View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by National Aerospace Laboratories Institutional Repository

Using System Analysis Modeling Language
(SAML) for Validating the Critical Aerospace
Model

“Short Paper : A Case-Study

Kushal K S
Aerospace Electronics & Systems Division (ALD)
CSIR National Aerospace Laboratories (CSIR NAL)
Bengaluru, India
ksk261188 @gmail.com

J Jayanthi
Aerospace Electronics & Systems Division (ALD)
CSIR National Aerospace Laboratories (CSIR NAL)
Bengaluru, India
jayanthi@nal.res.in

Abstract—System Analysis Modeling Language (SAML) is a
formal language which helps in expressing and analyzing the
qualitative and quantitative aspects of the software as well as
hardware models. This can be used in model-based safety analysis
(MBSA) which provides the means of identifying, localizing and
analyzing hazards in these real-time Safety-Critical Systems. This
paper describes the work carried out in the organization to
validate the complex and critical Mode-Transition Logic (MTL)
in Automated Flight Control System (AFCS) being developed
in the organization. The Mode-Transition Logic (MTL) of the
AFCS system is re-modeled using SAML and further analyzed
with model checkers such as PRISM and NuSMY, for generation
of counter-examples. The counter examples helped in mapping
the safety scenarios along the AFCS requirements. These counter
examples also helped in generating the fault model and analyzing
the system logic for fault tolerance. Using NUSMV, MTL the
failure scenarios were generated and the allowed transitions were
studied. Failure management analysis report is generated and
mapped as an artefact for the certification. For the illustration of
the proposed approach, a suitable framework viz. Verification En-
vironment for Safety-Critical Systems (VECS) is used to validate
the utility of Mode-Transition Logic (MTL) in Automated Flight
Control System (AFCS). The critical operations and complex
functions were analyzed for contingency situations and provide
means in significantly enhancing the safe operation of the Safety-
Critical System. The mapping of the model safety using this
approach will provide compliance with Civil Aerospace Standard
DO-178C and DO-331 using Model-Based Design

Index Terms—Safety-Critical Systems, Model-Based Safety
Analysis (MBSA), System Analysis Modeling Language (SAML),
Verification Environment for Safety-Critical Systems (VECS),
Model-Checkers, Mode-Transition Logic (MTL)

I. INTRODUCTION

The prospect of reliable software being embed in Safety-
Critical Systems with versatility, improved performance and

978-1-5090-6367-3/17/$31.00 ©2017 |IEEE

Dr. (Ms.) Manju Nanda
Aerospace Electronics & Systems Division (ALD)
CSIR National Aerospace Laboratories (CSIR NAL)
Bengaluru, India
manjun@nal.res.in

Shamsundar Dhage
Aerospace Electronics & Systems Division (ALD)
CSIR National Aerospace Laboratories (CSIR NAL)
Bengaluru, India
shyamgd @nal.res.in

efficiency, is its potential tendency to risks in ensuring the
safety of the system. Any system that presents an indispensable
element of risk is termed to be unsafe. Applications like mili-
tary, aerospace and medical have been identified as the largest
consumers of safety-critical software and its dependencies that
control or provide critical data for critical processes. Errors or
faults that account for erroneous decisions leads to operational
failures of systems. The safety of such systems is an integral
part of systems engineering process that ensures in maintaining
an adequate safety of the system. This is done with the
application and management of engineering principles that
ensures safety throughout the system life-cycle. The system
design is considered to effective and efficient only if there is
substantial elimination or reduction of risks and its trade-offs
during their development. The safety critical systems that are
modeled should be dependable, safe, reliable and available
with a sufficient visibility of their hardware and software
components.

Dependability property provides a measure of the logic
that can be estimated based on the service delivered by the
components in the computing system. The property measure
that corresponds to the rendition of services which are com-
plimentary of cataclysmic effects is Safety. The delivery of
the service according to the conditions pre-specified, contin-
uously till the time to failure is measured as Reliability. The
delivery of the warranted among itself and erroneous services
is measured as Availability. The multi-abstraction approach of
defining the Safety-Critical Systems architecture represents the
system architecture as abstract models which are definitive.
These models can vary with the level of complexities that
may be required in order to model the system, such that, it

1951

https://core.ac.uk/display/287736431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is compliant with the given specifications. These contempo-
rary systems which exhibit a complex behavior, needs to be
verified and validated. This is because the effects of failures
in the software components are not extended, which may
have an unpredictable consequence on contrary to the physical
failures. Formal verification aids in overcoming the difficulty
in building a formally realizable model with the ability to
trace the model elements to its safety requirements specified.
The application and use of formal methods aids in focusing
on the dependability measures along with safety, reliability
and state diversifications, with abrupt transitions enabling the
state changes successively. Formal Methods defy this distinct
behavior of these systems and predicts the system properties
with the help of mathematical models. Such models also
ensure in improvising the quality attributes in developing the
system. This in-turn increases the confidence in achieving
highly integrated software.

A model checker [1], basically a tool that uses specific
languages for expressing the system into a formal model asso-
ciated with expressive properties and implement these models
using specific model checking techniques or algorithms. This
helps in automating the state space exploration problems and
can be done at much faster rate than the theorem provers. This
is recommended for larger systems with an exceeding amount
of state space problems that needs to be explored. With all
this the complex avionics logic, Mode Transition Logic (MTL)
in Automatic light Control System (AFCS) is modeled using
System Analysis Modeling Language (SAML) as a formal
model in Verification Environment for Critical Systems and
is verified syntactically using various model checkers.

In this paper, section 1 gives an introduction about the
need for formalization and safety analyses of Safety-Critical
Systems. Section 2 provides an insight into the pre-work about
the formal methods, its applications in safety analyses and
its dependent approaches, while section 3 gives an approach
adopted in performing the safety analyses in a single envi-
ronment using various different model checkers. Section 4
provides an insight about the Mode Transition Logic (MTL)
and section 5 deals with the implementation procedures in
VECS. Section 6 concludes the work presented in this paper.

II. LITERATURE SURVEY

Often the Safety-Critical Systems are stated by a set of
informal specifications. These specifications are translated
into system architectures by mapping all the requirement
specifications (high-level requirements). These architecture
models are verified by means of external model checkers that
inherently benefits the use and application of model-based
system verifications and their approach in verifying the Safety-
Critical Systems. Marco Filax et.al [2] proposed a traceable
modeling approach in verifying the Safety-Critical Systems
models that were cohered with the colloquial unstructured
requirements. The conversion of informal specifications into
their specific formal representations, which could be verified
as the formal models, meets the system safety requirements
that were specified. In order to achieve a high quality software,

automated software testing process is very much essential to
effectively verify and validate the software models during the
software development process. Gordon Fraser et.al [3] pre-
sented a model-checker based approach wherein the automated
test-case generation and specification analysis were integrated.
The approach proposed was based on mutation based testing
paradigm, for an abstract software model.

The application of formal methods has taken a toll in ensur-
ing the correct functioning of complex hardware and software
components among the Safety-Critical Systems. Frank Ort-
meier et.al [4] proposed an analogous approach that warrants
the correctness of the formal models that considers the im-
portant aspects such as reliability, availability, maintainability
and safety of the Safety-Critical System with respect to its
safety requirements. The approach proposed was justified with
the case study of the development of railway systems using
a simplified version of formal methods and its applications in
the whole process. This was done with the help of Verification
Environment for Critical Systems (VECS) [5]. The encompass
of VECS is such that various model checkers are integrated
in order to perform the safety analyses for Safety-Critical
Systems. These kinds of analyses are to be well established
and are to accomplished during the design phase in the devel-
opment of Safety-Critical Systems. These analyses are abstract
and based on the informal representation of the systems as
models that are considered to be incomplete, inconsistent and
with errors/faults. The lack of precise information about the
faults/errors in these system models requires effort in ac-
knowledging and embedding the information in these models
to carry out safety analyses like fault trees, failure modes
effects etc. Anjali Joshi et.al [6] proposed an approach of
developing a unified common system model that can included
with the information of probable faults and errors during their
development process. This system model was automated with
the support to provide the safety aspects of the system. This
was intended to improve the quality of the safety analysis
and reduce the cost of development as well. The challenges
that were posed in practically implementing the approach were
analyzed.

The software models needs to verified and validated ef-
fectively using model checking mechanisms in identifying
the exquisite predicaments in safety aspects of the software.
An extensive approach that includes incremental verification,
which boosts the level of confidence, was proposed by Yunja
Choi et.al [7]. The process involved in this methodology
accommodated an automated counterexample generation facil-
ity. This facilitated in identifying and localizing the inherent
safety bugs in the system software models. This was suitably
ascertained with the software safety analysis of Trampoline
operating systems, using varied model checkers.

The model checkers interprets the software models or the
system models as a state machine and also its properties.
These model-checkers reconnoiters that state space and verifies
whether the property inherited by the model holds for all
states. Any violation will be traced, a counterexample is
generated. A unique environment that aids in handling all

1952

these processes can be considered. Verification Environment
for Critical Systems (VECS) is one such platform that assists
in tracing the violations encountered by the software models
with respect to its safety aspects.

A. Verification Environment for Critical Systems (VECS) &
System Analysis Modeling Language (SAML)

The software engineering processes and the application of
Safety-Critical Systems being augmented with formal methods
in assuring software safety is recommended. These method-
ologies formalize the hazardous behavior of the software and
its probability of occurrence. The dominion of systems engi-
neering very much requires formal methods, which is abstract
and requires the knowledge of specific, independent, versatile
modeling languages used by the tools like NuSMV/nuXmv
[8], PRISM [9], UPPAAL [10] etc. These tools are meant to
verify and understand system behavior. However the absence
of proving the presence of a failure and calculating the
probability of a specific behavior occurrence cannot be solved.
This conceivably needs the assistance with one or more tools
to verify varied aspects of a system model, which requires
the usage of varied languages and their dependent syntax and
semantics. The system model has to be developed with unique
paradigms concurrently.

A suitable formal verification language, System Analysis
Modeling Language (SAML) combines language elements of
various modeling aspects (both qualitative and quantitative)
as unified modeling language. This unique language can be
used by different verification engines in validating the model
aspects. Verification Environment for Critical Systems (VECS)
provides an interactive environment to develop and analyze
SAML models. VECS is basically a verification environment
built to support the development of Safety-Critical Systems,
that includes formal verification techniques and build corre-
sponding safety cases.

SAML combines language elements of both, qualitative and
quantitative modeling languages as well as the integration
of specific failure behavior. It is possible to use various
verification aspects and techniques like probabilistic model
checking, fault tree analysis, qualitative model checking, etc.,
with a single model. SAML allows modeling the system
once and verifying these formal models using multiple model
checkers. VECS implements well specified connection to the
external verification tools like NuSMV, nuXmv or PRISM,
that support these techniques. VECS enables the formal model-
based development usable in the system engineering processes.
This is done in VECS with the feature if combining different
formal analysis techniques and tools within a unified verifica-
tion environment. VECS has vibrant features, being;

1) Connection to different model checkers: VECS pro-
vides a connection to different model checkers like
NuSMYV, nuXmv, PRISM, to execute the model checking
and analyze their results

2) Visualization of verification results: VECS provides
various visualization tools views like Legend Plot, Plot

View, Trace View, etc., to have a better understanding
of the verification results.

3) Model Debugging: An interactive debugger is used to
analyze the violated traces (counterexamples) by visu-
alizing the hazard state and propagating through the
model’s state space.

4) Simulator: VECS enables to explore the model’s state
space with respect to a specific model state and analyze
the model’s state space. Further this can be combined
with the external systems to execute a co-simulation and
analyze the model’s behavior in a realistic scenario.

5) Fault Tree Analyses: The implementation of Deductive
Cause-Consequence Analysis (DCCA), generates fault
tree analyses with minimal cut set.

6) Model Viewer: All the model instances and their rela-
tionships can be viewed as well as the links and their
dependencies over the modeled system.

III. APPROACH

Safety analyses being a major focus in Safety-Critical Sys-
tems, the concept of Model-Based Safety Analysis (MBSA)
aims at inspecting the traces between the components mal-
functioning and the system hazards based on mathematical
deduction techniques. Both the qualitative and quantitative
aspects are considered for the complete safety analysis of the
system with the help of a formal system model. The model is
representation of the software and hardware components of the
system, information about its environment, and details of its
failure modes. The main objective of MBSA is to guarantee on
the behavior of the Safety-Critical Systems based on specific
formal models. This assures system safety and functionality
as per the civil aviation standards RTCA DO178B/C.

System
Requirem ents

Using Syntax & ntics of J/
SAML

Translation of the
requirem ents into
SAML modelin

Model Preview

VECS

Inclods UpdateRules,
Assiznments &
Spacifications?

DCCA Generator

l

FTAfor Safety
Anatyses

Specifications
are
LTL/CTL?

Specifications
are PCTL?

Invoke
NuSMV/nuXmv

l J

Invoke PRISM

l

Generate counterex am ples
for Safety Analyses

Fig. 1. Workflow for MBSA using SAML.

1953

IV. MODE TRANSITION LoGic (MTL)

A. Automatic Flight Control System (AFCS) Mode Transition
Logic (MTL)

Automatic Flight Control System (AFCS) [11] is a highly
complex and critical aircraft system that aids in guiding,
controlling and steering the aircraft automatically, without
any manual intervention. The AFCS has two main functional
partitions the Autopilot Function (AP) and the Flight Director
(FD) The AP function consist of four modules, while the
FD function consists of Mode Transition Logic (MTL) and
Command Generation (CG) modules. Mode Transition Logic
(MTL) is a discrete event system consisting of states, inputs
and outputs. The state of the system is uniquely defined by its
state vector, which comprises of state variables. Each of the
state variables can take on certain discrete values. The state
changes in response to certain events. The inputs to the system
comprise of the event inputs, which represent leading edge or
trailing edge triggers generated by events like button press and
data inputs that could be the value or status of some system
variable.

The MTL block outputs flags corresponding to the vari-
ous modes. These flags are passed on to the CG function,
AFCS function and to the Autopilot Control and Mode Select
Panel (ACMSP) for annunciation. At any instant of time, the
autopilot status is defined by the current value of the state
vector that is stored in memory. On the occurrence of any of
these event inputs, the MTL block processes only one of the
events based on the priority of the events. If no event occurs
during a particular iteration cycle then no transitions takes
place and the current state vector is retained. The possible
transitions values from a current value of a state variable
are specified in the state transition matrix (STM). The actual
transition of a state variable from the current value to a new
value is based on condition(s) given in the condition matrix
(CM). If the condition is true, then that element of the state
vector is updated to the new value and this value is stored
in the corresponding location in a temporary vector of same
dimension as the state vector. This is repeated for each of
the elements of the state vector. Only when all the entries
of the state vector have been successfully transitioned in this
manner, then the state vector is overwritten with values from
the temporary vector. This ensures that either all the elements
of the state vector are updated or none at all. This prevents
partial transition of the state vector to an undefined state. The
outputs of the block are then updated corresponding to the
current state vector. The outputs corresponding to the current
state vector are to be read out from the output matrix (OM).
These outputs are passed on to the CG. Logical combinations
of these outputs are computed to decide the status of the
annunciators and the steering bars.

1) State Vector of MTL Block: The state vector of the
MTL block comprises of six state variables. These state
variables and the discrete values that each of them can take
are enumerated in the below table as;

TABLE I
STATE VECTOR OF THE MTL BLOCK

Values
Name
Disconnect
PAH
SPD
VS
ALT
SYNC
Disarm
Arm
Disconnect
RAH
HH
HDG
SYNC
Disconnect
Engage
SYNC
Off
On
Off
On
SYNC

State Variable
No. Name

z
o

QI D[== B[== LI B[== | [LI B = D[| O Wn| | LI B —

Vertical Mode (Vm)

Altitude Select Arm (Alsa)

Lateral Mode (Lm)

AutoPilot (Ap)

SoftRide (Sr)

FlightDirector (Fd)

2) Events Inputs: Events are leading edge triggers gener-
ated in 2 possible ways;

1) Pilot/co-pilot operates a button on the ACMSP, operates
the Quick Disconnect Switch or the SYNC switch on
the control yoke

2) 0 to 1 transition of the any internal events generated in
the Command Generator

The only exception is the SYNC switch for which both
the rising (SYNC button press) and falling (SYNC button
release) edges are processed by the MTL. The disengage
conditions for the Autopilot (DECAP) and Flight Director
guidance (DECFDG) are computed separately and input to the
respective blocks. The Quick Disconnect (QD) switch press
and the occurrence of DECAP are combined into one event
input with OR logic. If no event occurs during a particular
iteration cycle then no transitions would take place. All events
are suitably de-bounced before being used in the MTL logic.
The event inputs to the MTL are listed as;

TABLE II
EVENTS INPUT OF MTL BLOCK

ng:t E;f:et Des.cription Source
1 Bap Autopilot Engage ACMSP
2 Bs Airspeed Hold Select ACMSP
3 Bv Vertical Speed Hold Select ACMSP
4 Ba Altitude Hold Select ACMSP
5 Bals Altitude Pre-select Enable ACMSP

6 BOcap Zero bank angle captured FD
7 Bh Heading Select ACMSP
8 Bsr Soft Ride select ACMSP
- - Control

Quick Disconnect or AP

K BQDec disengage condition YOII:(B &

10 Alcap Altitude Captured FD
11 Bfd Flight Director Guidance Select ACMSP
Control

SYNC status change (SYNC

12 SYNC switch pressed or released) Y011:<B &

1954

The MTL block processes only one event at a time. In case
of multiple events occurring together (within the same MTL
iteration), the first one, in the order given below, is to be taken
and the others are to be ignored.

Event Priority = [9 12111 86 1023 457]

3) State Transition Matrix and Condition Matrix: The
state transition matrix (STM) is given in III. (All empty
elements are assumed to be 0 and hence no transition takes
place) The STM is a column of six sub-matrices, one for each
state variable. The ith sub-matrix corresponds to the ith state
variable. It has rows corresponding to the different values of
the ith state variable and columns corresponding to the 12
event inputs listed in II. The number entered in the jth row,
kth column of this (ith) submatrix identifies the value that this
(ith) state variable should transit to from the current value j,
when event k occurs. Hence, given any current value of the
state vector, the six sub-matrices of the STM together define
the new value of the state vector when any one of the 12
events occurs.

Example: Let the current state be X = [1 1 1 1 1 1]
(Autopilot disengaged, Flight Director (FD) off), The vertical
mode, X(1) has a value 1 (Disconnected). If event number 1
(Bap) occurs, i.e. the autopilot engage button on the ACMSP
is pressed, the vertical mode, X(1), should transit to 2 (PAH)
provided the associated conditions are satisfied. Every mode
transition has an associated condition to be satisfied for the
transition to be allowed and the condition numbers are defined
in condition matrix (CM) (III). CM is of the same size and
structure as the STM. Hence, every element of the STM has
a corresponding element in the CM. The jkth element of the
CM gives the condition number(s) to be checked in Table 5
for the transition represented by the jkth element of the STM
to be allowed. If multiple conditions are to be checked, these
are combined into a single condition using appropriate logical
operations. The entire set of conditions corresponding to the
condition numbers in CM on which mode transitions depend
on is listed in V.

Example: In the STM example above, for X(1) to transit
from 1 to 2, condition number 2 of V(Ec1) should be 1 (true)
(since element (1,1) of the 1st sub-matrix of the CM is 11). If
condition number 11 (Sync) evaluates to 1 (true) then X(1)
is to be changed from 1 to 2. Else, X(1) remains equal to 1.

4) Multiple Transitions: 1t is possible to have more than
one transition within a single entry of the STM or CM. In
such cases, when a particular event occurs, the state variable
can transit to various values depending on the status of some
associated conditions. There can be up to three transitions
within a single entry of the STM and CM. In these cases
the entries are to be read 2 digits at a time from left to right.
The transition represented by the leftmost pair of digits has
the highest priority. Example: Let initial state be X = [1 1 1
1 1 1] (autopilot disengaged, fd disconnected). Consider the
transition of the Lateral mode. The current value of the Lateral
mode, X(4), is 1 (i.e., Disconnect). Suppose event number 1
(Bap) occurs, i.e. the AP engage button on the ACMSP is

TABLE III
STATE TRANSITION MATRIX

O — —
4 = =)
l—t tel — l— l—t
ISl = = o =) =)
— |» o o o o |a — TR Vol Yol i en | — on |
N e [v o o fon [
o oo o o o o o
= N R [F (D Qe F | — [
— = o oS |o o oo o |lo S o o
—_ N = === = — A = = = [~ ~ = =
=
<
o =
= |« —
<
2
o N o [0 [o o o [o N [en
c ool IS = S oS o =]
- --] — = = = = — — = = = — | — — =
i
72l
=] SIS — (SN =
o
= =)
~ |8 <t [|
=
<
3
=
Noly(--] (S}
2
[}
Ual--] =
<
< | Vol "o R Tot QN —
>
o | <t |~ <
k2]
S --] cn [fen [en
N e [v I o fon [
a c oo o o o oo
5 Qo [F @ Qe F N [—
o oS o c oo e |le S o |o
—_ N = === = — A = = = = | = = —
s
Q Q Q Q
5 . on
> .fﬁamzitg.ﬁﬁs—cit‘:i&::tci
= A A | < P O PPEEERRLLRNIOPL IO «n
— N & o = N = e & o = e e = e = e e
£ g 3 £
e o
- - — o
7} > < = < %] =2

pressed. The associated element (1,1) of the 4th sub-matrix
of the STM reads 0302. This is to be read as (03 and 02)
implying that X(4) could possible transit from 1 (Disconnect)
either to 3 (HH) or to 2 (RAH). The corresponding element
of the CM is 1206 to be read as (12 and 06). These two
conditions correspond to the 2 states (03 and 02) obtained from
the STM. Taken together, the above 2 entries of the STM and
CM (and a left to right priority) imply that if condition number
12 (lec2) is 1 and DEC is 0, then X(4) transits to 03 (HH),
Else if condition number 6 (lec1) is 1 and DEC is 0 then X(4)
transits to 02 (RAH). If neither condition is satisfied the state
variable remains unchanged. Triple transitions, wherein there
are three possible states (and associated conditions) within a
single entry of the STM (and CM) are similarly implemented.

1955

TABLE IV
CONDITION MATRIX

TABLE V
L1ST OF CONDITIONS

- - No. | Name Logic Combination
S - I - Q} - 1 -10 < 6 <25 (deg) & ¢ <30 (deg) & FD
o~ E clolelo & = ololo |« o = S o = True not Inhibited
— | — = = = |~ — — = = |~ = |~ — — |~ 2 Ecl -10 < 0 < 25 (deg) & $<30 (deg) & FD
not _Inhibjted.
o oy oy o o o o o 3 Ec2 120 < CAS < Vmo (knots) & SR not
SESESES ~ SESES — o [o ¢ selected
—Erekelk|l ERERE Sk | [4 Ec3 VS>50 f/min & SR not selected
5 Ec4 VS<500 ft/min & SR not selected
a 6 Lecl -10 < 6 < 25 (deg) & $<30 (deg)
- B 7 Lec2 -10 < 6 < 25 (deg) & ¢<1 (deg)
2= RAT naly nt — 8 False False
(Clutch Closure Monitor trip OR Attitude
g Closure Monitor trip OR Motor Current
g S B BB = SB BB == Monitor trip OR Pitch Trim Monitor trip
R RERRRE] K RRRR] <] -] K&K OR AP Command Comparison Monitor trip
9 DECAP OR Motor Engagement / Disengagement
= - Monitor trip OR Limits Monitor trip OR
oo |8 — = — — Stall Warning Fired OR SWS Fail OR Any
Primary Servo Motor Fail OR MtrimActive
= = OR DECFD)
Ol A A 10 Sync Sync button on control yoke depressed
Sync released & -10 < 0 < 25 (deg) &
g 11 ~Sync $<30 (deg)) & (AP in SYNC or FD in
< — SYNC)
e o > AP (AP Engaged OR AP in SYNC) & FD
" Disengaged
= © 13 FD (FD Engaged OR FD in SYNC) & AP
Lel — | Disengaged
14 ~SyncLec2 Syn§ released & Lec2 & (AP in SYNC or
NN _ FD in SYNC)
15 As Altitude select armed
o LecT & vertical mode is PAH/SPD/ VS &
o | < < |~ & 16 Ecls VS>500 ft/min and VS is in the direction
of selected altitude & SR not selected
A 17 noAPPR (AP engaged OR AP in SYNC)
- T 13 APPR Approach mode armed or captured (Gs
NNNN N NN .OR. Gh .OR. Ls .OR. Lh)
== = = = = = = 19 APFD AP Engaged & FD Engaged
a EEER CLEEE| ke 5 :
= SRR R |« SRR REKNERR ync released & (§ < -I0 OR § > 25 OR
—ReEE el el el e — 20 ~SyncDEC ¢ > 30 OR DECAP if AP in SYNC OR
. Y DECEFD if FD in SYNC) & (AP in SYNC
S Q Q Q Q OR FD in SYNC)
| BEBKECEEBEEECRBEEEES | [Bank) | SR not selected
FD Command Comparison Monitor trip OR
S R O A T e S e R R AR S 29 DECFD AerATAInputsFall) OR InertlalDATAIn—
putsFail OR FlapFail OR ACMSPFail OR
e s SQUAT
= g 2 g a. = - DECFD OR((AP engaged OR AP in
izl > < = < v = 3 DECFDG SYNC)& FD Disengaged)
24 FDEcl -10 < 0 < 25 (deg) & ¢$<30 (deg) & FD
e e s @ A
25 APEcl 10.< 0 < 25 (deg) & §<30 (deg) & AP
not Inhibited

V. MTL IMPLEMENTATION IN VECS USING SAML

The SAML models discrete-time, discrete-valued, time-
homogeneous stochastic (optionally non-deterministic) sys-
tems. In the scope of MBSA, stochastic and non-deterministic
describes two distinct systems. The Mode Transition Logic
(MTL) model as time proceeds, it changes states in terms of
abstract discrete steps. That means, the model state changes
exactly once for each time step. There is no general duration
of time step semantics that can be defined for the MTL
model. Also there can have a finite number of possible states.
This represents the multiple transitions in MTL. At each time
step, the MTL model is in exactly one discrete state. For
the next time step, the model changes its state exactly once
(the next state may be identical to the current one, though).
MTL model exhibits stochastic behavior along with non-

deterministic behavior. Here during this behavior, the selection
of the state by the model in the next time step depends not only
on the specified stochastic state transitions. There happens to
be 6 main states in MTL model. These states and the sub-
states are represented as components in SAML model. These
components represent the fundamental structure, representing
a state machine, in which the state variables and the transition
rules are defined. These components can be nested in order to
represent specific system architecture. Each state represented
as a component can have arbitrary number of state variables.
These state variables are the variables with respect to each state
& sub-state in MTL. The state variables represent a specific
value of a variable at a given time. In MTL, the state variables

1956

provide the information specific values about the sub-states i.e.
current sub-state and state the MTL is precisely existent. The
MTL model will be represented by a combination of all state
values at a given time step. These state variables have to be de-
clared at least once in order to be used within the components.
The constants in the logic combinations provided in V, needs
to declared as state variables with the data-types information.
SAML models support signed integers, decimal numbers and
enumerations, as an extension to enhance the usability and
readability of the formal model, of MTL. While the set of
state variables represent the model state at a given time, update
rules determine how the system state changes from discrete
point in time to next state or sub-state. This is a combination
of the Event Inputs and Condition Inputs with their logic
combination as per III & IV. Basically the update rule in
MTL consists of a triggering condition and assignments of
state variables (logic combination as Conditions) with specific
values. Here the state value assignments are arithmetic while
the conditions can be of logical propositions and formula.
Henceforth the specifications are included suitably in the MTL
model to evaluate the verification process of the formal model
that specifically satisfies a set of properties. This is done in
VECS using SAML as shown in 2.

double pbreakbegin
double pbreakends
constant double pcrash 2
constant double perashbreaking

t sensorTrash =4
constant double pdetectorAwrong
ant double pdetector:
ant double pdstectionMor

double pairbagdefect = 2.
double pairbagselfIgnition := 2.

Fig. 2. SAML Model representation for MTL model using Components,
State Variables, Update Rules and Specifications in VECS.

The properties are to be specified for the formal MTL model
such that the model checker will be capable of interpreting the
specification. SAML provides a transformation such that the
input to different formal analysis tools, depending on the type
of the system property can be checked. This is specified in the
formal model as shown in 3

formula Hfalsepos := main.crash.state =

& main.airbag.state = i;

HAZARD Hfalsepos;

SPEC Pmax=7[(true U<= Hfalsepos)]:

Fig. 3. Specifications inclusion in the formal SAML model to verify the
system properties.

After the inclusion of the system specifications the formal

model has to be included with the failure occurrence patterns
to perform safety analyses. This failure pattern is the process
of definition of a certain failure occurrence at a specific time.
The basic form that allows an occurrence of a failure is occur
and optional recovery recover, are included in the SAML
model as shown in 4.

failure errorcrashDetectionNonitorurang

occurs perdemand true probability pdecectionMonitorwrong:

recovers perdemand true probability 1- pdetectionMonitorwrong:
endfailure

Fig. 4. Failure Occurrence pattern definition in SAML Models.

The occurrence pattern specifies the type of occurrence,
which can be either transient or persistent failure. Persistent
failure is assumed to occur only once and stay afterwards in
the same failure state, while the transient failures can occur at
every step. The former is considered in the MTL model. Their
modes of occurrence are also defined in the model as per-time
failures or as per-demand failures. Per-time failures describe
the occurrence of the failure in a given interval of time. Per-
demand failures describe the failures which can occur only
if there is a request or demand, as in the case of safety
analyses of MTL. The inclusion of the failure components
in the model will not differentiate the model as functional
and failure models. It allows to specify the specifications
along with the occurrence or the non-occurrence of the failure
conditions. The functional model is transformed with all the
specified specifications and the failure scenarios defined in the
formal model. The model is viewed in the VECS using the
Model Preview tab, which will be as shown in 6.

=

'S Model Checker Job: ModelCheckingTool

0 Model Check

Transformation (3 / 12)

Always run in background

Run mBncI:gmund- | Cancel] []cl:mls >.>

Fig. 5. Model Transformation Process in VECS.

With the help of DCCA generator and the explicitly spec-
ified failures, DCCA generator creates a number of failure
combinations that will lead to a hazardous state of the system.
This set of failures is called as minimal cut-set. If a non-
deterministic failure is included in the model, the model
checkers choose the worst-case occurrence of the failure which
has a greater impact on the calculated failure probabilities.

The well-specified syntax and semantics of SAML trans-
forms a formal model into a model with another language on
syntax level, with the semantic of the formal model being
intact for maintaining formalism. A hazard specification, a
propositional formula describing one specific state of the
system modeled, wherein it represents the state which the
system should not reach under normal conditions is specified,
as shown in 3. DCCA generator generates a minimal cut set

1957

Fig. 6. Model Preview in VECS.

fault tree analysis based on the specified hazard, as shown in
7.

Fig. 7. Fault Tree Analysis with Minimal Cut-Set in VECS.

For the MTL model, Linear-time Temporal Logic (LTL)
formula is used to define a general temporal system behavior
is defined in the SAML model, marked with the keyword
SPEC. This specification is used by VECS to invoke the
NuSMV model checker with SAT-based IC3 algorithm. Also,
Computation Tree Logic (CTL), a temporal logic specifying
the systems behavior based on a set of possible execution
paths are specified in the model covering at least one path (E)
or all the paths (A). The CTL based specifications are also
marked by the keyword SPEC, and is verified in VECS by
invoking BDD-based verification algorithm in NuSMV model
checker. The traces thus generated in VECS are considered as
counterexamples. This is represented by VECS as shown in 8.

Fig. 8.
generator.

LTL/CTL Specifications generated as counterexamples by DCCA

The model can be simulated to envisage the counterexample
generated for the same. The VECS simulator explores the
model’s state space by walking through the model’s state
space. VECS also has an interactive debugger that helps in
analyzing the counterexamples by simulating the hazard state.
The states can be stepped back and forward through the
model’s state space during the debugging and simulation. This
is as shown in 9 & 10.

It is even possible to include the Probabilistic Computa-
tion Tree Logic (PCTL) formula, an extended version for

Fig. 9. Debugging/Simulation in VECS for the SAML model.

Ped -

Enter Mumber of Steps
[10 |

| oK | | Cancel |

Fig. 10. Number of steps to be forwarded during Debugging/Simulation.

probabilistic modeling included in the SAML model. PCTL
provides the functionality with which probability a property
holds, instead of simply verifying whether the property holds.
It is also possible to specify the probability thresholds, i.e., a
minimal or maximal probability vale for a given property. In
PCTL a bound for the temporal operator like F<=10, meaning
a specific state can be reached within 10 steps can be specified.
With the keyword SPEC the specification is associated with
the usage of probability as P=2? or Pmax = 0.5. PRISM model
checker is invoked in VECS to verify the formal model and
the corresponding specification associated to the model.

VI. CONCLUSION

The paper describes a novel approach of Model-Based
Safety Analysis technique for Safety-Critical Systems. The
technique proposes to describe systems through a common
interface of formalism in combination of definition of specific
system properties. These properties are specified at abstract
levels in the model modeled using SAML for MTL. SAML
helped in providing a generic unified formal structure of
MTL that could be analyzed successfully with different model
checkers like NuSMV/nuXmv and PRISM. The metrics gen-
erated and the analyses performed using VECS provides more
insight into the software safety techniques and capabilities
of different model checkers in identifying, localizing and
analyzing the failure scenarios by expressing in unique specific
formats. The metrics generated by transforming the formal
model into tool specific specifications helped in analyzing
the compliance with the system safety requirements. Also the
compliance with the RTCA DO178B/C could be easily per-
formed with the results obtained from these kinds of analyses
performed by various tools for a unified formal model.

ACKNOWLEDGMENT

The authors would like to thank the Director, CSIR NAL,
Bengaluru for supporting this work

REFERENCES

[1] Haxthausen, Anne E. ”An introduction to formal methods for the
development of safety-critical applications.” Technical University of
Denmark (2010).

[2] Filax, Marco, et al. ”’On traceability of informal specifications for model-
based verification.” (2014): 11-18.

1958

[3] Fraser, Gordon, and Andrea Arcuri. “Evosuite: automatic test suite
generation for object-oriented software.” Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering. ACM, 2011.

[4] Struck, Simon, Matthias Gdemann, and Frank Ortmeier. “Efficient
optimization of large probabilistic models.” Journal of Systems and
Software 86.10 (2013): 2488-2501.

[5] Verification Environment for Critical Systems (VECS), can be found on
https://cse.cs.ovgu.de/vecs/index.php/product/vecs.

[6] Joshi, Anjali, and Mats PE Heimdahl. "Model-based safety analysis
of simulink models using SCADE design verifier.” International Con-
ference on Computer Safety, Reliability, and Security. Springer Berlin
Heidelberg, 2005.

[7]1 Choi, Yunja. "Safety analysis of trampoline os using model checking:
an experience report.” Software Reliability Engineering (ISSRE), 2011
IEEE 22nd International Symposium on. IEEE, 2011.

[8] NuSMV/nuXmv Model Checker, can be found on http:/nusmv.fbk.eu/

[9] PRISM Model Checker, can be found on
http://www.prismmodelchecker.org/

[10] UPPAAL, can be found on http://www.uppaal.org/

[11] Dr. G K Singh, PVS Murthy, Functional Requirement Document for
SARAS Automatic Flight Control System, DR-43, Issue 4, Rev E, July
2011.

[12] Leveson, Nancy G. “Software safety: Why, what, and how.” ACM
Computing Surveys (CSUR) 18.2 (1986): 125-163.

[13] System Analysis Modeling Language (SAML), Otto-von-Guericke-
Universitat Magdeburg, Version 2.20, Nov 2015.

[14] Heumller, Robert. "Multi-Abstraction Model Based Software Develop-
ment for Embedded Low-Cost Applications.” (2015).

[15] Hebecker, Tanja, Robert Buchholz, and Frank Ortmeier. "Model-based
local path planning for UAVs.” Journal of Intelligent & Robotic Systems
78.1 (2015): 127-142.

[16] Bowen, Jonathan, and Victoria Stavridou. ”Safety-critical systems, for-
mal methods and standards.” Software Engineering Journal 8.4 (1993):
189-2009.

[17] Gonschorek, Tim, et al. "VECS-verification enviroment for critical
systems-tool supported formal modeling an verification.” IMBSA 2014:
short & tutorial proceedings of the 4th international symposium on
model based safety assessment. 2014.

[18] Lipaczewski, Michael, Simon Struck, and Frank Ortmeier. "SAML goes
eclipseCombining model-based safety analysis and high-level editor
support.” Developing Tools as Plug-ins (TOPI), 2012 2nd Workshop
on. IEEE, 2012.

[19] Biehl, Matthias, Chen DelJiu, and Martin Trngren. “Integrating safety
analysis into the model-based development toolchain of automotive
embedded systems.” ACM Sigplan Notices. Vol. 45. No. 4. ACM, 2010.

1959

