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Abstract

Scientists appeal to models when explaining phenomena. Such explanations are often
dubbed model explanations or model-based explanations (short: ME). But what are the
precise conditions for ME? Are ME special explanations? In our paper, we first rebut two
definitions of ME and specify a more promising one. Based on this analysis, we single out
a related conception that is concerned with explanations that are induced from working
with a model. We call them ‘model-induced explanations’ (MIE). Second, we study
three paradigmatic cases of alleged ME. We argue that all of them are MIE, upon closer
examination. Third, we argue that this undermines the building consensus that model
explanations are special explanations that, e.g., challenge the factivity of explanation.
Instead, it suggests that what is special about models in science is the epistemology
behind how models induce explanations.
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Model Explanation versus Model-Induced Explanation

1. Introduction

Models are frequently used in science. Some of them are used for merely exploratory

purposes (cf., e.g., Kennedy 2012; Rohwer, Rice 2013; Gelfert 2016, ch. 4.). For instance,

scientists construct models to calculate possible climate scenarios (see, e.g., Parker 2006;

Werndl, Steele 2016), and quite a few models in economics are used to explore the behavior

of ideal rational agents (see, e.g., Mäki 2005; Alexandrova 2008, Alexandrova, Northcott

2013; Grüne-Yanoff 2009; Marchionni 2017).1 But scientists also appeal to models when

explaining phenomena. Philosophers typically describe this as explaining with the model

itself. For instance, Bokulich claims: “[...] [O]n my view, Bohr’s model [of atoms] does

genuinely explain the Balmer series [...]” (2011, p. 44). Strevens asks “[...] how to interpret

the ideal gas model, when it is proffered as an explanation of gases’ Boylean behavior,”

(2017, p. 38) and so forth. Such explanations are often dubbed model-based explanations

or model explanations (short: ME).

Prima facie, ME are different from more familiar kinds of explanation and thus demand

their own investigation. For example, ME play a crucial role for doubting the factivity of

scientific explanation (see, e.g., Batterman 2009; Wayne 2011; Bokulich 2011, Bokulich

2012; Kennedy 2012). Typically, models involve idealizations. Explanations with such

models seem to involve idealizations, too. As Wayne writes (2011, p. 831, our italics):

Explanation in physics relies essentially on idealizations (idealized models) of phys-

ical systems, and the explanations themselves contain false statements about both

the explanatorily relevant features of the physical system and the phenomenon to

be explained.

This would violate factivity requirements on explanation, such as Hempel’s require-

ment that “[t]he sentences constituting the explanans must be true” (1965, p. 248).2

But what are the precise conditions for ME? And are ME special explanations? In

what follows, we first clarify the notion of ME (sec. 2) through a critical discussion of

current accounts. Based on this analysis, we single out two different conceptions concern-

ing the role of models in explanation and argue that only one of them is concerned with

model explanation as a distinct kind of explanation. The other one is concerned with

explanations that are induced from working with a model. We call them ‘model-induced

1Examples for explorative functions of models are the following (cf. Rohwer, Rice 2016, pp. 1141-1144):
(i) Some models enable the modeler to view the phenomenon of interest from a novel perspective. (ii)
Some models function as aids to discovering the right kind of explanations needed for the phenomenon at
hand. (iii) Some models are used to justify important background beliefs for formulating an explanation.

2This challenge to a factive account of explanations has also been discussed by, e.g., Reiss 2012, Reiss
2013; Mäki 2013; for a critical account see, e.g., van Riel 2017; Sullivan, Khalifa 2019.
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explanations’ (MIE). Second, we study three paradigmatic cases of alleged ME (sec. 3).

What are their explananda? What are their explanantia? We argue that all of them are

MIE — not ME — upon closer examination. Third, we argue that this undermines the

building consensus that model explanations are special explanations that, e.g., challenge

the factivity of explanation. Instead, it suggests that what is special about models in

science is the epistemology behind how models induce explanations (sec. 4).

2. Defining Model(-based) Explanation

Models are devices scientists typically employ for examining objects or phenomena. We

encounter them in many disciplines, including physics, chemistry, biology, psychology,

linguistics, and the social sciences. Models are usually accounts of their so-called target

objects or phenomena. But by their very nature, scientific models are not replicas or

complete representations of them. As Hughes emphasizes, “[t]o have a model [...] is

not to have a literally true account of the process or entity in question” (1990, p. 71).

Typically, one builds models to investigate particular features of the target phenomena.

Take the double helix model of DNA as a paradigmatic example. Its target object, i.e.

DNA, is modeled as having the form of a double helix. Using this model, one can explore

this structural feature of DNA.

Models are construed based on stipulations about the target objects. For instance, the

Ising model construes a macroscopic magnet as a collection of elementary magnets whose

orientation determines the overall magnetization. Not uncommonly, these stipulations

are idealizations. For instance, according to the optical Glauber model of atomic nuclei,

these nuclei are perfect spheres of energy. The nature of these idealized stipulations is

controversial (for an overview see, e.g., Weisberg 2007, Elliott-Graves, Weisberg 2014).

For example, it is debated whether good models need to feature idealizations that can

be de-idealized in the long run, whether some models involve indispensable idealizations,

etc. Our treatment of model explanation is orthogonal to this debate.

Whereas some models are comprised of a set of mathematical equations, many models

are not sentential entities. Models can also be materialized, e.g., the model of DNA can

be a physical entity.3 However, one can single out a model’s propositional content by

figuring out which propositions are true according to the model (see, e.g., Strevens 2013,

p. 510; van Riel 2015, van Riel 2017; similarly Reiss 2012, pp. 49-50; Rohwer, Rice 2016,

pp. 1129-1130). We can formulate the propositions that are true according to a model

independent of whether the model itself contains these propositions.4 For instance, one

3We do not consider the particularity of materialized models here. For an overview of different kinds
of models, see, e.g., Frigg, Hartmann 2012 or Gelfert 2016. One might also consider model organisms,
such as the fruit fly Drosophila melanogaster, to be models (cf. Gelfert 2016, pp. 2-3). They can be
considered a simplified form of the organisms in question.

4For an analysis of the nature of such according-to propositions, see, e.g., van Riel 2015.
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can state that, according to the double helix model, DNA has a helix structure, and that,

according to the Ising model, macroscopic magnets consist of a collection of elementary

magnets. We consider every proposition that can be singled out in that way as part of

the model’s propositional content.5 Let us emphasize that this proposal does not involve

the suggestion that models represent their target objects by virtue of their propositional

content. The topic of whether or how models represent their target objects is a topic in

its own right.6

As we saw before, the idea that models can explain phenomena is widespread. So,

what are model explanations (ME)? Generally speaking, an explanation is an answer

to a why-question or a how-question. For instance, one could cite a law together with

other crucial conditions to answer why an event occurred. Answers to questions are

standardly conceived as sets of propositions. The underlying assumption is that non-

propositional methods of answering questions (e.g., nodding) could be described in terms

of propositions. For instance, as Strevens emphasizes (Strevens (2013), p. 510), the content

of explanations using visual information could be expressed in terms of propositions. Not

everyone agrees here and perhaps there are good reasons to allow for genuinely non-

propositional explanations. But, in order to make progress on the question of model

explanation, we follow Rohwer and Rice’s (2016) lead and adopt the propositional account

of explanation as a working hypothesis. However, we take it that the central conclusions

drawn in this paper hold true even if we adopt a non-propositional account of explanation,

as we indicate below.

Since not every answer to a why- or how-question counts as an explanation, one has

to say more in order to define explanation. But this is not the agenda of our paper.

Instead of adopting a specific account of explanation, we take a pluralistic stance. We

do not presuppose that all explanations are causal. We include explanations that are

typically considered to be non-causal, such as explanations of the fact that nobody can

cross all of Königsberg’s bridges exactly once (see, e.g., Pincock 2007; Lange 2013). In

order to talk more precisely about explanation, we assume, for the sake of this paper,

that explanations describe difference makers along the lines of Strevens’ kairetic account

(2008). Causal explanations describe phenomena and facts that make a causal difference

to the phenomenon to be explained. Other explanations might appeal to necessities to

explain the phenomenon (e.g., Lange 2013). And so forth. Again, nothing hinges on our

5One issue to be discussed is whether every proposition that is entailed by a proposition that is true
according to the model is also part of the model’s propositional content. We remain neutral here.

6There is much discussion about whether or how models can be considered a representation of their target
objects (for an overview see Frigg, Hartmann 2012; for particular accounts see, e.g., Hughes 1997; Bailer-
Jones 2003; Giere 2004; Elgin 2007; Suárez 2010; Downes 2011; Frigg, Nguyen 2018), whether models
are akin to fiction (e.g., Godfrey-Smith 2009; Frigg 2010; Toon 2012) or concerned with possibilities
(e.g., Grüne-Yanoff 2013), etc. However, as we argue below, these issues can be separated from dealing
with the nature of model(-based) explanations.
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choice of this explanatory framework. As we hope to make clear throughout the paper,

the issue of elucidating model explanation is not restricted to any specific conception of

explanation.7

So, what makes an explanation model-based or a model explanation (ME) specifically?

In the remainder of this section, we first consider two accounts of ME that are inspired

by Bokulich’s work (2011, 2012, 2017) and Rohwer and Rice’s work (2016), respectively.

We show that these accounts, as they stand, are too broad or too narrow. And we argue

that one related conception of model explanation picks out what we call model-induced

explanation rather than a distinct kind of explanation.

2.1. Model Explanation

The first definition of model explanation (ME) we consider is based on a series of papers

in which Bokulich prominently analyzes ME (2011, 2012, 2017). A basic idea is that

ME are explanations where “[...] the explanans in question makes essential reference

to a scientific model [...].” (2011, p. 38) Scientific models are “incomplete and idealized

descriptions” of a target system (2017, p. 104; 2011). Bokulich initially proposed that

the essential reference to a model consists in the counterfactual structure of the model

being isomorphic in the relevant respects to the counterfactual structure of the target

phenomenon (2011, p. 39):

More precisely, in order for a model M to explain a given phenomenon P, we require

that the counterfactual structure of M be isomorphic in the relevant respects to the

counterfactual structure of P.

So, Bokulich demands that the structural features of the model be (partially) isomor-

phic to the relevant structural features of the phenomenon to be explained.8 But in her

latest treatment of ME, Bokulich proposes a broader analysis (2017, p. 104):

Model-based explanations (or model explanations, for short) are explanations in

which the explanans appeal [sic] to certain properties or behaviors observed in an

idealized model or computer simulation as part of an explanation for why the (typ-

ically real-world) explanandum phenomenon exhibits the features that it does.

The first definition of ME that we consider is based on this broader analysis. Bokulich

adds two additional constraints on ME (2011, 2012): The model user is justified in using

the model (justification) and the model explains by capturing patterns of counterfactual

7For instance, all our arguments are compatible with a Woodwardian concept of explanation that focuses
on counterfactual dependence (e.g., Woodward 2003). This concept is used in the model explanation
literature by, e.g., Bokulich 2011, Bokulich 2012; Rice 2018, Rice 2019b.

8Fang develops a variant of Bokulich’s account according to which it suffices that the model user hypoth-
esizes that the counterfactual structures applies to the target phenomenon (Fang 2019). For a model
user based account of ME see also, e.g., Jebeile, Kennedy 2015.
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dependence that hold true for the phenomenon of interest (counterfactual dependence).

The justificatory step is concerned with applying the model to the phenomenon to be

explained. In addition, Bokulich argues that not just any model is explanatory. She dis-

cusses reductionist models in geomorphology that are constantly improved by eliminating

idealizations (2017, p. 116):

Here one tries to simulate the braided river in as much accurate detail and with as

many different processes included as is computationally feasible, and then tries to

solve the relevant Navier–Stokes equations in three dimensions. These reductionist

models are the best available tools for predicting the features of braided rivers, but

they are so complex that they yield very little insight into why the patterns emerge

as they do.

These models are still idealized in some sense (e.g., they might involve abstractions

and simplifications), but Bokulich denies that these models can explain. She argues that

heavily de-idealized models, due to their complexity, are unable to provide explanations

(or, for that matter, understanding). Heavily de-idealized models cannot give us the why

of phenomena. Thus, we should make explicit that Bokulich restricts model explanation

to what one could call substantially-idealized-model explanation.

Bokulich’s last two constraints (counterfactual dependence and substantially idealized

models) are concerned with what can explain phenomena. Since we want to stay as

neutral as possible in this regard, we don’t add them to the first definition of ME that we

discuss. Moreover, we take it that Bokulich’s justificatory step is part of what it means to

appeal to a model. Ensuring that one is justified in using the model for the phenomenon

in question strikes us as justifiably appealing to a model. We further assume that the

analysis of ME is meant to include properties or behaviors that define the model, e.g., a

modeling assumption that the population of interest is arbitrarily large. Such properties

or behaviors are arguably not observed. So, we put the first definition of ME that we

consider as follows:

Model explanation (Appeal): An explanation is a model explanation iff the explana-

tion justifiably appeals to properties or behaviors that define an idealized model or

are observed in it.

To illustrate such an appeal analysis of ME, Bokulich uses the example of explaining

why sparrows of a certain species vary in their feather coloration from pale to dark. With

the aid of a game theory model one can demonstrate that such a polymorphism can be

used as a stable and successful strategy to mark the status of the sparrows (which avoids

conflicts over resources). She then writes (2017, p. 104)

The model demonstrates that such a strategy is stable and successful, and hence

can be used as part of the explanation for why we find this polymorphism among

sparrows [...].
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We think that this a good illustration of ME Appeal. We have a model, we are justi-

fied in applying it to the phenomenon to be explained, and we end up with a successful

explanans because we used the model. However, this example also illustrates the main

issue with ME Appeal: It allows for the model’s content to not be contained in the ex-

planans. Take the example of the sparrows. The only reference to the game theory model

is that the model demonstrated the success of the polymorphism strategy. The fact that

the polymorphism strategy is successful is part of the explanation. But this polymor-

phism strategy (i.e., the variation in feather coloration) need not make any reference to

the model. Only the outcome of applying the game theory model — the demonstration of

the polymorphism strategy’s success and stability — is part of the explanation. In other

words, it is not the game theory model that explains but the polymorphism strategy.

Because the model’s content need not be part of the explanation, ME Appeal provides

us with too weak or too loose a connection between the model and the explanation to

account for ME. We need a stronger link.

We ultimately think that the explanations picked out by ME Appeal are part of what

we call model-induced explanation. But before we go into detail, let us turn to an analysis

that ensures a stronger connection between the model and the explanation.

Rohwer and Rice (2016), in asking how models and explanations are related, describe

an alternative account of model explanation. This account follows the rough slogan ‘The

model is the explanans.’ This slogan is understood as follows (2016, p. 1132, our italics):9

. . . the propositions that constitute the model are identical to the propositions that

constitute the explanation the modeler is interested in.

We call the propositions that constitute a model the model’s content. For the sake of

being inclusive, we assume that the model’s content is either its propositional content or

its representational10 content — whatever the latter is precisely. This gives us a second

pass at defining ME in terms of identity.

Model explanation (Identity): An explanation is a model explanation iff the model’s

content is identical to the explanation (or its explanans).11

The essence of ME Identity is not restricted to propositional contents. If there were

non-propositional explanations (and non-propositional model contents) and if one defined

what an identity between non-propositional contents is, ME Identity could have a non-

propositional variant.

9The account Rohwer and Rice describe seems to be in line with van Riel’s definition of ME as explanations
that are true according to a model (2017).

10It is controversial whether models represent their target phenomena (see fn. 6). But if so: The repre-
sentational content could be an explanation if it can be expressed in terms of propositions.

11In some cases of explanations of singular occurrences of phenomena, the model’s content might not
contain descriptions of the phenomenon itself.
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ME Identity seems to be a plausible explication of the common claim that models

can be explanations while being compatible with other accounts of ME (e.g., Craver

2006; Kaplan 2011). ME Identity also clearly goes beyond appealing to a model and

ensures a close relation between the model and the explanation. After all, the model’s

content is identical to the explanation. But straight away, this analysis raises at least two

challenging questions: (i) Is it compatible with heavily idealized models? (ii) Does the

identity thesis between model and explanation hold? What if the model contains more

or fewer propositions than are necessary for explaining the target phenomenon? In what

follows, we discuss each in turn.

One might worry that ME Identity is not compatible with heavily idealized models.

Can the content of heavily idealized models be identical to a correct explanation? This

worry seems to presuppose that correct explanations cannot be idealized. But it is a

substantial question whether they can. ME Identity as such is perfectly compatible with

heavily idealized models being ME. According to ME Identity, it only follows that the

explanations would be idealized, too.12

The main question concerning ME Identity is, assuming that we have the right con-

ception of a model’s content: Does the identity thesis between model and explanation

presumed by ME Identity hold? To begin, Rohwer and Rice straightforwardly accept

that a model may have more propositions than is necessary for explaining a target sys-

tem. At least in some cases, the explanation still contains all those extra propositions.

This makes the explanation a worse one, but the explanation is still a model explanation

(cf. Rohwer, Rice 2016, p. 1133). For instance, a causal model explanation that cites more

facts than necessary to explain the phenomenon of interest is not as good as it could be

because it does not only focus on the factors that made a difference. The explainer would

do better to choose a model without extraneous propositions needed to explain.

An exception is made for idealized models. Idealized models, on their view, contain

idealizations that are not necessary for explaining the phenomenon, but are neverthe-

less part of the model and the explanation. Examples are cases where idealizations are

ineliminable, or idealizations that could be replaced with another idealization without

explanatory loss (Rohwer, Rice 2016, pp. 1134-1137). This move concerning idealizations

is made precisely because Rohwer and Rice want to hold on to (i) the claim that only

true propositions can explain (which ME Identity does not presuppose), (ii) the claim

that idealized ME can be good explanations, and (iii) their identity analysis of ME. False

idealizations are extra propositions of the model that are part of the explanation, but the

12For a similar reason, we think that it is misleading to call such an analysis of model explanation a ‘rep-
resentationalist account of model explanation’ (cf. Kennedy 2012; Jebeile, Kennedy 2015; Fang 2019).
The basic idea of a representationalist account is that the model accurately represents the phenomena
of interest (or at least a substantial part thereof). However, ME Identity is not concerned with accurate
or complete representation. Moreover, what Kennedy proposes as a ‘non-representationalist account of
model explanation’ picks out model-induced explanations, as we argue further below.
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success of the explanation only depends on the true propositions. Moreover, when the

idealizations are ineliminable, there is no option to find an alternative model to explain

with.

Take as an example their analysis of Chris Pincock’s case of the ‘deep water’ ide-

alization (2012, 2014). This idealization postulates that the ocean is infinitely deep in

order to model why regular wave patterns occur after irregular patterns of disturbance.

The model contains the false proposition: (p1) the ocean is infinitely deep. Rohwer and

Rice (2016, p. 1136) then argue that in order for the model’s propositional content to be

an explanation, the model must also contain a second, reinterpreted proposition, that is

true—(p2) the depth of the ocean is above the threshold such that its particular value

does not matter—in order to explain the wave patterns of interest. There is a problem

here. Rohwer and Rice want to stay true to modeling practices, but the reinterpretation

strategy combined with ME Identity places a demand on modelers to (artificially) include

propositions in their model that are reinterpretations of the idealizations they employ.

According to ME Identity, the model’s content is identical to the explanation. So, to

obtain the explanation using the reinterpretation strategy we need to change the model’s

content. But modelers typically don’t change their models even when they know that the

idealizations are not correct. They often knew this when they constructed the models. An

analysis of ME should do well to capture actual modeling practices and not define ME in

a way that excludes idealized models where the modeler does not do an interpretive step

with their idealizations. The more inclusive reading of the deep water case (and what we

suspect more closely resembles modeling practices) is that while the explanation might

include (p2), the model need not.

What if there are cases where the model’s propositional content has fewer propositions

than the explananation? ME Identity excludes cases where the explanans additionally

involves propositions that are not true according to the model or just absent from the

model’s content from being full-fledged explanations. Such cases are only partial model

explanations (Rohwer, Rice 2016, pp. 1138-1139). The model is necessary for the explana-

tion, but it is not sufficient. This is a problem. According to our argument above, the case

of the deep water model is arguably such a case where there are fewer propositions in the

model than the explanation (if we reject the reinterpretive move), and we should want to

include it as an instance of ME. Moreover, all cases where the explanation includes real-

world features that are crucial for the explanation but not true according to the model

are also plausible candidates for ME. Models are selective. Models do not always specify

all aspects of target systems that explainers are interested in, but nevertheless the model

aids in the explanation, and the explanation shares some of the model’s content. On the

one hand, it is too narrow a conception of ME to say that such explanations are not

model explanations. After all, the explanation shares a crucial portion with the model’s

propositional content. On the other hand, in order for a partial model explanation to
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count as ME we need additional constraints. Otherwise, we are back to the worry that

the analysis is too broad, rendering too many explanations ME.

Our proposal is not to abandon ME Identity, but to revise it such that it avoids some

of the aforementioned problems. We restrict the identity criterion to allow for cases where

the model has more propositions than the explanation (or explanans) and cases where the

explanation has more propositions than the model. Our main proposal is to focus on the

core of the model’s content, on the one hand, and on the core of the explanation, on the

other hand. We have ME when the model’s content or its core13 is identical to the core

part of the explanation:

Model explanation (Core): An explanation is a model explanation iff the model’s core

content is identical to the core of the explanation.14

According to ME Core, the model’s core content must be identical to the explanation’s

core in order for the explanation to be a model explanation. One might wonder about

a case where the model’s core content contains the core of the explanation but is not

identical to it. Our definition excludes such cases and we think rightly so. Allowing

for such cases would render the definition too broad. Then one could construct model

explanations by creating rather arbitrary models with cores that involve the explanation’s

propositions but also many irrelevant other ones. A close connection between the model

and the explanation is then lost.

A lot hinges in our definition on what constitutes an explanation’s core. In this paper,

we don’t offer a full account of the core of an explanation or model. However, there

are some general intuitive principles that are helpful here and can serve to motivate the

remaining discussion in the paper.

First, consider the core of the explanation. What constitutes the core of the expla-

nation depends on the kind of explanation. In the case of a law-based explanation, the

citation of the law and the law’s application conditions are arguably the core of the ex-

planation. In the case of a mechanistic explanation, the description of crucial parts of

the mechanism constitute the explanation’s core. Second, we cannot simply define the

core in terms of the sheer amount of propositions. A law-based explanation might only

consists of a few propositions. Third, there needs to be a non-trivial relationship between

the propositions in question and the explanatory power of the explanation. While certain

boundary conditions might be necessary for entailing the explanandum, it is not central

13Recall that the propositional content of a model might include all the entailed propositions, as well (cf.
footnote 5).

14ME Core and ME Identity are concerned with the case of a single model. In cases where one explains
a phenomenon using multiple models at the same time, one would need to revise the definition such
that a conjunction of the models’ core contents is identical to the core of the explanation. (Note that
multi-scalar models with inconsistent sub-model assumptions typically explain different aspects of a
larger phenomenon and thus do not provide a joint explanation.)
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to the explanatory power of the explanation. For example, Sullivan (2019) argues that in

order to delineate a causal explanation from a non-causal explanation, one must identify

the ‘primary reason’ an explanation succeeds, and that boundary conditions are unlikely

candidates. This sense of explanatory importance is what we mean by the core. For ex-

ample, in a causal-mechanistic explanation of an event, the causal mechanism is the core

of the explanation with the peculiarities of the event in question being in the periphery.

Fourth, when we move to whether an explanation is a model explanation, we need to

see whether the core propositions of the explanation play a non-trivial role in the model

that the explanation refers to. Specifically, we want to exclude the possibility that an

explanation is a model explanation simply in virtue of relying on a generic proposition

that also just happens to be true of many other models. For example, many optimality

models in biology rely on infinitely-sized populations. However, if a given explanation

includes this idealization it is not thereby based on all possible optimality models or on

all models that assume infinitely-sized populations. It is not just that the proposition in

the explanation must play a crucial role in its explanatory power, but the same proposition

must be central to the model in question. It needs to be a proposition that is entrenched

with the other propositions of the model in such a way that it is recognizably doing real

work in the model, e.g., the proposition uniquely discriminates the model in question, and

cannot be easily separated. ME Core captures the deep water case without arbitrarily

stipulating whether interpretive idealizations are or are not part of a model.

Fifth, the notion of a model’s core might be illuminated with so-called robustness

analysis.15 Roughly speaking, this is the study of similar, but distinct, models of the

same target phenomenon. The basic idea is that if such models lead to similar results, we

can “... separate the scientifically important parts and predictions of our models from the

illusory ones that are accidents of representations,” as Weisberg puts it (2006, p. 731). For

instance, Woodward highlights that robustness analysis might lead to identifying casual

relationships which are stable or invariant under changes (2006, p. 235). The elements

of the model that are robust or stable are arguably an element of the model’s core.

And the ‘illusory ones’ would be part of the model’s periphery. Kuorikoski, Lehtinen,

and Marchionni add further considerations about how to distinguish between the core

of a model and its periphery (2010). They separate what they call substantial model

assumptions from assumptions that idealize “... away the influence of the confounding

factors ...” (2010, p. 547) and assumptions that need to be added to render the model

mathematically tractable. The latter two kinds of assumptions could be described as the

model’s periphery. But whether models can be decomposed in that way is controversial

(see, e.g., Rice 2019a). Either way, robustness analysis can contribute to sharpening the

15We thank an anonymous reviewer for this suggestion. For details on robustness analysis, see, e.g., Wim-
satt 1981; Orzack, Sober 1993; Levins 1966; Weisberg 2006; Woodward 2006; Kuorikoski, Marchionni
2010; for a critical view see, e.g., Odenbaugh, Alexandrova 2011.
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notion of a model’s core.

Now that we have a more promising definition of ME, we can go back to the thesis that

Bokulich’s analysis might not be concerned with model explanation but with a related

conception of models and explanations.

2.2. Model-induced Explanation

When it comes to scientific models, an important relation is what Rohwer and Rice call

an epistemological relation between a modeler, a model, and an explanation (2016, sect.

3). For instance, they describe cases where models are aids to discovering explanations

by helping to identify the kind of explanation needed for the phenomenon of interest

(ibid.). In what follows, we argue that several conceptions of model explanation pick out

a particular kind of epistemological relation rather than a distinct kind of explanation,

namely what we call inducing explanation. We call the explanations that feature this

relation model-induced explanations (MIE).

As we argued above, ME Appeal is too weak or too loose a definition of model ex-

planation. However, ME Appeal captures an important aspect of many explanations

discussed in the literature: The cases that drive the debate are concerned with models

that seem to be epistemically crucial to the explanation. In contrast to merely using

a model as a tool to look for the right (kind of) explanation of the phenomenon of in-

terest (a case discussed by Rohwer, Rice 2016, p. 1141), the models of interest play an

enabling role. Without using the model, the explanation would have not been discov-

ered.16 So, the models play a crucial role in the process of obtaining the explanations (see

also Lawler 2019). We focused above on Bokulich’s proposal, but this conception of model

explanation is visible throughout the literature.17 Take, for example, Graham Kennedy’s

‘non-representationalist’ account of model explanation (Kennedy 2012, pp. 331-332, see

also Jebeile, Kennedy 2015):

Comparison cases explain by allowing model users to identify those factors which

make a difference to the behavior of the modeled target system. [...] This type

of explanation occurs with many scientific models. [...] In cases where the actual

value of a variable is known, a non actual or false value can be used to generate

a comparison with the more realistic case. In cases where the actual value of a

component is not known, two non actual limiting comparison cases can be used

to encompass the (unknown) actual value. These comparison cases allow the user

16As one reviewer remarked, another interesting epistemic role might be the role of models in justifying
the explanations of interest. Discussing the relation between justification and models is a topic in its
own right. We don’t discuss it here.

17Marchionni, for example, describes conceptions of ME as being between two opposite sides of a contin-
uum (cf. Marchionni 2017, p. 609). We think that they are better described as two different conceptions
for the reasons given in what follows.
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to learn about the behavior and/or evolution of the phenomenon in question, and

thereby to explain components of the target system being modeled.

What Graham Kennedy’s and Bokulich’s analyses have in common is that the rela-

tion between the explanation and the model is located in the process of obtaining the

explanation. The model is claimed to play an important (if not even an essential) role

in that process. The game theory model establishes the success of the polymorphism,

which can then be used to explain the why of the variation in feather coloration. When

Kennedy argues for her ‘non-representationalist’ account of model explanation, she also

emphasizes this role of the model. She describes two astrophysics models which help the

model user to arrive at the explanation of interest by functioning as a comparison case

for the phenomenon at hand. Graham Kennedy writes (2012, p. 331):

The simplified two-dimensional models are themselves required for explanation be-

cause they enable the scientists to identify which factors make a causal difference

to the evolution of the disks.

Let us suppose that she is right about her case studies. Let us suppose that the

models are required for the desired explanation. Even if that were true, this does not

mean that the model itself explains the phenomenon of interest. The claim that the

model is required for obtaining the explanation is merely a claim about how one arrives

at the explanation. This claim is compatible with the explanans not making any reference

to the model. For instance, in Kennedy’s example the models help to identify the causal

difference makers for the evolution of the disks. But only the latter need to be cited in the

resulting explanations. So, Graham Kennedy’s ‘non-representationalist’ account of model

explanation turns out to be not about model explanation. Instead, this account is better

described to be about what we call model-induced explanation. The resulting explanation

is closely related to the model because working with the model opens up new epistemic

perspectives. The explanation is induced by working with the model. Graham Kennedy

hints at this epistemic function when she writes (2012, p. 327, italics omitted):

I propose that, in many cases, the idealizations within scientific models play a more

active explanatory role, by allowing scientists to determine what is causally relevant.

And in a later paper with Jebeile she claims (2015, p. 384):

[...] idealizations [in models] should be seen as having an active role in making

possible the identification of explanatory components in models.

This enabling function is crucial and should not be neglected. But it is important

not to conflate it with the results of utilizing it (i.e., the obtained explanations) (see also

Lawler 2019). Elgin describes this function of models (and of idealized scientific devices
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more generally) as providing epistemic access to the phenomenon of interest: “Each

model exemplifies different features and affords epistemic access to different aspects of

the target.” (2017, p. 267) So, different models open up different epistemic perspectives

on the phenomenon. Constructing and working with the model highlights aspects of the

phenomenon that are otherwise difficult to examine or describe. One plausible reading of

what Graham Kennedy describes is that she illustrates an instance of this general function

highlighted by Elgin. Also, other claims about model explanation can plausibly be read

as claims about model-induced explanation. Take as an example Rice’s analysis of how

idealized models can explain. He writes (2018, p. 2803, our italics):

Only by pervasively distorting the features of real-world systems can physicists apply

the mathematical modeling techniques required to provide epistemic access to the

explanations we seek.

This case sounds like a paradigmatic case of a model-induced explanation.

It goes without saying that this relation between models and explanations is an inter-

esting one. However, it is important to flag that it as a largely epistemic one. The model

plays no more or less than an important role in what one might want to call the discov-

ery of the explanation in question. One should not conflate this enabling role of models

with model explanation. The mere epistemic role of models falls short of philosophers’

ambitions when they discuss model explanation. In order to keep track of the difference

between these two conceptions, we define ‘model-induced explanation’ (MIE) as follows:18

Model-induced explanation: An explanation is model-induced iff constructing or us-

ing the model constitutes a decisive part of arriving at the explanation.

Model explanation (Core): An explanation is a model explanation iff the model’s core

content is identical to the core of the explanation.

To illustrate the importance of this distinction, take Morrison’s claim about what

makes models explanatory (1999, p. 63):

The reason models are explanatory is that in representing these systems, they ex-

hibit certain kinds of structural dependencies.

18This distinction is roughly related to Rohwer and Rice’s proposal to draw “[...] a distinction between
a model being a stand-alone explanation [model explanation] versus merely being explanatory [model-
induced explanation]” (2013, p. 335). But their notion of an ‘explanatory model’ is much weaker than
our notion of a model-induced explanation. According to them, “[a]n explanatory model is one that
produces scientific understanding relevant to answering a why question [...]” (2013, p. 335). By contrast,
we demand that the results of working with the model are parts of the answers to the why-question
and that using the model is decisive for obtaining the answers.
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Her claim can mean substantially different things. Exhibiting structural dependencies

does not mean that these are identical to the dependencies cited in the respective explana-

natia; they could merely point to them. If Morrison only requires that the dependencies

exhibited by the model have this pointing function, she is concerned with model-induced

explanation. If, instead, she requested the isomorphism relation, she would be concerned

with model explanation.

In what follows, we analyze paradigmatic cases of (alleged) model explanation in the

literature to examine whether they are ME or merely MIE.

3. Paradigmatic cases: Bees, Fluids, and Rainbows

There are at least three kinds of models that are frequently discussed in the literature

on scientific models and explanations: optimality models, phase-transition models in-

volving the thermodynamic limit, and models that are analyzed as fictions rather than

idealizations. For each kind, we analyze one paradigmatic case that is claimed to pro-

vide explanations: models for explaining the honeybee foraging behavior (used in Rice

2016), lattice gas models for explaining patterns of fluid flow (used in Batterman, Rice

2014; Rice 2018), and models for explaining supernumerary arcs of rainbows (used in

Batterman 2005; Pincock 2011; Saatsi (forthcoming)).

In this section, we ask whether these paradigmatic cases are genuine instances of

ME. Our guiding questions in what follows are (a) What is explained, i.e., what is the

explanandum-phenomenon? (b) What is the explanation? (c) How does the model figure

into the latter?19 The upshot of our analyses is that the alleged ME turn out to be

MIE. As we argue in the next section, this fact undermines the building consensus that

model explanations are special explanations that, e.g., challenge our standard concepts of

explanation.

3.1. Bees

In the realm of biology, so-called optimality or optimization models are frequently used

(cf. Rice 2012, Rice 2018, sect. 3.2; Elgin, Sober 2002, pp. 446-448; Potochnik 2007,

Potochnik 2009, Potochnik 2010; Bokulich 2017, pp. 104-105).20 These are models that

highly idealize their target objects or phenomena. As Rice puts it (2018, p. 2808),

19A brief methodological remark: Philosophers when discussing idealized models often assume that sci-
entists actually succeed in doing what they claim they do. In particular, they take for granted that
scientists correctly explain with at least some models (cf., e.g., Wayne 2011, pp. 831-832; Rice 2018,
p. 2799). In this paper, we do not discuss whether this assumption is apt. Instead, we evaluate a
conditional question: If scientists provide us with correct explanations: How do the models figure into
such explanations?

20Optimization models are also used in other disciplines, as Rice points out (Rice 2018, p. 2803).
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[such models] [...] pervasively misrepresent the features and processes of their target

system(s), including those that are assumed to be the difference makers for the target

explanandum [phenomenon].

The basic goal of optimality models is to analyze why particular phenotypic traits

occur. They do so by determining optimal strategies for obtaining particular features,

such as the net energy intake given a set of limiting factors and trade-offs such as the costs

of finding or consuming food. In order to determine the optimal strategy, such models

don’t simply involve some distorting idealizations; they involve distorting idealizations for

the most part. An example Rice gives is a model of the foraging behavior of honey bees

(as presented in Schmid-Hempel et al. 1985). It is assumed, among other things, that the

honey bee population is arbitrarily large, that there is no intergenerational overlap, that

the selection pressure in the honey bee population remains constant, etc. (cf. Rice 2016,

p. 89). In short, there are barely any propositions that are true according to the model

that are actually true. Moreover, as in the case of any optimality model, it is assumed that

natural selection is the only evolutionary factor that matters for the phenotypic trait’s

evolution.

How can biologist explain with such a model? In the honey bee example, the explanan-

dum-phenomenon is the fact that honey bees tend to leave food sources when their crops

(i.e., their honey sacks/stomachs) are only partially filled. This is a puzzling fact because

one would expect them to fill it completely (or at least as much as possible). The ex-

planation for this behavior is that the honey bees maximize their energy efficiency rather

than the rate of energy intake (cf. Rice 2016, p. 89). The foraging pattern seems to be

an adaptive response to a trade-off between energy efficiency maximization and energy

intake rate maximization. Visiting more food sources would reduce their energy efficiency.

That is why honey bees leave them when their energy intake is high enough.

How does the model figure into the latter? The core of the explanation is constituted

by the trade-off claim. This claim, in turn, is the result of the above described optimality

model, according to which the honey bees maximize their energy efficiency (cf. Rice 2016;

Schmid-Hempel et al. 1985). The patterns that this model predicts are very similar to the

patterns observed for the real-world honey bees’ foraging behavior. Alternative models

did not reproduce these patterns. So, it seems that the model’s stipulation that honey

bees maximize their energy efficiency is correct. The model seems to capture correctly

this fact of the foraging behavior.

The model seems to be essential for the explanation (at least at that time). It is the

one that produces the observed patterns. It is also true that the trade-off claim is part

of the model’s content. After all, this claim is true according to the model. So, it looks

as if the explanation is a ME. However, let us not jump to a conclusion here. Recall our

analysis of ME:
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Model explanation (Core): An explanation is a model explanation iff the model’s core

content is identical to the core of the explanation.

The condition for ME is not fulfilled, upon closer examination. As Rice argues in

detail (2016, 2018), the model’s trade-off claim cannot be quarantined from the ideal-

ized stipulations mentioned above, such as the claim that the honey bee population is

arbitrarily large. Only the stipulations taken together have that claim as a result. So,

arguably the core of the model ’s content contains at least a substantial amount of these

stipulations; the core is not just constituted by the trade-off claim. Importantly, none of

these idealized stipulations are part of the explanation; only the trade-off claim is. The

explanation does not involve the assumptions that the honey bee population is arbitrarily

large or that there is no intergenerational overlap. At best, the explanation and the model

both involve the claim that evolution leads to traits that maximize energy efficiency.21

But that would not render it a ME. The model’s core content is not identical to the core

of the explanation. The core of the model, but not the explanation, involves the crucial

idealizations. If so, the honey bee case is not a case of a ME. The model itself does not

explain the honey bees’ foraging behavior.

The honey bee case can, however, be analyzed as a MIE, i.e., a model-induced explana-

tion. Constructing the energy maximization model constituted a decisive part of arriving

at the trade-off claim. The model induced the explanation, so to speak. It played a

substantial role in arriving at the explanation.

3.2. Fluids

In physics, we also encounter idealized models, such as models involving the thermo-

dynamic limit. “This widely used modeling assumption is the limit in which (roughly

speaking) the number of particles of the system approaches infinity,” as Rice puts it

(2018, pp. 2800-2801). The volume of the system is assumed to go to infinity, as well.

Models that employ the n → ∞ assumption and the V → ∞ assumption are so-called

phase-transition models. Phase transitions are abrupt changes of the qualitative macro-

scopic properties of a system or substance, such as water’s freezing into ice, the transition

from liquid to gas, or the magnetization of iron. The thermodynamic limit is claimed

to be essential for such models because the phenomenon of a phase transition cannot be

produced with a model that assumes finite particles. We cannot model phase transitions

by employing finite systems, say, systems based on statistical mechanics.22 So, it seems

21We thank an anonymous reviewer for emphasizing this point.
22There is a debate about the thermodynamic limit in philosophy of physics. Some argue that it is

dispensable (e.g., Butterfield 2011; Norton 2012; for an overview see, e.g., Shech 2017). For some useful
discussion see also, e.g., Shech 2013; Feintzeig 2017. For the sake of argument, we take for granted here
that the thermodynamic limit is necessary.
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that we cannot explore phase transitions without taking for granted the thermodynamic

limit. Such models are hence a promising candidate for ME.

An example of models that employ the thermodynamic limit are particular lattice gas

automaton models that model fluid flow. These models not only employ the thermo-

dynamic limit but also involve several other distorting idealizations. According to such

models, fluids consist of point particles that could move in just six directions and only on

a hexagonal lattice. Despite these utterly false assumptions, an application of a lattice

gas automaton model reproduces macroscopic behaviors of real-world fluids to a relevant

degree of similarity (for details see, e.g., Batterman, Rice 2014; Rice 2018).

So, how can we explain with such a model? In the fluid flow example, the explanandum-

phenomenon is the fact that the momentum density profile in a pipe is parabolic. Batter-

man and Rice propose that this fact can be explained by the patterns resulting from the

lattice gas automaton model (2014). Their basic idea is that such a ‘model explanation’

is possible when the use of the model’s idealizations can be justified (2014, 2018). As Rice

puts it (2018, p. 2796, our italics):

[...] [H]ow can models that provide holistically distorted representations explain?

In order to answer this question, I will propose an alternative method for justifying

scientists’ use of idealized models to explain [...].

The idea that justification plays an important role for ME is also advocated by

Bokulich (2011), as we mentioned before. According to her, the justification consists

of specifying the domain of applicability of the model and to show that the phenomenon

to be explained falls within that domain (ibid.). Rice and Batterman’s proposal differs

from that. The basic idea is as follows (2018, p. 2796):

[...] I will propose an alternative method for justifying scientists’ use of idealized

models to explain that appeals to universality : the fact that systems with (perhaps

very) different physical features will display similar patterns of macroscale behavior.

So, their proposal is that we are justified in using the lattice gas automaton model

because it and the fluid are in the same universality class (2014, 2018; 2009, pp. 437-438).

Universality is the fact that very different systems display highly similar macrobehaviors

despite their differences. One example for this are phase transitions. Very different enti-

ties, such as fluids and ferromagnets, can undergo phase transitions that are remarkably

similar in their features.23

So, why is universality considered to show us how models can explain something? The

idea is as follows. First, we have to establish an appropriate link between the results of

the idealized model and the real-world phenomenon of interest, e.g., a link between phase

23The same holds true for certain models in biology (cf. Batterman, Rice 2014, sec. 4, Rice 2018, p. 2802).
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transitions that result from the model application and the real-world phase transitions.

The link is that the idealized model and the real-world physical system are in the same

universality class (Rice 2018, p. 2812).

Second, that the real-world system and the idealized system are in the same univer-

sality class suggests that “[...] the stability of such macobehaviors [sic] is due to the

fact that the features [...] are largely independent of the details of the components or

dynamical processes that operate in the system” (Rice 2018, p. 2813, italics omitted). In

other words, we can conclude that “[...] many of the details that distinguish the physical

systems from one another are irrelevant for their universal behavior [...]” (Batterman

2002, p. 42). This shall give us a good enough reason to believe that genuine idealized

models are explanatory. As Batterman and Rice put it (Batterman, Rice 2014, p. 356):

The models are explanatory in virtue of there being a story about why large classes

of features are irrelevant to the explanandum phenomenon.

Or as Rice puts it (2018, p. 2816):

[...] [T]he reason these idealized models are able to explain is that, as long as the

system is within the relevant universality class, most of the physical details of the

system are irrelevant for the occurrence of certain universal macrobehaviors.

Yet, this cannot be the whole story. That some features are irrelevant does not explain

the phenomenon of interest. In his 2018 paper, Rice indeed limits his claim about the

role of universality to the claim that appealing to universality can justify the use of

idealized models to explain phenomena (2018). However, Batterman and Rice make

further statements about in virtue of what facts they consider genuine idealized models

to be explanatory. They put it as follows (2014, p. 363):

A derivative, or by-product, of this [universality] analysis is the identification of the

shared features of the class of systems. In this case, the by-product is a realization

that all the systems within the universality class share the common features locality,

conservation, and symmetry. [...] This answers [the] question [‘Why do very different

fluids have features, such as symmetry, in common?’] and provides, given the answer

to [the question ‘Why are the heterogeneous details irrelevant for the occurrence

of the phenomenon?’], an answer to [the question ‘Why are the common features

necessary for the phenomenon to occur?’].

Let us suppose they are right. The argument from universality then gives us the

following:

(i) The fact that the model and its target system are in the same universality class

justifies using the former to explore the latter.
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(ii) The fact that different kinds of real-world systems are in the same universality class

explains why their “[....] patterns occur across such varied physical system [sic]”

(Rice 2018, p. 2802).

(iii) The fact that different kinds of real-world systems are in the same universality class

explains why they share some features.

(iv) The fact that different kinds of real-world systems are in the same universality class

explains why the common features of systems in a universality class are necessary

for the pattern of interest to occur.

It goes without saying that these are important results. However, none of them in

isolation or taken together gives us the desired explanation or justifies treating the models

as providing us with ME. Recall that the explananda of interest are facts like the fact

that the momentum density profile in a pipe is parabolic or other facts about features of

fluids, liquids, etc. Neither (i), (ii), (iii), nor (iv), nor a combination of (i)-(iv) explains

these facts.

Take (i): We gladly accept that the idealized model being in the same universality

class as the system to be explained justifies the exploration of the latter with the former.

However, this only justifies the use of the idealized model. It does not give us any

explanation yet or show that the model’s core is identical to the explanation’s core.

(ii) might give us an explanation. But (ii) is at best an explanation for the question

‘Why do similar patterns occur across different fluids?’24 On the one hand, this question is

substantially different from the question of interest, namely, say, ‘Why is the momentum

density profile in a pipe parabolic?’ On the other hand, the resulting explanation is clearly

not a ME. The explanation is that all the different fluids are in the same universality class.

Such an explanation contains no reference to a model in any interesting sense. The same

holds true for (iii). Indeed, being in the same universality class might be relevant for

explaining the commonalities of features. But this answers the question ‘Why do very

different fluids share features X, Y, Z?’ and not the questions of interest and it doesn’t

seem to involve the model ’s content.25

We are somewhat skeptical that the argument from universality gives us (iv). But even

if it does, no ME is obtained. (iv) addresses the question ‘Why are the common features

necessary for the phenomenon to occur?’ This is an interesting question and an answer

to it might constitute part of an explanation for why the pattern of interest occurs. But,

24(ii) might also give us a good reason to believe that we only need one explanation for the variety of
the systems which exhibit the pattern.

25Batterman and Rice also suggest that we can explain particular behaviors of fluids by pointing out that
the fluids are in a particular universality class where all members exhibit these behaviors (Batterman,
Rice 2014, p. 364). But, again, the explanatory information is the membership in the universality class
and not some model information.
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on the one hand, this does not suffice for ME. It does not give us the core of the desired

explanation. The latter arguably consists of more than a list of some necessary features.

On the other hand, these necessary features themselves do not make a reference to the

model. They seem to be independent of the model. So, (iv) does not give us ME, either.

What about a combination of (i)-(iv)? (i) is merely concerned with the justificatory

step. (ii) and (iii) have closely related explananda. (ii) might answer ‘Why do similar

patterns occur across different fluids?’ and (iii) might answer ‘Why do very different fluids

share features X, Y, Z?’ The combined answer can be further connected with the result of

(iv), namely that the common features of systems in a universality class are necessary for

the pattern of interest to occur. Recall that our question of interest is a question like ‘Why

is the momentum density profile in a pipe parabolic?’ (ii)-(iv) taken together also don’t

provide us with a ME. Only knowing of necessary conditions of the momentum density

profile and knowing that these conditions are shared with systems in the same universality

class doesn’t give us a full explanation. But let us suppose that they do or that they can

be combined with other information to arrive at a full explanation. Even if so, it has

only been established that the explanatory decisive information is the membership in the

universality class. We don’t have evidence that the model’s core content is identical to

the explanation’s core.

So, none of the explanatory virtues of universality seems to lead to ME. However,

models featuring the thermodynamic limit can clearly provide us with model-induced

explanations. In fact, we think that Batterman and Rice’s analyses are best construed as

analyses of MIE. Consider how Rice substantiates the universality claim. He illustrates it

by means of the example of the discovery that melt ponds are in these same universality

class as other systems that undergo phase transitions. He concludes (2018, p. 2816, our

italics):

[...] by discovering that these melt ponds are in the same universality class as

other physical (and model) systems, these modelers were able to apply vari-

ous mathematical modeling tools (e.g. homogenization) to extract explanatory

information about real-world systems without having to accurately represent

the entities, processes, or ontology of those systems. In this way, these mathe-

matical modeling techniques enabled access to explanations and understanding

that would otherwise have been inaccessible.

These extracting and epistemic access functions are at the heart of MIE. One extracts

explanatory information by working with the model and one gains epistemic access to

explanations. Moreover, the claim that—by means of universality—one can identify which

features are necessary for the phenomenon to occur also fits the conception of MIE better

than the conception of ME. Hence, we think it is safe to conclude that one can obtain

MIE with the aid of universality but not ME.
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3.3. Rainbows

Lastly, consider a candidate of ME that involves, in Bokulich’s terminology (2012), an

explanatory fiction: An explanation of the supernumerary arcs of rainbows. In cases where

light waves moving through the raindrop exhibit constructive and destructive interference,

extra bands of color can form inside the primary rainbow, with some space between the

primary bow and the extra bands. These extra bands are supernumeraries.

The best explanation of why supernumeraries form requires reference to features of the

wave theory of light and the fictitious ray theory (Batterman 2002; Pincock 2011; Saatsi

forthcoming). Saying the best explanation here is not accidental. There are more complex

computational models that also capture supernumeraries without appealing to light rays.

In particular, the Lorenz-Mie model is able to capture the phenomenon utilizing electro-

magnetic theory. However, just as Bokulich is skeptical that the hyper-realistic models

of braided rivers are explanatory, since they fail to provide the why, so too Batterman

(2002), Pincock (2011), and Saatsi (forthcoming) argue that the Lorenz-Mie model fails

to provide us with the why of supernumeraries. Instead, it is argued, the complex angular

momentum approach (CAM), which utilizes the fiction of light rays, provides us with the

best explanation.

Following Pincock (2011), the size of β—a dimensionless parameter that is the prod-

uct of the wavelength number, k (2π/wavelength), and the radius of the raindrop, a—

determines the rainbow patterns that emerge. For example, if β is too small, then a

rainbow is not observed, or certain colors may be distorted. The ray representation re-

sults from the wave representation when β → ∞. In this case, the wave-theoretic aspects

of the light are not relevant to trace the path of the light through the raindrop. In other

words, when the wavelength of light is much smaller than the radius of the raindrop, the

dominant contributions to the light begin to approach the behavior of rays instead of

waves (2011, p. 19). Importantly Pincock (2011, p. 16) notes that:

we do not represent the wave crests as forming a continuous straight line, but only

claim that the distance between crests is so small with respect to the radius of the

drops that it is not relevant to the path of the wave.

This means the ray theory helps to give a useful frame for understanding light’s behav-

ior, even though the ray theory ignores key aspects of the characteristics of light, such as

the way that light is diffracted by a sphere. Interestingly, in explaining supernumeraries,

one needs to incorporate the interference and diffraction effects provided by the wave-

theory, while also incorporating the ray-theoretic representation. In particular, the CAM

method provides a “rapidly converging expression in terms of ‘poles’ and ‘saddle points’

in a complex-valued angular momentum space, representing the main contributions to the

scattering amplitude at the primary rainbow angle” (Saatsi forthcoming, p. 12). Saddle

points occur where the first derivative of the scattering amplitudes S with respect to λ
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(the angular momenta of the components of the light that hits the drop) is 0. Poles, on

the other hand, occur where S lacks a derivative of some order (Pincock 2011, p. 18).

These saddle points and poles play a different interpretive function in the mathematical

theory. Saddle points correspond to rays which appear more sharply as the ratio between

the raindrop radius and the wavelength increases. On the other hand, poles correspond

to waves, pointing to the importance of diffraction (Pincock 2011, p. 19). This, what

Pincock refers to as an ‘interpretive conjecture,’ is what allows us to plainly see what the

overall scattering process corresponding to supernumeraries depends on.

This brings us to the question: What role does the ray model play in explaining the

supernumeraries? No doubt, the ray fiction plays an important role in isolating which

explanation variables crucially explain the explanandum (Batterman 2005; Pincock 2011;

Saatsi forthcoming). Without the light ray model, we would not be able to see the

fundamental difference makers in the sea of Mie computations. However, does this role

go beyond model-induced explanation (MIE)?

Pincock describes the ray model as playing a largely interpretive function (2011, p. 19):

A scientist must ascend from the wave theory to the ray representation before she

is able to get the ‘physical insight’ into the supernumeraries which CAM provides.

This does not mean that she must believe the ray theory is correct. Instead she

must use the results of one idealization to inform the proper interpretation of another

idealization.

The ray model allows us to gain an understandable interpretation of the physical

behavior of light in the context of other idealizing assumptions (e.g., the introduction to

the limit). Saatsi shares Pincock’s interpretation that the light ray fiction is an interpretive

exercise. He says of CAM’s improvement that (forthcoming, p. 12, original italics):

This improvement is not a matter of introducing new variables that ontologically

transcend the Lorenz-Mie theory (cf. Pincock 2011). Nor is it a matter of provid-

ing more fine-grained information about the explanatory dependence. Rather the

improvement has to do with the way in which the CAM approach defines critical

explanation variables upon which the explanandum depends in a simple way.

On this interpretation, the propositions of the fictitious ray model are not part of

the explanation that explain supernumeraries. Instead, it is an interpretive frame for

understanding certain behavioral and mathematical realities of light explained in terms

of other concepts (e.g., saddle points). Thus, the ray model plays an interpretive epistemic

role in understanding how key concepts relate in an explanation, but it is not a core aspect

of the explanation itself. The variables in the explanation without this interpretive gloss

would still do the same explanatory work. The light ray model extracts how we should

think about the explanation variables, but it is not identical to any part of the explanation.
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The “association between the saddle points and rays lets us appreciate how the light

behaves in some respects as the ray theory would predict” (2011, p. 19), in a way that

furthers an epistemic aim, such as understanding, but is not part of the explanation in

any proper sense. Thus, the ray model plays a genesis function characteristic of MIE, not

of ME.

Batterman (2005), on the other hand, takes the ray model to be setting the boundary

conditions of the explanation. This is more promising for ME. If the ray model is part of

the boundary conditions, then perhaps this is enough to be an instance of ME. Batterman

says (2005, p. 159):

In order to see what boundary conditions to impose on the partial differential equa-

tion in the first place, we must conceptualize the problem as one in which (to a first

approximation) we are considering specular reflection off the back of the raindrop.

It involves, that is, thinking about light behaving as rays on the physical bound-

aries. Without the physical interpretation to begin with, we would not know what

boundary conditions to join to the differential equation. Neither, would we know

how to join those boundary conditions to the equation. Put another way, we must

examine the physical details of the boundaries (the shape, reflective and refractive

details of the drops, etc.) in order to set up the boundary conditions required for

the mathematical solution to the equation.

Notice though that Batterman does not go so far to say that the ray model is part of

the explanation. On the contrary, the ray model is ‘setting up’ what is needed to solve

the equation and generate the explanation. It is not the propositions of the fictitious

ray model that are part of the explanation. The model gives us a physical interpretation

to extract the necessary boundary conditions that later figure into the explanation (i.e.,

the shape and size of the raindrops and their reflective details). So again, we fall short

of ME. The fiction is the genesis of explanatory information, namely picking out what

information is explanatorily relevant, but the fictitious model is no way identical to the

explanation, even in our restricted sense.

Batterman’s interpretation is different from Pincock’s and Saatsi’s. For Pincock and

Saatsi, the interpretive role the ray model plays seems largely secondary to the the math-

ematical model, as a step to improve understanding. Whereas on Batterman’s view, the

ray model uncovers the boundary conditions for the start of a possible explanation. How-

ever, in both cases, the resulting explanation utilizing the ray model is an instance of

MIE, not an instance of ME.

3.4. Upshot of the Survey

The result of our survey of paradigmatic alleged ME is that all of them turn out to be

MIE. In each case, the relevant explanatory information is independent of the model but

only closely intertwined with the model due to the history of obtaining the information.
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In the honey bee case, it is the information that the honey bees seem to maximize their

energy efficiency rather than the rate of energy intake. In the fluid flow case, we learn

which physical details are irrelevant and which ones are necessary for the phenomenon

of interest. In the rainbow case, working with the fiction of light rays provides us with

necessary boundary conditions (Batterman 2005) and an interpretive framework for a

mathematical theory (Pincock 2011).

The observation that the explanatory information is information independent of the

model is not limited to the examined cases. We chose them because they are paradigmatic

cases of alleged ME. What seems to be a model explanation turns out to be a model-

induced explanation. For instance, the optimality model of the eider duck’s foraging

behavior (Rice 2018) also at best provides us with MIE, but not with ME. We expect to

get similar results for other alleged cases of ME. If so, we don’t have a case of ME yet. As

we argue in the next section, this suggests that what is special about models in science is

how they induce explanations.

4. Are Model Explanations Special?

So far, we have argued that there are two different conceptions of explanations using

models. Model-induced explanations are explanations where constructing or using the

model constitutes a decisive part of arriving at the explanation. Model explanations are

explanations where the model’s core content is identical to the core of the explanation.

In this section, we argue that both are not special from an explanatory point of view.

Although it is a special characteristic of model(-induced) explanations that they are

closely related to a model, this does not necessarily render such explanations special qua

explanation. ME can simply be instances of more general kinds of explanation. For in-

stance, Bokulich prominently introduces a taxonomy of model explanations that reflect

familiar kinds of explanation (2011, sec. 2 & 3): According to her, mechanistic model

explanations are particular mechanistic explanations, namely descriptions of mechanisms

based on a model. Covering-law model explanations are particular covering-law explana-

tions, namely explanations which, inter alia, cite model-based laws in their explanantia.

Causal model explanations are particular causal explanations, namely explanations where

one explains observed features by postulating underlying structures whose features are

causally responsible for the properties. Structural model explanations are particular non-

causal explanations, namely explanations where the explanandum-phenomenon is shown

to be a consequence of particular structural features of the theories employed in the

model.26 Importantly, in none of these cases is the model aspect of the explanation doing

26The more precise definitions of these kinds of model-based explanations are not important here and we
also do not discuss the taxonomy’s adequacy. For criticisms of Bokulich’s account of structural model
explanations, see, e.g., King 2016.
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much work. On the contrary, it is the causal, law-covering or structural aspect that makes

the explanation a ‘special’ kind of explanation demanding its own treatment.

Moreover, without loss, this taxonomy could be also used as a taxonomy of model-

induced explanation. All the categories apply equally well to MIE. For instance, the

model-based law, or non-accidental regularity, could be the one that is discovered by

working a model, such as the regularity that honey bees tend to maximize their energy

efficiency rather their energy intake. So again, there is nothing about the role of models

that makes the explanation qua explanation special or different.

At the very least, it seems that in order to show that an explanation constitutes a

new kind of explanation one needs to show that either a unique kind of why- or how-

question is being asked, or that there is a fundamentally different way to answer why-

or how-questions. However, our interlocutors have not given us that much. Instead, we

suggest that what philosophers of science take to be interesting about the models that

we discussed is actually the epistemology behind how models help produce explanations.

MIE explanations are obtained in close relationship with working with a model. Models

figure in the process of obtaining the explanation and they might even be required in that

process. Without the model we might not arrive at the explanations, because we lack the

crucial epistemic access to the desired information. For instance, Marchionni emphasizes

that the models she examines crucially depend (2017, p. 606, our italics):

[...] on assumptions known to be false [...] such assumptions are indispensable for

the derivation of the results.

We think that such features make explanations with the aid of models unique. But it

is important to not conflate the special features of the discovery of an explanation with

the features of the explanation itself. For instance, special features of the discovery of

laws are not special features of explanations using these laws.

The distinction between the explanation and how we arrive at it has implications for

not only our taxonomies of explanations, but also for larger debates about the nature of

explanation and scientific practice, especially the factivity debate as we briefly discuss

below. Thus, it is important that we no longer conflate model explanation with model-

induced explanation.

5. Concluding Remarks

In this paper, we argued that there are two substantially different conceptions of model

explanation, which should not be conflated, but often are: model explanation and model-

induced explanation. We argued that model explanations are best understood in terms

of an identity relation between the explanation’s core and the core of the respective

model’s content (ME Core). By contrast, model-induced explanations (MIE) only feature
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explanantia that have been obtained by working with a model. We further argued that

paradigmatic cases of alleged ME do not fulfill the criteria for ME; instead they turn

out to be MIE. It seems that philosophers of science have taken up an interest, not with

model explanation, as they claim, but with model-induced explanation. The special or

interesting aspects of these explanations with models is due to the epistemic discovery

behind the explanations—that is how models induce, enable, or generate explanations—

not the properties of the explanations themselves. Thus, philosophers need to reconsider

the unique way that models explain. Our notion of ME Core suggests thinking through

what the central notions of a model are and how they provide explanatory power as a

way forward.

Lastly, we also expect that, in light of our results, the argument for the anti-factivity

of scientific explanation loses much of its force. The anti-factivity debate is driven by two

fundamental assumptions: (i) that explanations with models are ME, and (ii) that at least

some explanations with models involve the idealizations stipulated by the model. In this

paper, we substantially undermined (i). The survey of the paradigmatic cases of alleged

ME shows that they are really cases of MIE. We have also called into question (ii). In

none of the cases of idealizations that we discussed are the idealizations themselves part

of the respective explanantia. However, we stopped short of offering a decisive argument

against the possibility of (ii). Whether there are explanations that include idealizations

stipulated by a model demands a closer look (for arguments against (ii), see, e.g., Lawler

2019; Rice 2019b).
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