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Abstract This paper presents a simulation study on esti-

mating the Geo-Location of a target based on multiple

image of the target taken from a gimbaled camera mounted

on a unmanned aerial vehicle (UAV), which orbits around

the target with a radius such that the target is always in the

field of camera vision. The Camera Vision Simulation of

the UAV is implemented by using an ortho Geo-TIFF

(Geo-Spatial Tagged Information File Format) as imagery

reference, positional and attitude attributes of UAV, Gim-

bal and Camera and internal characteristic of the simulated

Camera. Target is localized using the simulation images

taken from multiple bearing waypoints by applying the

Geo-Location algorithm using the simulation parameters as

reference. For improving the accuracy of the estimation,

error reduction techniques like true average, moving

average and recursive least square are also suggested and

implemented.

Keywords Target Geo-Location � Multiple bearing �
Simulation � Geo-TIFF � Unmanned aerial vehicle (UAV) �
Error reduction technique

Introduction

Unmanned aerial vehicles (UAV) are aircrafts without a

human pilot aboard. UAV are preferably used in carrying

out mission considered to be ‘‘Dull, Dirty and Dangerous’’

as suggested by Tice [1]. UAV application mainly involves

the sensors placed in the aerial vehicle for collecting the

surrounding environment data which are of particular

interest and sending it to Ground Control Station for per-

forming the necessary operations. Target Geo-Location is

one such application, where the visual data captured from

the mounted gimbal camera placed on UAV is sent to the

Ground Control Station for determining the Geo-Location

Coordinate of a Target Point of Interest which is present in

the camera vision.

This paper presents a simulation approach for validating

and verifying the Target Geo-Location Algorithm sug-

gested by Pratyusha [2]. The work done in the paper Target

Geo-Location [2] by Pratyusha mainly involved determi-

nation of Target based on single bearing image data as

reference. This paper suggests determining the geo-loca-

tion of a target using multiple bearing image data, and also

implementing error reduction techniques for improving the

accuracy in the result.

The focus of this paper is to create a vision simulation of

a gimbaled camera mounted on a UAV, based on the

application of Geo-Location algorithm. The simulation

UAV model imitates to take a circular path around the

target with a particular orbital radius such that the target is

always under field of vision. The paper also focuses on

determining the Geo-Location of the target point of interest

using the image generated from the simulation, and

applying error reduction techniques for improving the

accuracy of the estimate.
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Estimation of circular waypoint

UAV is considered in this simulation to take a circular path

around the target due to its ease of implementation and effi-

cient capability of tracking target [3]. The vision simulation of

a camera mounted on a UAV taking a circular path around a

given target with a known radius is realized by generating the

images to be taken only from the equally spaced circular

waypoints in its path (Total of 36 equally spaced circular

waypoints is considered in this study). Hence, estimation of

circular waypoint is essential to determine the location of

UAVfromwhich themultiplebearing imageswill be taken for

the simulation. The circular waypoint locations are deter-

mined by the application of Haversine’s formula [4], as

mentioned in Eq. (1) with the knowledge of geo-location

coordinate of target, distance of separation (i.e. orbital radius)

and bearing angle of separation.

Iterative 0i0

Uav llði; 1Þ ¼ sin�1ðsinðt arg et latÞ � cosðdelÞ
þ cosðt arg et lonÞ � sinðdelÞ � cosði � sÞÞ

Uav llði; 2Þ ¼ t arg et lonþ arctan 2ðsinði � sÞ � sinðdelÞ

� cosðt arg et latÞ; cosðdelÞ � ðsinðtgt latÞ

� sinðmav llði; 1ÞÞÞ
ð1Þ

where, i is the sample number (iteration count or Bearing Angle

index). Uav llði; 1Þ is the UAV latitude location in radians for

‘ith’sample, Uav llði; 2Þ is the UAV longitude location in

radians for ‘ith’sample, t arg et lat is the latitude coordinate of

the target considered in radians, t arg et lon is the longitude

coordinate of the target considered in radians,

del ¼ d=6371000, ‘d’ is the radius of UAV orbit, 6,371,000 m

is theRadius of theEarth, s ¼ 360=n is the fundamental bearing

angle considered, n is the total number of circular waypoints.

Geo-location algorithm

The Simulation database creation (Synthetic Image Gen-

eration) and the Target Localization using the simulation

image generated, are both implemented in this study, based

on the Geo-Location Algorithm [2].

Geo-Location Algorithm basically relates the 2D pixel

coordinate of an object present in image plane with its 3D

world coordinate also called as inertial coordinate. In this

work we apply the Geo-Location Algorithm for determin-

ing the real world coordinate with the knowledge of pixel

coordinate of the point of interest. For applying the Geo-

Location Algorithm with the pixel coordinates of the point

of interest, it is also essential to know the different Coor-

dinate frames, Transformation Matrices between

Coordinate frames, camera intrinsic parameters such as

Camera Calibration Matrix and Image Depth.

Co-ordinate frames

Coordinate frames involved in transformation of 2D pixel

(Camera) coordinate to 3D real world (Inertial) coordinates

[5] are (Fig. 1):

• Inertial Frame (Xi, Yi, Zi) Inertial frame or 3D real

world frame coordinate describes an object location in

real world coordinates with Xi describing its North

position, Yi describing East position and Zi describing

the distance from centre of the Earth.

• Vehicle Frame (Xv, Yv, Zv) Vehicle frame is co-linear

with Inertial Frame, with the origin located at the centre

of mass of the plane.

• Body Frame (Xb, Yb, Zb) The origin of the Body Frame is

located at the centre of mass of the plane, with Xb, Yb, Zb,

describing the vehicle nose, right wing and belly of the

plane.

• Gimbal Frame (Xg, Yg, Zg) Frame originates at the

gimbal centre of rotation and is oriented so that Xg

describes the direction of optical axis, Zg describes the

width direction in the image plane, Yg describes the

height direction in the image plane.

• Camera Frame (Xc, Yc, Zc) Camera Frames has the

origin located at optical centre of the camera. Xc, Yc and

Zc describing the width direction in image plane, height

direction in image plane and direction of optical axis of

the camera lens.

Transformation matrices

The transformations matrix is important to relate the position

of the target point of interest in the camera frame coordinate

(image plane) to its position in the inertial frame coordinate

Xi (North)

Yi (East)

Xv 

Yv 

Yb       (Right 
Wing)

Xb        (Heading) 

di
v : Distance from Centre Co-

Ordinate 

Xg, Xc 

Yg, Yc 

Fig. 1 Coordinate frames
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(real world 3D location). Transformation matrix is defined

between adjacent relative Coordinate frames, and consists of

translatory vector and rotational matrix. The transformation

matrices used for determining the Target Geo-Location from

its image coordinate are mentioned below [5].

Transformation from inertial to vehicle frame

As mentioned in ‘‘Coordinate frames’’ section Coordinate

frames, the inertial frame and vehicle frame are co-linear with

each other. Hence, transformation matrix Ti
v can be defined by

translation between the origins of the frame as mentioned in

Eq. (2).

TV
i ¼ I �dVi

0 1

� �
ð2Þ

where,

dVi ¼
xUAV
yUAV
�hUAV

2
4

3
5

xUAV and yUAV represents the East (Latitude) and North

(Longitude) Location of UAV calculated from GPS, hUAV
is the altitude of UAV.

Transformation from vehicle frame to body frame

Body frame provides the attitude of the UAV with respect

to the Vehicle Frame. Hence transformation matrix can be

defined using rotational angles of UAV, roll ðhÞ, pitch ðuÞ
and yaw ðwÞ as mentioned in Eq. (3).

Tv
b ¼ Rb

v 0

0 1

� �
ð3Þ

where,

Rb
v ¼

chcw chsw �sh
sushcw � cusw sushsw þ cucw such
cushcw þ susw cushsw � sucw cuch

2
4

3
5

cu ¼ cosu and su ¼ sinu.

Transformation from body frame to gimbal frame

Transformation from body to gimbal frame is given by the

translation vector d
g
b , which defines the distance of sepa-

ration between the two frames and rotational matrix R
g
b,

which defines the rotational orientation of gimbal with

respect to the UAV body. The rotational orientation can be

determined by using angles which defines the 2D orienta-

tion of a gimbal namely, pan (aaz) and tilt (ael).

T
g
b ¼ R

g
b �d

g
b

0 1

� �
ð4Þ

where,

R
g
b ¼ Ry;aelRz;aaz ¼

celcaz celsaz sel
�sel caz 0

�selcaz �selsaz cel

2
4

3
5

d
g
b ¼ ½Xg

b ; Y
g
b ; Z

g
b �

T ¼ ½0; 0; 0�T is the translatory vector. (In

this simulation, the center of mass of body and gimbal is

considered to be the same),aaz denotes the azimuth angle of

rotation about Zg and ael denotes the elevation angle of

rotation about Yg after aaz,cel ¼ cos ael and saz ¼ sin aaz.

Transformation from gimbal frame to camera frame

Transformation from gimbal frame to camera frame is used

for aligning the image frame with respect to the gimbal

frame. In this experiment, camera orientation is kept such

that camera frame is collinear with gimbal frame, and the

gimbal center of mass and optical center is assumed to be

the same location. Hence, the transformation matrix Tc
g is

given by as mentioned in Eq. (5).

Tc
g ¼ Rc

g �dcg
0 1

� �
ð5Þ

where,

Rc
g ¼

1 0 0

0 1 0

0 0 1

2
4

3
5

dcg ¼ ½Xc
g; Y

c
g ; Z

c
g�
T ¼ ½0; 0; 0�T is the translatory vector

between camera and gimbal frame.

Camera Calibration Matrix

The perspective transformation provides the relationship

between the position of target point of interest in camera

frame (Pixel coordinates) with its location in inertial frame

(3D world coordinates). But this accounts only the external

parameters (positional orientation) not the internal char-

acteristics of the camera, which also defines where a 3D

real world points would be mapped in the camera image

frame. The internal characteristics of a camera can be

defined Camera Calibration Matrix ðCcÞ [6] as mentioned

in Eq. (6).

Cc ¼

fx fh cx 0

0 fy cy 0

0 0 0 0

0 0 0 1

2
664

3
775 ð6Þ

where, Cc is the Camera Calibration Matrix, fx and fy is the

focal length measured along width pixel and height pixel of

image plane in meters, fh is the skew of the pixel in meters,

cx and cy is the principal point of the camera in pixels.
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Image Depth

In order to compute the 3D world coordinate from the pixel

coordinate, estimating the transformation matrix which

accounts for external parametric variation and camera matrix

whichdefines the intrinsic characteristic of a camera is essential.

Along with these two parameters, it is also required to measure

an unknown parameter called Image Depth k, which gives the
information on the real world distance between camera centre

and target point of interest along the optical axis (Fig. 2). The

Image Depth k can be measured [6] by using Eq. (7).

k ¼ Zi
cc

Zi
cc � Z�i

obj

ð7Þ

where, Zi
cc is the z component of

Pi
cc,P

i
cc ¼ ½Tc

gT
g
bT

b
v T

v
i �

�1
Pc
cc is the location of center of

camera in inertial frame, Pc
cc ¼ 0 0 0 1½ �T is the

location of center of camera in camera frame, Z�i
obj is the z

component of P�i
obj, P

�i
obj ¼ ½CcT

c
gT

g
bT

b
v T

v
i �

�1
Pc
cc is the un-

scaled location of the object in inertial frame.

Determining geo-location from pixel coordinate

Geo-Location coordinate of the target point of interest

located at pixel coordinate q ¼ xip yip 1 1ð ÞT in the

image plane can be determined by using the transformation

matrices, camera matrix and Image Depth calculated [7] in

‘‘Transformation matrices’’ ‘‘Camera calibration matrix’’

‘‘Image depth’’ sections in Eq. (8).

Pi
obj ¼ Cc � Tc

g � T
g
b � Tb

v � Tv
I

h i�1

Kq ð8Þ

where, Pi
obj Geo-Location coordinate of the target, K ¼

kI 0

0 1

� �
and k is the Image Depth.

The Target Geo-Location can also be determined by the

knowledge of parameters used to calculate Image Depth k
by applying triangular law [7] in Fig. 3, as mentioned in

Eq. (9).

Pi
obj ¼ ½Utmx;Utmy;Utmz; 1�T ¼ Pi

cc þ kðP�i
obj � Pi

ccÞ ð9Þ

where, Pi
cc is the location of centre of camera measured in

inertial frame and P�i
obj is the un-scaled geo-location coor-

dinate of the target.

Synthetic scene generation

Synthetic Scene Generation or Simulation Image Generation

is process of creating images from a simulated camera

model placed on a UAV, by using aerial Geo-TIFF

(Geospatial Tagged Image File Format) for imagery refer-

ence. The Synthetic Scene Generation is achieved in this

study by the application of Geo-Location Algorithm. The

algorithm is used for determining the Geo-Location Coor-

dinates of each and every pixels of the simulated camera

model by using the simulation model parameters defined for

the UAV, Gimbal and the Camera which includes various

positional and attitude attributes, along with intrinsic

parameter (For Camera only). The UAV Heading Angle

parameter is chosen to be the negative value of Bearing

Angle for providing a more realistic simulation (Fig. 3). The

obtained pixel raster matrix results of Geo-Location coor-

dinate values are then filled with RGB imagery data value

depending on the following conditions:

• If the Image Depth k estimated for a given pixel in the

raster matrix is found to be zero, then the pixel is

shaded with sky blue, indicating the sky region.

• If the Geo-Location Coordinate value finds a pixel in

the Aerial Geo-TIFF image having a matching Geo-

Location Coordinate value tagged with it, then the

imagery data for the given pixel is filled using the

matching pixel imagery data found in Geo-TIFF.

• If the Geo-Location Coordinate value in the raster

matrix doesn’t contain any matching pixel in Geo-TIFF

file having the same location coordinate value tagged,

is shaded with black, indicating that the imagery data

for the given geo-location is unknown.

The Matlab code snippet for generating Synthetic Image

for a single bearing image is given below. uav, gimbal,-

camera are structures defining parameters involved with

UAV, Gimbal and Camera, A, info, lattiff, lontiff provides

information related with Geo-TIFF file with latiff, lontiff

arrays providing latitude and longitude information for

defining the co-ordinate information of each pixel in Geo-

TIFF.

-Zi

Xi- Yi

Xb 

Centre of Mass, Gimbal & Camera

Yb 

Xv 

Zv 

Yv 

λ

i
vh

i
ccP

i
objP −

i
objP

Target

Fig. 2 Visualization of the Image Depth
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function out = 
scenegenerate(uav,gimbal,cam,A,info,lattiff,lontiff)
% lat,lon to utm conversion
[utmx, utmy, zone] = ll2utm(uav.lat, uav.lon); 

% Inertial frame to Vehicle frame translation
vXi = utmx; vYi = utmy; vZi = uav.alt; 
vTi = htransl(-vXi, -vYi, -vZi);

% Vehicle to Body frame transformation
bTv = hrotx(deg2rad(-uav.phi)) * hroty(deg2rad(-
uav.theta)) * hrotz(deg2rad(-uav.psi));

% Body to Gimbal frame transformation
alpha = 180-gimbal.alpha; beta = gimbal.beta;
gTb = htransl(-gimbal.bXg, -gimbal.bYg, -gimbal.bZg) 
* hrotx(deg2rad(-beta)) * hroty(deg2rad(-alpha)); 

% Gimbal frame to Camera frame translation and 
rotation
cTg = htransl(-cam.gXc, -cam.gYc, -cam.gZc) * 
eye(4); 

% Camera Calibration Matrix
C = hcam(cam.f, cam.sx, cam.sy, cam.cx, cam.cy);
x_ip = repmat(1:cam.w,1,cam.h);
y_ip = repmat(1:cam.h,cam.w,1); y_ip = y_ip(:)';
q = [x_ip; y_ip; ones(size(x_ip)); 
ones(size(x_ip))];
i_pbar_obj = (C * cTg * gTb * bTv * vTi) \ q;
c_p_cc = [0; 0; 0; 1];
i_p_cc = (cTg * gTb * bTv * vTi) \ c_p_cc;

% Image Depth
lambda = i_p_cc(3)./(i_p_cc(3) - i_pbar_obj(3,:));
Q = [lambda.*x_ip; lambda.*y_ip; lambda; 
ones(size(lambda))];

%Geo-Location Estimation for each pixel in the Image
i_p_obj = inv(C * cTg * gTb * bTv * vTi) * Q;    
[cam.lats, cam.lons] = 
utm2ll(i_p_obj(1,:),i_p_obj(2,:),zone*ones(size(x_ip
)));
xtif = round((cam.lons - 
info.BoundingBox(1,1))/info.PixelScale(1,1));
ytif = size(A,1) - round((cam.lats - 
info.BoundingBox(1,2))/info.PixelScale(2,1));
ytif1 = round((cam.lats - 
info.BoundingBox(1,2))/info.PixelScale(2,1));
% Generate Image by Mapping the Obtained Pixel Geo-
Location
%Co-Ordinate with Geo-Tiff Information
for n = 1:length(x_ip)

% If Image Depth is negative, shade pixel with blue
if lambda(n) <= 0

cam.img(cam.h+1-y_ip(n),cam.w+1-x_ip(n),:) = 
[79, 110, 176];

% Pixel with unavailable imagery data shaded with 
black

elseif (xtif(n)<=0 || ytif(n)<=0 || 
xtif(n)>info.Width || ytif(n)>info.Height)

cam.img(cam.h+1-y_ip(n),cam.w+1-x_ip(n),:) = 
[0, 0, 0];

%Imagery data taken from matching pixel of Geo-TIFF
else

cam.img(cam.h+1-y_ip(n),cam.w+1-x_ip(n),:) = 
A(ytif(n),xtif(n),:);

cam.imglats(cam.h+1-y_ip(n)) = 
lattiff(ytif(n));

cam.imglons(cam.w+1-x_ip(n)) = 
lontiff(xtif(n));

end
end
out=cam;

Estimation of target geo-location

Target Geo-Localization is the process of estimating the

real world location of a ground-based target present in the

image taken from a camera placed in UAV, by applying

Geo-Location Algorithm. In this study the geo-location of a

target is estimated for multiple bearing image generated in

simulation by applying the Geo-Location algorithm as

mentioned in Eq. (8). The same UAV, Gimbal and Camera

Parameters which were used for simulation of a given

bearing image. The Matlab code snippet for the deter-

mining Geo-Location of target present in bearing image is

given below. x_ip, y_ip describes the pixel coordinate of

the target in the image, cam, gimbal, uav describes the

simulation parameter involved with the UAV, Gimbal and

Camera. Code for computing the Transformation and

Camera Matrix is not mentioned in snippet as the steps for

computing are similar to the ones mentioned in simulation

image generation. i_p_cc, lambda, i_pbar_obj are also

saved as output for further computations.

function out=geolocation(x_ip,y_ip,cam,gimbal,uav)
%  
Code Space for Transformation Matrix Computation and
Camera Matrix Computation remains the same as 
mentioned in Scene Generation
% 
%Unscaled Object Target Location in Inertial Frame
out.i_pbar_obj = (C * cTg * gTb * bTv * vTi) \ q;
c_p_cc = [0; 0; 0; 1];

%Camera Center Location w.r.t Inertial Co-Ordinates
out.i_p_cc = (cTg * gTb * bTv * vTi) \ c_p_cc;

% Image Depth
out.lambda = out.i_p_cc(3)./(out.i_p_cc(3) -
out.i_pbar_obj(3,:));

%  Target Geo-Location Estimation
if out.lambda > 0      

Q = [out.lambda.*x_ip; out.lambda.*y_ip; 
out.lambda; ones(size(out.lambda))];

i_p_obj = inv(C * cTg * gTb * bTv * vTi) * Q;
[out.lat, out.lon] = 

utm2ll(i_p_obj(1,:),i_p_obj(2,:),zone);
end

Xv 

Xb 

Target Location
τ: Bearing Angle

Ψ=-τ
Ψ: Heading Angle

Fig. 3 UAV Heading Angle variation for change in bearing angle
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Error reduction techniques

The estimation of geo-location coordinate calculated for

each images taken from different bearing angles are bound

to be error prone even if ideal conditions are considered in

the simulation. The error in simulations like in this study

can be mainly due to the inaccurate localization of pixel

coordinate, which can be due to either, incorrect selection

of pixel coordinate or target being located at integer pixel

element, or both the criteria. Also, when a practical real

time experiment is considered, the error in estimation can

increase due to the uncertain parametric environment cre-

ated by different error bias [8]. Hence for reducing the

error observed in the estimation of geo-location coordi-

nates, localization methods based on multiple bearing

images can be considered. Averaging is one such method,

where results of multiple bearing images are considered to

reduce localization error. The Averaging methods used in

the paper are.

Average estimation

Average Estimation is determined by computing the

arithmetic mean of estimation as shown in Eq. (10).

Utmx tavg ¼ 1

n

Xn
i¼1

UtmxðiÞ

Utmy tavg ¼ 1

n

Xn
i¼1

UtmyðiÞ
ð10Þ

where, Utmx_tavg, Utmy_tavg is the True Average Value

of target x and y coordinate in UTM coordinates, n is the

total sample number (n = 36 in this study), UTMx(i),

UTMy(i) is the x and y UTM Coordinate true value com-

puted for ith sample number.

Moving average estimation

Moving Average Estimation is determining the mean of

subset of value, where only a few recent determined from

bearing sample number location of x and y UTM coordi-

nate values are considered (in this study, 5 recent values

chosen) for computing the mean of the subset. Moving

Average computes only subset of values as mentioned in

Eq. (11), in contrast with True Average value which con-

siders the entire dataset.

Utmx mavgðkÞ ¼ 1

w

Xk
i¼k�wþ1

UtmxðiÞ

Utmy mavgðkÞ ¼ 1

w

Xk
i¼k�wþ1

UtmyðiÞ
ð11Þ

where, Utmx_mavg(k), Utmy_mavg(k) is the Moving

Average Value determined for the kth Sample Number, w is

the window size for the Moving Average.

Recursive least square estimation

Recursive least square (RLS) is a simple method of

recursively fitting a set of points to some function of choice

by minimizing the sum of the squares of the offset of the

points. The results obtained using RLS is identical to the

true average, but the process of obtain it is more efficient.

Another benefit of using RLS is that it provides intuition

behind such results as the Kalman filter. The Matlab code

snippet used for determining estimation from RLS

Latitude (deg)

12.9626 12.9628 12.963 12.9632 12.9634 12.9636 12.9638

Lo
ng

itu
de

 (d
eg

)

77.6508

77.651

77.6512

77.6514

77.6516

77.6518

77.652

77.6522
Target Location and MAV Location

Target Location

MAV Locations in Circular Path

Fig. 4 Circular waypoint considered in the Simulation
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Algorithm is mentioned below. Here RLS Functions A_n,

A_n1,b_xn, b_xn1, b_yn, b_yn1, P_n and P_n1 are deter-

mined to compute X_n1(j) and Y_n1(j), the x and y target

coordinate value in inertial coordinate for the jth bearing

sample number considered.

Results and discussions

The Simulation setup for the Unmanned Aerial Vehicle

(UAV) equipped with a camera, orbiting around target is

realized using Matlab. For this study, the target is chosen to

Table 1 UAV Circular waypoint Geo-Location coordinates calcu-

lated using Haversine’s Formula

Target Geo-Location coordinate: Latitude: 12.963021580681730�
Longitude: 77.651407302614828�

UAV orbit radius: 50 m

Sample

number (‘i’)

Bearing angle

(‘s’) (in degrees)

UAV location coordinate

Latitude

(degrees)

Longitude

(degrees)

1 10 12.96355298 77.65150345

2 20 12.96352863 77.65159668

3 30 12.96348888 77.65168416

4 40 12.96343493 77.65176322

5 50 12.96336842 77.65183147

6 60 12.96329138 77.65188682

7 70 12.96320613 77.65192761

8 80 12.96311528 77.65195259

9 90 12.96302158 77.65196101

10 100 12.96292788 77.65195259

11 110 12.96283703 77.65192761

12 120 12.96275178 77.65188682

13 130 12.96267474 77.65183146

14 140 12.96260823 77.65176322

15 150 12.96255428 77.65168415

16 160 12.96251453 77.65159668

17 170 12.96249019 77.65150345

18 180 12.96248199 77.6514073

19 190 12.96249019 77.65131115

20 200 12.96251453 77.65121793

21 210 12.96255428 77.65113045

22 220 12.96260823 77.65105139

23 230 12.96267474 77.65098314

24 240 12.96275178 77.65092778

25 250 12.96283703 77.65088699

26 260 12.96292788 77.65086201

27 270 12.96302158 77.6508536

28 280 12.96311528 77.65086201

29 290 12.96320613 77.65088699

30 300 12.96329138 77.65092778

31 310 12.96336842 77.65098314

32 320 12.96343493 77.65105139

33 330 12.96348888 77.65113045

34 340 12.96352863 77.65121792

35 350 12.96355298 77.65131115

36 360 12.96356117 77.6514073

Table 2 Simulation model parameters considered for image

generation

Sample number location i = 1,2,…,36.

Bearing angle s = 360/n = 360/36 = 10�

UAV parameters Gimbal

parameters

Camera parameters

Latitude: Uav_ll(i,1)

(in degrees)

Pan (a): 0� w x h: 640 9 480 pixels

Longitude: Uav_ll(i,2)

(in degrees)

Tilt (b): 0� fx: 142.8571428571 pixel units

Altitude: 60 m X
g
b : 0 m fy: 142.8571428571 pixel units

Heading (w): -(i*s)
(degrees)

Y
g
b : 0 m cx: 320.5 pixel

Roll (h): 0� Z
g
b : 0 m cy: 240.5 pixel

Pitch (u): 0� Xc
g,Y

c
g ,Z

c
g : 0 m

A_N=[];
for j=1:n

nres=sprintf('FrameRes%d.mat',j*angle);
nrest=strcat(pathname_tgl,'\',nres);
estimate=load(nrest);   

%Camera Center Location w.r.t Inertial Co-Ordinates
i_p_cc=estimate.Current_UavLocation.output_target.i_
p_cc;
%Image Depth
lambda=estimate.Current_UavLocation.output_target.la
mbda;
%Unscaled Object Target Location in Inertial Frame
i_pbar_obj=estimate.Current_UavLocation.output_targe
t.i_pbar_obj;
%Compute a_n1,b_xn1,b_yn1 values
a_n1=eye(1);
b_xn1=i_p_cc(1)+(lambda.*(i_pbar_obj(1)-i_p_cc(1)));
b_yn1=i_p_cc(2)+(lambda.*(i_pbar_obj(2)-i_p_cc(2)));
% Determine A_N,b_xn,b_yn,P_n values

if(isempty(A_N))
A_N= [a_n1];
b_xn= [b_xn1];
b_yn= [b_yn1];        
P_n=inv((A_N)'*A_N);

% Determine the X and Y UTM Co-Ordinate of Target
X_n1(j)=P_n*(A_N)'*b_xn;
Y_n1(j)=P_n*(A_N)'*b_yn;

else
% Determine A_N,b_xn,b_yn,P_n values

P_n1= P_n - ((P_n*(a_n1)'*(a_n1)*P_n)/(1 + 
(a_n1*P_n*(a_n1)')));

A_n1=[A_N' a_n1]';
b_xn1=[b_xn' b_xn1]';
b_yn1=[b_yn' b_yn1]';

% Determine the X and Y UTM Co-Ordinate of Target
X_n1(j)=P_n1*(A_n1'*b_xn1);
Y_n1(j)=P_n1*(A_n1'*b_yn1);
P_n=P_n1;
A_N=A_n1;
b_xn=b_xn1;
b_yn=b_yn1;        

end
end
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Fig. 5 UAV Simulation Images

generated from different bearing

angle Location (bearing angle

(s): Top Left 10�, Top Right 90�,
Bottom Left 180�, Bottom Right

270�)
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be NAL overhead Water Tank with Geo-Location Coor-

dinate of Latitude 12.963021580681730� and Longitude

77.651407302614828� as per the Google Earth Geo-Co-

ordinate database. The simulation UAV model is imitated

to orbit the target with an altitude of 60 m and orbit radius

of 50 m, so that the target chosen always remains under the

camera field of view. Simulation Images are generated for

36 equally spaced circular waypoints (Fig. 4). The UAV

Circular waypoint location calculated using Haversine

Formula for each bearing angle with respect to target

(Table 1).

The simulation images are generated for each of the 36

equally spaced waypoints using the Matlab code as men-

tioned in ‘‘Synthetic scene generation’’ section. The UAV,

Camera and Gimbal Parameters used for simulation for

each bearing angle s is (Table 2). Synthetic Image gener-

ated for some bearing angles are displayed in (Fig. 5).

The Target Geo-Location is estimated for each of the

images generated from the 36 equally spaced circular

waypoint, by applying Geo-Location Algorithm using the

user defined target pixel coordinate location and simulation

parameter involved (Fig. 6).
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Fig. 8 Estimation of Geo-Location from different error reduction techniques
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Errors for each bearing angle true estimates are deter-

mined and a bar graph is plotted (Fig. 7). The average

estimation, moving average estimation and RLS estimation

techniques suggested in ‘‘Error reduction techniques’’

section are implemented for reducing the error. The esti-

mations from various techniques used are plotted against

target (Fig. 8) and errors from different estimation are

compared with a line graph (Fig. 9).

Conclusion

The Geo-Location algorithm is used for generating Syn-

thetic Scenery Image for each of the 36 equally spaced

circular waypoint calculated using Haversine Formula. The

target is first estimated by considering each and every

bearing image independently, and later error reduction

techniques are applied by considering multiple bearing

images. From the results obtained in Geo-Location esti-

mation using various error reduction techniques, it is clear

that the RLS technique is more reliable with the estimation

error constantly remaining under 0.8 m error, when com-

pared with true estimation, where the peak error reading for

a sample found to be nearly 2.6 m. For future work, the geo

location algorithm and the error reduction techniques need

to be practically implemented to test its efficiency in real

time.
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