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This experimental study focuses on the effect of horizontal boundaries with
pyramid-shaped roughness elements on the heat transfer in rotating Rayleigh–Bénard
convection. It is shown that the Ekman pumping mechanism, which is responsible for
the heat transfer enhancement under rotation in the case of smooth top and bottom
surfaces, is unaffected by the roughness as long as the Ekman layer thickness δE is
significantly larger than the roughness height k. As the rotation rate increases, and
thus δE decreases, the roughness elements penetrate the radially inward flow in the
interior of the Ekman boundary layer that feeds the columnar Ekman vortices. This
perturbation generates additional thermal disturbances which are found to increase the
heat transfer efficiency even further. However, when δE≈ k, the Ekman boundary layer
is strongly perturbed by the roughness elements and the Ekman pumping mechanism
is suppressed. The results suggest that the Ekman pumping is re-established for
δE� k as the faces of the pyramidal roughness elements then act locally as a sloping
boundary on which an Ekman layer can be formed.

Key words: Bénard convection, geophysical and geological flows, rotating turbulence

1. Introduction

Rayleigh–Bénard convection (RBC), which is a representative system to study
buoyancy driven flows, is the flow driven by the temperature difference, 1T , between
a heated horizontal plate and a parallel cooled plate a distance H above it. In
nature, such flows invariably occur on rough boundaries, e.g. mountainous terrain for
atmospheric flows and the undulating bed in the case of oceanic processes. Even in
technological applications, a surface can behave as a rough wall when the boundary
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layer on it becomes thin at sufficiently strong buoyancy forcing. On the other hand,
the effects of rotation can be prominent at geophysical scales, e.g. planetary interiors
(Aurnou et al. 2015), as well as in applications like chemical vapour deposition used
to manufacture semiconductor chips. Although numerous researchers have studied the
effects of rotation and of rough horizontal walls on RBC separately, leading to a
better understanding of such flows, studies on the combined effects of rotation and
roughness have been absent. The present work addresses this gap in our understanding
by studying the impact of rough heat transfer walls on rotating RBC.

The strength of the buoyancy forcing in RBC is characterized by the Rayleigh
number Ra = gα1TH3/(νκ), where α, ν and κ are the isobaric thermal expansion
coefficient, kinematic viscosity and thermal diffusivity of the fluid and g is the
gravitational acceleration. Other parameters that affect the system response are
the Prandtl number Pr = ν/κ , the aspect ratio Γ = D/H and the Rossby number
Ro =

√
gα1T/H/(2Ω), where Ω is the angular velocity of the RBC system about

an axis normal to the plates and D is the lateral dimension of the system, which, for
a cylindrical geometry, is the diameter. The response of the RBC system is typically
expressed in terms of the Nusselt number Nu = qH/(1Tλ), where q is the heat
flux density and λ is the thermal conductivity of the fluid. At Ra ∼ 109 and Γ = 1,
relevant to the present study, the flow in the absence of rotation is characterized by
the thermal plumes emitted from the top and bottom walls. These plumes give rise
to a domain-filling closed flow structure, the large-scale circulation (LSC), which in
turn convects the plumes from one wall to the other (e.g. see Xi, Lam & Xia 2004).
The heat transfer in this regime is well described by the Grossmann–Lohse (GL)
theory (Grossmann & Lohse 2000, 2001, 2002), and the Ra-dependence of Nu can be
approximated by Nu∼ Raγ, with γ ≈ 0.3 (Funfschilling et al. 2005). For an overview
of recent developments in RBC, see, e.g., Ahlers, Grossmann & Lohse (2009).

The flow structure and Nu remain largely unaffected by the Coriolis force under
weak rotation, i.e. when Ro & Roc (regime I). For Γ = 1, Roc ≈ 2.5 (Kunnen, Clercx
& Geurts 2008; Stevens et al. 2009; Weiss et al. 2010). For Pr ∼ O(10), as Ro
decreases below Roc, the LSC breaks down and the thermal plumes take the form of
vertical columns of hot/cold fluid with predominantly axial vorticity emanating from
the bottom/top walls. These vortical columnar plumes, which form as a result of
the intensification of the cyclonic vorticity in the fluid converging into the emerging
plumes, propagate deeper into the bulk flow as Ro is decreased below Roc (regime II),
see, e.g., Kunnen, Clercx & Geurts (2010a). This growth in the vertical extent of
the columnar vortices is a result of the Taylor–Proudman-like phenomenon, in which
axial variations in the flow are suppressed by rotation, an effect that grows stronger
as Ro decreases. These columns draw more fluid from the Ekman boundary layers
(the frictional layers on the horizontal walls in rotating flows) (Pedlosky 1987) as the
radial pressure gradients associated with them are superposed on the Ekman layers.
This phenomenon, commonly referred to as Ekman pumping (Rossby 1969; Pedlosky
1987; Vorobieff & Ecke 2002), leads to a steady increase in Nu until Ro ≈ 0.1 (for
Ra∼ 109, Pr∼ 6 and Γ = 1, relevant to the present study), when the vortical columns
span a substantial fraction of the RBC cell height. Since rotation suppresses the
Rayleigh–Bénard instability (Chandrasekhar 1961; Rossby 1969), a further decrease
in Ro into regime III is characterized by a damping of the turbulence and a decrease
in Nu (Rossby 1969; Kunnen, Clercx & Geurts 2006; King et al. 2009; Stevens et al.
2009; Kunnen, Geurts & Clercx 2010b; Julien et al. 2012; Cheng et al. 2015).

The impact of the wall roughness on the heat transfer in non-rotating RBC is largely
determined by the height of the roughness elements, k, in relation to the thermal and
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Rotating convection with rough plates

viscous boundary layer thicknesses, δT and δν respectively. However, most previous
studies of convection over rough walls have been performed for Pr ∼ O(1–10), for
which δT and δν are of the same order. Perhaps hence, these studies have mostly
focused on the interaction of the roughness with the thermal boundary layer, the mean
thickness of which is easily estimated as δT ≈H/2Nu. Below a critical Ra, the thermal
boundary layer is thicker than k, and Nu for the rough surface, NuR, is similar to that
for a smooth wall, NuS. As shown by Tisserand et al. (2011), NuR can also be slightly
lower than NuS as the fluid inside the troughs of the roughness is near-stagnant, which
results in a locally thick thermal boundary layer. As Ra increases and δT becomes
smaller than k, the roughness elements protrude out of the thermal boundary layer and
increase the emission of plumes (Du & Tong 2000; Stringano, Pascazio & Verzicco
2006), and thus the heat transfer in comparison with smooth walls. For large Pr (δν�
δT), Xie & Xia (2017) show that δν also becomes smaller than k at sufficiently high
Ra, and thus both the thermal and the viscous boundary layers are strongly perturbed
by the rough wall.

Although there exists a consensus on the effect of roughness on the magnitude of
Nu, its effect on γ seems to be unclear. Some early studies (Shen, Tong & Xia 1996;
Du & Tong 1998; Ciliberto & Laroche 1999) report no change in γ from its value
for smooth plates when δT < k, although NuR can be larger than NuS by up to 80 %.
However, later studies, e.g. Qiu, Xia & Tong (2005) and Stringano et al. (2006), have
measured γ in the range 0.35–0.37. They ascribe the lower γ observed in the earlier
studies to the poor thermal diffusivity of the plate material (brass) used in them, which
exacerbates the inherently non-isothermal character of a rough plate in an experiment.
However, calculating Nu for individual plates at Ra∼O(1012), Tisserand et al. (2011)
measure γ as high as 0.5 for a rough aluminium plate, which has thermal properties
poorer than those of a similar copper plate. The Nusselt number for an individual
plate is calculated as Nup= qH/(2|Tp− Tc|λ) (Tisserand et al. 2011; Wei et al. 2014),
where Tp and Tc are the temperatures of the plate and the RBC cell centre respectively.
Wei et al. (2014) find that, based on the boundary conditions, i.e. constant temperature
or constant heat flux, and the nature of the opposite plate, γ for a rough plate can
vary between 0.29 and 0.39. However, with both plates rough, they observe γ = 0.35
for the global Nu. Xie & Xia (2017) show that γ is higher in the regime δT < k< δν
than in the regime k > δν and, in qualitative agreement with the 2D simulations of
Toppaladoddi, Succi & Wettlaufer (2017), that γ also depends on the aspect ratio of
the roughness elements.

The columnar vortices, which are presumed to be responsible for increasing the
heat transfer under rotation, are intricately linked with the dynamics of the Ekman
boundary layer on the horizontal surfaces. Since roughness modifies the boundary
layer structure in non-rotating convection, some natural questions to ask are whether
and how it affects the Ekman vortices under rotation. Although there have been prior
investigations studying geostrophic turbulence (LaCasce & Brink 2000) and stratified
Ekman layers (see, e.g., Garrett, MacCready & Rhines 1993) on sloping boundaries,
the impact of roughness on the Ekman layer and the Ekman pumping mechanism in
the context of rotating natural convection has not been explored. The interaction of
the effects of rotation and roughness can be important in geophysical flows. Even
in technological applications, roughness effects can become relevant as the Ekman
boundary layer becomes thin under strong rotation. In this study, we introduce
pyramid-shaped roughness elements on the top and/or bottom walls and measure
the heat transfer as a function of the rotation rate. In the next section, we describe the
experimental apparatus and measurement procedures. In §§ 3 and 4, we present
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(a) (b)
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cooling water

k
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FIGURE 1. (a) Schematic of the experimental set-up: SW, cylindrical Plexiglass sidewall;
CP, top and bottom copper plates; RH, heating resistors fitted into the bottom copper plate;
CW, cooling water recirculating through the top copper plate; ABT, air-bleed tube which
is connected to an overhead flask; SH, secondary heaters; AS, aluminium adiabatic shields;
IS, insulating shields; TS, temperature sensors. The figure is not to scale. (b) Details of
the roughness geometry. The figure shows the top rough plate with k= 8 mm.

the results and show that, depending on the size of the roughness elements relative
to the Ekman boundary layer thickness, rotation can either enhance or suppress the
heat transfer in relation to that under non-rotating conditions.

2. Experimental set-up and measurement procedures

Figure 1 shows a schematic of the Γ ≈ 1 cylindrical Rayleigh–Bénard cell used
in this study. Only the important features of this cell are described here. For details
see Kunnen et al. (2011) and Joshi et al. (2016). The heat transfer plates with D=
250 mm are made out of solid copper blocks. Triangular grooves are machined on
the surfaces of these plates, producing a square array of pyramids with height k and
a square base of side 2k (see figure 1b). The plates are 30 mm thick (at the base of
the pyramids for rough plates). Two roughness sizes, k = 1.5 mm and 8 mm, have
been used. The equivalent location of the rough surface is fixed at the mid-height
of the pyramids, determining the effective height Heff and the effective aspect ratio
Γeff of the RBC cell in each case. Table 1 lists the five combinations of the rough
and smooth plates used, as well as Heff and Γeff for each case. Water is used as
the working fluid. Heat is supplied to the bottom plates using ohmic heating and
the top plates are cooled by recirculating water through them. A constant-temperature
boundary condition is imposed at both the top and bottom plates, with temperatures Tt

and Tb respectively. Five thermistors are provided in each of the plates, 0.7 mm from
the wetted surface for the smooth plates and 1.0 mm from the base of the pyramids
for the rough plates. The thermistors are calibrated with logarithmic polynomial fits
and measure the temperature with an accuracy of ±0.01 ◦C. The RBC cell is mounted
on a table, the rotation rate of which can be controlled from Ω = 0 to 10 rad s−1

with a resolution of 0.001 rad s−1 and a relative accuracy of 0.5 %. The maximum
rotation rate used in the present study is Ω = 2.5 rad s−1, yielding a Froude number
of Fr=Ω2(D/2)/g= 0.079, i.e. centrifugal effects are minor. For more details on the
experimental set-up, we refer the reader to Kunnen et al. (2011).

Data recorded at a sampling frequency of 1 Hz under steady state for longer than
6 h are used to calculate the mean quantities. The temperatures measured by the five
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109 1010

102

Ra

Nu Nu

(a) (b) (c)
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R2S
R2R2
R8S
R8R8

10–1 100
80
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110
120
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10–1 100

0.9
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1.1

1.2

1.3
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R2S
R2R2
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FIGURE 2. Variation of (a) Nu with Ra for Ro=∞, (b) Nu with Ro and (c) Nu/Nu(Ro=
∞) with Ro for all k at Ra= 2.2× 109. The nomenclature of the plate combinations is
given in table 1. In (a), the straight lines represent the power law fits to the data, which
result in different values of the exponent γ : dashed-dotted blue line, SS, γ = 0.298; solid
magenta line, R2S, γ = 0.297; solid black line, R2R2, γ = 0.330; solid red line, R8S,
γ = 0.302; solid blue line, R8R8, γ = 0.369.

Case Top plate Bottom plate Heff (mm) Γeff =D/Heff γ

SS Smooth Smooth 250.0 1.0 0.298± 0.002
R2S Rough, k= 1.5 mm Smooth 249.25 1.003 0.297± 0.006
R2R2 Rough, k= 1.5 mm Rough, k= 1.5 mm 248.5 1.006 0.330± 0.013
R8S Rough, k= 8 mm Smooth 246.0 1.0163 0.302± 0.002
R8R8 Rough, k= 8 mm Rough, k= 8 mm 242.0 1.0331 0.369± 0.012

TABLE 1. The combinations of rough and smooth plates used in the present study. The
nomenclature of the various cases uses S for smooth, R for rough and a number denoting
the height of the roughness element, k. For example, R8S denotes an experiment using
a rough top plate with k = 8 mm and a smooth bottom plate. The values of γ in the
relation Nu ∼ Raγ are estimated using least-squares fits to the data. The uncertainty in
γ is expressed as γ ± 2∆γ , where ∆γ is the standard error in the estimate of γ , ∆2

γ =

(sφφsψψ − s2
φψ)/[(n− 2)s2

φφ], n is the number of data points (Ra, Nu) used for the linear
regression, φ = ln(Ra), ψ = ln(Nu) and sφψ =

∑n
i=1(φi − φ̄)(ψi − ψ̄) is the covariance of

φ and ψ (Acton 1966). An overbar denotes the sample mean for a data set.

sensors in the top (bottom) plate are averaged to calculate Tt (Tb). Fluid properties
are evaluated at Tmean = (Tt + Tb)/2 = 24.2 ± 0.3 ◦C (Pr = 6.2). Heat lost from the
bottom plate to the surroundings, which is less than 4 % of the input heat flux QI at
Ra= 3× 108 and decreases to 0.2 % of QI at Ra= 4.5× 109, is subtracted from QI

to obtain the net heat flux density q.

3. Results

3.1. Effect of rough plates on heat transfer without rotation
Figure 2(a) shows the variation of Nu with Ra. The length of the error bars in figure 2
represents 4∆φ , where ∆φ = σφ/

√
(t0/τ0) is the standard error of the mean value 〈φ〉

of the concerned variable φ. Here, σφ is the standard deviation of φ, t0 is the length
of the time series for φ(t) used to calculate 〈φ〉, t is time and τ0 is the time interval
for the temporal autocorrelation of φ, Cφ(τ ) = 〈φ(t)φ(t + τ)〉/σ 2

φ , to decay to 1/e.
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It should be noted that in many cases the error bars are smaller than the size of the
symbols.

In the following discussion, different plate combinations are indicated by the
corresponding subscripts to the variable (for the nomenclature, see table 1 and the
caption). It should be noted that the Ra range for the case SS, 6 × 108–9 × 109, is
different from that for all the cases with rough plates, approximately 3×108–4.5×109.
A least-squares fit to the data for the case SS yields γSS=0.3. Both γSS and NuSS agree
well with those reported in earlier studies using smooth plates (e.g. Funfschilling et al.
2005). The Nusselt number and γ for the case R2S are indistinguishable from those
for the case SS. However, when both plates are rough, NuR2R2 shows slight deviations
(less than 5 %) from NuSS. The exponent γR2R2 is also higher, 0.33. For the cases
R2S and R2R2, δT ≈H/2Nu decreases from approximately 2.9 mm at Ra= 2.9× 108

to 1.2 mm at Ra= 4.5× 109. Although δT < k at the highest Ra, we do not observe
any substantial increase in Nu (less than 5 % for the case R2R2) above the case SS,
perhaps because δT is still only slightly smaller than k. Indeed, previous data with
symmetrical RBC cells, e.g. from Shen et al. (1996), Stringano et al. (2006) and Wei
et al. (2014), appear to indicate that the increased heat transfer is manifested only
when δT becomes smaller than approximately 2k/3.

For the cases R8S and R8R8, the thermal boundary layer thickness is always
significantly smaller (δT < 2.2 mm) than the height of the pyramid-like structures
(k = 8 mm). As a result, Nu for these cases is substantially higher than that for the
case SS. As expected, the heat transfer when both plates are rough (R8R8) is higher
than that with only one rough plate (R8S). At Ra= 4.1× 109, Nu for the cases R8S
and R8R8 is approximately 26 % (k/δT ≈ 8) and 80 % (k/δT ≈ 11) higher respectively
than that for the case SS. The latter increase is comparable to the 76 % reported by
Du & Tong (1998) for pyramidal roughness elements at similar Ra (their data suggest
k/δT ≈ 9). However, unlike their exponent, which maintains the same value as for
the smooth case, we observe γR8R8 ≈ 0.37. This value is close to γ = 0.35 measured
for pyramidal roughness by Qiu et al. (2005) (k/δT ≈ 1–16) and Wei et al. (2014)
(k/δT ≈ 0.8–2.5), and agrees with γ = 0.37 obtained by Stringano et al. (2006) from
their direct numerical simulations (DNS) with axisymmetric grooves (k/δT ≈ 2–31).
Stringano et al. (2006) suggest that the lower exponent in Du & Tong (1998) is the
result of an interplay between the enhanced emission of plumes due to the roughness
and the decrease in heat transfer due to the non-ideal brass plates. It is also clear
from the above comparison that γ is independent of k/δT . It should be noted that
γR8S (figure 2a and table 1) is indistinguishable from γSS = 0.30, in line with the
observations of Wei et al. (2014) for a similar asymmetric configuration.

To summarize the above discussion, in line with previous studies for Pr & 1, we
observe no enhancement in the heat transfer when δT & k. However, for δT smaller
than k/4, a significant increase in Nu is observed. The heat transfer enhancement
with a doubly rough RBC cell is larger than that with an asymmetric cell. Although
roughness increases Nu for sufficiently large k/δT , γ for the asymmetric cell is
indistinguishable from that for the smooth cell, and only shows an increase when
both walls are rough. For the present data, γ is higher for larger k. This difference,
however, may be a result of different k/δν for the cases R2R2 and R8R8. According
to the GL theory (Grossmann & Lohse 2001; Stevens et al. 2013b), for Pr= 6.2, δν
over a smooth wall decreases from approximately 10 mm to 5 mm as Ra is increased
from 2 × 108 to 5 × 109. Thus, the k = 8 mm roughness elements are expected to
strongly perturb the viscous boundary layer, while the k= 1.5 mm roughness elements
are likely to be buried deep within it.
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Rotating convection with rough plates

3.2. Effect of rough plates on heat transfer under rotation

Figure 2(b) shows the variation of Nu with Ro at Ra= 2.2× 109. When both plates
are smooth, the behaviour of Nu agrees well with that reported in earlier studies (e.g.
Kunnen et al. 2006; Zhong & Ahlers 2010; Kunnen et al. 2011; Stevens, Clercx &
Lohse 2013a): an increase in Nu as Ro decreases below the critical value Roc ≈ 2.5
and a maximum attained at Ro≈ 0.2, which is assumed to indicate the transition to
regime III. It is evident from figure 2(b) that at all the rotation rates studied, Nu for
k= 8 mm is substantially higher than that for smooth plates, while Nu for k= 1.5 mm
differs significantly from NuSS only after Ro decreases below approximately 0.5.

To better assess the above trends, the variation of Nu/Nu(Ro = ∞) with Ro at
Ra = 2.2 × 109 is shown in figure 2(c). Evidently, the value of Ro that marks the
end of regime I with negligible effect of rotation, i.e. Roc ≈ 2.5, is unchanged in the
presence of the rough plates. For k = 1.5 mm (data sets R2R2 and R2S), the trends
for Nu/Nu(Ro=∞) are qualitatively similar to those for the smooth plates, although
some quantitative differences are observed. For smooth plates, the maximum value
of Nu/Nu(Ro = ∞) is 1.11. This maximum is significantly higher in the presence
of k = 1.5 mm roughness: 1.17 and 1.29 for the sets R2S and R2R2 respectively.
Furthermore, the maxima occur at lower Rossby numbers, RoR2S ≈ 0.08 and RoR2R2≈

0.06, indicating that the regime II with enhanced heat transfer is more robust and the
transition to regime III is delayed to higher rotation rates. The results for k= 8 mm
are qualitatively as well as quantitatively different from those for smooth plates. For
the case R8S, the maximum value of Nu/Nu(Ro=∞) at Ro≈ 0.3 is 1.06, which is
significantly smaller than the value of 1.11 for the reference case SS. Furthermore,
instead of a steady decay as Ro is decreased further, Nu/Nu(Ro=∞) shows a weak
plateau at Ro ≈ 0.1. However, the most significant deviations from the case SS are
observed when both plates are rough. In contrast to all other cases, rotation decreases
the heat transfer for the case R8R8: Nu/Nu(Ro = ∞) is always smaller than 1 for
Ro. 2.5. After a broad plateau around Ro≈ 0.4, Nu/Nu(Ro=∞) reaches a minimum
at Ro≈ 0.12, whereafter it increases as Ro is decreased further. Although one should
expect the heat transfer to decay again at sufficiently high rotation rates, this trend of
increase in Nu for Ro . 0.1 is in marked contrast to the case SS, which exhibits a
suppression of heat transfer. Thus, the flow regimes observed in the reference case SS
appear to be greatly modified in the presence of the k= 8 mm roughness.

To recapitulate, although the variation of Nu with Ro remains qualitatively
unchanged for k = 1.5 mm, the maximum of Nu/Nu(Ro =∞) is significantly larger
than that for the case SS, and regime II extends to lower Ro. For the asymmetric
k=8 mm case (R8S), the enhancement in Nu under rotation is significantly lower than
that for SS, while for the symmetric case R8R8, rotation decreases Nu in comparison
to its value at Ro = ∞. In addition to the lower magnitudes, Nu/Nu(Ro = ∞)
for k = 8 mm shows marked qualitative differences in comparison to the case SS,
indicating the possibility of a different underlying flow structure.

4. Discussion

It is evident from § 3 that the effect of rotation on the heat transfer depends
critically on the roughness size. It should be noted that for both k values, the trends
for the rough–smooth combinations (R2S and R8S) are intermediate to those for the
reference case SS and the respective rough–rough combinations (R2R2 and R8R8).
Since we do not measure the temperature at the RBC cell centre, and the sidewall
temperature may not be a good approximation to the bulk temperature at low Ro
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FIGURE 3. Variation of Nu/Nu(Ro=∞) with Ro at Ra= 2.2× 109 for (a) k= 1.5 mm
and (b) k= 8 mm. The variation of the Ekman boundary layer thickness δE over a smooth
wall and the characteristic horizontal length scale of the vortical columns l=HEk1/3 (King,
Stellmach & Buffett 2013) with Ro is shown in (c). In (a) and (b), the black solid lines
represent the average of the data for the cases SS, and R2R2 and R8R8 respectively. In (c),
the Ro values for all the cases differ negligibly (less than 2 %) from each other, RoSS ≈

RoR2R2 ≈ RoR8R8, since Heff ≈ 250 mm for all these cases (see table 1). The vertical black
dash-dotted lines denoting Ro= 0.07, 0.12 and 2.0, and the horizontal black dash-dotted
lines denoting the lengths 8 mm and 1.5 mm are provided to aid visualization.

(Kunnen et al. 2011), we cannot estimate Nu for the plates separately. However, to
indicate the broad trends, we present the mean of Nu/Nu(Ro=∞) for the cases SS
and R2R2 in figure 3(a) and that for the cases SS and R8R8 in figure 3(b). The
averages of the data for the symmetric smooth and rough cases approximate very
well, both qualitatively and quantitatively, the data for the corresponding asymmetric
configurations. Although the agreement in the case of k= 8 mm is not as good as for
k= 1.5 mm, the overall trend for the case R8S, i.e. a non-monotonic decrease in Nu
with decreasing Ro for 0.055 . Ro . 0.3, is very well reproduced by the average of
Nu for the cases SS and R8R8. This agreement suggests that in a rotating asymmetric
RBC cell, each plate maintains its heat transfer characteristics, and the trend for the
global Nu is a combination of those for Nu for the individual plates.

As discussed earlier, the heat transfer primarily depends on the interaction of
the roughness with the thermal and viscous boundary layers. At Ro ≈ 2.5, the
Prandtl–Blasius viscous boundary layer undergoes a transition to the Ekman type
(Stevens et al. 2009; Rajaei et al. 2016). Similarly to NuSS, NuR2R2 increases when
Ro is decreased below 2.5 (figure 3a) as the Ekman pumping mechanism starts to
draw hot/cold fluid from the bottom/top thermal boundary layers. Figure 3(c) shows
the variation of the Ekman boundary layer thickness δE = 2.284

√
ν/Ω (Rajaei et al.

2016) with Ro (Ro ≈ RoR2R2 ≈ RoR8R8) over a smooth wall. In the vicinity of the
transition at Ro ≈ 2.5, δE ≈ 9 mm is significantly thicker than k = 1.5 mm. Thus,
the roughness elements are buried deep inside the Ekman layer and their effect on
the heat transfer is not evident. The effect of roughness becomes significant only
for Ro . 0.5 (figure 3a) when δE decreases to approximately 4 mm (figure 3c). It
should be noted that the Ekman vortices draw fluid primarily from the bulk of the
boundary layer rather than the near-wall region (Stevens, Clercx & Lohse 2010).
Thus, it is only when δE/k becomes small enough that the roughness elements get
exposed to a sufficiently strong radial inflow of the boundary layer fluid into the
Ekman vortices. It should be noted that, as discussed in § 3.1, δT ≈ k for Ro=∞ at
Ra = 2.2 × 109. Although δT can increase substantially in regime III compared with
regimes I and II (Kunnen et al. 2006, 2010b, 2016), it is expected to remain largely
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unchanged and reasonably well estimated by δT ≈H/2Nu in regime II (Kunnen et al.
2006, 2010b). Since δT ≈ k, the radial inflow over the roughness elements is likely to
generate more thermal structures from the perturbed thermal boundary layer. These
structures enter the Ekman vortices and increase their heat transfer efficiency, which
is reflected in the higher Nu/Nu(Ro=∞) for the case R2R2 in comparison with the
case SS. For smooth walls, the increase in the heat transfer due to Ekman pumping
is small or absent when Pr� 1 or Pr� 1 (Stevens et al. 2010). However, for the
case R2R2, an increase in Nu/Nu(Ro = ∞) in comparison with the case SS can
also be expected when δT � k (Pr � 1 or high Ra) due to a radial-flow-induced
enhanced emission of hot/cold plumes from the thermal boundary layer at the tips
of the roughness elements. On the other hand, when δT� k (Pr� 1 or low Ra), the
enhanced emission of structures from the roughness elements may not be as effective
in increasing the heat transfer efficiency due to the high thermal diffusivity of the
fluid. The discussed interaction of the near-wall flow with the roughness for the
case R2R2 to generate higher thermal/momentum fluctuations could be qualitatively
similar to that observed in turbulent boundary layers over rough walls (Jimenez 2004)
and the interaction of the LSC with rough walls in non-rotating RBC (Wagner &
Shishkina 2015).

The transition from regime II to regime III, indicated by the maximum of Nu, is
delayed to lower Ro in the presence of the k = 1.5 mm roughness (figure 3a). For
smooth walls, it is known that this transition is accompanied by an increased damping
of turbulence by rotation (Boubnov & Golitsyn 1990; Joshi et al. 2016). Since a rough
wall is expected to lead to higher turbulent fluctuations, it is not surprising that this
transition is delayed to smaller Ro in the presence of rough walls. However, it should
be noted that although δE remains larger than k= 1.5 mm for moderate rotation rates,
it becomes equal to k at Ro ≈ 0.07. Consequently, the Ekman boundary layer is
strongly perturbed by the roughness, and this may lead to disruption of the Ekman
pumping mechanism. This disruption explains the location Ro ≈ 0.07 of the end of
regime II, after which Nu decays as Ro continues to decrease. If this is indeed the
case, then the nature of the Ekman boundary layer in the vicinity of the transition, i.e.
when δE≈ k, is likely to be different from its well-known structure over smooth walls.
However, at sufficiently low Ro, when δE� k, the faces of the pyramidal roughness
elements may act like sloping boundaries. Consequently, the Ekman vortices may
reappear, albeit with a slightly thicker Ekman layer δE,β = δE

√
sec β (Pedlosky 1987),

where β is the angle the slope makes with the horizontal. In the present case,
δE,β = 1.19δE for β = 45◦. Unfortunately, the present experimental set-up cannot be
operated at higher rotation rates to explore the low-Ro regime III for k= 1.5 mm.

The disruption of the Ekman pumping mechanism when δE ≈ k and its possible
re-establishment when δE� k are also suggested by the data for the case R8R8. For
this case, δE is already equal to k at Ro ≈ 2 (figure 3c). Consequently, there is no
heat transfer enhancement due to Ekman pumping. This, perhaps combined with the
turbulence suppression under rotation, leads to a slight decrease in Nu, approximately
2 %, for Ro. 2. The Nusselt number continues to decrease as Ro decreases, possibly
due to further suppression of turbulence. It reaches a minimum at Ro ≈ 0.12 and
increases again as Ro is reduced further. It is possible that δE ≈ k/4 at Ro = 0.12
is small enough in comparison with k for re-establishment of the Ekman pumping
mechanism. The characteristic horizontal length scale of the vortical convection
columns, l∼HEk1/3 (King et al. 2013), where Ek= ν/ΩH2 is the Ekman number, is
also shown in figure 3(c). At Ro= 0.12, l≈ 6 mm, i.e. slightly smaller than k= 8 mm,
which is also likely to aid this transition. However, further studies would be needed
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to provide strong evidence for this disruption and re-establishment of the Ekman layer.
It should be noted that Nu is expected to decay again at sufficiently high rotation
rates as the turbulence damping overwhelms the effect of the re-established Ekman
pumping.

5. Conclusion

Heat transfer measurements have been performed in rotating RBC at Ra= 2.2× 109

and Pr = 6.2 in the presence of pyramid-shaped roughness elements over the
horizontal plates. Our measurements in the absence of rotation agree well with
those reported by other researchers. We observe that the effect of rotation on the heat
transfer depends on the roughness size relative to the Ekman boundary layer thickness.
The Ekman pumping mechanism remains largely unaffected by the roughness when
δE � k, as the roughness elements are buried deep inside the boundary layer. As
δE becomes smaller, the roughness elements are exposed to the radial inflow of the
fluid converging into the Ekman vortices. We believe that this interaction generates
stronger momentum and temperature fluctuations, and hence leads to an increase
in the heat transfer. However, when δE ≈ k, the Ekman boundary layer is strongly
perturbed by the roughness and the Ekman pumping mechanism is disrupted. It is
perhaps re-established when δE� k, as the boundary layer flow may then be similar
to that of an Ekman layer over a sloping boundary.
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