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Abstract— Bearings are very critical components in all 

rotating machines used in the majority of the industries. 

Vibration analysis based condition monitoring is one of the best 

approaches for maintenance and diagnosing the faults in the 

rotating machinery. This paper deals with the vibration-based 

health condition-monitoring techniques used for bearing fault 

diagnosis. Discrete wavelet transform (DWT) and support 

vector machines (SVM) have been presented for the statistical 

feature extraction and fault classification of the bearings 

respectively. The useful features from normalized wavelets 

energy analysis and wavelets variance have been extracted. The 

results reveal that the vibration based health condition 

monitoring method is successful in fault diagnosis and clear 

classification of bearing faults using DWT and SVM. 

Keywords— Discrete wavelet transform; Bearing Health 

Condition Monitoring; Vibration Analysis; SVM 

I.  INTRODUCTION  

The majority of the engines used in all industries 
comprises of rotating parts. The health condition monitoring 
of these crucial rotating components results in the reduction of 
maintenance and operating costs, improved security level as 
well as improved efficiency of the engine. As the condition 
monitoring has acquired great significance in manufacturing 
field, the vibration-based techniques for fault diagnosis are 
widely employed. For revealing the bearing faults vibration 
based techniques gives best results compared to other 
techniques. The bearing data used for vibration analysis is 
Bearing test rig experimental data conducted by National 
Aerospace Laboratories (NAL) [1]. 

In this paper, feature extraction and fault diagnosis is 
carried out using wavelets whereas classification of various 
bearing faults [2] such as outer race defect (ORD), inner race 
defect (IRD), roller element (ball segment) defect (BSD) 
among healthy bearing (HB) is done using Support Vector 
Machines. 

II. METHODOLOGY 

Vibration analysis based bearing health Condition 
monitoring techniques are of paramount importance because 
the costs associated with repairs and maintenance is 
significantly greater than the monitoring cost as well as the 
time consumption for condition monitored machine 
maintenance is very less [3]. The information flow diagram of 
the proposed algorithm for bearing fault detection and 
classification is shown in Fig. 1.  

A. Bearing Data Collection 

Faulty bearing component produces vibration. The 
accelerometer (sensor) mounted on the bearing housing is 

used for measuring the bearing vibrations. These vibrations 
are recorded using the data acquisition device called OROS 3x 
DAQ as shown in Fig. 1 [1]. 

                        
Fig. 1. Information flow for the proposed methodology 

B. Signal conditioning & pre-processing 

After obtaining data, signal conditioning which is nothing 
but time derivative of the vibration signal is carried out to 
enhance the frequency of the vibration signal. Then the signal 
is divided into 16 segments of each window length 32768 
(215) samples (This process is called segmentation) for further 
processing. 

C. Feature Extraction 

The signal is processed for diagnosing the fault. The fault 
diagnosis and type of fault can be analyzed from the bearing 
signal using vibration analysis. The feature extraction 
approaches used in vibration analysis are time domain 
analysis, frequency domain analysis, and time-frequency 
domain analysis [4].  

D. Discrete Wavelet Transform: 

The DWTis an efficient mathematical tool for representing 
the vibration signal in time-frequency domain and for 
detecting the bearing faults.DWT is extensively used for 
multiresolution signal analysis [5].  It is an implementation of 
the wavelet transform, which decomposes the signal as the 
mutually perpendicular set of wavelets. DWT extracts precise 
features of time and frequency data at high and low 
frequencies respectively. First, the signal is decomposed using 
a high scale, low pass filter (LPF) and the filter output is 
called as “Approximation coefficient” (A). Simultaneously the 
signal is also decomposed using a low-scale, high pass filter 
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(HPF)& the output of this filter is known as “Detailed 
Coefficient” (D) [6]. This decomposition is repeated to further 
increase the frequency resolution. Therefore, a series of filters 
have been used to decompose the vibration signalusing DWT 
[7]. 

The vibration signal has been acquired at a sampling 
rate/frequency (Fs) of 25600Hz. Then, the maximum 
frequency present in the signal is 12800Hz i.e., (Fs/2). The 
vibration signal is decomposed up to 12 levels because beyond 
this there are no much useful frequency components present in 
the signal. Fig. 2 shows the decomposition process using 
DWT of a vibration signal from the frequency 12800Hz to 
3.125Hz. 

 
Fig. 2. Decomposition of a signal using DWT 

The energy distribution of the bearing vibration signal 
with different faults is dissimilar at different frequency bands. 
The energy of the signal at different decomposition levels is 
the energy of the wavelet coefficients and can be segregated at 
distinct resolution levels. Theenergy of the detailed 
coefficients at thj  level is computed as [8]: 
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The total energy of the vibration signal is:     
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The time scale density or relative wavelet energy (RWE) 
of the bearing vibration signal (Eq. (4)) is calculated in such a 

way that JjAD j ,...,2,1,100  for all wavelet coefficients 

and it represents the energy corresponding to different 
frequency bands of the bearing vibration signal.  
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The normalized wavelet energy as given in Eq. (4) have 
been computed for all wavelet coefficients. Then the mean ± 
standard deviation for the coefficients normalized wavelet 
energy is calculated to extract the useful features. In addition 
to that, the variance of the coefficients also calculated for 
various levels for extracting the features from the bearing 
vibration signal for classifying the faults.  

E. Fault Classification 

The support vector machines are used as the classification 
algorithm to classify the normal and faulty bearings in this 
study. Support vector machines are supervised and statistical 
learning models, conventionally described by partitioning 
hyperplanes, used for both classification and regression 
challenges. SVMs are having inbuilt leaning 
techniques/models like SVM Classifier [9]. It analyses, 
recognizes patterns according to the variation of values in 
given vibration data, trains itself and then used as a classifier 
for classifying the bearing faults. Hyper-planes are used to 
differentiate two or more classes of data with the help of 
support vectors. These support vectors are the coordinates of 
each measurement. SVM gives a good margin of separation 
only when there is a larger distance between the nearest 
training data of any class & the hyper-plane [10]. The SVM 
classifier takes useful features extracted from DWT as inputs 
to classify the bearing faults. 

III. RESULTS AND DISCUSSIONS 

The vibration signals for healthy and defective (BSD, IRD 
& ORD) bearings are shown in Fig. 3. It is observed that all 
the four signals are looks like the noise. The inner and outer 
race defective bearing signals have greater magnitude 
compared to ball defective and healthy bearing vibration 
signals. It can also be observed that the magnitude of ball 
defective and healthy vibration signals are looks like same. 

 

Fig. 3. Vibration signal of the bearing with different Faults 
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Thirteen features viz., A, D1, D2, …,D12 are computed 
using eq. (4). The mean ± standard deviation of these features 
for12 decomposition levels are as shown in Table I. From this 
Table, the features viz., A, D1 to D5 (marked as green in 
color) are useful features as these features are giving clear 
classification when the raw vibration signal is used in the 
analysis. For time derivative of the bearing vibration signal, 
the following features viz., D1, D3 to D9 are perfectly 
classifying the faults. The features marked as yellow color in 
Table I are partially classifying the bearing faults. Similarly, 
Table II represents the wavelets variance of both time 
derivative and the raw vibration signal. 

From Table II, it can be observed that for the raw signal, 
the features D1 and D2 are best classifying the faults & for 
time derivative signal, D1 to D4 are useful features to classify 
the bearing faults, which are highlighted with green color. 

The RWE of 12th level detailed coefficient for raw & time 
derivative vibrational signal is shown in Fig. 4. It can be 
observed that it is very difficult to classify the faults (HB,BSD 
& IRD) except ORD since the feature (D12) for faults are 
overlapping while the raw signal is considered.  Whereas for 
time derivative signal, except for HB, remaining all bearing 
faults are overlapped each other. Therefore, D12 (Detailed 
coefficient of level 12) marked as white color in Table I andis 
not a useful feature in fault classification.  Fig.5 shows the 
RWE at 5th level(D5) of the vibration signal. 

 

Fig. 4. Detailed coefficient (D12) for fault classification 

From Fig.5, it is observed that all the faults are clearly 
distinguished for both time derivative and raw vibration 
signal. Therefore, D5 is a very useful feature for classifying 
the faults (marked as green color in Table I). The statistical 
and useful features obtained from the DWT have been formed 
into feature vectors. The SVM classifier uses all these useful 
features (support vectors) from normal and faulty bearings as 
inputs to classify between the faults.  

 
Fig. 5. Detailed coefficient (D5) for fault classification 

Fig. 6 shows the bearing fault classification with SVM 
classifier using wavelets energy features D10 (Level 10 
Detailed coefficients) and D12 (Level 12 Detailed 
Coefficients). It can be observed that healthy, ball defective 
vectors have been completely merged. Therefore, there is no 
clear classification between the faults by choosing these 
features. A similar observation has been made with the 
features marked with white color in Table I & II.  

 
Fig. 6. SVM bearing fault classification using D10 and D12 

SVM classification using D4 and D5 variance features are 
shown in Fig. 7. It can be observed that the SVM classifier 
using these features clearly classify the outer and inner race 
failures but it fails to classify the ball defect and healthy 
bearings. Same observation has been made with the features 
marked in yellow color in Table II.  
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Fig. 7. SVM bearing fault classification using D4 and D5 

The SVM classifier for bearing fault classification using 
the features of approximation coefficients (A) and detailed 
coefficients at level 1 (D1) is shown in Fig. 8. It can be 
observed thatthese features can be useful to classify the 
bearing faults very clearly. The features shown in green color 
in Table I & Table II are very useful for bearing fault 
classification.  

 

Fig. 8. SVM bearing fault classification using A and D1 

All the features have been summarized and their 
usefulness in classifying the faults are shown in Table III.The 
features that are very useful for bearing faults classification 
using SVM classifier are shown in Table III with green color. 
Similarly, the features shown with yellow color in Table III 
are marginally classifying the faults. Other features that are 
shown with white color in the Table are not useful features for 
bearing fault classification. Therefore, the wavelets energy 
features D1, D3, D4 & D5 and the wavelets variance features 
D1 and D2 (marked completely with green color in Table III) 
are best features in all the cases to classify the bearing faults. 
Hence, only the above-mentioned features are useful features 

and the remaining features are not much useful and unable to 
classify the bearing faults. 

IV. CONCLUSION 

This papermainly focuses on the vibration based bearing 
health condition monitoring techniques that can be efficiently 
used for bearing fault diagnosis and classification of faults. 
Discrete wavelet transforms are used for the decomposing the 
bearing vibration signal into different frequency bands. 
Features such as wavelets energy and variance of the 
coefficients for all decomposition levels have been calculated. 
These features were fed to the SVM classifier to classifying 
the bearing faults. The results reveal that the proposed 
algorithm for vibration-based health condition monitoring is 
successful in bearing faults diagnosis as well as clearfault 
classification byusing discrete wavelet transform and support 
vector machines. The proposed algorithm is very simple and 
easily adoptable for other applications.  
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TABLE I.  THE MEAN ± STANDARD DEVIATION OF NORMALIZED WAVELETS ENERGY 

Coeff. 
Raw Data Time Derivative Data 

HB BSD IRD ORD HB BSD IRD ORD 

A 

6.67581 
± 

0.491487 

5.659205 
± 

0.404676 

1.627159 
± 

0.041347 

0.669106 
± 

0.081293 

0.0003 
± 

0.000196 

4.49E-05 
± 

2.35E-05 

1.13E-05 
± 

1.48E-05 

4.11E-06 
± 

7.55E-06 

D1 

1.142558 
± 

0.061398 

9.066008 
± 

0.40303 

20.83839 
± 

0.947702 

64.99424 
± 

1.299243 

25.2523 
± 

0.761501 

76.41855 
± 

0.597494 

73.24542 
± 

0.958392 

88.80041 
± 

0.073531 

D2 

3.061952 

± 
0.110142 

5.311781 

± 
0.2352 

14.05252 

± 
0.701104 

7.492921 

± 
0.288064 

15.95002 

± 
1.813693 

10.09764 

± 
0.455621 

13.57934 

± 
0.473321 

5.052015 

± 
0.206165 

D3 

9.40048 

± 
0.179102 

10.1629 

± 
0.209474 

20.3478 

± 
0.591977 

5.58935 

± 
0.240153 

16.02055 

± 
0.550086 

7.206271 

± 
0.166744 

9.116643 

± 
0.587471 

5.083049 

± 
0.168922 

D4 

23.31539 

± 
0.488664 

22.03825 

± 
0.759546 

18.46013 

± 
0.756347 

4.047846 

± 
0.301875 

22.76777 

± 
1.096602 

3.712715 

± 
0.168231 

2.935694 

± 
0.24267 

0.651449 

± 
0.071971 

D5 

34.83552 

± 

1.101111 

29.14137 

± 

1.239851 

13.87262 

± 

1.115626 

7.742929 

± 

0.648059 

14.90887 

± 

0.83378 

1.964814 

± 

0.12583 

0.895306 

± 

0.057874 

0.337641 

± 

0.047698 

D6 

14.38361 

± 

0.641283 

11.97167 

± 

0.772466 

7.642429 

± 

0.725722 

7.874698 

± 

0.701372 

3.820697 

± 

0.270275 

0.447249 

± 

0.037432 

0.165275 

± 

0.020312 

0.059928 

± 

0.007778 

D7 

4.871529 
± 

0.379681 

4.406722 
± 

0.356306 

2.292727 
± 

0.202045 

1.026885 
± 

0.073611 

1.015427 
± 

0.07834 

0.122447 
± 

0.009629 

0.048587 
± 

0.007142 

0.010976 
± 

0.002672 

D8 

1.745955 
± 

0.17257 

1.741607 
± 

0.178921 

0.656592 
± 

0.11525 

0.388579 
± 

0.046984 

0.202963 
± 

0.029606 

0.022618 
± 

0.002718 

0.010507 
± 

0.00202 

0.003255 
± 

0.000911 

D9 

0.421993 

± 
0.0806 

0.357751 

± 
0.053837 

0.14969 

± 
0.037383 

0.147345 

± 
0.05682 

0.046189 

± 
0.008156 

0.005789 

± 
0.001009 

0.002345 

± 
0.000635 

0.000954 

± 
0.000302 

D10 

0.10338 

± 
0.017202 

0.099619 

± 
0.02549 

0.038494 

± 
0.011031 

0.019899 

± 
0.004881 

0.011222 

± 
0.00215 

0.001376 

± 
0.000447 

0.0007 

± 
0.000518 

0.000263 

± 
0.000176 

D11 

0.033152 

± 

0.013546 

0.034952 

± 

0.008896 

0.016879 

± 

0.006215 

0.004905 

± 

0.001636 

0.002887 

± 

0.001135 

0.000385 

± 

0.000162 

0.000114 

± 

7.28E-05 

4.80E-05 

± 

3.15E-05 

D12 

0.008672 

± 

0.001996 

0.008166 

± 

0.0033 

0.004576 

± 

0.001403 

0.001299 

± 

0.0007 

0.000796 

± 

0.000287 

0.000101 

± 

5.82E-05 

4.89E-05 

± 

6.44E-05 

9.08E-06 

± 

1.15E-05 

 

TABLE II.  THE MEAN ± STANDARD DEVIATION OF WAVELET COEFFICIENTS VARIANCE  

Coeff. 
Raw Data Time Derivative Data 

HB BSD IRD ORD HB BSD IRD ORD 

A 

0.004124 

± 

0.001841 

0.003836 

± 

0.002221 

0.004558 

± 

0.002288 

0.006372 

± 

0.002325 

1.43E-05 

± 

9.24E-06 

1.80E-05 

± 

9.66E-06 

2.60E-05 

± 

3.24E-05 

0.000121 

± 

0.000218 

D1 

0.000526 
± 

3.09E-05 

0.004322 
± 

0.000128 

0.026017 
± 

0.001284 

0.325819 
± 

0.022137 

00.000531 
± 

3.19E-05 

0.013209 
± 

0.000375 

0.075898 
± 

0.003016 

1.157344 
± 

0.077864 

D2 

0.00282 

± 
0.000177 

0.00507 

± 
0.000269 

0.035075 

± 
0.001523 

0.075074 

± 
0.004779 

0.000673 

± 
0.000107 

0.003494 

± 
0.000233 

0.028129 

± 
0.001106 

0.131586 

± 
0.008894 

D3 

0.01732 

± 

0.000997 

0.019404 

± 

0.000783 

0.10165 

± 

0.003968 

0.112128 

± 

0.009204 

0.001347 

± 

7.25E-05 

0.004984 

± 

0.00022 

0.037778 

± 

0.002652 

0.265231 

± 

0.022575 

D4 

0.085948 

± 
0.005361 

0.084193 

± 
0.004963 

0.184379 

± 
0.00881 

0.162202 

± 
0.014123 

0.003827 

± 
0.000247 

0.005133 

± 
0.000223 

0.024337 

± 
0.002213 

0.067731 

± 
0.007284 

 -Perfect classification;   

 

- Poor classification 

 

- Moderate classification; 
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D5 

0.257365 

± 

0.023134 

0.222885 

± 

0.015691 

0.277372 

± 

0.023565 

0.621641 

± 

0.067835 

0.005017 

± 

0.000374 

0.005435 

± 

0.000354 

0.014842 

± 

0.001056 

0.070573 

± 

0.013253 

D6 

0.212181 

± 
0.016336 

0.18297 

± 
0.017202 

0.30495 

± 
0.031552 

1.262361 

± 
0.129428 

0.002571 

± 
0.000196 

0.002473 

± 
0.000187 

0.005469 

± 
0.000691 

0.024958 

± 
0.00346 

D7 

0.143736 

± 
0.011508 

0.134762 

± 
0.012784 

0.183705 

± 
0.017197 

0.329089 

± 
0.01829 

0.001368 

± 
0.000107 

0.001352 

± 
0.00011 

0.003215 

± 
0.00049 

0.009156 

± 
0.002341 

D8 

0.102626 

± 

0.01398 

0.1065 

± 

0.009821 

0.104856 

± 

0.018225 

0.248823 

± 

0.033224 

0.000542 

± 

9.04E-05 

0.000499 

± 

6.33E-05 

0.001392 

± 

0.00028 

0.005408 

± 

0.001477 

D9 

0.040819 

± 
0.006481 

0.038111 

± 
0.005227 

0.047101 

± 
0.011688 

0.116929 

± 
0.01586 

0.000245 

± 
4.42E-05 

0.000256 

± 
4.96E-05 

0.000616 

± 
0.000159 

0.003137 

± 
0.00108 

D10 

0.023063 

± 

0.004036 

0.024175 

± 

0.006195 

0.02436 

± 

0.007714 

0.050998 

± 

0.011384 

0.000118 

± 

2.41E-05 

0.000122 

± 

4.15E-05 

0.000373 

± 

0.000279 

0.00178 

± 

0.001282 

D11 

0.016039 
± 

0.006277 

0.017574 
± 

0.005026 

0.022473 
± 

0.008348 

0.023597 
± 

0.008338 

6.15E-05 
± 

2.67E-05 

6.58E-05 
± 

2.76E-05 

0.000119 
± 

7.73E-05 

0.000656 
± 

0.000461 

D12 

0.008118 

± 

0.002556 

0.008431 

± 

0.003723 

0.012835 

± 

0.004332 

0.012375 

± 

0.005559 

3.42E-05 

± 

1.34E-05 

3.27E-05 

± 

1.83E-05 

0.000103 

± 

0.000145 

0.000233 

± 

0.000298 

 

 

TABLE III.  USEFULNESS OF FEATURES IN FAULT CLASSIFICATION 

Coeff 

Wavelets Energy (RWE) Wavelets Variance 

Raw signal Time derivative signal Raw signal Time derivative signal 
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A                 

D1                

D2                

D3                

D4                

D5                

D6                

D7                

D8                

D9                

D10                

D11                 

D12                 

Note: Here, represents clear or perfect classification,  moderate classification and represents very poor classification. 

 -Perfect classification;   

 

- Poor classification 

 

- Moderate classification; 
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