C. However counterintuitive it
may initially appear, in category theory the nature of the objects is a derivative aspect
of the patterns described by the morphisms or mappings that connect the objects. In
fact, an object can be completely classified and uniquely derived up to an isomorphism
by the network of all morphisms — the structure preserving relations — targeting this
object within the same category. Most significantly, this does not exclude the inter-level
relational determination of objects belonging to other categorical species of structure,
under the condition that there exists a bi-directional functorial correlation between them,
formulated in the language of adjunctions. It is precisely the latter development that
gradually introduced into category theory a paradigm change in understanding structures
of general types and paved the way for forming bridges between seemingly unrelated
mathematical disciplines.

The basic categorical principles that we adopt in the subsequent analysis are summa-
rized as follows:

(i) To each kind of mathematical structure used to represent a system, there corresponds
a category whose objects have that structure and whose arrows or morphisms preserve
it.
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(ii) To any natural construction on structures of one kind, yielding structures of an-
other kind, there corresponds a functor from the category of the first specified kind
to the category of the second. The implementation of this principle is associated
with the fact that a categorical functorial construction is not merely a function from
objects of one kind to objects of another kind, but must preserve the essential struc-
tural relationships among objects, that is, identity morphisms and composition of
morphisms.

(iii) To each natural translation between two functors having identical domains and
codomains, there corresponds a natural transformation. The specification “natural”
in the notion of natural transformations refers to the comparison of two functorial
processes, sharing the same source and target categories, in a way that captures
the shared structure or generic common properties existing in different categorical
contexts.

(iv) To any canonical bi-directional functorial correlation between two kinds of math-
ematical structures, there corresponds an adjunction realized by a pair of adjoint
functors between the corresponding categories.2

In view of the aforementioned principles, the functorial representation of a quantum
event algebra in terms of suitably qualified functors of Boolean probing frames requires
distinct notions of Boolean and quantum categorical event structures, respectively.

A Boolean categorical event structure is a small category, denoted by B, which is called
the category of Boolean event algebras. The objects of B are complete Boolean algebras
of events and the arrows are the corresponding Boolean algebraic homomorphisms.

A quantum categorical event structure is a locally small co-complete category, denoted
by L, which is called the category of quantum event algebras. The objects of L are
quantum event algebras and the arrows are quantum algebraic homomorphisms.

A quantum event algebra L in L is defined as an orthomodular σ-orthoposet [15], that
is, as a partially ordered set of quantum events, endowed with a maximal element 1, and
with an operation of orthocomplementation [−]∗ : L → L, which satisfy, for all l ∈ L,
the following conditions: [a] l ≤ 1, [b] l∗∗ = l, [c] l ∨ l∗ = 1, [d] l ≤ ĺ ⇒ ĺ∗ ≤ l∗, [e]
l⊥ĺ ⇒ l ∨ ĺ ∈ L, [f] for l, ĺ ∈ L, l ≤ ĺ implies that l and ĺ are compatible, where 0 := 1∗,
l⊥ĺ := l ≤ ĺ∗, and the operations of meet ∧ and join ∨ are defined as usually. The σ-
completeness condition, meaning that the join of countable families of pairwise orthogonal
events exists, is required in order to have a well defined theory of quantum observables
over L.

It is important to note in relation to the proposed functorial representation of quantum
event algebras that despite the fact that each object L in L is not Boolean, there always
exists an underlying categorical diagram of Boolean subalgebras of L, where each one
of them is generated by the following well-known compatibility condition: any arbitrary
pair of elements l, ĺ ∈ L are compatible if the sublattice generated by {l, l∗, ĺ, ĺ∗} is a
Boolean algebra, namely, if it is a Boolean sublattice. According to the preliminary
conceptual analysis in Sect. 2.1, this indicates that a Boolean event algebra is structurally
adaptable to a quantum event algebra since it encodes a structurally invariant context of
co-measurable observables by means of their joint compatible spectral resolution.

2A concise account of the underpinnings of category theory, including an analysis of the preceding
notions, can be found in the Appendix of [33].
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The latter feature motivates the consideration of a Boolean modeling or shaping func-
tor of L, M : B → L, which assigns to each Boolean event algebra in B (constitutive of
a model category) the underlying quantum event algebra from L, and to each Boolean
homomorphism the underlying quantum algebraic homomorphism. Hence, M acts as a
forgetful functor, not taking into account the extra Boolean structure of B. We note that
the Boolean modeling functor M is not assumed to be necessarily an inclusion functor in
the target category. The crucial idea in this context is that being Boolean is a structural
property, and in particular it is a property of a ring, as it is well-known from the cele-
brated Stone’s representation theorem for Boolean algebras; whereas there is no analogous
structural characterization of orthomodular lattices.

Because of the fact that an opposite-directing functor from L to B is not feasible, since
a quantum event algebra cannot be realized within any Boolean event algebra, we seek for
an extension of B into a larger categorical environment where such a realization becomes
possible. This extension should conform with the intended physical semantics of adjoining
a multiplicity of Boolean spectral invariants to a quantum event algebra, objectified as
probing Boolean frames of the latter. In this perspective, the global information encoded
in a quantum event algebra is expected to be recovered in a structure-preserving way by
an appropriate sheaf-theoretic construction gluing together categorical diagrams of locally
variable Boolean frames. As shown in the sequel, a topological gluing construction of this
form can only take place by extending the categorical level of B to the categorical level of
diagrams in B, forming, in turn, the functor category SetsB

op
, which actually constitutes

the free completion of B under colimits. The existence of colimits expresses in category
theoretical language the basic intuition that a complex object may be conceived as arising
from the structured interconnection of partially or locally defined information carriers in
a specified covering system.

It is apparent that the realization of this extension process requires initially the con-
struction of the functor category of presheaves of sets on Boolean event algebras, denoted
by SetsB

op
, where we remind that Bop is the opposite category of B. The objects of

SetsB
op

are all functors, P : Bop → Sets, with morphisms all natural transformations
between such functors. Each object P in the category of presheaves SetsB

op
is a con-

travariant set-valued functor on B, called a presheaf of sets on B [11, p. 195]. The functor
category of presheaves on Boolean event algebras, SetsB

op
, provides the instantiation of

a structure known as topos. A topos exemplifies a well-defined notion of a universe of
variable sets. It can be conceived as a local mathematical framework corresponding to a
generalized model of set theory or as a generalized topological space [3].

In order to obtain a clear understanding of the structure of the functor category
SetsB

op
, we note that a functor P in SetsB

op
can be thought of as constructing an image

of B in Sets contravariantly or as a contravariant translation of the ‘language’ of B into
that of Sets. Thus, a functor P is a structure-preserving morphism of these categories,
that is, it preserves compositions and identities. Given another such contravariant functor
Q of B into Sets we need to compare them. This can be done by assigning, for each
object B in B, a transformation, τB : P(B) → Q(B), which compares the two images
of the object B. Not any morphism will do, however, as we intend the construction to
be parametric in B rather than ad hoc. Since B is an object in B, whereas, P(B) is in
Sets, we cannot link them by a morphism. Rather, the goal is that the transformation
should respect the morphisms of B or, in other words, the interpretations of f : B → C
by P and Q should be compatible with the transformation under τ . Then τ is a natural
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transformation in the functor category of presheaves, SetsB
op

, on Boolean event algebras.
Alternatively, an object P of SetsB

op
may be understood as a right action of the

category B on a set of observables, which is partitioned into a variety of Boolean spectral
kinds parameterized by the Boolean event algebras B in B. Such an action P is equivalent
to the specification of a diagram in B, to be thought of as a B-variable set forming a
presheaf P(B) on B. For each Boolean algebra B of B, P(B) is a set, and for each Boolean
homomorphism f : C → B, P(f) : P(B) → P(C) is a set-theoretic function, such that,
if p ∈ P(B), the value P(f)(p) for an arrow f : C → B in B is called the restriction of
p along f and is denoted by P(f)(p) = p · f . From a physical viewpoint, the purpose of
introducing the notion of a presheaf P on B, in the environment of the functor category
SetsB

op
, is to identify an element of P(B), that is, p ∈ P(B), with an event observed by

means of a physical procedure over a Boolean domain cover for a quantum event algebra.
As further analyzed in Sect. 3.2, this identification forces the interrelation of observed
events, over all Boolean probing frames of the base category B, to fulfil the requirements
of a uniform and homologous fibred structure.

In the categorical setting of the functor category, SetsB
op

, it becomes possible to
realize a quantum event algebra L in L in terms of a distinguished presheaf of Boolean
event algebras, which emerges due to the invariant spectral capacity of the latter to act
locally as logical probing frames of a quantum event algebra. These Boolean frames of an
L in L are objectified as L-targeting morphisms in L,

ψB : M(B)→ L, (2.1)

being interrelated by the operation of presheaf restriction. This means explicitly that for
each Boolean homomorphism f : C → B, if ψB : M(B)→ L is a Boolean frame of L, the
corresponding Boolean frame ψC : M(C) → L is given by the restriction or pullback of
ψB along f , denoted by ψB · f = ψC . Thus, we obtain a contravariant presheaf functor,

R(L)(−) = HomL(M(−), L) , (2.2)

called the functor of Boolean frames of L. Since the physical interpretation of the functor
R(L)(−) refers to the functorial realization of a quantum event algebra L in L in terms
of Boolean algebras B in B, we think of R(L)(−) as the variable Boolean spectral functor
of L through the structured multitudes of local Boolean frames adjoined to it. In this
manner, a Boolean event algebra B, induced locally by the measurement of a quantum
observable via the spectral decomposition of the corresponding self-adjoint operator, acts
as a partial coordinatizing logical probing frame of a quantum event algebra L in terms
of Boolean coefficients.

It is now important to stress that each Boolean algebra B in B gives naturally rise
to a contravariant representable Hom-functor yB := y[B] := HomB(−, B). This functor
defines a B-variable set or, equivalently, a presheaf of sets on B for each B in B. Concomi-
tantly, the functor y is a full and faithful functor from B to the contravariant functors on
B, i.e.,

y : B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq SetsB
op
, (2.3)

defining the Yoneda embedding B ↪→ SetsB
op

[2, pp. 187-189, 39, p. 26]. According
to the Yoneda Lemma, there exists an injective (one-to-one) correspondence between el-
ements of the set P(B) and natural transformations in SetsB

op
from y[B] to P and this

correspondence is natural in both P and B, for every presheaf of sets P in SetsB
op

and
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Boolean algebra B in B. The functor category of presheaves of sets on Boolean event
algebras, SetsB

op
, is a complete and co-complete category. Thus, the Yoneda embedding

y : B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq SetsB
op

constitutes the intended free completion of B under colimits of diagrams
of Boolean event algebras.

The deep meaning of this fact is that if we consider a Boolean modeling functor M :
B → L there exists precisely one corresponding uniquely defined, up to isomorphism,
colimit-preserving functor M̂ : SetsB

op → L, such that the following diagram commutes:

B

y

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@

@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

M

SetsB
op Lp p p p p p p p p p p p p p p pqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq R

L

Consequently, every morphism from a Boolean algebra B in B to a quantum event algebra
L in L factors uniquely through the functor category SetsB

op
, and the consideration of the

colimit-preserving functor M̂ : SetsB
op → L is crucial for understanding the underlying

structure of L in L in terms of diagrams of Boolean probing frames.
The physical significance of the functor M̂ is unraveled by the fact that it plays the

role of a left adjoint L and, thus, colimit-preserving functor from SetsB
op

to L. More
precisely, the functor M̂ := L is the left adjoint of the categorical adjunction between the
categories SetsB

op
and L,

L : SetsB
op → L, (2.4)

whilst the right adjoint functor,

R : L → SetsB
op
, (2.5)

is physically interpreted as the Boolean realization functor of L in terms of variable local
probing frames, functioning as natural contexts for measurement of observables. The
existence of the functorial relations (2.4) and (2.5) designates the fact that a quantum
event algebra L in L can be expressed in terms of structured multitudes of interlocking
local Boolean frames capable of carrying all the information encoded in the former.

Henceforth, the problem of establishing a functorial representation of a quantum event
algebra via Boolean frames has a universal solution, which is provided by the left ad-
joint functor L : SetsB

op → L to the Boolean realization functor R : L → SetsB
op

.
In other words, the existence of the left adjoint functor L paves the way for an explicit
reconstruction of quantum event algebras by means of appropriate diagrams of Boolean
probing frames in a structure-preserving manner, based on partial congruences between
the Boolean and quantum kinds of event structure. Since our interpretative scheme of
complementarity is based on this pair of adjoint functors, it is useful to express their bi-
directional correspondence in the form of the following theorem, formulated and proved
in [45], see also [50].

Theorem. There exists a categorical adjunction between the categories SetsB
op

and L,

called the Boolean frames–quantum adjunction, established by the pair of adjoint functors

11



L a R as follows:

L : SetsB
op

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

L : R (2.6)

where, the right adjoint, R, is the Boolean realization functor of a quantum categorical

event structure L in SetsB
op

, whereas, the left adjoint, L, is the colimit-preserving functor

providing the synthesis of a quantum categorical event structure by means of diagrams of

Boolean frames.

Equivalently, there exists a bijection, which is natural in both P in SetsB
op

and L in

L,

HomSetsB
op (P,R(L)) ∼= HomL(LP, L), (2.7)

abbreviated as follows:

Nat(P,R(L)) ∼= HomL(LP, L). (2.8)

Corollary. The left adjoint functor of the Boolean frames–quantum adjunction, L : SetsB
op →

L, is defined for each presheaf P in SetsB
op

as the colimit L(P):

L(P) = Colim{
∫

(P,B)

∫
P qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B M qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L} . (2.9)

The colimit L(P) is explicitly constructed in Sect. 3.2 in relation to the physically
important case of our interest, P = R(L), namely, when the presheaf functor P of Boolean
event algebras represents the functor of Boolean frames R(L) of a quantum event algebra
L.

We recall that the Boolean modeling functor M is not assumed to be necessarily an
inclusion functor in the target category. Of particular significance for its precise specifi-
cation it is the case where, in the bijection defining the above adjunction, we make use of
the contravariant representable Hom-functor yB := y[B] := HomB(−, B) on the category
of Boolean event algebras B. Then, the bijection takes the following form:

Nat(y[B],R(L)) ∼= HomL(Ly[B], L) . (2.10)

Furthermore, it is instructive to consider the split discrete fibration induced by the repre-
sentable presheaf y[B], where B is taken as the base category of the fibration. In particular,
this fibration is expressed by the functor∫

y[B]
:

∫
(y[B],B)→B , (2.11)

i.e. by the projection on the second coordinate of the category of elements
∫

(y[B],B) of
y[B]. Since y[B] is a representable functor, the above category of elements of y[B] has
a terminal object, i.e. the element 1 : B → B of y[B](B). Therefore, the colimit of the
composite M ◦

∫
y[B] is going to be just the value of M ◦

∫
y[B] on the terminal object.

Thus, we have:

Ly[B] ∼= M ◦
∫

y[B]
(B, 1B) = M(B) . (2.12)

Hence, we characterize the application of the modeling functor on a Boolean event algebra
B, i.e. M(B), by means of the colimit of the representable presheaf y[B] on the category
of Boolean event algebras. This is precisely equivalent to the assertion that the following
diagram commutes:

12



B

y

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@

@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

M

SetsB
op Lp p p p p p p p p p p p p p p pqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L

The Boolean frames–quantum adjunction, specified by the pair of adjoint functors
L a R, formalizes categorically the process of encoding and decoding information between
diagrams of Boolean event algebras B and quantum event algebras L via the action of
Boolean probing frames ψB : M(B) → L. In general, the existence of an adjunction
between two categories always gives rise to a family of universal morphisms, called unit and
counit of the adjunction, one for each object in the first category and one for each object in
the second. In this way, each object in the first category induces a certain property in the
second category and the universal morphism carries the object to the universal for that
property. Most significantly, every adjunction extends to an adjoint equivalence of certain
subcategories of the initial functorially correlated categories. It is precisely this category-
theoretic fact which determines the necessary and sufficient conditions for the isomorphic
representation of a quantum event algebra L in L by means of suitably qualified functors
of Boolean probing frames.

We note for this purpose that every categorical adjunction is completely characterized
by the unit and counit natural transformations, acquiring the status of universal mapping
properties [2, pp. 208-215]. In relation to the Boolean frames–quantum adjunction, for
any presheaf P of Boolean event algebras in the functor category SetsB

op
, the unit of the

adjunction is defined by
δP : P qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq RLP. (2.13)

On the other side, for each quantum event algebra L in L, the counit is defined by

εL : LR(L) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L. (2.14)

As further analyzed in Sect. 3.3, the representation of a quantum event algebra L in L,
in terms of the functor of Boolean frames R(L) of L, is full and faithful if and only if the
counit of the Boolean frames–quantum adjunction is a quantum algebraic isomorphism,
that is structure preserving, injective and surjective. In turn, the counit of the Boolean
frames–quantum adjunction is a quantum algebraic isomorphism if and only if the right
adjoint functor R is full and faithful.

We argue in the sequel that the prescribed universal solution incorporates the semantics
of a twofold complementarity scheme extending the standard conception of complemen-
tarity as it has been exemplified from a contemporary viewpoint in the introductory part
of this work.
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3 Twofold Complementarity Scheme via the Boolean Frames

– Quantum Adjunction

3.1 Towards a twofold conception of complementarity

For methodological purposes, it is instructive initially to recall from Sect. 1 that, according
to structural features of the complementarity concept, the consideration of an experimental
arrangement, abstracted as the context of a Boolean frame of measurement, may serve as
a referent of the assignment of an observable to a quantum system. Since the concept of a
Boolean frame is qualified, by definition, as a probing frame of a quantum event algebra,
it is natural to associate the semantics of complementarity with their function. In this
way, every event is conditioned by at least one Boolean frame and every Boolean probing
frame is constitutive of an empirical manifestation or phenomenon.

The standard formulation of complementarity from this viewpoint pertains to any two
mutually incompatible Boolean frames, which correspond physically to mutually exclusive
experimental arrangements, associated to canonically conjugate pairs of quantum observ-
ables. These Boolean frames neither share any common projections nor have any common
refinement and, thus, may be considered as totally disjoint. Undoubtedly, the requirement
of total disjointness represents an extreme case, which precludes the physically important
realistic possibility of partial compatibility between various probing frames. The relax-
ation of such a requirement is inherently incorporated in our approach by receiving the
form of a weaker version of complementarity that refers to partially compatible Boolean
frames, which may have a nontrivial overlap or a common refinement or, more generally,
being compatible under a pullback operation.

In order to substantiate the proposed category-theoretic analysis of complementarity,
including the standard perception as a special case, we need to examine in detail the
semantics of the derived universal solution concerning the functorial representation of a
quantum event algebra in terms of Boolean logical probes. As a prelude to our considera-
tions, it is significant to stress that the proposed conception of complementarity does not
only pertain to the mutual relations between any two Boolean event algebras considered
merely as Boolean subalgebras of a given quantum event algebra, but it pertains also to
their mutual relations in their capacity to jointly act in a compatible way as Boolean
probing frames of an otherwise empirically inaccessible quantum event algebra. It is the
latter interpretation that is implemented by the functorial representation of a quantum
event algebra in contradistinction to the former one which requires only the subalgebra
relation. This differentiation is crucial because it implicates that complementarity is not
only a relation between Boolean probes, or contexts of co-measurable observables, but it
is primarily a reciprocal relation between two different structural kinds of event structure
that can be brought into partial congruence by means of the established adjunction. This
also bears as a consequence that the quantum structural kind can now be inductively
constituted by the adjunction of coherently interconnected families of partially congruent
Boolean probing frames covering it entirely. In this manner, the mutual relations between
any two Boolean event algebras, in their capacity to function jointly as probing frames of
a quantum event algebra, are constrained globally by the pair of adjoint functors L a R,
acting as inverse conceptual bridges between two different categorical event structures.
Henceforth, these mutual relations are globally conditioned by their universal factorization
through the action of the left adjoint L on the functor of Boolean frames R(L) of L. In
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a nutshell, one should refrain from identifying, at the risk of conflating, the notion of
contextuality pertaining to the structural kind of Boolean event algebras with a global
conception of complementarity pertaining to the partial functorial congruence between
the Boolean and quantum kinds of event structure.

It will become clear in the sequel that the notion of contextuality, if transplanted
functorially from the Boolean to the quantum kind via the modeling functor M, gives
rise to a restricted/local conceptual dimension of complementarity, which, nevertheless, is
subordinate to the generalized/global dimension. As explicitly shown in Sect. 3.3, this
subordination is expressed by the Boolean frames–quantum adjunction via the interven-
tion of a covering functor of a quantum event algebra L, objectified as an appropriate
subfunctor T of the functor of Boolean frames R(L) of L, i.e., T ↪→ R(L). Consequently,
the proposed weakening of the former rigid notion of complementarity, implicated by the
pertinent pair of adjoint functors, is qualified by means of a twofold scheme consisting of
a local and a global conceptual dimension, where, importantly, the former conception is
not adhoc but is functorially constrained by the latter.

3.2 Global conceptual dimension of complementarity

The global dimension of complementarity is formally characterized by the counit natural
transformations of the identity functor in the category of quantum event algebras L. As
pointed out in the preceding section, for each quantum event algebra L in L, the counit
is defined as follows:

εL : LR(L) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L. (3.1)

Then, the counit natural transformation εL defines the spectral constitution of a quantum
event algebra L in L via the colimiting–interconnection of Boolean probing frames of L,
whose domains are partially congruent Boolean event algebras to L.

It is clear from the counit expression (3.1) that the functorial representation of a quan-
tum event algebra L in L through the category SetsB

op
requires an explicit calculation of

the colimit LR(L), when the functor on which it acts is the presheaf functor of Boolean
frames R(L) of L. Let us initially note that in order to calculate, in general, the colimit
L(P) for any presheaf functor P in SetsB

op
, it is necessary to specify the index or param-

eterizing category corresponding to the functor P, which is defined over the base category
of Boolean event algebras B. This index category is called the category of elements of the
presheaf P, denoted by

∫
(P,B), and defined as follows: it has objects all pairs (B, p) and

morphisms (B́, ṕ)→(B, p) are those morphisms u : B́→B of B for which p · u = ṕ, that
is, the restriction or pullback of p along u is ṕ. Projection on the second coordinate of∫

(P,B) defines a functor
∫
P :

∫
(P,B)→B called the split discrete fibration induced by P,

where B is the base category of the fibration, as in the diagram below.

∫
(P,B)

∫
P

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

B P qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sets
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Notice that the fibers of this fibration are categories in which the only arrows are identity
arrows, i.e., they are actually sets. Then, if B is an object of B, the inverse image under∫
P of B is simply the set P(B), although its elements are written as pairs so as to form

a disjoint union.
From a physical viewpoint, the split discrete fibration induced by P provides a well-

defined notion of a uniform homologous fibred structure in the following sense. Firstly, by
the arrows specification defined in the category of elements of P, any element p, determined
over the reference locus B, is homologously related with any other element ṕ over the
reference locus B́, and so on, by variation over all the reference loci of the base category
B. Secondly, all the elements p of P of the same sort B, namely, the elements determined
over the same reference locus B, are uniformly equivalent to each other, since all the
arrows in

∫
(P,B) are induced by lifting arrows from the base B.

The task of calculating the colimit LR(L), when the presheaf functor P represents
the functor of Boolean frames R(L) of a quantum event algebra L, is simplified by the
observation that there exists an underlying, colimit-preserving, faithful functor from the
category L to the category Sets. Thus, we can calculate the colimit by means of set-valued
equivalence classes in Sets, under the constraint that the derived set of equivalence classes
carries the structure of a quantum event algebra.

In this connection, it is instructive to recall from Sect. 2.2 that the Boolean realization
functor of the category of quantum event algebras L into the category of presheaves of
Boolean event algebras SetsB

op
is defined by

R : L → SetsB
op
. (3.2)

Then, the functor of Boolean frames R(L) of a quantum event algebra L in L is the
image of the realization functor R, evaluated at L, into the category of presheaves of
Boolean event algebras SetsB

op
, i.e.,

R(L) : Bop → Sets . (3.3)

Thus, the functor R(L) of L is actually an object in the category of presheaves SetsB
op

,
representing L in the environment of the topos of presheaves over the base category B.

It is important to stress that the Boolean realization functor of a quantum categorical
event structure L is completely determined by the action of the functor of Boolean frames,
for each quantum event algebra L in L, on the objects and arrows of the category of
Boolean event algebras B. It follows immediately from Eq. (2.2) that its action on a
Boolean algebra B in B is given by

R(L)(B) = HomL(M(B), L) , (3.4)

while its action on a Boolean homomorphism x : D qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B in B, for v : M(B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L is
defined by

R(L)(x) : HomL(M(B), L) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomB(M(D), L) ,

R(L)(x)(v) = v ◦ x . (3.5)

As already pointed out, the functor of Boolean frames R(L) of a quantum event alge-
bra L in L forms a presheaf of sets on Boolean event algebras B in B. Thus, in complete
analogy with the preceding analysis concerning any presheaf functor P in SetsB

op
, we
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consider the corresponding category of elements
∫

(R(L),B), specified as follows: it has
objects all pairs (B,ψB), where B is a Boolean event algebra and ψB : M(B) → L is
a Boolean probing frame of L defined over B. The morphisms of

∫
(R(L),B), denoted

by (B́, ψB́)→(B,ψB), are those Boolean event algebra homomorphisms u : B́→B of the
base category B for which ψB · u = ψB́, that is, the restriction or pullback of the Boolean
frame ψB along u is ψB́. Then, the projection functor

∫
R(L) :

∫
(R(L),B)→B, namely,

the split discrete fibration induced by the functor of Boolean frames of L, where B is the
base category of the fibration, provides, as previously explained, a uniform and homolo-
gous fibred representation of quantum events in terms of Boolean probing frames for the
measurement of observables. The notion of functional dependence incorporated in this
representation forces a global quantum event algebra to be partitioned into sorts param-
eterized by the Boolean frames of the base category B. In this way, the functioning of
a Boolean localization scheme on a global structure of quantum events is represented by
means of a fibred construct, understood geometrically as a variable set of possible events
over the base category of local Boolean probing frames conditioning the actualization of
events.

Consequently, the index category corresponding to the functor R(L) is the category of
its elements I ≡

∫
(R(L),B), whence the functor [M ◦

∫
R(L)] defines the diagram I → L

over which the colimit should be calculated. Hence, we obtain:

LR(L) = LM(R(L)) = Colim{
∫

(R(L),B)

∫
R(L) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B M qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L 99K Sets} . (3.6)

It has been shown in [50] that the sought colimit is equivalent to the definition of the
following tensor product structure,

LR(L) ∼= R(L)⊗BM , (3.7)

formed by the set-valued functors,

R(L) : Bop → Sets, M : B → Sets , (3.8)

where the contravariant functor R(L) is considered as a right B-module and the covariant
functor M as a left B-module, in complete analogy with the algebraic definition of the
tensor product of a right B-module with a left B-module over a ring of coefficients B [37].
We call this construction the functorial tensor product decomposition of the colimit in the
category of elements of R(L) induced by the Boolean modeling functor M : B → L of L.

Thus, for a Boolean probing frame ψB ∈ R(L)(B), v : B́ → B and q́ ∈ M(B́), the
elements of the set R(L)⊗BM are all of the form χ(ψB, q), which can be written in a
suggestive notation as,

χ(ψB, q) = ψB ⊗ q, ψB ∈ R(L)(B), q ∈M(B) , (3.9)

such that,

ψB · v ⊗ q́ = ψB ⊗ v(q́), ψB ∈ R(L)(B), q́ ∈M(B́), v : B́ → B. (3.10)

This state of affairs gives rise to the conclusion that the set R(L)⊗BM is actually
the quotient of the set

∑
BR(L)(B) ×M(B), for B ∈ B, by the smallest equivalence

relation generated by the above equations, whence the elements ψB ⊗ q of the quotient
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set R(L)⊗BM are the equivalence classes of this relation. Since the morphisms ψB :
M(B) → L denote Boolean probing frames of L, encoded as elements in the associated
index category, I ≡

∫
(R(L),B), and q denotes a projection operator q ∈M(B), then, the

quotient set R(L)⊗BM is actually a set of equivalence classes of pointed Boolean frames.
Henceforth, the function of the left adjoint of the Boolean frames–quantum adjunction,

L : SetsB
op → L, when it acts on the functor of Boolean frames R(L) of a quantum event

algebra L, is defined, for each L in L, as the colimit LR(L) of Eq. (3.6), which, in turn, is
equivalent to the quotient set R(L)⊗BM. Furthermore, the latter set is naturally endowed
with the structure of a quantum event algebra, thus, completing the construction of the
left adjoint colimit in L via the category of Sets.

The embedding of a quantum event algebraic structure into the quotient set R(L)⊗BM
is specified as follows. First, the orthocomplementation operator is defined by the assign-
ment:

(ψB ⊗ q)∗ := ψB ⊗ q∗ . (3.11)

Second, the unit element is defined as:

1 := ψB ⊗ 1 . (3.12)

Third, two equivalence classes in the quotient set R(L)⊗BM can be ordered if and only if
they have a common refinement. Consequently, the partial order structure is defined by
the assignment,

(ψB ⊗ q) � (ψC ⊗ r) , (3.13)

if and only if,
d1 � d2 , (3.14)

where we have made the following identifications,

(ψB ⊗ q) = (ψD ⊗ d1) ,

(ψC ⊗ r) = (ψD ⊗ d2) , (3.15)

with d1, d2 ∈ M(D), according to the pullback diagram,

M(D)
β qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq M(B)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

γ

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

α

M(C) λ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L

such that β(d1) = q, γ(d2) = r, and β : M(D) → M(B), γ : M(D) → M(C) denote
the pullback of α : M(B) → L along λ : M(C) → L in the category of quantum event
algebras. Apparently, the ordering relation between any two equivalence classes of pointed
Boolean frames in the set R(L)⊗BM requires the existence of pullback compatibility
conditions between the corresponding Boolean frames. This is a crucial requirement that
will be also utilized in the next section for establishing the local conceptual dimension of
complementarity.
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We conclude that the spectral constitution of a quantum event algebra L in L via the
Boolean frames–quantum adjunction is based on the action of the endofunctor G on L,
defined by

G := LR : L → SetsB
op → L ,

L→ R(L)→ LR(L)→ L , (3.16)

which may be thus called the global spectral constitution endofunctor of a quantum cate-
gorical event structure L via Boolean probing frames. Note that the endofunctor G on L
is obtained by the composition of the right adjoint R : L → SetsB

op
together with the left

adjoint L : SetsB
op → L. The significance of the endofunctor G on L lies on the fact that

it induces the precise natural transformation of the identity functor on L that gives rise
to the pertinent counit universal morphism of the Boolean frames–quantum adjunction
characterizing L.

In particular, if the counit universal morphism, evaluated at L, for each quantum event
algebra L in L, is expressed in terms of equivalence classes of pointed Boolean frames, viz.
LR(L) ∼= R(L)⊗BM, we obtain:

εL : R(L)⊗BM qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L . (3.17)

Thus, the counit εL fits into the following diagram:

R(L)⊗BM

ψB⊗(−)

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq @
@

@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

εL

M(B)
ψB qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L

Accordingly, for every Boolean frame ψB : M(B) → L the projection operator q ∈
M(B) is mapped to an event in L only through its factorization via the equivalence class
ψB ⊗ q of pointed Boolean frames or, equivalently,

εL([ψB⊗q]) = ψB(q), q ∈M(B) . (3.18)

This epitomizes the semantical role of the global conceptual dimension of complementarity
as a relation between the Boolean and the quantum structural kinds of event structure
that can be brought into partial congruence by means of the established adjunction.

3.3 Local conceptual dimension of complementarity

The local dimension of complementarity is formally characterized by the conditions that
make the counit natural transformations of the identity functor in the category of quantum
event algebras L an isomorphism. In turn, the counit isomorphism expresses the property
of invariance of a quantum event algebra under encoding in terms of appropriate families
of Boolean event algebras via probing frames in R(L), and then decoding back by means
of the action of the left adjoint on the former, denoted by LR(L).

We recall that, in view of the global dimension of complementarity, the counit εL
defines the spectral constitution of a quantum event algebra L in L via the colimit of the
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functor of Boolean probing frames of L, whose domains are partially congruent Boolean
event algebras to L. This colimit LR(L) is actually an object in L, qualified as partially
ordered, if additionally there exist pullback compatibility conditions between the Boolean
frames that may be ordered.

We notice that if the counit evaluated at L is an isomorphism, then L can be consid-
ered as a fixed point of the corresponding global spectral constitution endofunctor of L
via Boolean probing frames. In general, the counit natural transformation εL is a natu-
ral isomorphism if and only if the right adjoint functor of the Boolean frames–quantum
adjunction is full and faithful or, equivalently, if and only if the cocone from the func-
tor M ◦

∫
R(L) to L is universal for each L in L. In the latter case, we characterize the

functor M : B → L as a dense Boolean modeling functor. On this account, therefore, it
is important to specify the necessary and sufficient conditions which make the counit εL
to be an isomorphism. This requirement leads to the notion of sheaf-theoretic localization
of L through the probing frames ψB : M(B) → L, giving subsequently rise to the local
conceptual dimension of complementarity.

As a first step, we emphasize that if the counit natural transformation εL at L can
be suitably restricted to an isomorphism R(L)⊗BM ∼= L, then the quantum structural
information of L can be completely encoded and classified logically through equivalence
classes of pointed Boolean frames. For this purpose, we need to impose appropriate
conditions on families of Boolean frames in R(L), which are going to function as local
Boolean covers of L. The requirements qualifying such restricted families of Boolean
frames as local Boolean covers of L are the following: First, they should constitute a
minimal generating class of Boolean frames instantiating a subfunctor T of the functor
of Boolean frames R(L) of L. Second, they should jointly form an epimorphic family
covering L entirely on their overlaps. Third, they should be compatible under refinement
operations or, more generally, pullback conditions in L. Fourth, they should be transitive
such that subcovers of covers of L can be qualified as covers themselves. We formulate
these notions as follows.

A functor of Boolean coverings for a quantum event algebra L in L is defined as a
subfunctor T of the functor of Boolean frames R(L) of L, i.e., T ↪→ R(L). For each
Boolean algebra B in B, a subfunctor T ↪→ R(L) is equivalent to an algebraic right
ideal or spectral sieve of quantum homomorphisms T .R(L), defined by the requirement
that, for each B in B, the set of elements of T(B) ⊆ [R(L)](B) is a set of Boolean frames
ψB : M(B)→ L of R(L)(B), called Boolean covers of L, satisfying the following property:
{If [ψB : M(B) → L] ∈ T(B), viz. it is a Boolean cover of L, and M(v) : M(B́) →

M(B) in L for v : B́ → B in B, then [ψB ◦M(v) : M(B́) → L] ∈ T(B), viz. it is also a
Boolean cover of L}.

A family of Boolean covers ψB : M(B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L, B in B, is the generator of a spectral
sieve of Boolean coverings T, if and only if, this sieve is the smallest among all containing
that family. The spectral sieves of Boolean coverings for an L in L constitute a partially
ordered set under inclusion of subobjects. The minimal sieve is the empty one, namely,
T(B) = ∅ for all B in B, whereas the maximal sieve is the set of all probing Boolean
frames of L for all B in B, considered as Boolean covers.

We recall from Sect. 3.2 that the ordering relation between any two equivalence classes
of pointed Boolean frames in the set R(L)⊗BM requires the existence of pullback compat-
ibility conditions between the corresponding Boolean frames. Henceforth, if we consider
a functor of Boolean coverings T for a quantum event algebra L, we require that the
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generating family of Boolean covers they belong to is compatible under pullbacks.
Then, the pullback or categorical overlap of any pair of Boolean covers ψB : M(B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L,

B in B, and ψB́ : M(B́) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L, B́ in B, with common codomain a quantum event algebra

L, consists of the Boolean cover M(B)×LM(B́), together with the two arrows ψBB́ and
ψB́B, called projections, as shown in the diagram:

M(
´́
B)

@
@
@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

u

HH
HHHH

HHH
HHH

HHqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

h

A
A
A
A
A
A
A
A
A
A
A
A
AAqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

g M(B)×LM(B́)
ψB,B́ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq M(B)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ψB́,B

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ψB

M(B́)
ψB́ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L

The square commutes and for any Boolean domain object M(
´́
B) or event algebra

´́
B in B and arrows h and g that make the outer square commute, there is a unique

u : M(
´́
B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq M(B)×LM(B́) that makes the whole diagram commutative. Hence, we

obtain the condition: ψB́ ◦ g = ψB ◦ h.
We emphasize that if ψB and ψB́ are injective morphisms, then their pullback is iso-

morphic with the intersection M(B)×LM(B́). Then, we can define the gluing or pasting
map between Boolean probing frames on their overlap, which is an isomorphism, as follows:

ΩB,B́ : ψB́B(M(B)×LM(B́)) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ψBB́(M(B)×LM(B́)) ,

ΩB,B́ = ψBB́ ◦ ψB́B
−1 . (3.19)

An immediate consequence of the preceding definition is the satisfaction of the following
cocycle conditions: (i) ΩB,B = 1B, 1B := idB, (ii) ΩB,B́ ◦Ω

B́,
´́
B

= Ω
B,

´́
B

if M(B)∩M(B́)∩

M(
´́
B) 6= 0, and (iii) ΩB,B́ = Ω−1

B́,B if M(B) ∩M(B́) 6= 0.
Thus, the gluing isomorphism ΩB,B́ between any two Boolean frames of a spectral

sieve T(L) assures that ψB́B(M(B)×LM(B́)) and ψBB́(M(B)×LM(B́)) probe L on their
common refinement in a compatible way. This provides the sought criterion of qualifying
the local conceptual dimension of complementarity with respect to a spectral sieve T(L),
under the proviso that the family of all Boolean covers ψB : M(B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L, for variable B in
B, generating this spectral sieve, jointly form an epimorphic family covering L completely,

TL :
∑

(Bj ,ψj :M(Bj)→L)
M(Bj)� L, (3.20)

where TL is an epimorphism in L with codomain a quantum event algebra L.
A sieve adjoined to a quantum event algebra L constitutes a Boolean localizing spectral

sieve of L or, equivalently, a functor of Boolean localizations of L, if and only if it is
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closed with respect to an epimorphic family of Boolean covers of L and the above cocycle
conditions are satisfied. The conceptual significance of a Boolean localizing spectral sieve
of L lies on the fact that the functor of Boolean probing frames R(L) becomes a structure
sheaf of local Boolean coefficients when restricted to such a localizing sieve. Then, it can
be shown that for a dense epimorphic family of Boolean covers in a Boolean localization
functor T of L, the counit of the Boolean frames–quantum adjunction is restricted to
a quantum algebraic isomorphism, i.e. the counit becomes structure-preserving, injective
and surjective [45]. As a consequence, the right adjoint functor of the adjunction restricted
to a Boolean localization functor becomes a full and faithful functor. This proposition can
be expressed more precisely in topos theoretic terminology using the technical means of the
subcanonical Grothendieck topology, consisting of epimorphic covering families on the base
category of Boolean event algebras. For details the interested reader should consult [47].
Consequently, L becomes a reflection of the category of sheaves of variable local Boolean
frames SetsB

op
, constituting a topos, and the structure of a quantum event algebra L in

L is encoded and preserved by the action of a family of Boolean frames if and only if this
family forms a Boolean localization functor of L.

4 Conceptual Aspects of the Twofold Complementarity

Scheme

The existence of a categorical adjunction between the category of quantum event alge-
bras and the category of (pre)sheaves of variable local Boolean frames incorporates the
semantics of a twofold complementarity scheme, extending the original notion of com-
plementarity, by giving rise to two interdependent conceptual routes of global and local
dimension. The global dimension of complementarity acquires a meaning by relating two
hierarchically different structural kinds, namely, the Boolean and the quantum kinds of
event structure that can be brought into partial congruence through the established ad-
junctive correspondence, consisting of the pair of adjoint functors L a R,

L : SetsB
op

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

L : R, (4.1)

and the natural bijection,

Nat(P,R(L)) ∼= HomL(LP, L). (4.2)

The essential functioning of the Boolean frames–quantum adjunction in extending
the complementarity concept is made transparent if we consider that it provides an am-
phidromous mechanism of encoding and decoding information between the Boolean and
quantum kind of structures respecting their distinctive form. Thus, if we think of SetsB

op

as the categorical universe of variable local Boolean frames modeled in Sets, and of L
as the categorical universe of quantum event structures, then the left adjoint functor
L : SetsB

op → L signifies an encoding process of information from the level of local
Boolean algebras to the level of global quantum event algebras, whereas the Boolean re-
alization functor R : L → SetsB

op
signifies a decoding process in the inverse direction. In

general, the content of the information cannot remain completely invariant with respect
to the bi-directional mechanism of encoding–decoding information from one categorical
universe to another, and conversely. Note, in this respect, that the functors L and R
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are not inverses, since neither LR nor RL need be isomorphic to an identity functor.
However, there remain two alternatives for a variable set P over local Boolean frames,
standing for a presheaf functor P in SetsB

op
, to exchange information with a quantum

algebra L. Either the content of information is transferred in quantum terms with the
colimit in the category of elements of P translating, represented as the quantum morphism
LP→ L, or the content of information is transferred in Boolean terms with the functor of
Boolean frames of L translating, represented correspondingly as the natural transforma-
tion P→ R(L). In the first case, from the perspective of L, information is being received
in quantum terms, while in the second, from the perspective of P, information is being
sent in Boolean terms. Then, the natural bijection of relation (4.2) corresponds to the
assertion that these two distinct ways of information transfer are equivalent. Thus, the
fact that these two functors are adjoint underlines an amphidromous dependent variation,
safeguarding that the global information encoded in a quantum kind of event structure
is retrievable in a structure-preserving manner by all possible partial structural congru-
ences with the Boolean kind of event structure that, in addition, is empirically directly
accessible.

The global dimension of complementarity, therefore, concerns primarily the fact that
an object behaving in terms of the quantum kind of structure is possible to be communi-
cated in its entirety through a multilevel structure of coherently interconnected families
of Boolean probing frames that, by virtue of the established adjunctive correspondence,
have the potential of unfolding its meaning and, simultaneously, preserving it consistently,
thus providing a complementarity-based conception of the process of quantum becoming.

The local dimension of complementarity acquires a meaning by relating at the same
level multitudes of partially ordered Boolean probing frames, used as localization contexts
for the measurement of observables pertaining to a quantum system and, subsequently,
integrating them in Boolean localization functors. The latter may be understood as the
semantic carriers of networks of internal relations among Boolean frames with respect to
which the targeted quantum event structure is consistently and completely covered. The
Boolean frames, interconnected in localization functors, act like complementary pattern
recognition mechanisms such that complementary aspects of the same quantum system
are being formed in relation to the abstractions associated with the preparation of an
experimental context for extracting information about the system under investigation. In
quantum mechanics the relation between the global theoretical structure and its various
empirical substructures is indeed such that, depending on the type of experimental context
a quantum system is brought to interact, different manifested aspects of the system are
disclosed, impossible to be combined into a single picture as in classical physics, although
only one type of system is concerned. Thus, by virtue of the proposed categorical ap-
proach to quantum mechanics, a quantum event structure can only be unfolded through
structured multitudes of interconnected Boolean probing frames and the twofold comple-
mentarity scheme safeguards the correct communicability both at the local dimension,
relating different Boolean frames at the same level, and the global dimension, linking
the Boolean and the quantum hierarchical levels by means of the established categorical
adjunction. Furthermore, as shown in Sect. 3.3, if the counit of the Boolean frames–
quantum adjunction is restricted to a Boolean localization functor, then, it is reduced to
an isomorphism and, subsequently, acquires the status of a closure condition expressing
the preservation of the total information content embodied in a quantum event structure,
through the bi-directional process of unfolding in terms of coherently interconnected fam-
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ilies of Boolean probing frames and then enfolding back. In this way, the global structural
information of a quantum event algebra can be captured homomorphically or, by restric-
tion to a Boolean localization functor, can be completely constituted (up to isomorphism)
by means of gluing together the information collected in all compatible Boolean frames in
the form of appropriate equivalence classes (by the colimit construction).

In view of the preceding considerations, it is instructive to emphasize that in our
categorical approach to quantum mechanics a global quantum event structure is not con-
ceptualized as an a priori existing set-theoretic structure, already completed in itself, but
it is constituted in a continuous process of extension from the local to the global level
by actualization of new potential facts with respect to local Boolean frames. For, each
quantum event actualized relative to a particular probing frame serves as a datum for
subsequent potential actualizations, thus instantiating simultaneously a bundle of poten-
tial relations referring to this frame. Importantly, all these potential relations, namely, all
relations among observables at the local level are captured by the internal relations among
their underlined Boolean frames and are extended to the global quantum level through
the sheaf-theoretic gluing conditions of Boolean localization functors.

The key conceptual meaning of this approach implies, therefore, the view that the
quantum world can be consistently covered in an epimorphic way, and understood through
a multilayered localizing structure of overlapping and interlocking Boolean frames in
category-theoretic terms, to form a coherent picture of the whole in a nontrivial man-
ner. By virtue of this scheme of interpretation, the transcendent realist assumption that
knowledge of an object is achieved by forming a representation of that object as an im-
mutable substance possessing intrinsic properties is rejected [31]. It is replaced by the
realistic possibility of formulating local or partial contextual theoretical structures per-
mitting different or overlapping physical descriptions, which are nevertheless grounded
on the same actually existing object, whose sameness is characterized by the constraint
that these contextual structures collectively and globally obey the closure condition of the
counit isomorphism. Consequently, the proposed category-theoretic analysis of comple-
mentarity reveals that the core of the quantum structure of reality is to be sought not in its
internal constitution as a set-theoretical entity endowed with inherent qualities, but rather
in the form of its relationship with the Boolean kind of structure through the established
network of adjoint functors between the category of presheaves of variable overlapping
Boolean frames and the category of quantum event algebras.

A APPENDIX

A.1 Related Work

The major source of inspiration in what is presently called categorical or topos-theoretic
approaches to the foundations of quantum physics emanates from the 1998-1999 work of
Isham and Butterfield (IB) [28, 29], who provided a concrete topos reformulation of the
Kochen-Specker theorem, albeit proposals targeting the utility and relevance of these new
mathematical methods appeared earlier (e.g., [42]). For this purpose, they considered
the partially ordered set (poset) of commutative von Neumann subalgebras of the non-
commutative algebra of all bounded operators on a quantum Hilbert space as a “category
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of contexts” where the only arrows are inclusions. The latter “category of contexts”
served as a base category for defining the topos of presheaves of sets over the poset of
commutative subalgebras. This topos-theoretic initiative has been extended, elaborated
and developed further around ten years later by Döring and Isham (DI) (e.g., [20] and
references therein). The central principle of their work is that the construction of a theory
of physics, like quantum mechanics, is equivalent to finding a representation in “a topos of
a certain formal language” that is attached to the system. Conceptually, the (DI) scheme
is based on Lawvere’s notion of an “elementary topos”, i.e., the logical embodiment of
the topos concept, serving as a generalized model of set theory being equipped with a
subobject classifier, specified by a distributive Heyting algebra forcing an intuitionistic
type of semantics [30].

Shortly afterwards, in relation to the (IB) approach, appeared an alternative topos-
theoretic approach to the foundations of quantum physics by the first author [44], which
has been motivated, not by the notion of an “elementary topos”, as in the (IB) case, but by
the notion of a “Grothendieck topos’” [39]. Since 2000, this approach has been developed
in a series of works targeting the observable [45, 46], measure-theoretic [47], topological
[48], geometric [49], logical [50], semantical [33] and conceptual-philosophical [21, 33, 34,
50] aspects of quantum theory. The notion of a “Grothendieck topos” interprets a topos as
a generalized geometric environment, which makes it possible to constitute the structural
information content of certain global objects, like quantum event algebras, from the non-
trivial and non-classical localization properties of observables, which are utilized to “cover”
locally these global objects in terms of interconnected multitudes of measurement contexts
at various overlapping scales. This form of synthetic amalgamation of a global quantum
object from the joint, pairwise compatible, and colimiting gluing of locally congruent with
it Boolean objects culminates in the concept of a sheaf defined over a base category of
Boolean frames. It should be emphasized that in contradistinction to the (IB) and (DI)
approach who consider only the partial ordering of “contexts” as their base category, the
full category of complete Boolean algebras with Boolean homomorphisms is used as a
category of possible frames (by virtue of the spectral theorem) without any restriction
to inclusions or injective morphisms. Most important, in our categorical approach to
quantum mechanics, the “Grothendieck topos” interpretation is founded on the existence
of a categorical adjunction between the category of presheaves of variable Boolean probing
frames and the category of quantum event algebras. As systematically developed in the
present paper, it is precisely the semantics of the resulting pair of adjoint functors (L a R)
that gives rise to the proposed re-conceptualization of the complementarity principle in
quantum meshanics. The basic underlying idea formalized by this adjunctive pair of
functors concerns the partial or local structural congruence between the Boolean and
quantum levels of event structure as well as the encoding and decoding bridges from
one to the other. The congruence relations are induced by the joint action of Boolean
covering families of local frames on a global quantum event algebra at various layers
of “observable resolution”. The left and right adjoint functors in this Boolean frames–
quantum adjunction subsume the role of natural bridges between the Boolean and quantum
structural levels shedding new light on the complementarity principle via a local and a
global conceptual dimension interpreted sheaf-theoretically.

In this connection, there seems to exist an apparent affinity with another topos-
theoretic approach, called “Bohrification”, by Heunen, Landsman and Spitters (HLS)
circa 2010 ([24] and references therein). This approach has been an outgrowth of the (DI)
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program motivated by the adoption of a dual covariant perspective. They construct an
internal commutative C∗-algebra (or an internal Boolean algebra) within the topos of co-
presheaves over the poset of “classical contexts”, so their topos comes equipped with an
“internal commutative algebraic object”, which is interpreted, to some extent, as a formal
expression of Bohr’s doctrine of classical concepts. In relation to both (DI) and (HLS)
frameworks, it has to be observed that the partial order relation of “classical contexts” is
not adequate to capture the global structural information of a quantum event structure,
and at least, the inclusion morphisms of the “Boolean contexts” to the quantum lattice
should be also taken into account. In comparison, the present topos-approach, not based
on the partial order relation of “Boolean contexts”, specifies globally a quantum event
structure via the left-adjoint functor of the established adjunction.

Our particular interest to the “Bohrification program” here stems from the fact that it
has been applied recently by Heunen [25] as a means to explicate the complementarity prin-
ciple in quantum mechanics. So it is quite elucidating to point out a fundamental difference
underlying our respective perspectives and interpretation of this principle. According to
Heunen, “complete complementarity” refers to taking all pairwise partially compatible
classical contexts together. Specifically, given a certain C∗-algebra A, representing the
observables of a physical system, Heunen’s notion of “complete complementarity” is for-
malized by collecting all commutative C∗-subalgebras C of A into a single mathematical
object, a partially ordered set C(A), whose partial ordering is given by set-theoretic in-
clusion. Each C in C(A) represents a classical or experimental context, which has been
disconnected from the others, except for the inclusion relations which relate compatible
experiments. Then, “complete complementarity” means that it suffices to examine all
commutative subalgebras (or “classical contexts”) C to determine the empirical content
of the system modeled by the initial algebra A. It is instructive to note, however, that this
construction applies in an identical manner even when A itself is commutative. Otherwise,
should A be non-commutative, then the best one can do is to approximate it with ever
larger commutative subalgebras C. Hence, it is clear that C(A) in itself is not adequate
to reconstruct A. In a purely mathematical setting, C(A) may be seen as a useful tool
for classifying C∗-algebras through the operation of set-theoretic inclusion, but it cannot
be appropriately regarded as the mathematical space of complementarity, the latter re-
quiring the existence of pairs of incompatible observables standing in a complementary
relation in each other’s determination. In our view, the preceding notion of “complete
complementarity” can be rather considered as an elaboration of contextuality in relation
to a quantum structure; it does not qualify properly the meaning of quantum complemen-
tarity. No doubt, complementarity embraces the notion of contextuality, but the principle
of complementarity is neither reduced to contextuality nor exhausted by it. The reason is
that partial compatibility among “classical contexts” within an overall quantum structure
can be properly described in local sheaf-theoretic terms. In the absence of the crucial
local-global distinction, the complementarity principle can be wrongly conflated with the
notion of contextuality, since there is no functorial bridge of transferring information from
the level of local contexts to the hierarchically different level of quantum structures and
inversely. For this reason, we distinguish between a local and a global conceptual dimen-
sion of the complementarity principle, which only if considered together, they convey the
essential meaning of this principle, formalized by means of a pair of adjoint functors.

It is worth mentioning, in passage, that there have been also developed recently other
sheaf-theoretic and categorical approaches for studying, for instance, the issue of non-
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locality in relation to contextuality (e.g., [1]), providing context-dependent operations in
logic (e.g., [19]), and representing various physical processes (e.g., [16]). Finally, we note
that the interested reader may find particularly helpful the Appendix A.1. in [50], where
it is presented a detailed comparison of the technical part of our category-theoretic ap-
proach with all other major categorical approaches to the foundations of quantum physics,
including those mentioned above.
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