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Abstract We consider elliptic diffusion problems with a random anisotropic dif-
fusion coefficient, where, in a notable direction given by a random vector field,
the diffusion strength differs from the diffusion strength perpendicular to this no-
table direction. The Karhunen-Loève expansion then yields a parametrisation of
the random vector field and, therefore, also of the solution of the elliptic diffusion
problem. We show that, given regularity of the elliptic diffusion problem, the decay
of the Karhunen-Loève expansion entirely determines the regularity of the solu-
tion’s dependence on the random parameter, also when considering this higher
spatial regularity. This result then implies that multilevel quadrature methods
may be used to lessen the computation complexity when approximating quantities
of interest, like the solution’s mean or its second moment, while still yielding the
expected rates of convergence. Numerical examples in three spatial dimensions are
provided to validate the presented theory.
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estimates · Multilevel methods
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1 Introduction

The numerical approximation of quantities of interest, such as expectation, vari-
ance, or more general output functionals, of the solution of a diffusion problem
with a scalar random diffusion coefficient with multilevel collocation or multilevel
quadrature methods has been considered previously, see e.g. [2,8,13,14,20,23,28,
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35] and the references therein; in this isotropic case, the mixed smoothness required
for the use of such multilevel methods has been provided in [9] for uniformly elliptic
diffusion coefficients and in [26] for log-normally distributed diffusion coefficients.
However, in simulations of certain diffusion phenomena in science and engineering,
the diffusion that needs to be modeled may not necessarily be isotropic. One spe-
cific application we have in mind here stems from cardiac electrophysiology, where
the electrical activation of the human heart is considered. It is known that the
fibrous structure of the heart plays a major role when considering the electrical
and mechanical properties of the heart. And while the fibres have a complex and
generally well-organised structure, see e.g. [11,31,32,33], the exact fibre orienta-
tion may vary between individuals and also over time in an individual, for example
due to the presence of scaring of the heart.

More generally, we wish to be able to model diffusion in a fibrous media, where
fibre direction and diffusion strength in fibre direction are subject to uncertainty.
For this setting, the following random anisotropic diffusion coefficient was defined
in [24]:

A[ω] := aI +
(∥∥V[ω]

∥∥
2
− a
)V[ω]VT[ω]

VT[ω]V[ω]
,

where a is a given value, I is the identity matrix of Rd×d and V is a random
Rd-valued field, over a given spatial domain D ⊂ Rd and a given probability space
(Ω,F ,P). The fibre direction is hence given by V/‖V‖2 with the diffusion strength
in the fibre direction being ‖V‖2 and the diffusion strength perpendicular to the
fibre direction is defined by a. While we only consider this model hereafter, the
techniques we use may also be applied straightforwardly to other models of random
anisotropic diffusion coefficients, such as, for example, the following model in three
spatial dimensions:

A[ω] :=

 | | |f t s
| | |

cosα3[ω] − sinα3[ω] 0
sinα3[ω] cosα3[ω] 0

0 0 1

1 0 0
0 cosα2[ω] sinα2[ω]
0 − sinα2[ω] cosα2[ω]


 cosα1[ω] 0 sinα1[ω]

0 1 0
− sinα1[ω] 0 cosα1[ω]

af [ω] 0 0
0 at[ω] 0
0 0 as[ω]

 cosα1[ω] 0 sinα1[ω]
0 1 0

− sinα1[ω] 0 cosα1[ω]

T

1 0 0
0 cosα2[ω] sinα2[ω]
0 − sinα2[ω] cosα2[ω]

T cosα3[ω] − sinα3[ω] 0
sinα3[ω] cosα3[ω] 0

0 0 1

T  | | |f t s
| | |

T

Here, f , t and s are vector fields describing the fibre, the transverse sheet and the
sheet normal directions in the heart, which at each point in D yields an orthonor-
mal basis. These vector fields could, for example, be derived from measurements or
be generated by an algorithm such as the Laplace-Dirichlet Rule-Based algorithm
described in [3]. Note that, in this model, the diffusion strengths are random fields
af , at and as, and the fibre and sheet directions are locally angularily perturbed
by random fields α1, α2 and α3.

We shall consider the second order diffusion problem with this uncertain dif-
fusion coefficient A given by

for almost every ω ∈ Ω:

{
−divx

(
A[ω]∇x u[ω]

)
= f in D,

u[ω] = 0 on ∂D,
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with the known function f as a source. The result of this article is then as follows.
Having spatial Hs-regularity of the underlying diffusion problem, given by suffi-
cient smoothness of the right hand f side and the domain D, then the random
solution u admits analytic regularity with respect to the stochastic parameter also
in the Hs(D)-norm provided that the random vector-valued field offers enough
spatial regularity. This mixed regularity is the essential ingredient in order to ap-
ply multilevel collocation or multilevel quadrature methods without deteriorating
the rate of convergence, see [20] for instance.

The rest of the article is organised as follows: In Section 2, we provide basic def-
initions and notation for the functional analytic framework to be able to state and
then also reformulate the model problem, by using the Karhunen-Loève expansion
of the diffusion describing random vector-valued field V, into its stochastically
parametric and spatially weak formulation. Section 3 then deals with the regular-
ity of the solution of the stochastically parametric and spatially weak formulation
of the model problem with respect to the stochastic parameter and some given
higher spatial regularity in the model problem. We then use the fact that the
higher spatial regularity can be kept, when considering the regularity of the solu-
tion with respect to the stochastic parameter, to arrive at convergence rates when
considering multilevel quadrature, such as multilevel quasi-Monte Carlo quadra-
ture, to approximate the solution’s mean and second moment. Numerical examples
are provided in Section 4 as validation; specifically we use multilevel quasi-Monte
Carlo quadrature to approximate the solution’s mean and second moment in a
setting with three spatial dimensions. Lastly, we give our conclusions in Section 5.

2 Notation and model problem

2.1 Notation and precursory remarks

We denote the natural numbers including 0 by N and excluding 0 by N∗.
For a sequence of natural numbers, α = {αn}n∈N∗ ∈ NN∗ , we as usual define

the support of the sequence as

suppα = {n ∈ N∗ |αn 6= 0}.

If suppα is of finite cardinality, we say that α is finitely supported. The set of
finitely supported sequences of natural numbers is then denoted by NN∗

f , while
we will refer to its elements as multi-indices. For all m ∈ N∗ we will identify the
elements α = (α1, . . . , αm) ∈ Nm with their extension by zero into NN∗

f , that is

α = (α1, . . . , αm, 0, . . .), so that all notations defined below for elements of NN∗
f

also carry over to the elements of Nm; we then also refer to elements of Nm as
multi-indices.

For multi-indices α = {αn}n∈N∗ ,β = {βn}n∈N∗ ∈ NN∗
f and a sequence of real

numbers γ = {γn}n∈N∗ ∈ RN∗ , we use the following common notations:

|α| :=
∑

n∈suppα

αn, α! :=
∏

n∈suppα

αn!,(
α

β

)
:=

∏
n∈suppα∪suppβ

(
αn
βn

)
, γα :=

∏
n∈suppα

γαnn .
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Furthermore, we say that α ≤ β holds, when αj ≤ βj holds for all j ∈ suppα ∪
suppβ, and α < β, when α ≤ β and α 6= β hold.

Subsequently, we will always equip Rm with the norm ‖·‖2 induced by the
canonical inner product 〈·, ·〉 and Rm×m with the induced norm ‖·‖2. Then, for
v,w ∈ Rd, the Cauchy-Schwartz inequality gives us

|vTw| =
∣∣〈v,w〉∣∣ ≤ ‖v‖2‖w‖2,

and we also have, by straightforward computation, that

‖vwT‖2 = ‖v‖2‖w‖2.

Moreover, when considering Rm itself or an open domain D ⊂ Rm as a measure
space we always equip it with the Lebesgue measure. Similarly, we always equip
N and N∗ with the counting measure when considering them as measure spaces.

Let X , X1, . . . ,Xr and Y be Banach spaces, then we denote the Banach space
of bounded, linear maps from X to Y as B(X ;Y); furthermore, we recursively
define

B(X1, . . . ,Xr;Y) := B
(
X1;B(X2, . . . ,Xr;Y)

)
and the special case

B0(X ;Y) := Y and Br+1(X ;Y) := B
(
X ;Br(X ;Y)

)
.

For T ∈ B(X1, . . . ,Xr;Y) and vj ∈ Xj we use the shorthand notation Tv1 · · ·vr :=
T(v1, . . . ,vr) ∈ Y.

For a given Banach space X and a complete measure space M with measure
µ the space Lpµ(M;X ) for 1 ≤ p ≤ ∞ denotes the Bochner space, see [25], which
contains all equivalence classes of strongly measurable functions v : M→ X with
finite norm

‖v‖p,M;X := ‖v‖Lpµ(M;X ) :=


[∫
M

∥∥v(x)
∥∥p
X d µ(x)

]1/p
, p <∞,

ess sup
x∈M

∥∥v(x)
∥∥
X , p =∞.

A function v : M→ X is strongly measurable if there exists a sequence of count-
ably-valued measurable functions vn : M→ X , such that for almost every m ∈M
we have limn→∞ vn(m) = v(m). Note that, for finite measures µ, we also have the
usual inclusion Lpµ(M;X ) ⊃ Lqµ(M;X ) for 1 ≤ p < q ≤ ∞.

For a given Banach space X and an open domain D ⊂ Rd, with d ∈ N∗, the
space W η,p(D;X ) for η ∈ N and 1 ≤ p ≤ ∞ denotes the Sobolev–Bochner space,
which contains all equivalence classes of strongly measurable functions v : D → X ,
such that the function itself and all weak derivatives up to total order η are in
Lp(D;X ) with the norm

‖v‖η,p,D;X := ‖v‖W η,p(D;X ) :=
∑
|α|≤η

1

α!

∥∥∂αx v∥∥p,D;X .

Moreover, W η,p
0 (D;X ) denotes the closure of the linear subspace of smooth func-

tions with compact support, C∞c (D;X ), in W η,p(D;X ) and we set Hη(D;X ) :=
W η,2(D;X ) and Hη

0 (D;X ) := W η,2
0 (D;X ).
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In the notation for the Bochner and Sobolev–Bochner spaces we may omit
specifying the Banach space X when X = R. Especially, H−η(D) denotes the
topological dual space of Hη

0 (D). Moreover, if the X we are considering is itself a
Bochner or Sobolev–Bochner space then we replace the X in the subscript of the
norm with the subscripts of its norm, for example

‖v‖p,M;η,q,D;Y = ‖v‖p,M;W η,q(D;Y) = ‖v‖Lpµ(M;W η,q(D;Y)).

As we will need the Faà di Bruno formula, see [10], we just restate it here —
in a slightly adapted way, for our notation and usage — as a remark for reference.

Remark 1 Let Y and Z be Banach spaces, and D ⊂ Rm or D ⊂ RN∗ a domain.
Given W : Y → Z and v : D → Y, where Y ⊂ Y is open with imgD v ⊂ Y and
W,v are both sufficiently differentiable for the formula to make sense, then

∂αx (W ◦ v) = α!

|α|∑
r=1

1

r!

∑
C(α,r)

(Dr W ◦ v) ∂β1
x v · · · ∂βrx v

r∏
j=1

1

βj !
,

for α ∈ Nm, respectively α ∈ NN∗
f with α 6= 0, where C(α, r) is the set of multi-

index compositions of a multi-index α into r non-vanishing multi-indices, given
by

C(α, r) :=

{(
β1, . . . ,βr

)
∈
(
NN∗
f

)r
:
r∑
j=1

βj = α and βj 6= 0 for all 1 ≤ j ≤ r
}
.

Finally, we note that to avoid the use of generic but unspecified constants in
certain formulas we use c . d to mean that c can be bounded by a multiple of d,
independently of parameters which c and d may depend on. Obviously, c & d is
defined as d . c and we write c h d if c . d and c & d.

2.2 Model problem

Let (Ω,F ,P) be a separable, complete probability space. Then, we consider the
following second order diffusion problem with a random anisotropic diffusion co-
efficient

for almost every ω ∈ Ω:

{
−divx

(
A[ω]∇x u[ω]

)
= f in D,

u[ω] = 0 on ∂D,
(1)

where D ⊂ Rd is a Lipschitz domain with d ≥ 1, the function f ∈ H−1(D)
describes the known source and the random anisotropic diffusion coefficient, A ∈
L∞P

(
Ω;L∞(D;Rd×dsymm)

)
, is given by

A[ω](x) = D
(
V[ω](x)

)
.

Here, V ∈ L∞P
(
Ω;L∞(D;Rd)

)
is a random vector-valued field that specifies the

direction and diffusion strength of a notable direction at each point and D : Rd →
Rd×dsymm is a mapping, which is given by

D(v) := aI +
(∥∥v∥∥

2
− a
)vvT

vTv
(2)
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for a ∈ R a given positive number and which maps this description of direction and
diffusion strength given by v ∈ Rd to a diffusion coefficient matrix that accounts
for homogeneous diffusion with strength a perpendicular to v and diffusion of
strength

∥∥v∥∥
2

in the direction of v.

We require that there exist a > 0 and a > 0 such that

a ≤ ess inf
ω∈Ω

ess inf
x∈D

∥∥V[ω](x)
∥∥ ≤ ess sup

ω∈Ω
ess sup
x∈D

∥∥V[ω](x)
∥∥ ≤ a (3)

and a ≤ a ≤ a. Then, by definition, A satisfies the uniform ellipticity condition

a ≤ ess inf
ω∈Ω

ess inf
x∈D

λmin

(
A[ω](x)

)
≤ ess sup

ω∈Ω
ess sup
x∈D

λmax

(
A[ω](x)

)
≤ a, (4)

where λmin(B) and λmax(B) denote the smallest and largest eigenvalues of the
matrix B ∈ Rd×dsymm. Without loss of generality, we assume a ≤ 1 ≤ a.

It is assumed that the spatial variable x and the stochastic parameter ω of the
random field have been separated by the Karhunen-Loève expansion of V, yielding
a parametrised expansion

V[y](x) = E[V](x) +
∞∑
k=1

σkψk(x)yk, (5)

where y = (yk)k∈N∗ ∈ � := RN∗ is a sequence of uncorrelated random variables,
see e.g. [24]. In the following, we will denote the completion of the pushforward of
the measure P on � equipped with its product σ-Algebra of the Borel σ-Algebras
of R as Py. Then, we also view A[y](x) and u[y](x) as being parametrised by y
and restate (1) as

for almost every y ∈ �:

{
−divx

(
A[y]∇x u[y]

)
= f in D,

u[y] = 0 on ∂D.
(6)

Lastly, we note that the spatially weak form of (6) is then given by
Find u ∈ L∞Py

(
�;H1

0 (D)
)

such that(
A[y]∇x u[y],∇x v

)
L2(D;Rd) =

(
f, v
)
L2(D;Rd)

for almost every y ∈ � and all v ∈ H1
0 (D).

(7)

This also entails the well known stability estimate.

Lemma 1 There is a unique solution u ∈ L∞Py

(
�;H1

0 (D)
)

of (7), which fulfils

‖u‖∞,�;1,2,D ≤
1

ac2V
‖f‖−1,2,D,

where cV is the Poincaré-Friedrichs constant of H1
0 (D).
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3 Parametric regularity and multilevel quadrature

We now derive regularity estimates for the solution u of (7) and apply multilevel
quadrature for approximating the mean of u. The regularity estimates are based
on the following assumption on the decay of the expansion of V.

Assumption 1 We assume that E[V] and the ψk are elements of W τ,∞(D;Rd)
for a τ ∈ N and that the sequence γτ = (γτ,k)k∈N∗ , given by

γτ,k :=
∥∥σkψk∥∥τ,∞,D;Rd ,

is at least in L1(N∗;R). We also define

cγτ := max
{∥∥E[V]

∥∥
τ,∞,D;Rd + ‖γτ‖1,N∗;R, 1

}
.

Furthermore, for the regularity estimates we also require an elliptic regularity
result.

Assumption 2 Let Rτ be a Banach space with norm ‖·‖Rτ such that, for all

B ∈W τ,∞(D;Rd×dsymm) ∩Rτ

that fulfil (4), we have that the problem of solving(
B∇x u,∇x v

)
L2(D;Rd)

= (h, v)L2(D)

for any h ∈ Hτ−1(D) has a unique solution u ∈ H1
0 (D), which also lies in

Hτ+1(D), with

‖u‖τ+1,2,D ≤ Cτ,er
(
D, a, ‖B‖Rτ

)
‖h‖τ−1,2,D,

where Cτ,er only depends on D, a and continuously on ‖B‖Rτ .
We assume from here on that A also lies in L∞Py

(�;Rτ ).

Note, that for τ = 0, this reduces to the stability estimate, for which the parametric
regularity may be found in [24]. Therefore, we will hereafter only consider the
case where τ ≥ 1. Such an elliptic regularity estimate for example is known for
τ = 1, when the domain is convex and bounded and Rτ = C0,1(D;Rd×d), see
[16, Theorems 3.2.1.2 and 3.1.3.1]. The elliptic regularity estimate is also known
to hold for τ ≥ 1 and d = 2, when the domain’s boundary is smooth and Rτ =
W τ,∞(D;Rd×d), see [7].

The rest of this section is now split into three subsections. The first subsection
is dedicated to the computation of explicit bounds for the regularity of the map-
ping D, which maps our description of a fibre to a diffusion coefficient. With this
result at hand we then, in the second subsection, may assert regularity estimates
for the diffusion coefficient itself and derive the regularity estimates of the solution
u in Theorem 3. We then briefly discuss what kind of convergence rates and com-
putational complexity this regularity of u yields, for the example of approximating
E[u] using singlelevel and multilevel quadrature methods, in the third subsection.
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3.1 Regularity of the vector field to diffusion coefficient mapping

Since our aim here is to give explicit bounds for the regularity of the mapping D,
which maps our description of a fibre to a diffusion coefficient. We first supply1 the
following three lemmas that give simple explicit upper bounds on the constants
which bound the derivatives of a real analytic function that is defined by summing,
multiplying or composing real analytic functions between Banach spaces.

Lemma 2 Let X and Y be Banach spaces, X ⊂ X and v1, . . . ,vt : X → Y
be infinitely Fréchet differentiable mappings such that there exist some constants
ki, ci ≥ 0 with ∥∥Dr vi(x)

∥∥
Br(X ;Y) ≤ r!kic

r
i

for all x ∈ X, i = 1, . . . , t. Then, the mapping v1 + · · · + vt is infinitely Fréchet
differentiable with ∥∥Dr(v1 + · · ·+ vt)(x)

∥∥
Br(X ;Y) ≤ r!kc

r

for all x ∈ X, with k := k1 + · · ·+ kt and c := max{c1, . . . , ct}.

Lemma 3 Let X , Y1, . . . ,Yt, and Z be Banach spaces, X ⊂ X and M : X →
B(Y1, . . . ,Yt;Z), vi : X → Yi be infinitely Fréchet differentiable mappings such
that there exist some constants kM, cM, ki, ci ≥ 0 with∥∥Dr M(x)

∥∥
Br(X ;B(Y1,...,Yt;Z))

≤ r!kMcrM

and ∥∥Dr vi(x)
∥∥
Br(X ;Yi)

≤ r!kicri
for all x ∈ X, i = 1, . . . , t. Then, the mapping Mv1 · · ·vt is infinitely Fréchet
differentiable with ∥∥Dr(Mv1 · · ·vt)(x)

∥∥
Br(X ;Z)

≤ r!kcr

for all x ∈ X, with k := kMk1 · · · kt and c := 2t max{cM, c1, . . . , ct}.

Lemma 4 Let X , Y, and Z be Banach spaces, X ⊂ X , Y ⊂ Y and W : Y → Z,
v : X → Y both be infinitely Fréchet differentiable mappings such that there exist
some constants kW, cW, kv, cv ≥ 0 with∥∥Dr W(y)

∥∥
Br(Y;Z)

≤ r!kWcrW

and ∥∥Dr v(x)
∥∥
Br(X ;Y) ≤ r!kvc

r
v

for all x ∈ X and y ∈ Y . Furthermore, let v(X) ⊂ Y , then, the mapping W ◦ v
is infinitely Fréchet differentiable with∥∥Dr(W ◦ v)(x)

∥∥
Br(X ;Z)

≤ r!kcr

for all x ∈ X, with k := kW and c := (cWkv + 1)cv.

1 We omit their proofs, as the first lemmma essentially follows from the linearity of the
Fréchet derivative, the second can be proved by an iterated use of the Leibniz formula for
Fréchet derivatives and the third one is a simple modification of the proof shown in [27, proof
of Proposition 1.4.2] for the composition of real analytic functions from R to R.
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By using these results we can now consider our specific mapping D, see (2)

D(v) := aI +
(∥∥v∥∥

2
− a
)vvT

vTv
.

While we restrict ourselves to this mapping, the above results clearly can be used
to also consider other mappings; e.g. the other diffusion coefficent stated in the in-
troduction may also be stated in the form A = D◦V, where V is the concatenation
of f , t, s and [α1, α2, α3].

Theorem 1 Let V :=
{
v ∈ Rd : a ≤ ‖v‖2 ≤ a

}
then the mapping D defined in

(2) is infinitely Fréchet differentiable on V with

∥∥Dr D(v)
∥∥
Br(Rd;Rd×dsymm)

≤ r!kDcrD

for all v ∈ V , with kD := a+ 2a3a−2 and cD := (a2a−2 + 1)8.

Proof One starts from the mappings

D1 : V → Rd,v 7→ v and D2 : V → R1×d,v 7→ vT

which are obviously infinitely Fréchet differentiable with the bounds

∥∥Dr D1(v)
∥∥
Br(Rd;Rd) ≤ r!k1c

r
1 and

∥∥Dr D2(v)
∥∥
Br(Rd;R1×d)

≤ r!k2cr2

for all v ∈ V , with k1 = k2 = a and c1 = c2 = 1. Then, one may stepwise build up
the mapping D by applying Lemmas 2 and 3 as well as Lemma 4 with the outer
functions v(x) = x−1 and w(x) =

√
x.

Especially, we remark that the r-th derivative of v and w are given by

Drx v(x)h1 · · ·hr = (−1)rr!x−1−r
r∏
k=1

hk = (−1)rr!v(x)v(x)r
r∏
k=1

hk

and

Drx w(x)h1 · · ·hr = crx
1
2
−r

r∏
k=1

hk = crw(x)v(x)r
r∏
k=1

hk,

where cr :=
∏r−1
i=0

(
1
2 − r

)
. For x ∈ [a2, a2] we therefore have

∥∥Drx v(x)
∥∥
Br(R;R) ≤ r!kvc

r
v and

∥∥Drx w(x)
∥∥
Br(R;R) ≤ r!kwc

r
w

where kv = a−2 and cv = a−2 as well as kw = a and cw = a−2.

Thus, the assertion follows — with some book keeping necessary for the con-
stants. ut
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3.2 Parametric regularity

First, we provide some results concerning the norms introduced beforehand that
are subsequently used in this subsection. This mainly stems from the situation
that in general we will be considering elements of spaces of the form L∞Py

(�;X );
indeed, we therefore also introduce the shorthand notation

~v~X := ‖v‖∞,�;X .

We will especially make use it for spaces of the form L∞Py

(
�;W η,p(D;X )

)
, where

this then becomes ~v~η,p,D;X = ‖v‖∞,�;η,p,D;X . With these lemmas at hand, we
then first prove the parametric regularity of the diffusion coefficient A and then
also the parametric regularity of the solution u of (7).

The following lemma gives a bound after applying a divx or ∇x.

Lemma 5 Let η ∈ N∗, 1 ≤ p ≤ ∞. For v ∈ L∞Py

(
�;W η,p(D;Rd)

)
we have that

divx v ∈ L∞Py

(
�;W η−1,p(D;R)

)
with

~divx v~η−1,p,D ≤ ηd~v~η,p,D;Rd .

For v ∈ L∞Py

(
�;W η,p(D)

)
we have that ∇x v ∈ L∞Py

(
�;W η−1,p(D;Rd)

)
with

~∇x v~η−1,p,D;Rd ≤ ηd~v~η,p,D.

Proof We calculate

∥∥divx v[y]
∥∥
η−1,p,D

=

∥∥∥∥ d∑
i=1

∂xi vi[y]

∥∥∥∥
η−1,p,D

=
∑

|α|≤η−1

1

α!

∥∥∥∥ d∑
i=1

∂αx ∂xi vi[y]

∥∥∥∥
p,D

≤
∑

|α|≤η−1

1

α!

d∑
i=1

∥∥∂αx ∂xi vi[y]
∥∥
p,D
≤ η

∑
|α|≤η

1

α!

d∑
i=1

∥∥∂αx vi[y]
∥∥
p,D

≤ ηd
∑
|α|≤η

1

α!

∥∥∂αx v[y]
∥∥
p,D;Rd ≤ ηd

∥∥v[y]
∥∥
η,p,D;Rd .

We also may compute

∥∥∇x v[y]
∥∥
η−1,p,D;Rd =

∑
|α|≤η−1

1

α!

∥∥∂αx ∇x v[y]
∥∥
p,D;Rd

=
∑

|α|≤η−1

1

α!

∥∥∥∥∥∥∥
∂

α
x ∂x1 v[y]

...
∂αx ∂xd v[y]


∥∥∥∥∥∥∥
p,D;Rd

≤
∑

|α|≤η−1

1

α!

d∑
i=1

∥∥∂αx ∂xi v[y]
∥∥
p,D

≤ η
∑
|α|≤η

1

α!

d∑
i=1

∥∥∂αx v[y]
∥∥
p,D
≤ ηd

∑
|α|≤η

1

α!

∥∥∂αx v[y]
∥∥
p,D
≤ ηd

∥∥v[y]
∥∥
η,p,D

.

Since these calculations hold for almost every y ∈ �, applying the essential supre-
mum over y ∈ � then yields the assertions. ut

The Leibniz rule also yields the following kind of submultiplicativity.
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Lemma 6 Let η ∈ N, 1 ≤ p, p1, . . . , pr ≤ ∞, X1, . . . ,Xr and Y be Banach spaces
and

M ∈W η,p(D;B(X1, . . . ,Xr;Y)
)
, vj ∈W η,pj (D;Xj)

with q = (p−1 + p−1
1 + · · ·+ p−1

r )−1 ≥ 1. Then, we have

‖Mv1 · · ·vr‖η,q,D;Y ≤ ‖M‖η,p,D;B(X1,...,Xr;Y)

r∏
j=1

‖vj‖η,pj ,D;Xj .

Proof If the assertion holds for r = 1 then by induction it also follows for r > 1.
Therefore, we only consider the case with r = 1 and set v := v1 and p′ = p1.

Let α,β ∈ Nd be two multi-indices, then we have

1

(α+ β)!

(
α+ β

β

)
=

1

(α+ β)!

(α+ β)!

α!β!
=

1

α!β!
.

We now can calculate

‖Mv‖η,q,D;Y =
∑
|α|≤η

1

α!

∥∥∂αx [Mv]
∥∥
q,D;Y

=
∑
|α|≤η

1

α!

∥∥∥∥∥∑
β≤α

(
α

β

)
∂βx M ∂α−β

x v

∥∥∥∥∥
q,D;Y

≤
∑
|α|≤η

∑
β≤α

1

α!

(
α

β

)∥∥∂βx M ∂α−β
x v

∥∥
q,D;Y

≤
∑
|α|≤η

∑
β≤α

1

α!

(
α

β

)∥∥∂βx M
∥∥
p,D;B(X ;Y))

∥∥∂α−β
x v

∥∥
p′,D;X .

By a change of variables, i.e. replacing α with α+ β, and remarking that{
(α− β,β) : |α| ≤ η, β ≤ α

}
=
{

(α,β) : |α|+ |β| ≤ η
}
,

we find the identity∑
|α|≤η

∑
β≤α

1

α!

(
α

β

)∥∥∂βx M
∥∥
p,D;B(X ;Y)

∥∥∂α−β
x v

∥∥
p′,D;X

=
∑

|α|+|β|≤η

1

(α+ β)!

(
α+ β

β

)∥∥∂βx M
∥∥
p,D;B(X ;Y)

∥∥∂αx v
∥∥
p′,D;X

=
∑

|α|+|β|≤η

1

α!β!

∥∥∂βx M
∥∥
p,D;B(X ;Y)

∥∥∂αx v
∥∥
p′,D;X .

Consequently, as

‖Mv‖η,q,D;Y ≤
∑

|α|,|β|≤η

1

α!β!

∥∥∂βx M
∥∥
p,D;B(X ;Y)

∥∥∂αx v
∥∥
p′,D;X

≤
∑
|β|≤η

1

β!

∥∥∂βx M
∥∥
p,D;B(X ;Y)

∑
|α|≤η

1

α!

∥∥∂αx v
∥∥
p′,D;X

= ‖M‖η,p,D;B(X ;Y)‖v‖η,p′,D;X ,

we arrive at the desired estimate. ut
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Lastly, the Faà di Bruno formula, see Remark 1, now yields the following
lemma.

Lemma 7 Let η ∈ N, 1 ≤ p ≤ ∞, X and Y be Banach spaces,

v ∈W η,∞(D;X ),

X ⊂ X be open with imgD v ⊂ X, W : X → Y η-times Fréchet differentiable and,
for 0 ≤ r ≤ η,

Dr W ◦ v ∈ Lp
(
D;Br(X ;Y)

)
.

Then, we have
W ◦ v ∈W η,p(D;Y)

with

‖W ◦ v‖η,p,D;Y ≤
η∑
r=0

1

r!
‖Dr W ◦ v‖p,D;Br(X ;Y)‖v‖rη,∞,D;X .

Proof The Faà di Bruno formula leads to

‖W ◦ v‖η,p,D;Y =
∑
|α|≤η

1

α!

∥∥∂αx (W ◦ v)
∥∥
p,D;Y

≤ ‖W ◦ v‖p,D;Y

+
∑

1≤|α|≤η

|α|∑
r=1

1

r!

∑
C(α,r)

∥∥∥∥(Dr W ◦ v) ∂β1
x v · · · ∂βrx v

r∏
j=1

1

βj !

∥∥∥∥
p,D;Y

Now, with Lemma 6,∥∥∥∥(Dr W ◦ v) ∂β1
x v · · · ∂βrx v

r∏
j=1

1

βj !

∥∥∥∥
p,D;Y

≤ ‖Dr W ◦ v‖p,D;Br(X ;Y)

r∏
j=1

1

βj !

∥∥∂βjx v
∥∥
∞,D;X

leads to

‖W ◦ v‖η,p,D;Y

≤ ‖W ◦ v‖p,D;Y

+
∑

1≤|α|≤η

|α|∑
r=1

1

r!
‖Dr W ◦ v‖p,D;Br(X ;Y)

∑
C(α,r)

r∏
j=1

1

βj !

∥∥∂βjx v
∥∥
∞,D;X

≤ ‖W ◦ v‖p,D;Y

+

η∑
r=1

1

r!
‖Dr W ◦ v‖p,D;Br(X ;Y)

∑
r≤|α|≤η

∑
C(α,r)

r∏
j=1

1

βj !

∥∥∂βjx v
∥∥
∞,D;X

≤ ‖W ◦ v‖p,D;Y +

η∑
r=1

1

r!
‖Dr W ◦ v‖p,D;Br(X ;Y)

(∑
β≤α

1

β!

∥∥∂βx v
∥∥
∞,D;X

)r

≤
η∑
r=0

1

r!
‖Dr W ◦ v‖p,D;Br(X ;Y)‖v‖rη,∞,D;X .

ut
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From Lemma 7, with a second application of the Faà di Bruno formula, see Re-
mark 1, we then can derive the following lemma.

Lemma 8 Let η ∈ N, 1 ≤ p ≤ ∞, ν ∈ NN∗
f , X and Y be Banach spaces,

v : �→W η,∞(D;X ),

X ⊂ X be open with img� imgD v ⊂ X, W : X → Y be η + |ν|-times Fréchet
differentiable and, for α ≤ ν and 0 ≤ t ≤ η + |ν|,

∂αy v ∈ L∞Py

(
�;W η,∞(D;X )

)
, DtW ◦ v ∈ L∞Py

(
�;Lp

(
D;Bt(X ;Y)

))
.

Then, we have
∂αy (W ◦ v) ∈ L∞Py

(
�;W η,p(D;Y)

)
with

~W ◦ v~η,p,D;Y ≤
η∑
r=0

1

r!

�

�Dr W ◦ v
�

�

p,D;Br(X ;Y)~v~
r
η,∞,D;X

and, for α 6= 0,

�

�∂αy (W ◦ v)
�

�

η,p,D;Y ≤ α!

|α|∑
s=1

1

s!

( η∑
r=0

1

r!

�

�Dr+sW ◦ v
�

�

p,D;Br+s(X ;Y)~v~
r
η,∞,D;X

)
∑

C(α,s)

s∏
j=1

1

βj !

�

�∂
βj
y v

�

�

η,∞,D;X .

Proof The application of Lemma 7 leads to
�

�DsW ◦ v
�

�

η,p,D;Bs(X ;Y)

= ess sup
y∈�

∥∥DsW ◦ v[y]
∥∥
η,p,D;Bs(X ;Y)

≤ ess sup
y∈�

η∑
r=0

1

r!

∥∥∥Dr(DsW) ◦ v[y]
∥∥∥
p,D;Br(X ;Bs(X ;Y))

∥∥v[y]
∥∥r
η,∞,D;X

≤
η∑
r=0

1

r!

�

�Dr+sW ◦ v
�

�

p,D;Br+s(X ;Y)~v~
r
η,∞,D;X ,

from which, with s = 0, the assertion follows directly for α = 0.
For α 6= 0, we remark that the Faà di Bruno formula yields

�

�∂αy (W ◦ v)
�

�

η,p,D;Y

≤ α!

|α|∑
s=1

1

s!

∑
C(α,s)

�

�

�

�

(DsW ◦ v) ∂β1
y v · · · ∂βsy v

s∏
j=1

1

βj !

�

�

�

�

η,p,D;Y

≤ α!

|α|∑
s=1

1

s!

∑
C(α,s)

�

�DsW ◦ v
�

�

η,p,D;Bs(X ;Y)

s∏
j=1

1

βj !

�

�∂
βj
y v

�

�

η,∞,D;X

≤ α!

|α|∑
s=1

1

s!

�

�DsW ◦ v
�

�

η,p,D;Bs(X ;Y)

∑
C(α,s)

s∏
j=1

1

βj !

�

�∂
βj
y v

�

�

η,∞,D;X .

Note that in the calculation we also use the fact that the submultiplicativity of
the norms ‖·‖η,p,D;X shown in Lemma 6 also extends to the norms ~·~η,p,D;X . ut
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Now, using these previous results we can consider the regularity of the diffusion
coefficient A[y](x) := D

(
V[y](x)

)
, for which we have the following theorem.

Theorem 2 We know for all α ∈ NN∗
f that

�

�∂αy A
�

�

τ,∞,D;Rd×dsymm
≤ |α|!kτ,Aµα

τ ,

where µτ = (µτ,k)k∈N∗ with

kτ,A := (τ + 1)kD2τ cτDc
τ
γτ and µτ,k :=

2cDcγτ
log 2

γτ,k.

Proof Firstly, since V depends affinely on y we know that

�

�∂αy V
�

�

τ,∞,D;Rd ≤ cγτγ
α
τ .

Moreover, as V[y](x) almost surely and almost everywhere lies in V , Theorem 1
yields

�

�Dr D ◦V
�

�

∞,D;Bt(Rd;Rd×dsymm)
≤ r!kDcrD.

With this, because A = D ◦V, we can employ Lemma 8 to arrive at

~A~τ,∞,D;Rd×dsymm
≤

η∑
r=0

1

r!

�

�Dr D ◦V
�

�

∞,D;Br(Rd;Rd×dsymm))
~V~

r
η,τ,D;Rd

≤
τ∑
r=0

1

r!
r!kDc

r
Dc

r
γτ

≤ (τ + 1)kDc
τ
Dc

τ
γτ

as well as, for α 6= 0,

�

�∂αy A
�

�

τ,∞,D;Rd×dsymm

≤ α!

|α|∑
s=1

1

s!

( τ∑
r=0

1

r!

�

�Dr+sD ◦V
�

�

∞,D;Br+s(Rd;Rd×dsymm)
~V~

r
τ,∞,D;Rd

)
∑

C(α,s)

s∏
j=1

1

βj !

�

�∂
βj
y V

�

�

τ,∞,D;Rd

≤ α!

|α|∑
s=1

1

s!

( τ∑
r=0

1

r!
(r + s)!kDc

r+s
D crγτ

) ∑
C(α,s)

s∏
j=1

1

βj !
cγτγ

βj
τ

≤ α!(τ + 1)kD2τ cτDc
τ
γτ 2|α|c

|α|
D

( |α|∑
s=1

∑
C(α,s)

s∏
j=1

1

βj !

)
c|α|γτ γ

α
τ

Now, since it follows from [10] that

α!
∑

C(α,s)

s∏
j=1

1

βj !
= s!S|α|,s,
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where Sn,s denotes the Stirling numbers of the second kind, see [1] and since

we know that
∑|α|
s=1 s!S|α|,s equals the |α|-th ordered Bell number, we have the

following bound

α!

|α|∑
s=1

∑
C(α,s)

s∏
j=1

1

βj !
=

|α|∑
s=1

s!S|α|,s ≤
|α|!

(log 2)|α|
.

see [4]. Thus, combining these estimates finally yields the assertions. ut

Now, Assumption 2 directly implies the following result.

Lemma 9 The unique solution u ∈ L∞Py

(
�;H1

0 (D)
)

of (7) moreover also fulfils

u ∈ L∞Py

(
�;Hτ+1(D)

)
, with

~u~τ+1,2,D ≤ cτ‖f‖τ−1,2,D,

where
cτ := max

0≤s≤~A~Rτ

Cτ,er(D, a, s).

However, by also leveraging the higher spatial regularity in the Karhunen-Loève
expansion of the random vector-valued field, we can show, with the usual boot-
strapping argument, that the solution u admits analytic regularity with respect
to the stochastic parameter y also in the Hτ+1(D)-norm. This mixed regularity
is then the essential ingredient when applying multilevel methods.

Theorem 3 The derivatives in y of the solution u of (7) satisfy

�

�∂αy u
�

�

τ+1,2,D
≤ |α|!c|α|+1µα

τ

where
c := max

{
2, 2cττ

2d2kτ,A, cτ‖f‖τ−1,2,D

}
.

Proof By differentiation of the variational formulation (7) with respect to y we
arrive, for arbitrary v ∈ H1

0 (D), at(
∂αy
(
A∇x u

)
,∇x v

)
L2(D;Rd)

= 0.

Applying the Leibniz rule on the left-hand side yields(∑
β≤α

(
α

β

)
∂α−β
y A ∂βy∇x u,∇x v

)
L2(D;Rd)

= 0.

Then, by rearranging and using the linearity of the gradient, we find(
A∇x ∂

α
y u,∇x v

)
L2(D;Rd)

= −
(∑

β<α

(
α

β

)
∂α−β
y A∇x ∂

β
y u,∇x v

)
L2(D;Rd)

.

Using Green’s identity, we can then write(
A∇x ∂

α
y u,∇x v

)
L2(D;Rd)

=

(∑
β<α

(
α

β

)
divx

(
∂α−β
y A∇x ∂

β
y u
)
, v

)
L2(D;R)

.
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Thus, we arrive at

�

�∂αy u
�

�

τ+1,2,D
≤ cτ

∑
β<α

(
α

β

)
�

�

�
divx

(
∂α−β
y A∇x ∂

β
y u
)�

�

�

τ−1,2,D

≤ cτ
∑
β<α

(
α

β

)
τd

�

�

�
∂α−β
y A∇x ∂

β
y u

�

�

�

τ,2,D

≤ cτ
∑
β<α

(
α

β

)
τd

�

�∂α−β
y A

�

�

τ,∞,D

�

�∇x ∂
β
y u

�

�

τ,2,D

≤ cττ2d2kτ,A
∑
β<α

(
α

β

)
|α− β|!µα−β

τ

�

�∂βy u
�

�

τ+1,2,D
,

by using Lemma 5 and the submultiplicativity of the norms ~·~η,p,D;X , which
follows from Lemma 6, as well as the bounds from Lemma 2. From this we then
arrive at

�

�∂αy u
�

�

τ+1,2,D
≤ c

2

∑
β<α

(
α

β

)
|α− β|!µα−β

τ

�

�∂βy u
�

�

τ+1,2,D
.

We note that, by definition of c, we have c ≥ 2 and furthermore, because of
Lemma 9, we also have that

�

�u
�

�

H1(D)
≤ c, which means that the assertion is true

for |α| = 0. Thus, we can use an induction over |α| to prove the hypothesis

�

�∂αy u
�

�

τ+1,2,D
≤ |α|!µα

τ c
|α|+1

for |α| > 0.

Let the assertions hold for all α, which satisfy |α| ≤ n − 1 for some n ≥ 1.
Then, we know for all α with |α| = n that

�

�∂αy u
�

�

τ+1,2,D
≤ c

2

∑
β<α

(
α

β

)
|α− β|!µα−β

τ

�

�∂βy u
�

�

τ+1,2,D

≤ c

2
µα
τ

∑
β<α

(
α

β

)
|α− β|!|β|!c|β|+1

=
c

2
µα
τ

n−1∑
j=0

∑
β<α
|β|=j

(
α

β

)
|α− β|!|β|!c|β|+1.

Making use of the combinatorial identity

∑
β≤α
|β|=j

(
α

β

)
=

(
|α|
j

)
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yields

�

�∂αy u
�

�

τ+1,2,D
≤ c

2
µα
τ

n−1∑
j=0

(
|α|
j

)
(|α| − j)!j!cj+1 =

c

2
|α|!µα

τ c

n−1∑
j=0

cj

≤ c

2(c− 1)
|α|!µα

τ c
|α|+1.

Now, since c ≥ 2, we have c ≤ 2(c− 1) and hence also

�

�∂αy u
�

�

τ+1,2,D
≤ |α|!µα

τ c
|α|+1.

This completes the proof. ut

3.3 Numerical quadrature in the parameter

We now impose some common assumptions, which make the Karhunen-Loève ex-
pansion computationally feasible.

Assumption 3 The random variables (yk)k∈N∗ are independent and identically
distributed. Moreover, they are uniformly distributed on [−1, 1].

By rescaling the σk with the factor 2 we thus can replace the choice � := RN∗

with � := [−1
2 ,

1
2 ]N
∗
.2

Coming from the solution of (7), that is u ∈ L∞Py

(
�;Hτ+1(D)

)
, we now wish

to know the moments of u. In this section, we will therefore consider the approxi-
mation of the mean of u.

The mean of u is given by the Bochner integral

E[u](x) =

∫
�
u[y](x) dy.

Therefore, we may proceed to approximate it by considering a generic quadrature
method QN ; that is

E[u](x) ≈ QN [u](x) :=
N∑
i=1

ω
(N)
i u

(
x, ξ

(N)
i

)
, (8)

where {(
ω
(N)
i , ξ

(N)
i

)}N
i=1
⊂ R× [−1

2 ,
1
2 ]N
∗

are the weight and evaluation point pairs. We assume that the quadrature chosen
fulfils ∥∥E[u]−QN [u]

∥∥
1,2,D

≤ cC(cµτ )N−r (9)

for some constants C(cµτ ) = C > 0 and r > 0.

2 Clearly, in practice the Karhunen-Loève expansion also has to be truncated after the first
M summands, for some M ∈ N. However, the Taylor expansion of u at the point 0 and the
bounds from Theorem 3 imply that the error incurred by such a truncation tends to 0 as M
tends to infinity. Thus, a large enough M can always be choosen to give the desired accuracy,
while, as the quadrature considered has constants that do not depend on M , increasing the M
also does not deteriorate the accuracy of the quadrature error.
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We will employ the quasi-Monte Carlo quadrature based on the Halton se-

quence, i.e. ω
(N)
i = 1/N and ξ

(N)
i = χi − 1

21, where χi denotes the i-th M -
dimensional Halton point, cf. [18]. Then, we know that, given that there exists
an ε > 0 such that µτ,k . k−3−ε holds, for every δ > 0 there exists a constant
C = C(δ) > 0 such that (9) holds for r = 1−δ, see e.g. [22] which is a consequence
of [36]. Clearly, other, possibly more sophisticated, quadrature methods may also
be considered, for example, other quasi-Monte Carlo quadratures, such as those
based on the Sobol sequence or other low-discrepancy sequences as well as their
higher-order adaptations, and anisotropic sparse grid quadratures, see e.g. [12,17,
30,34].

To approximate the mean of u as in (8), we require the values u[y] for y = ξi.
These values can be approximated by ul[y], where ul is the Galerkin approximation
of the spatially weak formulation on a finite dimensional subspace Vl of H1

0 (D);
that is, ul is the solution of

Find ul ∈ L∞Py
(�;Vl) such that(

A[y]∇x ul[y],∇x v
)
L2(D;Rd) =

(
f, v
)
L2(D;Rd)

for almost every y ∈ � and all v ∈ Vl.

We assume that a sequence of Vl can be chosen for l ∈ N such that there is a
constant K with

~u− ul~1,2,D ≤ K~u~τ+1,2,D2−τl. (10)

For example, we can consider Vl to be the spaces of continuous finite elements of
order τ coming from a sequence of quasi-uniform meshes Tl using isoparametric
elements, where the mesh size behaves like 2−l. Then, this is known from finite
element theory, see e.g. [5,6].

The combination of the error estimates (9) and (10) then leads to∥∥E[u]−QN [ul]
∥∥
1,2,D

≤
∥∥E[u]−QN [u]

∥∥
1,2,D

+
∥∥QN [u− ul]

∥∥
1,2,D

≤ cC(cµτ )N−r +K~u~τ+1,2,D2−τl.

Thus, choosing Nl :=
⌈
2τl/r

⌉
finally yields∥∥E[u]−QNl [ul]

∥∥
1,2,D

. 2−τl.

In contrast, the mixed regularity, shown before in Theorem 3, allows us to
consider a multilevel adaptation, which may be given as

E[u] ≈ QML
l [u0, . . . , ul] :=

l∑
k=0

∆Qk[ul−k]

where ∆Q0 := QN0
and ∆Qk := QNk − QNk−1

. Indeed, this is the sparse grid
combination technique as introduced in [15], see also [14,20,23]. As Theorem 3
yields an analogous result to [23, Lemma 8.1], it thus follows that∥∥E[u]−QML

l [u0, . . . , ul]
∥∥
1,2,D

. l2−τl.

For complexity considerations, we shall consider a quadrature that is nested,
i.e. a quadrature method were increasing the number of evaluation points from N
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to N + 1 is done by adding one further evaluation point to the set of evaluation

points one already had. Thus, we may set ξi = ξ
(N)
i as it does not depend on N .

Then, we note that QML
l [u0, . . . , ul] may explicitly be stated as

QML
l [u0, . . . , ul](x) =

N0∑
i=1

ω
(N0)
i ul(x, ξi)

+
l∑

k=1

(Nk−1∑
i=1

(
ω
(Nk)
i − ω(Nk−1)

i

)
ul−k(x, ξi)

+

Nk∑
i=Nk−1+1

ω
(Nk)
i ul−k(x, ξi)

)
.

Computing QNl [ul] requires thus the values ul,i(x) := u(x, ξi), which can be
derived by solving{

Find ul,i ∈ Vl such that(
A(ξi)∇x ul,i,∇x v

)
L2(D;Rd) =

(
f, v
)
L2(D;Rd) for all v ∈ Vl.

Generally, when considering a sequence of finite element spaces Vl as described
above, the number of degrees of freedom behaves like O

(
2ld
)

and computing one

ul,i using state of the art methods will have a complexity that is O
(
2ld
)
.

Therefore, the computation of the singlelevel quadrature QNl [ul] has a com-
plexity of O

(
2l(τ/r+d)

)
. However, for the computation of the multilevel quadrature

QML
l [u0, . . . , ul], we arrive at an over-all complexity of

l∑
k=0

Nk∑
i=1

O
(
2(l−k)d) =

l∑
k=0

O
(
2kτ/r2(l−k)d) =


O
(
2lτ/r

)
for d < τ/r,

O
(
l2ld

)
for d = τ/r,

O
(
2ld
)

for d > τ/r.

We mention that also non-nested quadrature formulae can be used but lead to a
somewhat larger constant in the complexity estimate, see [14] for the details.

Remark 2 The singlelevel approach gives an error scaling like (2τ )l with a com-
plexity scaling like (2τ/r+d)l. The multilevel approach, however, for any choosen
ε > 0, yields an error scaling like l(2−τ )l . (2−τ+ε)l with a complexity of (2τ/r)l,
l(2d)l . (2d+ε)l or (2d)l, respectively. Thus, by considering a small ε > 0 we see
that the multilevel approach has an error to complexity scaling that essentially
either is the error to complexity scaling of the quadrature method or that of the
space discretisation.

Remark 3 If we redefine the Nl as Nl :=
⌈
l(1+ε)/r2τl/r

⌉
for an ε > 0, as proposed

in [2], then we arrive at∥∥E[u]−QML
l [u0, . . . , ul]

∥∥
H1(D)

. 2−τl.

So, the logarithmic factor, which shows up in the convergence rate, can be removed
by increasing the quadrature accuracy slightly faster. Note that this modification
increases the hidden constant with a dependance on ε.
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In the particular situation of the quasi-Monte Carlo method based on the
Halton sequence, we can consider δ′ such that δ > δ′ > 0. Then, with a similar
argument as in [2], it follows that∥∥E[u]−QML

l [u0, . . . , ul]
∥∥
H1(D)

. 2−τl.

That is, the logarithmic factor, which shows up in the convergence rate, is removed,
while the hidden constant increases with a dependance on δ′.

While we have exclusively considered the case of the mean of the solution u
here, we do note that analogous statements may also be shown for example for
the higher-order moments, see [20,23] for instance.

4 Numerical Results

We will now consider two examples of the model problem (1) with a diffusion coef-
ficient of form (2) using the unit cube D := (0, 1)3 as the domain of computations.
Therefore, in view of H2-regularity of the spatial problem under consideration, we
are only considering the situation with τ = 1. In both examples, we set the global
strength a to a := 0.12 and choose the right hand side f ≡ 1. For convenience, we
define

sj(x,x
′) := 16 · xj(1− xj) · x′j(1− x′j).

Example 1 In this first example, we choose the description of V to be defined by

E[V](x) :=
[
1 0 0

]T
and

Cov[V](x,x′) :=
1

100
exp

(
−
∥∥x− x′

∥∥2
2

50

)1 0 0
0 9s2(x,x′) 0
0 0 9s3(x,x′)

 .
We note that for j ∈ {2, 3} the covariance in the normal direction on the parts of
the boundary with xj ∈ {0, 1} is suppressed.

In Figure 1 the stream traces of two samples of the vector field V/‖V‖2 are
shown. By definition of the mapping D these stream traces show the orientation
of the fibres which are described by D ◦V. They are coloured according to ‖V‖2,
which by the mapping D encodse the diffusion strength in the fiber direction.

Example 2 For this second example we choose the description of V to be defined
by

E[V](x) :=

cos
(
(x3 − 0.5)π3

)
sin
(
(x3 − 0.5)π3

)
0


and

Cov[V](x,x′) :=
9

100
exp

(
−
∥∥x− x′

∥∥2
2

50

)s1(x,x′) 0 0
0 s2(x,x′) 0
0 0 s3(x,x′)

 .
Here, the covariance in the normal direction on all of the boundary is suppressed.
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Fig. 1 Example 1. Fibre visualisations for two samples of the parameter y.

The numerical implementation is performed with aid of the problem-solving
environment DOLFIN [29], which is a part of the FEniCS Project [29]. The
Karhunen-Loève expansion of the vector field V is computed by the pivoted
Cholesky decomposition, see [19,21] for the details. For the finite element dis-
cretisation, we employ the sequence of nested triangulations Tl, yielded by suc-
cessive uniform refinement, i.e. cutting each tetrahedron into 8 tetrahedra. The
base triangulation T0 consists of 6 ·23 = 48 tetrahedra. Then, we use interpolation
with continuous element-wise linear functions and the truncated pivoted Cholesky
decomposition for the Karhunen-Loève expansion approximation and continuous
element-wise linear functions in space. The truncation criterion for the pivoted
Cholesky decomposition is that the relative trace error is smaller than 10−4 · 4−l.

Since the exact solutions of the examples are unknown, the errors will have to
be estimated. Therefore, in this section, we will estimate the errors for the levels
0 to 5 by substituting the exact solution with the approximate solution computed
on the level 6 triangulation T6 using the quasi-Monte Carlo quadrature based on
Halton points with 104 samples.

For every level, we also define the number of samples used by the quasi-Monte
Carlo method based on Halton points (QMC); we choose

Nl :=
⌈
2l/(1−δ) · 10

⌉
with δ := 0.2; see Table 1 for the resulting values of Nl. This then also implies the
amount of samples used on the different levels when using the multilevel quasi-
Monte Carlo method based on Halton points (MLQMC). Based on these choices,
we expect to see an asymptotic rate of convergence of 2−l in the H1-norm for the
mean and in the W 1,1-norm for the variance.

Figures 2 and 3 show the estimated errors of the solution’s first moment on
the left hand side and of the solution’s second moment on the right hand side,
each versus the discretisation level for the QMC and MLQMC quadrature for the
two different examples. As expected, the QMC quadrature methods achieves the
predicted rate of convergence in both examples, and this rate of convergence also
carries over to its multilevel adaptation (MLQMC).
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Table 1 The number of samples for the first six levels and the respective parameter dimen-
sions.

l 0 1 2 3 4 5

Nl 10 24 57 135 320 762

M1 17 26 30 36 44 52
M2 14 26 30 36 43 52

Fig. 2 Example 1. H1-error in the 1st moment (left) and W 1,1-error in the 2nd moment
(right).

Fig. 3 Example 2. H1-error in the 1st moment (left) and W 1,1-error in the 2nd moment
(right).

5 Conclusion

In this article, we have considered the second order diffusion problem

for almost every ω ∈ Ω:

{
−divx

(
A[ω]∇x u[ω]

)
= f in D,

u[ω] = 0 on ∂D,

with the uncertain diffusion coefficent given by

A[ω] := aI +
(∥∥V[ω]

∥∥
2
− a
)V[ω]VT[ω]

VT[ω]V[ω]
.

This models anisotropic diffusion, where the diffusion strength in the direction
given by V/‖V‖2 is ‖V‖2 and perpendicular to it is a, which can be used to
model both diffusion in media that consist of thin fibres or thin sheets.
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After having restated the problem in a parametric form by considering the
Karhunen-Loève expansion of the random vector field V, we have shown that,
given regularity of the elliptic diffusion problem, the decay of the Karhunen-Loève
expansion of V entirely determines the regularity of the solution’s dependence on
the random parameter, also when considering this higher regularity in the spatial
domain.

We then leverage this result to reduce the computational complexity of the
approximation of the solution’s mean, by using the multilevel quasi-Monte Carlo
method instead of the quasi-Monte Carlo method, while still retaining essentially
the same error rate. Indeed, while in the singlelevel scheme the computational
complexity is the product of the complexity of the quadrature method and of
the spatial discretisation method considered, this is not the case for the multi-
level scheme, which has a computational complexity that essentially scales like
the complexity of the quadrature method or of the spatial discretisation method
considered. The numerical experiments corroborate these theoretical findings.

While we considered the use of QMC and its multilevel adaptation, one can
clearly also consider other quadrature methods, such as the anisotropic sparse
grid quadrature, and then reduce the complexity by passing to their multilevel
adaptations. Likewise, multilevel collocation is also applicable.
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theorie., 5th edn. Springer, Berlin (2013)

6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn.
Springer, New York (2008)
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