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Summary 
Recent years have seen an explosion in the ability to grow organoids which phenocopy 

diverse organs ranging from intestinal epithelium to complex cerebral structures. All organoid 

models emerge from the potential of individual cells to self-organize into higher order 

structures under homogenous conditions. They can be established by extracting adult stem 

cells from healthy or diseased tissue or by directed differentiation of pluripotent stem cells. 

Protocols have been established to culture them in well-defined conditions and use them for 

any standard biological or molecular technology. In addition, they are more amenable to 

imaging approaches, allowing researchers to gain access to early development processes. 

Despite the exciting promises of organoid technologies and the hope that they will result in 

new human therapies, little is known about self-organization into complex organ like 

structures. This type of basic knowledge about the underlying process is required for applied 

breakthrough to occur. 

In this work, we used the enormous regenerative capacity of the small intestine to 

study how cells with stem and non-stem cell identity self-organize into organoids. A 

quantitative study identified a YAP1 driven transient dedifferentiation, occurring independently 

of the starting population, into proliferative, homogenous cysts able to reconstitutes all cell 

types of the mature tissue. In contrast to the prevalent view of organoid development, this 

intermediate state exhibits not intestinal stem cell but fetal-like characteristics. By addressing 

how asymmetries emerge within homogenous cysts to specify Paneth cells, the first symmetry 

breaking event in this system, we identified large degrees of cell-to-cell variability in YAP1 

activity preceding symmetry breaking. This YAP1 cell-to-cell variability in its subcellular 

localization is essential to drive a Notch-Delta lateral inhibition event that specifies Paneth cell 

fate. 

In conclusion, this works shows how combining live and 4i multiplexed imaging, 

sequencing and perturbation approaches can bridge decision making at the single cell level, 

by lateral-inhibition driven cell-fate decision, to different phenotypic outcomes on the tissue 

level, the occurrence of budding organoids or because of failed symmetry breaking, 

enterocsyts. This study gives a first glance into the complex interaction networks endowing 

individual cells with the capacity to self-organize into organoids. 
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Chapter 1: Introduction 
One of the defining features of tissues is organization into specialized cell types with 

distinct functionality and defined spatial arrangements. During embryonic development, tissue 

homeostasis and regeneration, populations of cells have to undergo complex temporal and 

spatial coordinated processes to build, maintain or rebuild three-dimensional tissue 

structures1. Each transformational step emerges through collective behavior of interacting 

cells that encode, and decode, signaling and transcriptional networks2. To this end, each cell 

is equipped with a sophisticated sensing and sending machinery, which allows to probe the 

cellular microenvironment, react to and instruct neighboring cells and dynamically adapt 

cellular states to changing microenvironmental demands1. While each adaptation can cause 

multiple behavioral change on the single cell level including, proliferation, migration, and 

differentiation, ultimately the organization into multicellular tissues only emerges through 

coordinated interactions between cells3,4. 

Surprisingly little is known about underlying mechanisms orchestrating single cell 

behaviors during tissue patterning3,5. The search for conserved design principles underlying 

pattern-forming systems is a longstanding problem in biology6. Earlier schools of thought 

viewed patterning at a coarse-grained tissue level and introduced the concept of an organizing 

center7,8, a localized region from which molecule spreads to induce changes in the 

surrounding tissue. Over time, the focus moved from the whole tissue to individual cells, genes 

and genetic networks7,8. This cell-centric view paved the way to understanding how early 

formed positional cues can translate into distinct cellular fates based on positional 

information9,10. However, the question of how initial asymmetries required to form positional 

cues in a collective of cells could arise remained elusive. 

In 1952 Alan Turing presented an elegant conceptual framework to biologists 

explaining how asymmetries arises by non-linear interactions between individual cells from 

homogenous conditions11,12. In the simplest form of Turing’s reaction-diffusion system, a short-

range positive feedback coupled to a long-range negative feedback suffice to generate various 

patterns such as stable periodic patterns, travelling waves and oscillations13. Although the 

real-world relevance of strict Turing-Reactions in biology is debated14, his theoretical analysis 

based on the diffusion of chemical molecules exemplifies a fundamental design principle in 

biology; self-organization. Whereas pre-patterned gradients of molecules can activate cell-

intrinsic fate programs, by adding non-linear interactions between cells into the system, self-

organizing patterns can emerge from homogenous conditions without a fixed reference15. 

Although Turing’s ideas preceded many theories regarding pattern formation, interest in self-

organization as a core patterning mechanism in biological systems is quite recent. 
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Self-organization 
In a self-organizing system, entities interact with each other to spontaneously form 

higher order structures through collective behavior without the requirement of external 

positional guidance16,17. Self-organization is pervasive in biology, chemistry, and physics17. A 

framework of self-organization has proved helpful in explaining diverse biological phenomena 

ranging across different scales. Examples include the emergence of protein patterns in 

bacteria 18, oscillations in the presometic mesoderm19, the recreation of entire organism20 and 

the behavior of schools of fish and flocks of birds11. This thesis focuses on self-organization 

at the tissue level, in particular on self-organized tissue patterning starting from a single 

isolated cell and subsequent spontaneous occurrence of cell fate specification within a 

population of dividing cells. 
 

Symmetry breaking 
A crucial step during self-organization is symmetry breaking, where symmetry means 

uniformity21. Symmetry breaking therefore refers to the process by which such uniformity is 

broken to bring the system from a homogenous in a more structured and improbable state21. 

Similar to self-organization, symmetry breaking comprises multiple biological scales and 

depending on the context can refer to a variety of biological outcomes including the acquisition 

of cell polarity22, asymmetric cell division23, or embryonic body axis formation24. In mammalian 

systems, symmetry breaking often refers to cell fate determination. The event by which a 

uniform population of cells, a population where each cell has an identical potential to 

differentiate into prospective fates1,25, breaks uniformity to realize a distinct cellular fate in a 

subset of these cells. Examples include Paneth cell specification during organoid 

development26, the differentiation of progenitor cells into erythroid and myeloid fates27, the 

differentiation of the totipotent embryo28 and cell fate determination in the inner cell mass of 

the embryo29. This particular definition of symmetry breaking is the one this thesis focuses on, 

if not explicitly stated otherwise. Although the term symmetry breaking usually describes the 

outcome (the fate specification), the mechanism leading to this event can be comprised of 

multiple implicit symmetry breaking event on smaller scales. 
 

Intrinsic noise and deterministic cell-to-cell variability in symmetry breaking 
Since Turing’s theory of chemical reaction and diffusion, various additional theoretical 

modeling frameworks have emerged which allow to model self-organizing processes1. 

Although rules and rationales differ between those modelling frameworks, they all share the 

idea that small initial perturbations within the homogenous system are mandatory to initiate 

symmetry breaking1. These initial heterogeneities allow then to be amplified and consolidated 
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to generate stable patterns1. Corroborating results comes from experimental evidence both in 

vitro30 and in vivo25,31,32 where extensive cellular heterogeneity on the gene and protein level 

precedes emergence of lineage segregation25,31,32. In two-dimensional cultures of embryonic 

stem cells (ESCs) grown under uniform conditions, cell-to-cell variability in NANOG and 

GATA6 expression emerges spontaneously33. The observed variability in NANOG levels 

between individual cells translate into distinct differentiation propensities of these cells. 

NANOG+ cell generate preferentially undifferentiated cell colonies, whereas NANOG- cells 

show a higher propensity for differentiation30. Similar observations have been made during 

symmetry breaking in mouse pre-implantation development where OCT4 and SOX2 targets 

such as SOX21 are highly heterogeneously expressed to initiate cell-fate decision at the 4-

cell stage34.  

Although cell-to-cell variability is omnipresent in populations of clonogenic cells35, little 

is known about the source of this observable variability. The dogma has long been that such 

variability is just a random consequence of inherent stochasticity of biological processes called 

intrinsic noise. Nowadays, an increasing amount of studies suggest that these cell-to-cell 

variabilities arise through active sensing and adapting mechanism of individual cells to 

respond to their changing microenvironment (here referred to as deterministic cell-to-cell 

variability)35. 

 

Intrinsic noise 
Biological processes which involve low copy numbers or infrequent interactions are 

inherently stochastic36. This is best understood in gene expression where the low copy 

numbers of one to two genes per cell lead to expression bursts which results in variability in 

protein and mRNA levels between cells37. Variability in a system is not only required for 

symmetry breaking in cell fate determination but also to allow other emergent phenomena as 

cell polarization or migration38. Although variability in biological systems may allow for flexibility 

and adaptability36, it also raises the question of how a random process can cause robust and 

reproducible patterns39. At least to a certain degree, cells achieve robustness by using active 

and passive mechanism to filter molecular noise40. Active noise filters include feedback or 

feed-forward motifs for transcriptional regulation or regulator loops by microRNA expression39 

and nuclear compartmentalization makes up a powerful mechanism to buffer stochastic 

fluctuations of gene expression passively41,42. Cross-talks between distinct signaling pathways 

may also act to buffer noise43. Of note, even assuming an optimal noise-reducing feedback 

circuit, molecular noise has a fundamental limit in its controllability44 which will display at least 

a minimal stochasticity as described by a single Poisson process45. In early studies of cellular 

noise, the sole measurement used was gene expression which lead to the conclusion that the 

observed fluctuations are of non-deterministic nature37. By separating the contribution of these 
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heterogeneities into intrinsic noise and extrinsic factors by aid of multivariate 

measurements46,47, however, large parts of the observed variability can often be attributed to 

extrinsic factors while intrinsic noise in biological systems approaches minimal 

stochasticity42,48-51. 

 

Deterministic cell-to-cell variability 
Extrinsic factors include cellular states such as the cell cycle stage but also the 

microenvironment of each cell. During division cells undergo extensive cellular reorganization 

on the chromatin, organelles and cytoskeletal levels52. As cells approach mitosis, cells 

attaching to the extracellular matrix disassemble focal adhesion53 or change cell-to-cell 

contact mediated adhesion within a tissue context to reshape into a spherical geometry53. 

These cell cycle dependent changes in adhesion facilitate heart progenitor induction54 and 

differentiation in mouse embryos55. Oscillations of the cell-cycle regulators cyclin D1-3 control 

differentiation signals including the TGF-β-SMAD2/3 pathway and different cell cycle stages 

directly affect activation of various signaling molecules56,57. YAP1 activity increases during 

G157, PKB (also known as AKT) activity fluctuates across the cell cycle56 to show highest 

phosphorylation in G258 and Wnt signaling peaks in the G2/M phase of the cell cycle59. Cells 

continuously adapt their cellular state while progressing through the cell cycle. Moreover, by 

changing cell-to-cell contacts and reducing the available space, cellular division reshapes the 

microenvironment of neighboring cells. 

The microenvironment of a cell is defined by its position within a population, the 

crowdedness of such a population and the amount of physical forces each cell exerts on its 

neighboring cell58,60,61. Even in populations of isogenic adherent cells, under homogenous 

growth conditions, divisions combined with cell motility result in a continuously changing local 

microenvironment35. As sparsely populated regions become denser, the available space for 

each cell becomes less, resulting in smaller cellular size and confined shape. In this dynamic 

environment of ever changing local cell densities, each cell has to constantly probe and 

translate the current state through multiple signaling pathways into population context 

dependent cellular adaptations including growth60, proliferation62, polarization63, lipid 

composition63,64 and gene expression42. Driven by asynchronous cell cycles and single cell 

adaptations to the local microenvironment, on the population level large degrees of cell-to-cell 

variability in cell shapes and cellular states emerge. For example, cell spreading allows cells 

in sparse region to activate focal adhesion kinases to adapt lipid composition differently than 

cells grown in dense region63,64. These differences in lipid composition translate into distinct 

signaling states within each single cell64 and change within a population the propensity of each 

individual cell for viral infection63. Although each of these observations appears random when 

only considering one phenotypic read out such as phosphorylation of PKB58,65 or efficiency of 
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virus infection63, uncovering and measuring the hidden variables underlying these processes 

(cell cycle and  population context) renders responses to the same stimulus predictable. 

Particularly in the context of symmetry breaking, many fate decisions considered to be 

fully stochastic could have similar determining variables. In clonal populations of 

haematopoietic progenitor cell cellular heterogeneity in the stem cell marker Sca-1 is believed 

to occur stochastically. Sca-1 high cells show distinct transcriptomes and differentiation 

propensities compared to Sca-1 low cells66. Although, cell-cycle-dependent cell size variation 

contribute to only 1% of the observed variability of Sca-1 levels per cell, the observation that 

clear bimodal distributions only occur after more than one week where cells are grown form a 

single cell into colonies of cells may indicate a role of population context in the occurring 

heterogeneity. Similarly, cell programming of somatic cells into induced pluripotent stem (iPS) 

cells mediated by overexpression of OCT4, SOX2, KLF4 and MYC is believed to be a 

stochastic process. However, differentiation occurs in dense population of adherent cells67,68 

as does the occurrence of NANOG heterogeneity69. Indeed, by following single pancreatic 

progenitors in clusters of cells, Mamidi et al.70, recently demonstrated that the ability to spread 

out for cells determines the propensity to break symmetry and express the fate-determining 

transcription factor PDX1. Dense cells in the center maintain high PDX1 expression, whereas 

spread cells at the periphery downregulate PDX1 expression. Expanding on the observation 

that in isolated cells manipulation of the local microenvironment directly links biophysical cues 

to cell fate determination61,71. Here the authors demonstrate that within the pancreas, cells 

probe the local microenvironment by an Integrin-F-actin-YAP1-Notch mechanosignaling axis 

to regulate cellular fate. 

 

In conclusion, self-organization is now recognized as a core principle in pattern 

formation for multicellular systems72. The generation of complex three-dimensional topologies 

is not directly encoded within the genetic code but emerges by interconnected layers of 

interactions comprising physical as well as genetic mechanism73. A crucial aspect of symmetry 

breaking is heterogeneity of molecular key players involved in cell fate determination74. 

Although, heterogeneities comprise intrinsic noise, deterministic factors can often explain 

large degrees of the observed variability. Despite the importance of self-organization in 

biology, little is known on how individual cells have the intrinsic capability to self-organize, 

create heterogeneity, break symmetry and pattern into higher order structures. 

 

Model systems to study self-organization 
Unraveling the underlying mechanisms of multicellular interactions ranging over 

various temporal and spatial dimensions is a daunting task. Many in vivo model systems 
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including social amoeba75, zebrafish76 and fly77, have been used to explain dynamics of pattern 

formation by using tools including conditional knock-outs, cellular ablation, lineage tracing and 

live imaging78. However, the study of self-organization in vivo is often hampered by 

confounding factors such as limited accessibility, low throughput or ethical considerations in 

case of human embryonic development79. 

Complementary to the in vivo model systems, over the last years’ robust in vitro model 

systems recapitulating many processes of in vivo patterning have been developed. 

Improvements in culture conditions of pluripotent stem cells and adult stem cells have 

unraveled the potential of individual cells to self-organize into higher order structures 

resembling processes in vivo. Dissociated cells can recapitulate early embryonic spatial 

patterning in two-dimensional cultures80 and generate various three-dimensional organoid 

structures when cultured in appropriate conditions2,81. Organoids provide a unique 

experimental system to study defined aspects of spatiotemporal dynamics of cells interacting 

in three-dimensions under defined conditions. Organoids are tractable, easily expandable and 

amendable to fast genetic manipulations82. 

 

The growing field of organoid research 
The groundbreaking work of Yoshiki Sasai’s laboratory showing that stem cells can 

organize into optical cups83 and of Hans Clever’s laboratory in the gut paved the way of today’s 

booming organoid research84. The current definition of an organoid is ““a collection of organ-

specific cell types that develops from stem or organ progenitors and self-organizes through 

cell sorting and spatially restricted lineage commitment in a manner similar to in vivo”85. 

Various organoid systems have been developed, including small intestine84, stomach86, 

pancreas87, liver 88, optic cups 83 and cerebral structures85 which are either initiated from single 

cells84 or from aggregated cells83. Two main types of stem cells can induce organoid formation, 

pluripotent stem cells (PSC), including pluripotent embryonic stem (ES) cells and synthetic 

induced pluripotent stem (iPS) cells, and stem cells origin from the adult tissue (adult stem 

cells, ASCs)89. Although cells are self-organizing in the sense that the final structure emerges 

under homogenous conditions, each organoid type requires timed addition of growth factors 

and suitable mechanical support from the surrounding matrix90. Culture conditions are distinct 

for each organoid type and guide the culture towards the desired fate90. 

Pioneering discoveries paving the way for nowadays three dimensional cultures can 

be traced back to the 1970s91. Of fundamental importance to establish three dimensional 

cultures have been observations that the extracellular matrix (ECM) regulates gene 

expression92, contributes to cell differentiation and promotes growth of tissue-like structures 
93. Such extracellular matrix with characteristics of the basement membrane can be extracted 
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from mouse sarcoma cells and used for organoid cultures. Nowadays, the most commonly 

used is a laminin-rich Engelbreth, Holm and Swarm (EHS) matrix also known as Matrigel91. It 

provides structural support for cellular attachment as well as growth promoting factors. By 

using this laminin-rich matrix, Bissel and colleagues showed for the first time that breast 

epithelial cells could recapitulate steps of mammary gland morphogenesis to organize into 

three dimensional ducts and ductules91. 

 

Small intestinal organoids 
These early findings combined with an extensive knowledge about signaling 

requirements to maintain the stem cell niche of the small intestine later lead the group of Hans 

Clevers to generate self-organizing structures resembling cell type composition and 

morphology of the small intestine from adult intestinal stem cells84. This structures, termed 

mouse small intestinal organoids, are today one of the best-established and often used three-

dimensional culture systems. They recapitulate many patterning processes observed in vivo 

and reconstitute all cell types of the epithelium as well as the crypt–villus architecture of the 

small intestine84. Compared to other three-dimensional systems that often require hundreds 

of starting cells to aggregate, small intestinal organoids grow from individual single cells into 

clonal organoids. This gives a unique advantage to study self-organization without the 

confounding factor of initial heterogeneities within each organoid and enables the tracking of 

individual cells within each organoid.  

Of note, small intestinal organoids can also be derived from PSCs94,95 of either mouse 

or human origin or from mouse fetal precursor cells96. Similar to small intestinal organoids with 

adult stem cell origin, these organoids contain all major epithelial cell types patterned into 

villus-like structures and crypt-like proliferative zones. However, while the final structures 

appear the same, culture conditions, tissue maturation and the underlying mechanisms 

governing self-organization may be distinct. Indeed, organoids derived from adult intestinal 

stem cells are believed to recapitulate mechanism resembling tissue regeneration or 

homeostasis89 while pluripotent stem cells derived organoid development likely is closer to 

fetal development89. Within this thesis, if not specified otherwise, small intestinal organoids 

will refer to small intestinal organoids derived from adult stem cells of the mouse. 

 

Intestinal organoid development 
Small intestinal organoids grow from LGR5+ intestinal stem cells (CBC, ISC or LGR5+) 

when placed in Matrigel and supplemented with three necessary growth factors (signaling 

pathways, structure and cell types of the small intestine are discussed in the next section: The 
small intestine): R-Spondin (RSPO), epidermal growth factor (EGF) and bone morphogenetic 
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protein (BMP) antagonist Noggin84. LGR5+ cells can develop into organoids without 

exogenous addition of the Wnt ligand WNT3A, however, the supplement of WNT3A leads to 

a significant increase in organoid forming efficiency97,98. Furthermore, by short pulses of 

WNT3A not only stem cells but also adult99,100 and fetal progenitors101,102 as well as 

differentiated cell types103 can be coerced to develop into organoids (for more details see: 

Development of the small intestine and Regeneration of the small intestine). 
 

 

Under standard growth conditions supplemented with WNT3A, small intestinal 

organoids develop over five days highly stereotypically from a single cell into a budding 

organoid (that is an organoid with the crypt and villus structure and cell type composition 

observed in vivo) with hundreds of cells (Fig.  1). Between day 2 and 3 the first Paneth cells 
emerge within larger homogenous cysts. Appearing Paneth cells are the first and most crucial 

symmetry breaking event in intestinal organoid development. Differentiated Paneth cells show 

active Wnt signaling and secrete WNT3. This allows organoids to create self-sustaining Wnt 

gradients, which are believed to determine the future crypt sides and lead to budding after 

exogenous WNT3A is removed from the medium104. After five days, organoids have cell type 

composition and crypt-villus morphology reconstituted. Although genetic and chemical 

perturbation experiments have shed light on the signaling pathways involved in Paneth cell 

differentiation in vivo105,106, little is known about what underlying self-organizing mechanisms 

result in Paneth cell specification. The common view is that it arises from a stochastic 

process26. 

 

Fig.  1 | Stereotypic organoid development. Organoids develop from a single cell into a budding organoid within five days. 
Organoids reconstitute crypt-villus morphology and cell-type composition of the small intestine. In a uniform WNT3A 

environment, symmetry is broken and the first WNT3 secreting Paneth cells appear between day 2 and day 3. After the 

emergence of Paneth cells, WNT3A can be removed from the medium.  
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When investigating such questions in intestinal organoid, one can start by studying the 

broad knowledge already available on cell types and signaling pathways involved in 

development, homeostasis and regeneration of the small intestinal epithelium. 

 

The small intestine 
The single-layered epithelium of the intestine is the most important barrier against the 

external environment. It maintains body homeostasis by up taking nutrients, electrolytes and 

water while preventing passage of intraluminal pathogens, toxins and antigens107. To 

withstand permanent abrasion from the luminal content while sustaining absorptive 

capabilities, the epithelium comprises a specialized folded structure of villi and intestinal crypts 

that undergoes constant self-renewal108 (Fig.  2). Villi are finger-like protrusions extending into 
the intestinal lumen mostly build by enterocytes responsible for nutrient uptake. Each villus 

protrusion is surrounded by multiple crypt invaginations, called crypts of Lieberkuehn, which 

harbors the stem cell niche108. 

 

The intestinal stem cell niche and tissue homeostasis 
To fuel the enormous demand of dividing cells required for constant self-renewal 

during homeostasis, crypts of Lieberkuehn house dedicated populations of stem cells and 

progenitor cells (Fig.  2)109. Intestinal stem cells residue at the crypt bottom interspersed by 
Paneth cells and marked by LGR5, a target gene of the Wnt signaling pathway. Intestinal stem 

cells are fast dividing cells which divide roughly every day symmetrically110 to adapt stem cell 

fate or the fate of a highly proliferative transient amplifying cell stochastically111. TA cells further 

divide 4-5 times and gradually commit to either the secretory or the absorptive lineage while 

Fig.  2 | Structure of the adult small intestine. 
The epithelium of the small intestine is organized 

into crypts and villi. LGR5+ intestinal stem cells, 

interspersed by Paneth cells, at the crypt bottom 

generate a continuous flow of cells. Newly 

generated cells undergo lineage segregation and 

maturate as they migrate upwards. After four to five 

days, differentiated cells reach the villus tip to 

become shed into the lumen. Stem cell 

maintenance and lineage specification require 

distinct gradients of signaling molecules provided 

by epithelium cells together with surrounding 

mesenchymal cells.   
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they move upward and out of the crypt112. During the time cells exit the crypt, proliferation of 

differentiated cells stops112. Four to five days after birth, cells reach the tip of the villus where 

they undergo apoptosis before being shed into the lumen113. 

Despite the high turnover rates of the tissue, tissue composition and structure of the 

intestinal is remarkable robust. Each crypt harbors around 14 LGR5+ intestinal stem cells 

which give rise to a steady fraction of secretory and absorptive cell types111. 

 

The secretory lineage 
The small intestine harbors four main types of secretory cells; Mucus secreting goblet 

cells, important to provide a defense barrier against invading pathogens; multiple hormone 

secreting enteroendocrine cells; chemosensing tuft cells; and Paneth cells114. 

 

Paneth cells 
Committed secretory and absorptive cells normally migrate upwards along the villus 

and shed of at the villus tip within a week after birth. This behavior stands in contrast to Paneth 

cells where dedicated secretory progenitors mature into long-lived differentiated Paneth cells 

while migrating downward from the base of the TA compartment toward the crypt bottom112. 

At the crypt bottom, Paneth cells can live for up to 60 days115 interspersed between intestinal 

stem cells. Each intestinal stem cell is in contact with at least one Paneth cell. This direct cell-

to-cell contacts allows Paneth cells to support stem cell maintenance by cell contact facilitated 

Notch signaling, mediated by the expressing of DLL1 and DLL4, and by providing the secreted 

ligands WNT3, TNF and EGF116. Paneth cells further support intestinal stem cells 

metabolically by providing them with the essential nutrient lactate. Besides their role in stem 

cell maintenance, they also secrete antimicrobial products such as lysozyme, a-defensins and 

phospholipase A2117, thus playing an important role in protecting the stem cell niche from 

pathogens and contributing to mucosal-immunity along the whole epithelium118.  

Consequently, Paneth cells play a role in gut-related diseases where aberration in Paneth cell 

functionality contributes to the onset and progression of inflammatory bowel disease119. 

 

The absorptive lineage 

Enterocytes 
In contrast to secretory precursor cells which give rise to various functional distinct 

secretory cells types100, absorptive precursors predominantly give rise to enterocytes108. 

Enterocytes represent the vast majority of cells in the epithelial layer and play important roles 

absorbing nutrients such as ions, water, sugar, peptides, and lipids and secreting 

immunoglobulins108. After emergence from crypts, enterocytes continuously migrate along the 
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villus axis. During this maturation along the crypt axis each enterocyte traverses a series of 

cellular states linked to various functional specializations which results in a broad spatial 

zonation of enterocyte functionality along the villus axis120. Enterocytes at the bottom of the 

villi are specialized to express inflammasome components while enterocytes in the middle of 

the villus are compartmentalized into distinct nutrient absorbing zones120. 

Development of the mouse intestine 
The mouse small intestine emerges from the definitive endoderm-derived primitive gut 

tube. Formation of the primitive gut tube is initiated at embryonic day 6 (E6.0), by the onset of 

gastrulation, and is fully formed around E9.0. Molecular cues including SOX2 in the anterior 

part and the CDX family of transcription factors in the posterior part regionalize the gut tube 

into primitive foregut, mid-gut, from which the small intestine emerges, and hindgut. Posterior 

fate via expression of CDX is mediated by upstream signaling of four major signaling pathways 

Wnt, FGF, RA and BMP121. After a non-canonical Wnt signaling mediated elongation and 

polarization period between E9.5 and E14.5122, villus morphogenesis starts around E14.5 

driven by aggregation of subepithelial mesenchymal clusters123. Compartmentalization of 

signals including SHH and BMP4 instruct the reorganized epithelium into non-proliferative 

villus and proliferative intervillus regions during villus morphogenesis121,123. Notable, LGR5+ 

progenitors with a characteristic intestinal stem cell signature emerge at E13.5124. From E16.5 

to birth, proliferative intervillus progenitor cells give rise to absorptive enterocyte cells on the 

villi. Crypts of Lieberkuehn are formed during the first 2 postnatal weeks from distinct parts of 

the intervillus region (Fig.  3). Although embryonic tissue contains LGR5+ cells, at this stage 
of crypt formation and crypt expansion by fission, all cells of the epithelium can contribute to 

the stem cell pool of the final crypts125. Crypt morphogenesis is accompanied with a shift in 

lineage specification where the first secretory cells, goblet and enteroendocrine cells, arise. 

Of note, Paneth cells only emerge after crypt morphogenesis is completed at around postnatal 

day 14126. 
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Fetal spheroids/enterospheres 
Organoid-like structures called fetal spheroids can be grown from single cells extracted 

from the fetal intestinal tissue by supplementing the medium with Noggin, EGF and RSPO 

(similar to ex-vivo small intestinal organoids84)102, although RSPO is dispensable for 

spheroids101. Whereas organoids bud, show cell type differentiation and restricted proliferation 

to crypts84, spheroids remain as thin polarized cysts with cycling progenitor cells across the 

whole surface102. Furthermore, spheroids transcriptomes are distinct from small intestinal 

organoids as well as from intestinal stem cells102. Compared to organoids, spheroids lack 

differentiation markers of the adult intestine and show strong downregulation of adult intestinal 

stem cell markers (Lgr5, Axin2, Olfm4, Tert)102. In contrast, markers associated with progenitor 

cells (Cnx43, Trop2, and Ly6a/Sca1) and tissue regeneration/development (Ctgf and 

Clusterin)102 are upregulated. Notable, pulses of WNT3A can transit fetal organoids to mature 

budding organoids. This transition involves upregulation of canonical Wnt genes (Lgr5, Axin2) 

and secretory lineage markers101. 

 

Fig.  3 | Development of the mouse small intestine. After a period of growth and elongation, the pseudostratified 
epithelium becomes restructured into a simple columnar epithelium. Villus morphogenesis starts around E14.5 and 

results into folding of non-proliferative villus and proliferative intervillus regions. After villification, proliferative intervillus 

progenitor cells give rise to absorptive enterocyte cells on the villi. Crypts of Lieberkuehn emerge 2 weeks after birth 

from distinct parts of the intervillus region. After crypt morphogenesis is completed, Paneth cells emerge at around 

postnatal day 14. 
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Regeneration of the small intestine 
The intestinal epithelium has not only an enormous intestinal stem cell driven capacity 

for self-renewing during homeostasis but can also flexibly adapt to different damage causing 

stressors including irradiation, toxins, chemotherapy, surgical resection, nutritional deprivation 

or acute inflammation127. Often regenerative responses are facilitated by intestinal stem cells. 

Indeed, inflammation and nutritional deprivation increases the proliferative potential of 

intestinal stem cells either directly128 or mediated by Paneth cells129. However, cycling 

intestinal stem cells are susceptible to other types of damage including irradiation and 

therefore lost after injury130. Nevertheless, the intestinal epithelium regenerates131. Besides 

the cycling stem cells at the crypt bottom, a ‘reserve’ pool of quiescent, non-cycling cells, 

resides four cell diameters above the base of the crypt127 (Fig.  2). These so called +4 cells, 
marked by expression of BMI1, LRIG1, HOPX and TERT, are insensitive to injury and become 

activated when active stem cells at the crypt bottom are challenged132. Although lineage-

tracing experiments have shown the regenerative 

potential of these rare +4 cells133, the concept of a 

dedicated ‘reserve’ stem pool is disputed127. Initially 

believed to be mutual exclusive markers for reserve 

stem cells, theses markers show broad distribution 

on the transcriptional level134,135. Furthermore, 

findings that also cells above the +4 position 

including secretory99 and absorptive progenitors100 

can reverse and repopulate the niche in vivo and 

generate organoids in vitro, challenges the concept 

of a dedicated ‘reserve’ stem cell pool. More recent 

lineage tracing studies indicate that the +4 cells 

likely are secretory progenitors that regain stem cell 

potential upon injury136 (Fig.  4). In particular, GFP+ 
cells from a BMI1-GFP reporter mouse have been 

shown to be preterminal enteroendocrine cells able 

to reconstitute the niche137.  

Nonetheless, recently a novel extreme rare 

type of ‘revival stem cell’, which arises following injury, has been described. This rare cell 

marked by the expression of Clusterin is induced by YAP1-dependent signaling (see below) 

in response to injury. Activated cells then undergo fast expansion to repopulate the niche138. 

It is not yet entirely clear how this novel population differs from classically proposed ‘reserve’ 

stem cells139 and whether the intestine may utilize different mechanism including general cell 

plasticity or dedicated ‘reserve’ or ‘revival’ stem cells for different regenerative responses. 

Fig.  4 | Model of cellular plasticity in the 
intestine. Progenitors and mature intestinal cells 
retain stem cell potential and can revert to the stem 

cell state in response to an injury. Stem cell 

properties are not hardwired but can be regained 

during injury response. 
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Signaling pathways controlling the intestinal epithelium 
Stem cells maintenances, robust lineage segregation and injury responses involve a 

sophisticated network of signaling molecules derived from the epithelium cells and from 

mesenchymal cells surrounding the epithelial layer127. Despite of the complexity of the 

processes involved, the set of signaling pathways with a well-described function in the 

intestine is small. These pathways include Wnt signaling; Notch signaling, TGF-b / BMP 

signaling, EGF signaling and YAP1-dependent signaling. The next section briefly summarizes 
theses pathways. A particular focus is set on YAP1-dependent signaling and its regulation. 

 

Wnt signaling 
Wnt signaling is one of the fundamental growth controlling pathways and is 

indispensable in most if not all stem cell types including embryonic and adult stem cells140. 

The Wnt signaling network is complex, containing many components and being subject to 

various cascades of finely controlled signal transduction steps as well as cross-talk 

mechanisms141. In mammals, there are 19 Wnt ligands142. Distinct ligands couple to different 

receptors and co-receptors and activate distinct downstream signaling cascades. Theses 

cascades are broadly classified into a canonical (β-catenin dependent) and non-canonical (β-

catenin independent) Wnt signaling141. 

In canonical Wnt signaling, Wnt activity regulates the cytoplasmic pool of the key 

mediator β-catenin via a destruction complex. A multi protein complex comprising kinases: 

GSK3 and CKIα, and scaffolding proteins: DVL, APC and AXIN142. The core machinery of 

canonical Wnt signaling is triggered when secreted and palmitoylated proteins of the Wnt 

protein family bind to the FZD-LRP5/6 receptor complex. Without receptor bound ligands, 

GSK3 and CKIα phosphorylate b-catenin to mark it for degradation. Activation of the FZD-

LRP5/6 complex leads to deactivation of the destruction complex, cytoplasmic β-catenin 

stabilized and enters the nucleus where it displaces the transcriptional repressor Groucho143 

to associate with transcription factors of the TCF and LEF family to regulate the transcription 

of target genes involved in cell fate, proliferation and self-renewal141,144 (Fig.  5). 

Non-canonical Wnt signaling is a loosely defined umbrella term for b-catenin 

independent Wnt pathways. These pathways work independently of LRP5/6 and are 

transduced either through Rho-associated kinase (ROCK), in case of the planar cell polarity 

(PCP) pathway or through G-protein dependent calcium release (Wnt/Ca++ pathway)145. 

Although non-canonical Wnt signaling is active during intestinal development146, its exact role 
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is little understood. I will therefore focus on the more extensive studied canonical Wnt signaling 

pathway in the intestine.   

 

In the small intestine, tight control of canonical Wnt signaling is essential to maintain 

proliferation and identity of intestinal stem cells108. Wnt ligands, predominately WNT3 and 

WNT2B, are redundantly expressed in epithelial Paneth cells97 (WNT3) and in mesenchymal 

cells surrounding the lower crypt (WNT2B/3)147,148 to form a Wnt signaling gradient along the 

crypt axis104 (Fig.  2). Consequently, perturbations of Wnt signaling have severe 
consequences for intestinal stem cells maintenance. Knockout of the main effector of 

canonical Wnt signaling, TCF4, extinguishes intestinal stem cells in the developing embryo149 

and in homeostatic self-renewal150. A similar phenotype is observed by overexpression of the 

Wnt antagonist DKK1151. In contrast, hyperactive Wnt signaling caused by the deletion of the 

destruction complex scaffold APC leads to excessive growth of the intestine tissue and 

adenomas formation109. 

Even though Wnt ligands are abundant at the crypt bottom, intestinal stem cell 

maintenance requires enhanced Wnt pathway activity mediated by members of the R-Spondin 

(RSPO) protein family152,153. R-Spondins are secreted proteins which bind to their cognate 

LGR4 or 5 receptors on intestinal stem cells to control the length of the Wnt gradient along the 

crypt104 (Fig.  5). Furthermore, β-catenin mediated Wnt signaling plays a role in Paneth cell 
differentiation105,106 and inhibition of canonical Wnt signaling results in complete loss of all 

secretory cells151. Although the exact mechanism is not yet understood, these effects seem 

mediated via the canonical Wnt signaling target gene SOX9154,155. 

 

Fig.  5 | Canonical Wnt signaling in the small intestine. 
Without Wnt ligands, the destruction complex constitutively 

phosphorylates b-catenin and marks it for proteasomal 

degradation. When FZD/LRP receptors are engaged by 

ligands, the destruction complex becomes inactivated and 

b-catenin enters the nucleus to displace Groucho and 

initiates gene expression. Without RSPO, the free pool of 

FZD receptors is reduced by RNF43/ZNRF3. Binding of 

RSPO to its cognate LGR5-receptor leads to inhibition of 

RNF43/ZNRF3 and allows sustained Wnt activity. 
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Notch signaling 
 In contrast to Wnt signaling, which relies on the secretion of signaling proteins to trigger 

a receptor response, Notch signaling is mediated by direct interactions between adjacent 

cells156. Interaction of a ligand from the Delta-like or Jagged family with a receptor of the Notch 

family triggers a series of catalytic steps which leads to the release of the transcriptional active 

Notch intracellular domain (NICD)156. The cleaved NICD translocates to the nucleus where it 

interacts with various proteins such as RBDJ (also known as CSL) to induce expression of 

multiple target genes, including members of the HES family of transcription factors157. 

 

 

 

In the intestine, expression of HES1 in the receiving cell leads to repression of the 

transcription factor ATOH1. Without ATOH1 activity, expression of Notch ligands including 

DLL1 are repressed (Fig.  6a). By this mechanism of lateral inhibition158, initial small 
differences in Notch pathway activity are amplified and consolidated to establish a stable 

binary Notch ‘on’ or ‘off’ state between adjacent sending and receiving cells (Fig.  6b)157.  
Lateral inhibition is a powerful mechanism to induce alternative cell fates in a spatially 

precise manner. Examples include the definition of anchor cells in C.elegans159, the sensory 

organ precursor development in Drosophila160, specification of mechanosensing hair in the 

auditory sensory organ in mice161 and the secretory lineage in the small intestine157.   

Notch signaling acts as the master regulator for secretory and absorptive lineage 

differentiation in the upper crypt where secretory progenitors express DLL1114. At the crypt 

bottom, a combination of Wnt and Notch signals is required for maintenance of the stem cell 

pool114. Paneth cells within the stem cell niche express DLL4 and transiently DLL1 to provide 

constant Notch signaling input to the adjacent stem cells108. Similar to inhibition of the Wnt 

pathway, inhibition of the Notch pathway results in loss of all intestinal stem cells162,163. 

Chemical and genetic perturbations of Notch signaling lead to conversion of proliferating crypt 

Fig.  6 | Notch signaling in the small intestine.  a) Notch 
signaling cascade. In the receiving cell, interactions between 
DLL1 and Notch receptors lead to cleavage and nuclear 

translocation of NICD. Nuclear NICD binds to RBPJ to induce 

gene expression of HES1 which in turn represses ATOH1. In the 

sending cell, without the suppressing effect of HES1, ATOH1 is 

expressed constitutive to drive the expression of DLL1.  b) 
Lateral inhibition. In a homogenous starting condition, sending 
and receiving cells express the same amount of ligand and 

receptor. Small fluctuations in ligand or receptor expression are 

sufficient to become amplified and break this balance. Thus, 

leading to a stable binary switch caused by competition between 

the two cells. The occurrence of this initial heterogeneitis are often 

believed to be random. 
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progenitors into postmitotic secretory cells162. In contrast, loss of ATOH1, expressed in the 

progenitors of all secretory cells, leads to depletion of all secretory cells without affecting the 

absorptive enterocytes164. 

 

EGF signaling 
EGF signaling controls the intestinal epithelium turnover by controlling stem cell 

proliferation165,166. Paneth cells within the epithelium and cells of the underlying mesenchyme 

secrete EGF ligands to the crypt region108. Intestinal stem cells respond to EGF ligands via 

the highly expressed EGFR receptor and MAPK pathway activation mediated by its 

downstream effector ERK1/2167,168. Hyper activation of the EGF pathway by KRAS mutants 

results in increased stem cell proliferation165 while inhibition of EGF in presence of Wnt leads 

to reduced proliferation and cell cycle exit168. Although EGF inhibition reduces intestinal stem 

cell proliferation, it does not abolish expression of DTR-GFP in LGR5::DTR-GFP reporter 

mice168, showing that EGF signaling is required to drive cell proliferation but not to sustain 

stem cell identity168. 
 

BMP signaling  

BMP ligands of the TGF-b superfamily of ligands and their downstream effectors from 

the SMAD protein family play an important role in counteracting niche proliferation signals and 

promoting cell differentiation in the small intestine169. To protect the niche region from an 

inhibitory effect of BMP ligands, BMP inhibitors including Gremlin 1 and 2, Chordin-like 1 and 

Noggin are secreted in a tightly controlled fashion around the crypt region108. In contrast to 

EGF and Wnt, which are partially provided to the crypt from within the epithelium, BMP agonist 

are solely secreted by stromal mesenchymal cells170 and BMP antagonists are mostly 

secreted by myofibroblasts and smooth muscle cells underlying the crypts148,169,171. 

 

YAP1-dependent signaling 
As outlined under Self-Organization (see page 2), many emergent properties of 

populations of cells are not genetically encoded but emergent properties of interacting cells172. 

YAP1-dependent signaling is mediated by pathway components involved in many biological 

processes underlying or affected by these interactions such as cell-cell-adhesion, cell polarity, 

cell morphology but also by nutrient availability and general stresses172. This places YAP1-

dependent signaling as a sensor of tissue and cellular integrity rather than responding to 

dedicated extracellular signaling inputs173. Indeed, in contrast to Wnt, Notch, BMP and EGF 

signaling, no dedicated receptors or ligands for YAP1-dependent signaling have been 

identified173. Rather, by mechanotransduction, the transcriptional co-activator YAP1 integrates 
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a diverse set of biomechanical signals, including cell shape60, cell-extracellular matrix and cell-

cell contacts, extracellular matrix stiffness and topology174, tension forces as well as sheer 

stresses and transduce them into transcriptional output. 

Two major steps control YAP1 activation, cytoplasmic phosphorylation and nuclear 

translocation of YAP1175 (Fig.  7). The best-known regulator of YAP1-dependent signaling is 
the Hippo pathway. The Hippo pathway is a conserved serine/threonine kinase signaling 

cascade with the core components MST1 and MST2, SAV1, LATS1 and LATS2, MOB1A/B173. 

When Hippo signaling is active, the MST1/2 kinases phosphorylate the LATS1/2 kinases, 

which phosphorylate YAP1. Phosphorylation of YAP1 prevents nuclear entry by cytoplasmic 

retention by 14-3-3 family proteins176 or by ubiquitin-mediated protein degradation177. Thus, 

the Hippo kinases block YAP1 activity and suppress the transcriptional output of the Hippo 

pathway (Fig.  7b). 
Various upstream regulators mediate the Hippo pathway. Extracellular signaling molecules 

including hormones regulate the Hippo pathway via G-protein-coupled receptors178, TAO1/2/3 

kinases activate Hippo signaling by phosphorylating MST1/2 and cellular energy stress 

induces YAP1 phosphorylation via AMPK. Furthermore, cellular polarization and cell-cell 

junctions serves as strong inhibitors of YAP1 activity 172. 

Cell polarity is associated with the asymmetric distribution of membrane proteins. The 

polarity determinant Scribble inhibits YAP1 activity by serving as a scaffold for the MST-LATS 

complex179 and the apical crumbs complex (CRB) binds YAP1 to favor cytoplasmic localization 
180. At cell-cell junctions, the tumor suppressor and f-actin binding protein NF2 promotes 

plasma membrane association of LATS through direct binding to promote Hippo activity181. 

Although Hippo signaling sometimes is synonymous to YAP1 dependent signaling 

mechanotransduction can be independent of LATS signaling172. Indeed, NF2 also regulates 

YAP1 in a cell-cell adherent tension dependent manner independent of Hippo signaling182. 

Mechanotransduction is mediated by conformation and tension changes of the actomyosin 

cytoskeleton172. Under conditions of low mechanics at adherens junctions, NF2 is localized at 

theses junctions. However, as actomyosin forces on adherens junctions increase, NF2 is 

released to facilitate nuclear export of YAP1182.  

The tension state of the cytoskeleton itself is further largely dependent on the substrate 

to which cells attach172. Cells adhere to the extracellular matrix by focal adhesions which links 

the extracellular matrix to the cellular cytoskeleton175. Cells actively sense stiffness off the 

extracellular matrix to adapt spreading and cortical tension60. These adaptions directly 

translate into YAP1 nuclear localization183. How changes in cellular tensions at focal 

adhesions turns YAP1 activity on or off is not completely understood yet. Integrin, focal 

adhesion kinase and SRC signaling shows a regulatory function on LATS1/2184,185. 

Furthermore, it has been proposed that the LINC complex connects the cytoskeleton to the 
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nuclear envelope and transmits contractile forces directly into flattening of the nucleus. This 

opens nuclear pores and facilitates YAP1 shuttling into the nucleus186,187. Based on the large 

overlap of both LATS dependent and independent mechanotransduction it seems likely that 

full activation of YAP1 requires a synergistically effect controlling YAP1 phosphorylation and 

nuclear pore opening172,175 (Fig.  7a, b). 

Nuclear YAP1 binds to various DNA-bound cofactors, such as RUNX2 or TEAD 

proteins172. DNA bound YAP1-TEAD complexed further interact with numerous neighboring 

transcription factors to induce programs involved in survival, proliferation and 

differentiation188.  

Remarkably, given the well-established role of YAP1 in growth control in other 

tissues189, depletion of YAP1 is reported to have no190-192 or only a mild193 adverse phenotype 

during normal intestinal homeostasis. Although, YAP1 is expressed throughout the intestinal 

crypts192. However, conditional knock-out of the negative upstream regulators MST1 and 

MST2 results in expansion of undifferentiated cells and leads to aberrant crypt-villus 

morphology194, indicating that under homeostasis, YAP1 is dispensable and kept inactive by 

active Hippo signaling. This stands in clear contrast to injury response, where YAP1 activity 

is essential to drive tissue regeneration138,195,196. For instance, during the regenerative phase 

following dextran sodium sulfate induced colitis (DSS), YAP1 is dramatically upregulated192 

and leads to transient cell reprogramming required for regeneration196. Similar, upon injury 

Fig.  7 | YAP1-dependent signaling. a) Biomechanical signal transduction to YAP1. Cells sense the state of the 
extracellular matrix through integrin signaling. Strong attachment to a stiff extracellular matrix leads to focal adhesion 

maturation and increased intracellular tension. Focal adhesion maturation involves activation of FAK–SRC signaling. FAK–

SRC signaling disables Hippo activity via the FAK–SRC–PI3K–PDK1 or SRC–RAC1–PAK pathway and facilitates nuclear 

pore opening (red area). b) Hippo signaling. Active Hippo signaling prevents nuclear entry of YAP1 by phosphorylation and 
subsequent degradation or cytoplasmic retention. In contrast to focal adhesion mediated tensions, which promote YAP1 

activation, adherens junctions and high tensional forces between adherens junctions favor YAP1 phosphorylation and 

nuclear export. In addition to mechanical inputs and cellular polarity, different kinases, energy stress, and hormones can 

modulate the activity of the Hippo core kinases (grey area).     

 



  Chapter 1: Introduction Page | 20 

induction by irradiation, YAP1 induces a regenerative program, which results in 

reprogramming of LGR5+ intestinal stem cells, suppresses extensive Paneth cell 

differentiation and promotes proliferation193. Furthermore, various injury types including 

irradiation, targeted ablation of LGR5+ cells, or treatment with DSS trigger a YAP1 driven 

expansion of ‘revival stem cells’ which aids regeneration138. 

 

In summary, the intestinal tissue keeps a tight balance between proliferating and non-

proliferating cells with distinct lineages during homeostasis and exhibits an enormous plasticity 

following injury. Fundamental for the functionality of each individual cell is the spatial and 

temporal localization of the cell within the collectivity. How each individual cell within a tissue 

responds to a changing environment depends on multiple, temporal and spatial factors that 

can influence the cellular state and behavior (see also Chapter 2).  Location in the crypt is 
linked to stemness197 and cellular age and position along villus axis determines function and 

maturity of enterocytes120 and enteroendocrine cells198. Complex interfaced signaling 

pathways and genetic networks underlie and control these cellular changes during 

homeostasis and allow tightly controlled responses to injuries. Ex vivo, small intestinal 

organoid cultures can recapitulate many of the observed processes in vivo. However, insights 

about how individual cells integrate information and adapt to changing demands are still 

sparse. The next section briefly summarizes how recent advances in imaging technologies 

combined with multivariate data analysis methods can be used to follow individual cells within 

a tissue. It will focus on imaging organoids. 

 

Imaging to study self-organization 
The concomitant development of high-throughput single cells sequencing and imaging 

technologies has brought new and extremely powerful methods to acquire multiplexed 

measurements of mRNAs and proteins (for an in-depth overview over existing methods see 

Chapter 2). Multiplexed single cell approaches allow profiling of individual cells within 
populations. Whereas the high throughput of single cell sequencing allows covering of the full 

transcriptome, imaging technologies give insights into the influence of the cellular context. 

 

Multiplexed iterative immunofluorescence imaging (4i) 
Immunofluorescence (IF) imaging allows analyzing fixed cells within their cellular 

context by preserving their spatial information at multiple scales ranging from the tissue 

architecture to subcellular protein distribution. However, classical IF approaches are limited 

by the number of proteins that can be acquired simultaneous. Spectral overlap of fluorophores 

limits routine acquisition to four colors and species cross talk of the antibodies often limits 
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flexibility of antibody combinations. Multiplexed iterative immunofluorescence imaging (4i), the 

multiplexing method adapted for three dimensional organoid cultures in this thesis, allows to 

overcome these limitations by applying iterative sequential cycles of immunofluorescence 

followed by antibody elution65. This allowed the profiling of 40 distinct proteins in hundreds of 

attaching cells65. An alternative sequential multiplexed immunofluorescence method called 

MxIF199, has successfully been used to image thin intestinal tissue slices200, but has not yet 

been shown to work for three-dimensional structures such as organoids. 

 

The combination of multiplexed imaging and sequencing has revealed an enormous 

degree of cellular heterogeneity in cell populations201,202. Although important to study 

underlying biological processes, cellular heterogeneity poses a challenge for data 

interpretation. Within one snap-shop experiment, multiple distinct phenotypes are covered. 

These distinctions are lost by simple average statistics over the population. In parallel to 

technical progresses for data acquisition, advances in bioinformatics have allowed for better 

and more efficient extraction of biological insights from the plethora of data acquired with 

multiplexed technologies. Novel clustering algorithm facilitate the characterization and 

grouping of different phenotypes based on multivariate feature sets152 and trajectory inference 

algorithms can reconstruct dynamic events based on static population snap-shop 

measurements153. 

 

Trajectory inference 
Grouping of subtypes by clustering approaches can disentangle individual groups and 

identify rare cell types135,203 . However, particularly in development, these phenotypes emerge 

through a continuous process starting from a common progenitor through cell maturation and 

differentiation. With clustering, these cellular dynamics are lost. Trajectory inference allows 

ordering of each cell along a pseudotime trajectory governed by molecular progression. This 

allows studying marker dynamics, identifies the cellular states at which fate decisions are 

made and allows following delineated cell developmental lineages204. Mostly such 

computational frameworks are used to analyze single cell sequencing or mass cytometry 

data205 to reconstruct diverse biological processes including human B and T cell 

development205,206, early blood development in mice207, early zebrafish embryogenesis208 or 

developmental and regenerative biology in whole flatworms209. In contrast to early linear 

trajectories205,210, more recent methods allow inferring branching trajectories206. Applied to 30 

channel mass cytometry data of T-cell development, Wishbone, the trajectory inference 

method used within this thesis, was shown to successfully recover bifurcations of CD4+ helper 
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T cells and CD8+ cytotoxic T cells from lymphoid progenitors. This allowed following 

transcription factor dynamics along the inferred branches with high resolution. 

In addition to single cell sequencing and mass cytometry, two recent studies showed 

that trajectory inferences can be used on imaging datasets. In the first study, Gut et al., 

presented how trajectories of cell cycle progression can be inferred from fixed snap-shot 

samples of hundreds of adherent cells58. In the second one, Herring et al., demonstrated how 

multiplexed imaging of parafilm embedded tissue slices can be used to infer cellular 

progression of intestinal cells from the stem cell niche to the villus tip200. 
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Aim of this thesis 
As outlined under Self-organization (page 2), self-organization is a central principle 

in biology. Although still in its infancy, organoids provide an unprecedented tool to study 

complex spatial cellular organization at the cellular and tissue level. Despite extensive 

research in the intestinal tissue and the promises organoids hold for stem cell research and 

translational medicine79, little is known about the intrinsic capacity of single cells to self-

organize under homogenous conditions. This can partly be attributed to the fact that most of 

the organoid field focuses more on developing novel organoid models instead of trying to 

understand the developmental mechanisms of the established ones3 but also because 

imaging approaches probing cellular complexity at different temporal and spatial scales only 

recently have started to gain traction in three-dimensional cell culture systems211. 

 

During my PhD, I set out to use the favorable properties of the small intestinal organoid 

system, their ease to manipulate and ability to grow in high throughput amenable plate formats 

under simple and controlled growth conditions, to apply multiplexed imaging approaches and 

high-dimensional data analysis methods such as trajectory inferences. My aim was to describe 

organoid development and symmetry breaking quantitatively to gain insight into the underling 

processes. In a shared project, together with Andrea Boni, a former postdoc, and Denise 

Serra, a PhD student, in the Liberali lab, we focused on the following main open questions 

concerning the self-organizing properties of intestinal organoids: 

 

(1) Do distinct starting cells go through a common intermediate state? 
Research shows that LGR5+ intestinal stem cells and various LGR5- cells can 

generate intestinal organoids when supplemented with WNT3A. However, whether stem cells 

and non-stem cells follow the same developmental paths to form organoids is not clear. We 

therefore tested whether distinct starting populations have similar growth patterns and 

signaling characteristics and whether organoid development goes through a common 

intermediate state where symmetry is broken. 

 

(2) Which signaling pathways and gene networks underlie intestinal organoid 
development? 

Intestinal homeostasis and regeneration relies on a tight balance of multiple signaling 

pathways including Notch, Wnt, BMP and YAP1-dependent signaling. Here we investigated 

signaling pathways and genetic networks that initiate organoid developments from single cells. 

Further, we compared whether the program driving self-organization in intestinal organoids 



  Chapter 1: Introduction Page | 24 

resembles homeostasis, normal intestine embryonic development or if it is more a 

regenerative process. 

 

(3)  What drives symmetry breaking? 
Paneth cell differentiation is the first and most crucial symmetry breaking event in 

organoid formation. Wnt and Notch signaling are important to define the secretory lineage 

during development and homeostasis of the small intestine. Here we tried to determine when 

symmetry breaks and describe how signaling pathways and genetic networks interact to 

spontaneously form Paneth cells under homogenous condition.
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Chapter 2: Review article 
 

Exploring single cells in space and time during tissue 
development, homeostasis and regeneration 
 

 

Summary 
Complex three-dimensional tissues emerge from local interaction of individual cells. 

To decipher how collective behaviors arise, one has to understand what governs cellular 

behavior in time and space across multiple scales. This review discusses how spatial as well 

as temporal cues change cellular states in development, homeostasis and regeneration and 

provides a broad overview on current technologies that probe single cells in a quantitative 

manner across these scales. 

 

My contribution 
Denise wrote the introduction, which summarizes temporal as well as spatial cues that 

act on each individual cell. I wrote the overview over current spatial as well as temporal 

methods and parts of the conclusion and perspectives. 
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REVIEW

Exploring single cells in space and time during tissue
development, homeostasis and regeneration
Urs Mayr1,2,*, Denise Serra1,2,* and Prisca Liberali1,2,‡

ABSTRACT
Complex 3D tissues arise during development following tightly
organized events in space and time. In particular, gene regulatory
networks and local interactions between single cells lead to emergent
properties at the tissue and organism levels. To understand the
design principles of tissue organization, we need to characterize
individual cells at given times, but we also need to consider the
collective behavior of multiple cells across different spatial and
temporal scales. In recent years, powerful single cell methods have
been developed to characterize cells in tissues and to address the
challenging questions of how different tissues are formed throughout
development, maintained in homeostasis, and repaired after injury
and disease. These approaches have led to a massive increase in
data pertaining to both mRNA and protein abundances in single cells.
As we review here, these new technologies, in combination with
in toto live imaging, now allow us to bridge spatial and temporal
information quantitatively at the single cell level and generate a
mechanistic understanding of tissue development.

KEY WORDS: Gene regulatory networks, Local interactions,
Single cell, Multiplexed imaging, Cell-to-cell variability

Introduction
The cell is the smallest structural and functional unit of living
organisms (Schwann, 1839). During development, populations of
cells interact and coordinate their behaviors in space and time to
generate, bottom up, tissues and organs without a pre-defined
blueprint (Bryant and Mostov, 2008; Gilmour et al., 2017; O’Brien
et al., 2002). In particular, cells integrate complex intracellular and
extracellular cues, both chemical and mechanical, and make
individual decisions with respect to cell proliferation,
differentiation or migration that, at the population level, lead to
emergent processes such as tissue morphogenesis, homeostasis and
regeneration (Bryant and Mostov, 2008; Chau et al., 2012; Sasai,
2013; Xavier da Silveira Dos Santos and Liberali, 2018). To achieve
this, single cells have evolved different molecular and cellular
mechanisms to sense neighboring cells and their local environment,
and to regulate numerous biological features such as the cell cycle,
cell shape, gene expression and polarization (Bryant and Mostov,
2008; Kim et al., 2018; Snijder and Pelkmans, 2011). It is thus
essential, in order to dissect the complexity of coordinated events
such as development and regeneration in health and disease, to
measure the multivariate phenotypic and genetic states of single

cells and to also place each single cell in its environmental context
at a specific moment in time. A number of recently developed
technologies now allow us to probe cells in this detailed manner.
In this Review, we explore these approaches, highlighting how single
cell methods that provide spatial and temporal resolution can be used
to analyze tissue organization quantitatively and to ask fundamental
questions about development, regeneration and disease.

Cell state changes during development, homeostasis and
regeneration: integrating signals in time and space
During development, single cells become specified and cell
lineages develop, thereby allowing tissues consisting of multiple
functional cell types to form. Cell lineages are often described as
discrete populations of cells undergoing progressive differentiation
steps: stem cells, progenitors, transient amplifying cells, and
differentiated cells; however, this hierarchy is not always linear
and irreversible (Clevers, 2015; Clevers and Watt, 2018; Sánchez
Alvarado and Yamanaka, 2014). During regeneration, for example,
this hierarchy can be reverted and single differentiated cells can
reprogram, often acquiring embryonic pluripotent states that confer
extensive plasticity on the system. It is therefore often difficult to
distinguish cell type from cell state. Currently, a ‘cell type’ is
frequently defined by static and abundant cell features, such as
functional molecular markers and landmark genes, whereas a ‘cell
state’ is explained by temporary traits (Wagner et al., 2016; see also
Morris, 2019, in this issue). As we briefly summarize below, these
‘cell state’ traits are often regulated rhythmically by the cell cycle
and circadian rhythm, and may be spatially induced by local
signaling, nutrients, mechanics and microenvironments, giving rise
to fractions of cells with different probabilities of differentiating.
Even in environmentally controlled cell culture conditions, cell-to-
cell variability in cellular states is observed and can be accurately
predicted by considering the local population context and cell cycle
phases (Altschuler and Wu, 2010; Battich et al., 2013; 2015;
Frechin et al., 2015; Gut et al., 2015; Snijder et al., 2009, 2012;
Spencer et al., 2009).

Spatial regulation of cell states
Spatial regulation of cellular states has been observed during
developmental processes but also during homeostasis and
regeneration (Chacón-Martínez et al., 2018; Nowotschin et al.,
2019; Page et al., 2013; Ritsma et al., 2014). One example of how
cell position can influence cell state comes from the adult intestinal
epithelium. In this context, tissue homeostasis is controlled by the
whole intestinal stem cell compartment, but each cell contributes to
tissue self-renewal to a different extent depending on its location in
the stem cell niche (Ritsma et al., 2014). This also highlights the
presence of variability within apparently uniform populations
(Vermeulen and Snippert, 2014). Moreover, it has also been
shown that differentiating progenitors in the intestinal epithelium
can revert to a proliferative state and repopulate the stem cell niche
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following injury (Buczacki et al., 2013; Tetteh et al., 2016; Tian
et al., 2011; van Es et al., 2012). This suggests that ‘stemness’ is a
cell state that can be reached by progenitors or more mature cells in
specific environments or under certain conditions. Notably, this
feature characterizes several tissues that display regeneration and a
high degree of plasticity, such as the epidermis and liver, lung,
kidney, intestine and stomach epithelia (Donati and Watt, 2015;
Evans et al., 2013; Michalopoulos, 2011; Michalopoulos et al.,
2005; Qiao et al., 2007; Stange et al., 2013; Tata et al., 2013; Tetteh
et al., 2015; Vogetseder et al., 2007; Yan et al., 2017; Yanger et al.,
2013).
Some of the factors that control the spatial regulation of cell state

have been identified. Indeed, it is known that the stem cell niche,
which consists of extracellular matrix, stem cells and their progeny,
creates an environment that induces and maintains stemness. For
instance, Paneth cells in the crypts of the intestine produce and release
Wnt, express the Notch ligand Dll1 on their cell surface, and produce
lactate, which sustains the stemness of neighboring Lgr5-positive
cells (Clevers, 2013; Pellegrinet et al., 2011; Rodríguez-Colman
et al., 2017; Sato and Clevers, 2013; Sato et al., 2011). Cells moving
away from this location lose stem-like properties and start to
differentiate (Chacón-Martínez et al., 2018; Sato et al., 2011).
Progenitor cells in hair follicles similarly influence stem cell state,
positively regulating stem cell proliferation by paracrine Sonic
hedgehog (Shh) signaling (Hsu et al., 2014). The newly generated
cells then compete with progenitor cells for space in the niche, thus
separating the inducing progenitor cells further from the stem cells.
By contrast, stem cells exposed to reduced Shh stimulation by distant
progenitor cells divide less frequently and shift to a less proliferative
state. It is therefore becoming clear that cell state is not hard-wired per
se but is determined by the coordination of intracellular and
extracellular inputs from neighboring cells and the environment
(Chacón-Martínez et al., 2018; Hsu et al., 2014).
Spatial stimuli are not only chemical but can also be mechanical,

arising for instance from changes in tissue architecture. Indeed,
crowding in the basal layer of the embryonic epidermis regulates
the state of progenitor cells and, accordingly, tissue homeostasis.
In this context, crowded cells show reduced cortical tension and
increased cell-to-cell adhesion and, thereby, exhibit reduced contact
with the substrate, leading to differentiation and delamination of
the crowded cells from the basal layer (Miroshnikova et al., 2018).
In the adult epidermis, the mechanism monitoring cell state and the
balance between proliferation and differentiation changes such that
differentiating and delaminating cells trigger compensatory cell
divisions in neighboring cells and exit from the G1 phase of the cell
cycle (Mesa et al., 2018). These findings again highlight that cells
sense their environment and change state depending on neighboring
cells and spatial constraints.
Mechanical inputs also play a role in defining the spatial context

and organization of cells and highlighting when this organization is
perturbed. For example, cells flanking a wound after tissue injury are
exposed to altered substrate stiffness, which induces reprogramming
to a transitory progenitor-like state that restores the homeostatic
condition. This phenomenon has been extensively studied in the
epidermis but is also observed in heart repair (Evans et al., 2013;
Morikawa et al., 2015). Important factors in this process are the
cellular mechanosensors YAP/TAZ, which are co-transcriptional
activators able to transduce changes in the spatial environment of a
cell into different gene regulatory programs and cell behaviors
(Dupont et al., 2011; Panciera et al., 2017). During homeostasis,
YAP/TAZ are found in proliferating cells of the stem cell niche of the
intestine, epidermis, mammary gland, and airway epithelia and

maintain their cellular state. More importantly, their activity is
necessary during tissue regeneration in vivo and organoid formation
in vitro (Dupont et al., 2011; Elbediwy et al., 2016; Evans et al.,
2013; Gjorevski et al., 2016; Gregorieff et al., 2015; Gregorieff and
Wrana, 2017; Morikawa et al., 2015; Panciera et al., 2017, 2016;
Patel et al., 2017; Schlegelmilch et al., 2011; Serra et al., 2019; Tan
et al., 2017; Tremblay and Camargo, 2012; Xin et al., 2013; Yui et al.,
2018; Zhao et al., 2014). In the context of intestinal organoid
development, which mimics intestinal regeneration, Yap1 acts
as a sensor of tissue integrity and its transient and heterogeneous
activation is essential for the regulation of cellular states and the
induction of symmetry breaking (Serra et al., 2019).

In conclusion, these findings highlight the importance of the
environment and neighboring cells in defining cell state. Different
environments increase the propensity of a cell to transition towards a
specific state and this transition can further influence the states of
adjacent cells and eventually of the whole cell population, creating a
feedback loop oriented towards a dynamic equilibrium.

Temporal regulation of cell states
Time is also an important cue that influences the state of a cell.
In this regard, modulation of the cell cycle and the circadian clock
are well-known mechanisms that temporally control cell states.
For example, in several systems it has been argued that cells in the
G1 phase of the cell cycle have a higher propensity to differentiate
(Calegari and Huttner, 2003; Coronado et al., 2013; Lange and
Calegari, 2010; Lange et al., 2009). During G1, cells integrate
information from their spatial context, signaling pathways, metabolic
and stress stimuli, among others, and decide whether to divide or
stop proliferating and differentiate. It has been suggested that the
longer the G1 phase is, the more time cells are exposed to factors that
can accumulate and induce a cell-state conversion once they reach a
specific threshold (Calegari and Huttner, 2003).

The role of time in regulating cell state has also been explored
in human embryonic stem cells (hESCs), revealing that hESCs
differentiate towards endoderm or neuroectoderm depending on
whether they are in early G1 or late G1, respectively (Pauklin and
Vallier, 2013). This effect is mediated by the transcriptional activity
of Nodal/Activin signaling, which is high in early G1 and prompts
the expression of endoderm-specific genes; by contrast, this activity
is inhibited in late G1, when the concentration of cyclin D proteins
is high and prevents nuclear localization of the Nodal/Activin
downstream effectors Smad2/3, leading to neuroectoderm
differentiation (Pauklin and Vallier, 2013).

Cellular states are also affected by the oscillatory activity of the
circadian clock machinery. The circadian clock is connected to the
cell cycle and regulates proliferation in several mammalian tissues
and organs, such as the bone marrow, brain, skin, and oral mucosa
(Bjarnason et al., 2001; Dickmeis and Foulkes, 2011; Granda et al.,
2005). For example, quiescent neural progenitors (qNPs) of the
mouse adult hippocampus exhibit oscillating proliferation events
that peak during the night. Indeed, the Per2 and Bmal1 (Arntl)
components of the clock machinery set a permissive time-frame in
which qNPs can enter the cell cycle and divide (Bouchard-Cannon
et al., 2013). These findings suggest that cells rhythmically
experience varying cell states, based on the circadian clock, that
affect their probability of transitioning to a differentiated state.

In summary, it is clear that individual cells within a tissue
or organ are subjected to multiple factors, both spatially and
temporally, that can influence their state, their probability to
differentiate and hence their behavior (Fig. 1), ultimately affecting
their form and function. Therefore, a single cell approach that

2

REVIEW Development (2019) 146, dev176727. doi:10.1242/dev.176727

D
E
V
E
LO

P
M

E
N
T



considers these spatial and temporal localizations of a cell within a
collectivity is important for understanding how tissue homeostasis
is preserved and how development and regeneration are regulated.
In the next section, we review recently developed single cell
technologies that can provide us with such spatial and temporal
resolution and discuss how their combination can bring us closer to
an understanding of the key biological processes that govern
development and regeneration.

Spatially resolved single cell methods
Current technologies that offer single cell resolution of
transcriptomes and proteomes fall into two general categories:
single cell RNA sequencing (scRNAseq) approaches and imaging-
based approaches. Major progress in increasing the throughput and
depth of scRNAseq has been achieved in recent years

(Hashimshony et al., 2016, 2012; Islam et al., 2014; Jaitin et al.,
2014; Klein et al., 2015; Macosko et al., 2015; Picelli et al., 2013;
Ramsköld et al., 2012; Rosenberg et al., 2018), allowing the
quantification of cellular states as well as heterogeneity between
individual cells (for recent reviews on the advantages and
disadvantages of different methods, as well as the challenges of
data analysis, see Papalexi and Satija, 2018; Stegle et al., 2015; and
Tritschler et al., 2019, in this issue). Although accounting for
complexity and noise in scRNAseq experiments remains an
important technical hurdle (Tanay and Regev, 2017), we would
argue that the major limitation of biological interpretation lies in the
lack of spatial and temporal resolution provided by these techniques.
Because these techniques require that tissues need to be first
dissociated into single cells, the local microenvironment and social
context of each cell is lost and, as we have highlighted above, it is
this local context that is the key determinant of the cellular state and
accounts for much of the observed heterogeneity between cells
(Altschuler and Wu, 2010; Pelkmans, 2012; Snijder and Pelkmans,
2011). To understand the functional importance of cell-to-cell
variability and to characterize processes that lead to cellular
decision-making events, it is important to account for spatial
information when analyzing single cell states. As we discuss below,
this can be achieved either by mapping scRNAseq data onto spatial
reference maps, or by directly visualizing transcriptomes and
proteomes within intact cells, tissues and organs.

Mapping scRNAseq to spatial reference maps
An interesting approach to indirectly infercell-to-cell interactions from
scRNAseqdatawithout explicit knowledge of spatial context is tomap
receptor expression in one cell to ligand expression in other cells
(Camp et al., 2017; Kumar et al., 2018; Zepp et al., 2017). However,
this onlyallows the identification of potential interactions and does not
reveal whether pairs of cells are actually associated in space.

In parallel, different approaches have been developed to link
single cell transcriptome information from scRNAseq data to the
original spatial coordinates of the corresponding cell in its tissue
context (Fig. 2A) (for reviews on single cell genomics expanding to
spatial context, see Giladi and Amit, 2018; Lein et al., 2017; Moor
and Itzkovitz, 2017; Tanay and Regev, 2017). This can be achieved
by mapping cells computationally to known expression profiles
of landmark genes (spatial reference maps) generated by in situ
hybridization (Achim et al., 2015; Halpern et al., 2017; Satija et al.,
2015). Such an approach has been applied successfully to study
zebrafish embryos (with the aid of a computational approach called
Seurat) (Satija et al., 2015), the brain of a marine annelid (Achim
et al., 2015), Drosophila embryos (Karaiskos et al., 2017) and the
mammalian liver (Halpern et al., 2017).

To allow mapping in the absence of pre-established landmark
genes, scRNAseq has also been combined with laser capture
microdissection (Moor et al., 2018). For example, analysis of the
zonation of enterocytes along the villus axis of the small intestine
has been performed by laser capture microdissection of equally
spaced compartments of the villus to infer de novo landmark
genes from bulk-RNAseq; the landmark genes were then used to
map the positions of sequenced single cells onto the villus (Moor
et al., 2018). Intriguingly, the extended heterogeneity measured
between individual enterocytes could be explained by functional
sub-specialization along the villi axis. Unfortunately, however,
not all model systems are reproducible enough to show stereotypical
spatial organization in order to assign landmark genes. This is
often the case, for example, for in vitro organoid systems that show
non-reproducible spatial variability (Huch et al., 2017).

A

G1

G2

SM

G0

Cell cycleCell crowding Circadian 
clock

Extracellular 
matrix

Secreted
factors

Cell-to-cell
interactions

Tissue 
injury

B

Fig. 1. Single cells in space and time. Single cells integrate multifactorial
cues, both chemical and mechanical, to adapt their state in a timely manner
and drive tissue morphogenesis, maintenance of homeostatic stem cell
niches and repair of injured tissues. (A) Intestinal cells transition between
diverse states and differentiate into distinct cell types, as visualized here
on a pseudotime trajectory. Several factors can influence these cell states,
especially at bifurcations and decision-making moments in the trajectory.
These factors include the extracellular matrix, cell-to-cell interactions, secreted
factors, cell crowding, the cell cycle and the circadian clock, among others.
(B) After tissue injury, cells can revert their fate (indicated by red arrows),
de-differentiate and adopt different cell states to re-establish tissue homeostasis.
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As an alternative to mapping cells to pre-established reference
maps, an approach termed de novo spatial reconstruction (novoSpaRc)
has been used to computationally infer positional information based
on the underlying spatial organization of gene expression with
or without knowledge about landmark genes (Nitzan et al., 2018).
The scRNAseq-based analysis of cells in a known area of origin has
also been used to preserve spatial information (Chen et al., 2017;
Medaglia et al., 2017; Nichterwitz et al., 2016). For example, in an
approach named NICHE-seq (Medaglia et al., 2017), cells expressing
photoactivatable green fluorescent proteins were labeled within the
lymph nodes and spleens of mice using two-photon microscopy;
the subsequent analysis of labeled cells by scRNAseq allowed the
characterization of T and B cell-specific niches after viral infection.
Although already very powerful, current methods for spatial

mapping have their limitations. Landmark genes extracted from

small regions of tissue [e.g. via laser capture microdissection
or non-single cell fluorescence in situ hybridization (FISH)]
are still relatively coarse, often representing an average of gene
expression over a population of cells. At the moment, this prevents
mapping with high spatial resolution to a single cell and does
not allow the inference of direct cell-to-cell interactions. It will be
interesting to see how reference maps with higher resolution, for
example acquired with multiplexed single cell approaches, in
combination with new computational frameworks (Nitzan et al.,
2018) can be used to further alleviate this limitation. The power of
mapping based on multiplexed landmark genes inferred from
sequential single-molecule in situ hybridization data has recently
been demonstrated by dissecting the contribution of cell type and
spatial factors to variations in cell state within heterogeneous
cellular populations (Zhu et al., 2018).

Photoactivatable
fluorescence reporter

(NICHE-seq)

Cell sorting 
and scRNAseq

Niche analysis

Landmark genes

scRNAseq

Mapping

A  Mapping scRNAseq data

Multiplexed 
read-outs

Segmentation

Subcellular 
marker localization

Ligand-receptor
interactions

Morphological
features

Population context

B  Image-based transcriptome and proteome analysis 

Marker 1

Marker 2

Marker 3

Marker 4

Marker n

Landmarks

GFP+
GFP−

Staining
and imaging

GFP+

Fig. 2. Spatially resolved single cell
methods. (A) Sequenced single cells
(i.e. scRNAseq data) can be mapped to
spatial coordinates within the tissue using
known expression patterns of landmark genes.
Landmark genes are often detected by in situ
hybridization or can be identified by laser
capture microdissection coupled to bulk
sequencing. Alternatively, cells from a known
and restricted spatial location can be analyzed
with scRNAseq. In NICHE-seq, for example,
cells within a precisely defined tissue location
are fluorescently labeled and analyzed by
scRNAseq. (B) Image-based methods allow
the analysis of cells in their intact spatial
context and microenvironment. Combining
multiplexed read-outs with single cell
segmentation allows the simultaneous
quantification of protein and RNA expression
together with information about localization,
cell morphology and local environment
(e.g. the number and identity of neighbors,
local crowding, etc.).
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Image-based transcriptome and proteome analysis
As an alternative to relating scRNAseq-generated information to
positional information, it is possible to use image-based approaches to
analyze cells directly in their native context. Ideally, understanding
how individual cells within the same spatial region communicate
and interact requires the simultaneous assessment of cellular state,
local environment, and cell-to-cell contacts (Fig. 2B). An intuitive
approach to combined analysis of cell morphology, gene expression
and protein localization is the fluorescence imaging of fixed samples
combined with computer vision-based cell segmentation (Battich
et al., 2015; Liberali et al., 2014; Snijder et al., 2009). This allows
extraction of a large number of quantitative features describing
multiplemolecular factors and their subcellular localization, aswell as
providing information about cell morphology and population context.
Single molecule in situ hybridization (smFISH) (Raj et al., 2008)
and immunohistochemistry/immunofluorescence are widely used
standard methods that allow the quantification of RNA and protein
expression and localization with subcellular resolution, without
destroying the local context of the cells. In a series of interesting
publications, it has been demonstrated that the combined analysis of
phenotypic states (as indicated by the cell cycle or marker expression)
and the microenvironment (as indicated by local cell density) can
predict cell-to-cell variability in mRNA or protein expression levels
(Battich et al., 2015; Sero et al., 2015; Snijder et al., 2009).
Classically, these approaches allow the simultaneous quantification

of only a small number of markers, because spectral overlap of the
available fluorophores limits the number of simultaneously resolvable
colors to between two and five. Various approaches have therefore
been developed to increase the number of simultaneously resolvable
colors. For example, the number was increased up to six using
quantum dots (Han et al., 2001), up to sevenwith Fourier spectroscopy
and singular value decomposition (Tsurui et al., 2000), up to nine
using spectrally resolved fluorescence lifetime imaging microscopy
(Niehorster et al., 2016), and even up to 32 by combining
combinatorial labeling and super-resolution imaging (Lubeck and
Cai, 2012). The downsides of these techniques, however, include the
need for specialized and expensive equipment, a high sensitivity to
signal-to-noise ratio (which can confound computational
convolution), and limited scalability for higher throughput. As an
alternative, methods using sequential read-out of colors have been
developed for detecting multiple RNAs and proteins. As we move on
to discuss below, these ‘multiplexing’ techniques have provided a
marked increase in throughput using the standard color spectra of
available fluorophores and therefore represent promising approaches.

Multiplexing transcriptomes
In situ sequencing
A very powerful approach, which is closely related to RNAseq of
isolated cells, is in situ sequencing. In RNAseq, RNAs are extracted
from the tissue for amplification and detection, whereas with in situ
sequencing, enzymatic reactions are conducted directly within the
original tissue (Ke et al., 2013; Lee et al., 2015, 2014) (for an
overview of existing methods and limitations, see Crosetto et al.,
2015; Lein et al., 2017; Moor and Itzkovitz, 2017). During this
process, each of the four bases of DNA is encoded by one
fluorescence color and bases of multiple target sequences are then
read out sequentially, directly within the original tissue with
subcellular resolution. For certain methods, such as fluorescence
in situ sequencing (FISSEQ), this potentially allows scaling up to
whole genome coverage with single-nucleotide resolution (Lee
et al., 2014). However, implementation within complex cellular
environments has so far proved difficult. This is especially true of

deep tissues in which auto-fluorescence masks fluorescently labeled
molecules, and light scattering hampers reliable signal read-out,
resulting in low efficiency and accuracy (Lein et al., 2017). In a
recently developed method called spatially resolved transcript
amplicon read-out mapping (STARmap; Wang et al., 2018b),
Wang et al. combined hydrogel-tissue chemistry (Gradinaru et al.,
2018) with in situ sequencing to facilitate sequencing of targeted
sequences within intact 3D-tissues. In this approach, the cross-linking
of selected intracellular biomolecules to a network of polymer
allowed the preservation of three-dimensional tissue-structural
relationships whilst also improving optical properties by clearing
lipids and proteins. STARMapwas shown tomap up to 1000 genes in
sections of the mouse brain at single cell resolution, revealing
the spatial arrangement and self-clustering organization of different
neuronal subtypes. As an alternative to reading out DNA bases
directly within the tissue, spatial transcriptomics (Stahl et al., 2016)
and Slide-seq (Rodriques et al., 2019) involve transferring mRNAs
from the tissue to either spatially barcoded oligonucleotides (Stahl
et al., 2016) or DNA-barcoded microparticles (beads) encoding
spatial information (Rodriques et al., 2019). Sequencing is then
performed outside of the tissue context and spatial information is
reconstructed based on the spatial barcodes.

Multiplexed smFISH
Complementary to in situ sequencing, multiplexed smFISH methods
have been established that allow quantification of the abundance of
RNA molecules with high sensitivity and accuracy at subcellular
resolution. Compared with normal smFISH, most multiplexed
smFISH methods achieve a massive increase in throughput by
applying multiple rounds of sequential hybridization and imaging.
Similar to normal smFISH, these methods rely on detecting RNA
molecules by hybridizing multiple fluorescent probes to transcripts in
cells. This results in a single diffraction-limited fluorescence spot per
transcript, which can then be resolved by conventional microscopy
and accurately quantified. In seqFISH (Lubeck et al., 2014) (Fig. 3A),
the identity of each targeted transcript is encoded as a unique color
sequence (a barcode) that is sequentially read out over multiple
rounds of imaging. However, because each color of each round needs
to be identified correctly, and because images between subsequent
rounds need to be aligned precisely to allow decoding of the
transcript, this leads to the drawback that encoding becomes more
prone to misidentification with increasing number of rounds. To
overcome this, different error-correction schemes, such as Hamming
distance-based error correction in MERFISH (Chen et al., 2015;
Moffitt et al., 2016b) (Fig. 3A), have been introduced.

Similar to in situ sequencing, multiplexed smFISH is limited by
factors such as auto-fluorescence and spatial crowding within cells,
when transcripts are too close for simultaneous optical resolution. To
overcome this, clearing (Moffitt et al., 2016a) and signal amplification
(Choi et al., 2014; Shah et al., 2016a; Kishi et al., 2019) approaches
have been developed. In HCR-seqFISH, for example, seqFISH is
combined with single-molecule hybridization chain reaction
(smHCR) to achieve signal amplification (Shah et al., 2016a); this
approach was applied successfully to quantify single cell transcription
profiles within the mouse hippocampus (Shah et al., 2016b). To
increase the density of RNAs profiled, expansion microscopy (Chen
et al., 2016a; Wang et al., 2018a) or a coding schema combining
pseudocolors with barcoding (Eng et al., 2017) have been used.
Indeed, using the latter method, the profiling of 10,421 nascent
transcripts (Shah et al., 2018) as well as the imaging of RNAs for
10,000 genes in single cells has been demonstrated (Eng et al., 2019).
As alternatives to sequential barcoding, other methods have used
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sequential hybridization whereby each RNA molecule is directly
encoded by a unique color in each round, and multiplexing is
achieved by multiple rounds of hybridization (Codeluppi et al., 2018;
Kishi et al., 2019; Shah et al., 2016b) (Fig. 3A).

Multiplexing proteomes
Although the analysis of mRNA content and localization can provide
significant insight, it alone is not sufficient to fully characterize
cellular states and microenvironments, and therefore cellular decision
making is, as most cellular functions are, ultimately, executed by
proteins. AlthoughmRNA often serves as a good estimator of protein
abundance, the correlation may not always hold true (Edfors et al.,
2016) and the ratio betweenmRNA and protein is itself dependent on
the context of a cell (Popovic et al., 2018). Moreover, many signaling
pathways involved in fate decisions or mechanosensing rely on
direct protein interactions with membranes, or on the subcellular
localization and post-transcriptional modifications of proteins.
The same is true for many transcription factors involved in fate
decisions, where nuclear or cytoplasmic localization often determines
functionality. Thus, the detection and analysis of specific proteins
within cells is key for understanding cell states. Compared with
RNA detection in cells, however, multiplexed detection of proteins
poses additional challenges. Protein detection relies on high-affinity
reagents (most often antibodies), which, compared with nucleotide
detection of RNAs, impairs flexibility of probe design (Baker, 2015).
In addition, proteins, in contrast to RNAmolecules, which are sparse,
often occur in highly crowded intracellular environments and
have dynamic ranges of molecule abundances several orders of
magnitude higher than those of mRNA (Liu et al., 2016). Two
general type of approaches have been used to achieve multiplexed
detection of proteins within cells: mass cytometry imaging and
multiplexed fluorescence imaging. As we highlight below, these
methods now allow for a marked increase in throughput and
predictability of cellular states.

Mass cytometry imaging
In mass cytometry imaging (Bodenmiller, 2016), antibodies are
conjugated to heavy-metal isotopes and quantified by mass
spectrometry (Fig. 3B). As these heavy-metal isotopes each have a
unique atomic mass, mass spectrometry is used to discriminate
isotopes with high accuracy and high multiplicity over a large
dynamic range of molecule abundance. Two main mass cytometry
imaging approaches exist, coupling either ion beam imaging
[multiplexed ion beam imaging (MIBI); Angelo et al., 2014] or
laser ablation [imagingmass cytometry (IMC); Giesen et al., 2014] to

mass cytometry. In contrast to regular mass cytometry (e.g. CyTof)
(Spitzer and Nolan, 2016), in which suspension samples are
analyzed, mass cytometry imaging involves point-by-point ablation
of the sample out of its natural context. Computer reconstruction then
allows the generation of images of protein expression, with spatial
information, based on mass data. For instance, MIBI (Angelo et al.,
2014) currently allows simultaneous measurement of the spatial
expression of up to 36 proteins with subcellular resolution (Keren
et al., 2018). Interestingly, using MIBI to study the tumor-immune
microenvironment in triple-negative breast cancer patients, Keren
et al. (2018) found that some cells from different lineages but with
similar expression profiles tended to be enriched in spatial proximity.
This suggests, again, that some phenotypic features of cells may be
driven more by their microenvironment rather than being an intrinsic
property of cell type. IMC allows the measurement of up to 32
proteins with a resolution of ∼1 µm (Giesen et al., 2014) and
can be used for the simultaneous measurement of mRNA and
protein levels (Schulz et al., 2018). Overall, these mass cytometry
imaging techniques allow quantification of antibody abundance
without the confounding factor of autofluorescence observed
in fluorescence imaging and allow simultaneous staining of all
antibodies in a single experimental step. However, the latter comes
with the limitation that high-abundance antibodies may mask
epitopes of low-abundance proteins. In addition, antibodies need
to be labeled using costly and labor intense methods, and the
technique generally involves low throughput by slow point-by-point
scanning.

Multiplexed fluorescence imaging
Similar to multiplexed smFISH, various technologies have applied
sequential fluorescence imaging to detect multiple proteins using
standard fluorescence microscopy equipment. Promising methods,
such as co-detection by indexing (CODEX) (Goltsev et al., 2018),
DNA exchange imaging (DEI) (Wang et al., 2017) and Immuno-
SABER (Saka et al., 2018 preprint), rely on DNA-barcoded
antibodies (Fig. 3B). Similar to mass cytometry imaging, these
methods involve a single round of immunostaining. The identity of
each antibody is then revealed via sequential read-out of antibodies,
either with in situ incorporation of fluorophore-dye-labeled
nucleotides (CODEX) or by exchange of short fluorophore-
conjugated DNA strands (for DEI and Immuno-SABER).
Immuno-SABER also allows additional signal amplification steps.

Alternative methods, based on iterative antibody labeling, can
increase the number of proteins that can be detected via the iteration
of staining, signal removal, and re-staining with a new set of
antibodies (Gerdes et al., 2013; Gut et al., 2018; Lin et al., 2015,
2018) (Fig. 3B). This allows direct use of a large palette of
commercially available antibodies but has the disadvantage that
many slow primary antibody incubation steps are required. These
methods have had to overcome several previously encountered
limitations such as incomplete antibody elution (Gendusa et al.,
2014) or marked sample degradation due to harsh antibody elution
protocols. Signal removal is usually achieved by chemical
inactivation of fluorophore dyes (Gerdes et al., 2013; Lin et al.,
2015, 2018) or by complete elution of primary and secondary
antibodies (Gut et al., 2018). In CycIF (Lin et al., 2015, 2018),
primary antibodies that are directly conjugated to fluorophore dyes
are inactivated by hydrogen peroxide oxidation at high pH. This
allows the quantification of up to 60 proteins (Lin et al., 2018) and has
been demonstrated to work in high-throughput plate formats
(Lin et al., 2015) as well as for formalin-fixed, paraffin-embedded
(FFPE) samples (Lin et al., 2018). However, primary antibodies

Fig. 3. Schematics outlining multiplexed RNA and protein detection
methods. (A) Multiplexing transcriptomes. In barcoding-based methods
(e.g. seqFISH and MERFISH), RNA identity is encoded over sequential
hybridization rounds. In seqFISH, RNA identity is barcoded as a color
sequence. In MERFISH, RNA identity is barcoded as a binary string that
allows error correction based on a modified Hamming code. In iterative/cycle
multiplexing (e.g. osmFISH), RNA identity is distinguished by a unique color
within each hybridization round. (B) Multiplexing proteomes. Mass cytometry
imaging allows the labeling of all target proteins with heavy-metal-conjugated
antibodies in one incubation step. Protein abundance is quantified by
point-by-point ablation of the sample coupled to mass spectrometry.
An image is reconstructed based on the ablation coordinates and mass data.
In protein multiplexing with DNA-conjugated antibodies, all target proteins are
labeled simultaneously and antibody identity is revealed by iterative
exchange of fluorophore-conjugated DNA strands or with in situ incorporation
of fluorophore-labeled nucleotides (not shown in the schematics). For
fluorophore-conjugated antibodies, multiplexing is achieved by iterative
rounds of staining, imaging and signal removal.

7

REVIEW Development (2019) 146, dev176727. doi:10.1242/dev.176727

D
E
V
E
LO

P
M

E
N
T



that are already conjugated to the dye are often not commercially
available or are dim. Using indirect immunofluorescence overcomes
this limitation but has the drawback that primary antibodies produced
in identical host species need to be removed after each imaging round
(to avoid cross-labeling). In a variant of the CycIF protocol, this
removal is achieved by enzymatically digesting the antibodies
(Lin et al., 2015). An alternative indirect immunofluorescence
approach, termed iterative indirect immunofluorescence imaging (4i)
(Gut et al., 2018), has been optimized to work with standard
unconjugated primary antibodies in combination with fluorophore
dye-conjugated secondary antibodies. Building on previous
antibody elution approaches (Pirici et al., 2009; Schubert et al.,
2006; Toth and Mezey, 2007) and in particular by introducing
an essential step to prevent photo-induced cross-linking of antibodies
to the sample, this method allows efficient elution of primary and
secondary antibodies. Indeed, by combining multiplexed imaging of
more than 40 proteins in ∼20,000 single cells with a data-driven
computer vision approach, Gut et al. explored subcellular protein
distributions in different cellular states (Gut et al., 2018). More
recently, 4i multiplexing has been applied to study the 3D mouse
intestinal organoid system. By combining multiplexed imaging
time-course experiments with time-resolved scRNAseq data, the
molecular mechanism underlying symmetry-breaking events
during organoid development was characterized (Serra et al., 2019).
This example demonstrates how the combination of
single cell technologies with spatial and temporal resolution can
quantitatively bridge single cell behavior to collective properties of a
developing tissue.

Temporally resolved single cell methods
Another inherent component of biological systems is their dynamics.
However, studying tissue dynamics in relation to single cells is a
daunting task. Biological processes occur over timescales ranging
from seconds to hours or even years. The challenge, therefore, is
to plan appropriate time points for sampling at sufficient resolution
to collect enough information to reconstruct the process under
investigation. Currently, no single technology allows the plotting and
capture of complex processes spanning several temporal and spatial
scales with sufficient resolution in terms of time-point sampling and
cellular state read-outs. However, the combination of multiple
technologies is now paving the way for a more comprehensive –in
terms of both time and space – understanding of tissue development.
It is clear that highly multiplexed spatially resolved single cell

methods can provide snapshots of cell and microenvironment states
with an unprecedented depth of information, allowing the study of
spectrums of cell types and their spatial organization within tissues
(Wang et al., 2018b). Such methods also allow correlation of
cellular states and microenvironmental factors (Goltsev et al., 2018;
Keren et al., 2018). Importantly, however, information about cell
state transitions, the history of a cell, and how temporal events
regulate cellular transitions is lost or hidden. Nonetheless, powerful
computational inference frameworks have emerged that support the
move from descriptive studies of cellular states to models of
dynamic events (Bendall et al., 2014; Chen et al., 2016b; Guo et al.,
2017; Haghverdi et al., 2016; Herring et al., 2018; Qiu et al., 2017;
Setty et al., 2019; Setty et al., 2016; Shin et al., 2015; Trapnell et al.,
2014; Weinreb et al., 2018; Wolf et al., 2019). These methods
assume that single cells transit from one cellular state to another in a
continuous fashion, and that all necessary cellular states for the
process under investigation are sampled with sufficient depth,
allowing the ordering of cells along a pseudotime trajectory of
cellular progression. This process of ‘trajectory inference’ has been

applied successfully to various imaging (Gut et al., 2015; Herring
et al., 2018; Serra et al., 2019), CyTof (Bendall et al., 2014; Setty
et al., 2016) and sequencing (Chen et al., 2016b; Guo et al., 2017;
Haghverdi et al., 2016; Qiu et al., 2017; Setty et al., 2019; Shin et al.,
2015; Trapnell et al., 2014; Weinreb et al., 2018; Wolf et al., 2019)
datasets. However, trajectory inference solely on cellular states has
its limitations, as reviewed recently elsewhere (Kester and van
Oudenaarden, 2018; Wagner et al., 2016; and, also in this issue,
Tritschler et al., 2019).

As an alternative approach to studying cell state transitions, the
clonal history of single cells (Alemany et al., 2018; Biddy et al., 2018;
Frieda et al., 2017; Raj et al., 2018; Rodríguez-Fraticelli et al., 2018;
Spanjaard et al., 2018; Wagner et al., 2018; Yao et al., 2017) or the
history of dynamic molecular events (Frieda et al., 2017; Perli et al.,
2016) can be recorded in the genome of each cell. Various methods
allow cellular states and cellular history to be monitored
simultaneously by using multiplexed end-point measurement.
For example, Spanjaard et al. used CRISPR/Cas9-induced genetic
scars to devise a genetic barcoding system that allows cell-lineage
reconstruction based on recorded clonal history and cellular
states extracted by scRNAseq (Spanjaard et al., 2018). In another
approach, namedMEMOIR (Frieda et al., 2017), barcoded recording
elements called scratchpads are introduced into mouse ESCs and, by
using CRISPR/Cas9-based targeted mutagenesis, the state of those
scratchpads is altered in a stochastic fashion as cells proliferate, thus
creating a heritable barcode. At an endpoint measurement, scratchpad
states, cellular states and spatial information can then be read out by
multiplexed smFISH. By using additional independent scratchpads
targeted with orthogonal gRNAs expressed in response to specific
signals, this system could, in principle, allow the storage of not only
clonal history into the genome of each cell but also of dynamic and
stimulus-triggered events.

As an alternative to storing events for later read-out, the
combination of high temporal resolution time-lapse imaging (to
record dynamic events in real time) with cellular endpoint
measurements is a powerful tool to study biological processes on
different scales. Recent studies have begun to exploit this possibility.
Although live imagingmaynot always bepossible because of physical
inaccessibility or sample opaqueness, technological improvements in
high-throughput confocal microscopy, and especially the introduction
of light-sheetmicroscopy (Huisken et al., 2004; Reynaud et al., 2015),
open up major possibilities for live imaging cell populations. Light-
sheet microscopy combines high-speed acquisition with low
phototoxicity and good optical sectioning at subcellular resolution.
Tracking evolving biological processes over a long-term timescale (in
days) and using high-speed recordings (seconds or minutes) can
bridge different spatial and temporal scales (de Medeiros et al., 2016;
Höckendorf et al., 2012). Indeed, light-sheet imaging has been applied
to the studyof calcium dynamics in plants (Costa et al., 2013), clathrin
dynamics, organelle reorganization and cell migration in zebrafish
(Liu et al., 2018), division dynamics in tumor spheroids (Lorenzo
et al., 2011), mouse intestinal organoid development (Serra et al.,
2019) and mouse embryo development, both from pre-implantation
embryos (Strnad et al., 2016) and from gastrulation to organogenesis
with single cell resolution (McDole et al., 2018). In combination with
automated cell tracking, this method also opens up the intriguing
possibility of constructing high-resolution fate maps for individual
cells over the course of development (McDole et al., 2018; Strnad
et al., 2016). However, high-resolution live-imaging data demands
efficient ways to segment and visualize data, and major initiatives that
tackle this challenge are under way. For example, the Allen Institute
for Cell Science (Horwitz, 2016) is developing high-throughput
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imaging approaches alongwith data visualization and integration tools
to understand and predict cellular behavior (Chen et al., 2018 preprint;
Ounkomol et al., 2018). Furthermore, although these imaging
approaches can provide impressive insight into morphological
changes, cell movements and cell divisions, the cellular-state read-
outs for live imaging are limited to a maximum of six to seven colors
(Cutrale et al., 2017; Valm et al., 2017). However, this limitation can
be alleviated by combining live imaging with additional end-state
measurements (Filipczyket al., 2015;Hormoz et al., 2016; Takei et al.,
2017). In a method called kin correlation analysis (KCA) (Hormoz
et al., 2016), single cell tracking was combined with end-state
measurements of three cell state markers measured by smFISH; this
method was used to show that mouse ESCs traverse along a linear
chain of metastable states in a stochastic and reversible fashion, in
contrast with the prevailing view that ESC heterogeneity is mostly
attributed to randomnoise. In a recent approach,Gehart et al. used a bi-
fluorescent timer reporter to measure the time from the onset of
enteroendocrine differentiation and combined it with end point
scRNA-seq to build a time-resolved lineage tree of enteroendocrine
differentiation in the small intestine (Gehart et al., 2019).
In addition to providing live dynamics for molecular markers,

which can help unravel transitions between different cell states
inferred from fixed samples, combining live imaging with inferred
trajectories from multiplexed snapshots opens up a powerful
opportunity to map events in pseudotime back to real time or vice
versa. Pseudotime conveys stepwise progression of molecular
markers along a trajectory. However, this may not necessarily
represent dynamics in real time, which can make purposeful
interpretation difficult. By simultaneously acquiring stereotypic
features such as marker expression or morphological features from
live-imaging and fixed samples, it is possible to infer the respective
position of the observed state in both real time and pseudotime. This
was recently demonstrated for intestinal organoids where a trajectory
inferred from fixed imaging samples was mapped with growth
dynamics extracted by light-sheetmicroscopy data (Serra et al., 2019).

Conclusions and perspectives
Thousands of RNAs and hundreds of proteins can now be quantified
in single cells in their spatial context. Combined with powerful
computational frameworks and live-imaging technologies, this
now allows the mapping of cellular states and the inference of
dynamic transitions between these states. Another important layer of
information that will be essential to integrate with spatial information
is the chromatin landscape (as reviewed in this issue by Ludwig and
Bintu, 2019). Therefore, to understand how tissue organization
and function emerges, we must continue to move forward from
a view of single cells as isolated entities to one in which cellular
functions are governed by the dynamic interactions between
connected cells within a changing environment. The combination
of multiscale spatial and temporal technologies is now enabling the
quantitative morphological and molecular description of cells in their
natural context and the study of their interactions over time. This will
pave the way for fundamental discoveries in cell and developmental
biology. For example, we will hopefully be able to obtain predictive
models on how cell-to-cell variability emerges, and its functional
implications in an evolving biological system. Moreover, these
approaches will no doubt provide insights into how probabilistic and
metastable cellular states transition to more stable cell fates and how
these states are reversed during regeneration and diseases.
Combining datasets spanning multiple spatial and temporal

scales will be a formidable task and will require new computational
and experimental frameworks. Whereas in the past the limiting

number of biological read-outs often hampered interpretation of
biological results or prevented study of the full complexity of the
process, we now face the challenge of identifying and extracting
meaningful conclusions from the plethora of data generated by new
technologies. It will, therefore, be important to fit experimental
design closely to the biological question of interest and to develop
ways to quantitatively reduce data dimensionality and make data
interpretation amiable. Moreover, computational frameworks will
be required to efficiently handle, normalize, visualize and connect
large datasets spanning different scales, with the ultimate aim of
understanding decision making at single cell resolution and
revealing the design principles of tissue organization during
development, regeneration and disease.
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Self-organization and symmetry breaking in intestinal 
organoid development 
 

 

The supplementary information accompanying this article can be found in the 

appendix section.  

Summary 
Single cells with small intestinal origin can self-organize under homogenous conditions 

into organoids recapitulating morphology and cell type composition of the small intestine. A 

major step during organoid development is the occurrence of the first Paneth cells. Within 

homogenous cysts, symmetry is broken whereby a subset of cells differentiate into Paneth 

cells. These Paneth cells are believed to specify the future crypt site of the developing crypt-

villus structure. Despite the importance of self-organization in organoid development, little is 

known on how individual cells interact with each other to generate asymmetries and build 

emergent higher order structures. In this study, we used imaging as well as sequencing 

approaches to quantitatively describe organoid development from single cells into budding 

organoids. We showed that organoid development resembles a regenerative process driven 

by transient activation of the transcriptional co-activator YAP1. We also show that symmetry 

is broken by cell-to-cell variability in YAP1 subcellular localization, which initiates Notch-Delta 

mediated lateral inhibition and subsequent Paneth cells formation. This study sheds light on 

signaling pathways and transcriptional network interactions that endows single intestinal cells 

with the capacity to self-organize into organoids. 
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Self-organization and symmetry breaking 
in intestinal organoid development
 Denise Serra1,2,6, Urs Mayr1,2,6, Andrea Boni1,5,6, Ilya Lukonin1,2, Markus Rempfler1, Ludivine Challet Meylan1,  
Michael B. Stadler1,3, Petr Strnad1,5, Panagiotis Papasaikas1,3, Dario Vischi1, Annick Waldt4, Guglielmo Roma4 & Prisca Liberali1,2*

Intestinal organoids are complex three-dimensional structures that mimic the cell-type composition and tissue 
organization of the intestine by recapitulating the self-organizing ability of cell populations derived from a single intestinal 
stem cell. Crucial in this process is a first symmetry-breaking event, in which only a fraction of identical cells in a 
symmetrical sphere differentiate into Paneth cells, which generate the stem-cell niche and lead to asymmetric structures 
such as the crypts and villi. Here we combine single-cell quantitative genomic and imaging approaches to characterize 
the development of intestinal organoids from single cells. We show that their development follows a regeneration process 
that is driven by transient activation of the transcriptional regulator YAP1. Cell-to-cell variability in YAP1, emerging in 
symmetrical spheres, initiates Notch and DLL1 activation, and drives the symmetry-breaking event and formation of 
the first Paneth cell. Our findings reveal how single cells exposed to a uniform growth-promoting environment have the 
intrinsic ability to generate emergent, self-organized behaviour that results in the formation of complex multicellular 
asymmetric structures.

Genetically identical cells grown under the same conditions can dis-
play extensive variability in their potential to grow and differentiate1–3. 
This may be attributed to stochastic fluctuations in gene expression4,5, 
or non-genetic variability emerging from collective cell behaviour6–8. 
The latter is generated by single cells that sense the ‘population context’, 
resulting in microenvironmental effects that can feed back on their 
physiological state and gene expression programs9. This enables single 
cells to break the symmetry of a population by changing their differen-
tiation potential10 with respect to other identical cells.

Organoids recapitulate the self-organizing potential of stem cells, 
creating three-dimensional structures in vitro. In particular, intestinal 
organoids recapitulate patterning processes and contain all cell types 
found in the adult intestine11,12. A characteristic of these intestinal orga-
noids is that they develop from a single LGR5-positive (LGR5+) stem 
cell11. Despite their extensive use, it is unclear how single intestinal stem 
cells give rise to cell populations with the capability of self-organization, 
and which transcriptional program it is that cells use. First, the stem 
cell generates a symmetrical sphere-like structure. Next, a secretory 
cell, named a Paneth cell, emerges and is believed to determine the 
future crypt site. Paneth cells create the niche environment and secrete 
WNT3A13. In vivo, these cells are not the only source of Wnt14,15. After 
this symmetry-breaking event, a gradient of WNT3A is formed around 
the Paneth cell, which induces the formation of a crypt16. The seem-
ingly spontaneous emergence of a Paneth cell within a sphere—which 
is formed by genetically identical cells—represents the first and most 
crucial symmetry-breaking event in the formation of intestinal orga-
noids, but how this occurs remains unknown.

Here we characterize the development of intestinal organoids using 
a combination of single-cell genomics and imaging approaches to 
show that generation of organoids is not limited to LGR5+ cells, and 
organoid formation is a regenerative process that relies on transient 
YAP1 activation. Finally, we show that for effective organoid develop-
ment, YAP1 needs to display transient cell-to-cell variability in local-
ization, which in turn initiates a Notch and DLL1 lateral inhibition 

event that drives differentiation of Paneth cells and subsequent crypt 
formation.

Intestinal organoid development from single cells
Many intestinal cell types can de-differentiate in vivo during injury, 
and both LGR5+ and LGR5− cells can generate organoids17–19. We 
characterized the growth of intestinal organoids from sorted single 
LGR5+ and LGR5− cells derived from a LGR5::DTR-eGFP mouse20 
(Fig. 1a). Cells were seeded as multiple individual cells and cultured 
in ENR medium, containing WNT3A for the first three days only13. 
Organoids were fixed at different time points, stained with multiplexed 
immunofluorescence (4i)21, imaged at high resolution and segmented 
using cellular computer vision algorithms (Fig. 1a, b, Extended Data 
Fig. 1a–c).

The efficiency of organoid formation was approximately 18%, 
for LGR5+ and 7.5% for LGR5− (Fig. 1c). Both starting populations 
induce a similar, stereotyped pattern of organoid development:  
single cells at 24 h; small spheres with a lumen at 48 h; larger spheres 
of which most contain one Paneth cells at 72 h; asymmetric spheres 
with initial buds at 96 h; and organoids with crypts at 120 h (Fig. 1b). 
Organoids increase exponentially in size and cell number during the 
first 72 h (approximately 500 cells by 96 h, Fig. 1d, e). Notably, organoid  
eccentricity—a feature that measures object roundness—displayed 
bimodal distributions at 120 h (Extended Data Fig. 1d), which  
indicates that two morphologically distinct organoids developed 
(Fig. 1f). Markers of different intestinal cell types revealed the exist-
ence of spherical organoids that consist entirely of enterocytes, and 
are devoid of other cell types (Extended Data Fig. 1e, f). We refer to 
these organoids as ‘enterocysts’, as compared to budding organoids. 
Enterocysts appear after 60 h and, at 120 h, approximately 20% of mul-
ticellular structures are enterocysts, whereas around 80% are budding 
organoids (Fig. 1g). There is an increase in enterocysts from LGR5− 
cells, which suggests that some progenitors have a higher probability 
to become enterocysts (Fig. 1g). In the absence of Wnt, enterocysts die 

1Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland. 2University of Basel, Basel, Switzerland. 3Swiss Institute of Bioinformatics, Basel, Switzerland. 4Novartis Institutes 
for BioMedical Research, Novartis Pharma AG, Basel, Switzerland. 5Present address: Viventis Microscopy Sàrl, EPFL Innovation Park, Lausanne, Switzerland. 6These authors contributed equally: 
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after 120 h (Fig. 1g). We propose that enterocysts develop owing to an 
absence of symmetry breaking and no Paneth cell differentiation (and 
thus an absence of endogenously produced Wnt). To test this hypoth-
esis, we modulated the rate of Paneth cell differentiation, resulting in 
changes in enterocyst formation that show a strong correlation between 
the absence of Paneth cells and enterocyst formation (Extended Data 
Fig. 1g). Thus, the successful formation of budding organoids requires 
a symmetry-breaking event, which results in the differentiation into a 
Paneth cell in the presence of exogenous Wnt.

Trajectory of LGR5 dynamics and organoid development
We next quantified the time progression of organoid development to 
pinpoint when symmetry breaks (Fig. 2a, b). The subsampling of tem-
poral progression with fixed organoid time courses prohibits the deter-
mination of the exact morphological and phenotypic stages at which 
enterocysts emerge. We therefore inferred continuous single-organoid 
trajectories of development using the imaging multidimensional feature 
space22,23 (Extended Data Fig. 2a–d). Notably, organoids grown from 
LGR5+ and LGR5− cells display identical patterns of growth (Fig. 2c, d,  
Extended Data Fig. 2e, f). This revealed a single ‘pseudotime’ trajectory  

up to approximately 0.3, after which it bifurcates into budding organoid 
and enterocyst branches (Fig. 2d, e). Both enterocysts and budding 
organoids are proliferative but only the budding organoids stay pro-
liferative after removal of Wnt (Fig. 2e). Paneth cells appear only in 
budding organoids after pseudotime 0.3, and the timing is very similar 
for both starting populations (Fig. 2e, Extended Data Fig. 3). Mapping 
the cell number per organoid revealed that the bifurcation occurs when 
organoids have around 16–32 cells (Fig. 2f).

To map real time onto the trajectory, we performed time-lapse 
imaging from single cells using a custom-built light-sheet micro-
scope suitable for organoids (Fig. 2g, Extended Data Fig. 4a–f). This 
revealed similar growth and proliferation dynamics for both budding 
organoids and enterocysts until 48 h (Fig. 2g, Extended Data Fig. 4g, 
Supplementary Videos 1–3). A sphere is created at the two-cell stage, 
with a subsequent fast rate of cell division of around 8 h. After 72 h, 
when exogenous Wnt is removed, budding organoids show localized 
cell proliferation, representing the site of crypt formation, whereas 
cells in enterocysts stop proliferating. Comparing organoid area 
over time with that of fixed organoids along the trajectory shows 
that pseudotime is slightly compressed in the beginning and stretched 
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Fig. 1 | Intestinal organoids development from LGR5+ and LGR5− 
single cells. a, Workflow of organoid-development time course from 
LGR5+ and LGR5− single cells sorted by fluorescence-activated cell 
sorting (FACS) (LGR5::DTR-eGFP mice). b, Representative images of 
organoids (nuclei, DAPI), stem cells (LGR5::DTR-eGFP) and Paneth 
cells (lysozyme). Left, maximum intensity projections (MIP). Right, 
single-plane zoom-in. c, LGR5+ higher efficiency of organoid formation 

(n = 7 replicates for each condition). P = 7.6 × 10−10, two-sided t-test. 
d, Organoid area (LGR5+ n = 9,798 organoids; LGR5− n = 13,623 
organoids). Violin plot lines denote quartile for each group. e, Nuclei 
number (n = 2,829 organoids). f, Representative images of budding 
organoids and enterocysts. Scale bar, 50 µm. g, Relative amount of 
enterocysts over time (n = 3 replicates for each condition). P = 0.019, two-
sided t-test at 120 h. Data in c, e, g are mean ± s.d.

2  M A Y  2 0 1 9  |  V O L  5 6 9  |  N A T U R E  |  6 7



ARTICLERESEARCH

towards the end (Extended Data Fig. 4h). Mapping real time onto 
pseudotime further revealed that the bifurcation at approximately 
0.3 pseudotime corresponds to around 45 h. Thus, a trajectory of 
organoid progression—inferred from thousands of fixed organoids 
obtained with a time-course experiment—provides an accurate rep-
resentation of organoid development dynamic. Moreover, it allows 
us to directly compare experiments performed in a time course with 
live-cell imaging.

Following the expression of LGR5 along the trajectory led to an 
unexpected discovery. LGR5+ cells strongly downregulate LGR5 
expression during the first day and reacquire it only around 0.4 pseu-
dotime (approximately 62 h) after the appearance of Paneth cells 
(Fig. 2h, Extended Data Fig. 5a, b). This loss of LGR5 expression also 
strongly correlates with the onset of fast proliferation and was con-
firmed with live-cell imaging of a single LGR5+ cell (Extended Data 
Fig. 5c, d, Supplementary Video 4). LGR5 was also upregulated at 
62 h in organoids from LGR5− cells, although slightly delayed and 
dimmer (Fig. 2h). This shows that LGR5+ and LGR5− cells display 
similar patterns of organoid development through a transient prolif-
erative sphere that consists of cells that do not express LGR5, after 
which LGR5 is expressed in stem cells in the newly formed crypts of 
budding organoids.

Transient YAP1 activation during organoid development
To determine the transcriptional programs modulated during the 
first days of organoid growth, RNA sequencing (RNA-seq) time-
course analysis was performed and mapped onto pseudotime (Fig. 3a, 
Extended Data Fig. 6a, Supplementary Table 1). This shows that stem-
cell markers are similarly downregulated at the transcriptional and 
protein level and, then, reacquired after Paneth cell differentiation 
(Fig. 3b, Extended Data Fig. 6b–d). Similar expression dynamics were 
also observed for all other cell-type-specific genes (Fig. 3b, Extended 
Data Fig. 6b–d). Notably, canonical Wnt targets are downregulated and 

non-canonical targets are upregulated in the first days (Extended Data 
Fig. 6e). To gain an overview of transcriptional changes, we then clus-
tered the temporal expression patterns (Fig. 3c). This revealed three 
major clusters: first, a red cluster that is enriched in stem-cell markers, 
other cell-type-specific genes and genes involved in secretion and cell 
migration. There is a re-programming of cells into an undifferentiated 
state, which is followed by the re-establishment of LGR5+ stem cells 
and acquisition of differentiation after Paneth cell formation (Extended 
Data Fig. 6f). Second, a blue cluster that is enriched in functions linked 
to mitochondria, actin cytoskeleton, cell cycle and extracellular matrix. 
These genes are probably required to supply the energetic demand of 
undergoing rapid cell divisions. Third, a green cluster that is enriched 
in functions related to metabolism and cell-type-related functions 
(Extended Data Fig. 6f).

To focus on the earliest phase of development, we quantified 
transcription-factor-binding motifs in the promoters of genes 
expressed at 24 h (Fig. 3d). The most important motifs were for 
FOSL1, TEAD1 and TEAD4, which all require YAP1 as transcrip-
tional co-activator24,25. These transcription factors show an early 
increased expression, whereas the expression of Yap1 mRNA stays 
constant (Fig. 3e, Extended Data Fig. 6g). YAP1 is a mechanosensing 
nuclear effector of the Hippo pathway and regulates organ growth, 
regeneration and tumorigenesis26,27. It is also an important effector 
of intestinal regeneration, in which it reprograms LGR5+ cells into 
LGR5− cells, thus inhibiting Paneth cell differentiation28,29. When 
we correlated the expression levels of the early expressed genes (24 h 
versus 0 h) in organoid development with the expression levels of 
YAP1-dependent gene expression28, we observed a good correlation 
(r = 0.45) (Fig. 3f). These early genes include YAP1 target genes30 
and fetal genes involved in regeneration31. Thus, this provides sup-
port for a model in which organoid development follows a regener-
ative response with a transient activation of YAP1 target genes in a 
LGR5− sphere.
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Variable YAP1 activation determines symmetry breaking
YAP1 targets are transiently upregulated while Yap1 mRNA is 
unchanged (Fig. 3e), which suggests post-transcriptional regulation. 
We therefore analysed YAP1 protein during organoid development. 
YAP1 protein abundance in organoids shows an initial increase until 
48 h (Fig. 4a, b), whereas its subcellular localization starts to become 
variable between single cells after 24 h, increasing entropy in its ON and 
OFF state (Extended Data Fig. 7a, b). More precisely, in the four-cell 
stage, little cell-to-cell variability in the nuclear localization of YAP1 
is observed whereas in the eight-cell and sixteen-cell stages—when 
cells are more crowded—YAP1 is translocated to the cytosol, and thus 
inactivated, in a subset of cells (Fig. 4a). After removal of Wnt, YAP1 
protein levels strongly decreased (Fig. 4b), with YAP1 regionalizing 
only in the crypt area. YAP1 is absent in enterocysts. Removing Wnt 
earlier promotes relocalization of YAP1 to the cytosol, and decreased 
expression (Extended Data Fig. 7c).

When we generated organoids from single cells that, on average, have 
more YAP1 activity (all single cells extracted from 72-h-old organoids), 
we observed a strong increase in efficiency in organoid formation 
(Fig. 4c, Extended Data Fig. 7d). Inhibition of YAP1 and YAP1 knock-
out result in reduced organoid efficiency (Fig. 4d, e, Extended Data 
Fig. 7e). Conversely, ectopic activation of YAP1 by YAP1 overexpres-
sion, or by activation of its downstream effector EREG28, increases the 
efficiency of organoid formation (Fig. 4f). All these phenotypes require 
the presence of exogenous Wnt (Extended Data Fig. 7f).

Homogeneous inhibition of YAP1 after 48 h in all cells reduces 
Paneth cell differentiation, and increases the number of enterocysts. 
Notably, this phenotype is similar to YAP1-overexpression organoids 
(in which YAP1 is homogeneously active in all cells), and neither form 
Paneth cells nor display symmetry breaking (Fig. 4g, h, Extended Data 
Fig. 7g, h). Instead, they either develop into enterocysts or remain as 
undifferentiated symmetrical spheres when YAP1 expression is high 
(Extended Data Fig. 7i). In addition, organoids that lack the LATS1 
and LATS2 tumour suppressors28 remain symmetrical and contain no  
Paneth cells (Extended Data Fig. 7g, h). We then added EREG, which 
led to the heterogeneous activation of YAP1, resulting in decreased 
enterocyst formation (Fig. 4g). From these findings, we conclude that 
during the first 72 h of organoid development, YAP1 is transiently 
active in every cell and induces cell proliferation, after which it becomes 
inactive in only few cells. Both homogeneous inactivation and overac-
tivation of YAP1 in spheres abolish symmetry breaking and organoid 
formation, which suggests that it is not the absolute level of YAP1 but 

rather its varying activation state between single cells that drives sym-
metry breaking.

A YAP1–Notch switch drives symmetry breaking
To understand how YAP1 variability drives symmetry breaking, we 
performed single-cell (sc) RNA-seq at different time points (Fig. 5a, 
Extended Data Figs. 8a, b, 9a). At 72 h, the population of cells is homo-
geneous, with only a few stem cells and Paneth cells, and no enterocytes 
(Extended Data Fig. 9b). At 120 h, most cell types are represented32,33 
(Extended Data Fig. 9b, c). A subset of cells from organoids at 72 h 
shows high expression of YAP1 target genes (Fig. 5b, Supplementary 
Table 1), the levels of which correlate with the expression level of Notch 
ligands such as DLL1 (Fig. 5b, c, Extended Data Fig. 9d). This suggests 
that the variability in YAP1 activation might generate variability in 
expression of Notch ligands. Interestingly, Notch signalling is a regulator 
of the intestinal stem-cell niche, specifying distinct cell fates34,35. In vivo 
and in mature organoids, it is known that inhibition of Notch increases 
the differentiation of secretory cells36. Nuclear localization of YAP1 is 
variable between cells after the 4-cell stage and precedes the expres-
sion of DLL1 in few cells between the 8-cell and 16-cell stages. DLL1 
expression occurs in cells with high levels of nuclear YAP1 (Fig. 5d–f,  
Extended Data Fig. 10a). This is consistent with findings in other tissues 
that DLL1 is a YAP1 target gene28,37. Moreover, HES1 is expressed in 
single cells that neighbour DLL1+ cells (Fig. 5d, Extended Data Fig. 10a). 
Between the 16-cell and the 32-cell stages, Paneth cells appear, which are 
all positive for DLL1 and start losing nuclear YAP1 (Fig. 5e, f, Extended 
Data Fig. 10a, b), as also seen in the loss of YAP1 target gene expression 
in Paneth cells from scRNA-seq (Fig. 5c). This indicates that variability 
in nuclear YAP1 is involved in the initiation of a Notch–DLL1 event, 
which, once established, maintains itself in the absence of YAP138,39. We 
then homogeneously inactivated or activated YAP1, and in both condi-
tions, no Notch–DLL1 event is observed (Extended Data Fig. 10c, d). 
By contrast, when we used EREG, Notch–DLL1 is activated (Extended 
Data Fig. 10c, d). Finally, to determine whether Notch–DLL1 activation 
is required for symmetry breaking, we used gamma-secretase inhibitors. 
All these inhibitors reduce symmetry breaking and Paneth cell differenti-
ation, resulting in an increased fraction of enterocysts (Fig. 5g, Extended 
Data Fig. 10e), and strengthening the correlation between the absence of 
Paneth cells and enterocyst formation. Adding the Notch inhibitor N-[N-
(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) 
after 120 h shows the expected increase in secretory cells (Extended 
Data Fig. 10f). Thus, although Notch lateral inhibition is required for  
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enterocyte differentiation in large organoids, it needs to be activated in 
small symmetrical spheres to drive symmetry breaking and the formation 
of the first secretory DLL1+ cell, the Paneth cell. Together, this shows that 
variability in nuclear YAP1 initiates a Notch–DLL1 event. Cells with high 
levels of nuclear YAP1 become DLL1+ cells and subsequently Paneth 
cells. Once having become a Paneth cell, the upstream regulation of YAP1 
on DLL1 is then lost.

Discussion
Here we characterize the development of intestinal organoids from single  
cells, and show that it exploits the plasticity of the intestine and is driven 
by transient YAP1 activation, following a regeneration process. We then 
show that cell-to-cell variability in nuclear YAP1—emerging in symmet-
rical spheres—initiates a Notch–DLL1 lateral inhibition event between 
the 8- and 16-cell stage, which constitutes the first symmetry-breaking 
event in intestinal organoid growth and drives the formation of the first 

Paneth cell (Fig. 5h). It is yet not clear what drives the variability in 
YAP1 subcellular localization but it may be determined by a combi-
natorial effect of local variation in cell crowding caused by asynchro-
nous cell divisions40 and extracellular matrix density41 (Extended Data 
Fig. 10g). Subsequently, variability in YAP1 results in variability in DLL1 
activation. Although fluctuations in DLL1 ligand can be amplified by 
negative feedback42, we show here that it does not arise from intrinsic  
stochasticity, but can be determined by cell-to-cell variability in the 
mechanosensor YAP1. Thus, Notch signalling has a dual role in orga-
noid development—first in symmetry breaking and then, after home-
ostasis has been reached, in maintaining enterocyte differentiation36.

Together, our findings underscore the notion that YAP1 acts as a 
sensor of tissue integrity. After tissue dissociation, YAP1 is activated to 
drive tissue repair, but once it is repaired, local cell crowding increases 
and induces heterogeneous activation of YAP1 in organoids and pos-
sibly also in vivo, driving the heterogeneous expression of DLL1 and 
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formation of Paneth cells. Notably, cells that neighbour these Paneth 
cells show an increase in the canonical Wnt signalling response (TCF–
GFP expression) (Extended Data Fig. 10h). Thus, Paneth cells might 
switch a general non-canonical/YAP1-dependent response in tran-
sient-amplifying-like cells to a locally induced canonical Wnt response 
in their neighbouring cells with the re-expression of LGR5 and the rec-
reation of a stem-cell niche, bringing the system back to homeostasis. 
Indeed, YAP1 could be a general sensor for tissue injury and repair in 
many other tissues43–45, by having a broad regulatory role at enhanc-
ers and distal regions of progenitor-specific genes45,46. This could 
shed light on the development of cancer47, which may often reflect 
an inability to reacquire homeostasis upon tissue damage28. Finally, 
this work reveals how single cells have the intrinsic ability to gener-
ate emergent, self-organized behaviours that result in multicellular  
asymmetric structures.

Reporting summary
Further information on research design is available in the Nature Research 
Reporting Summary linked to this paper.

Data availability
RNA-seq data are available at the Gene Expression Omnibus (GEO) under acces-
sion codes GSE115955 (bulk) and GSE115956 (single cells).

Code availability
Code used for image analysis in this study was developed in the Liberali laboratory 
in Matlab and Python 3. For Python 3, multiple open source Python libraries for 
scientific computing and image analysis were used. The code for organoid 2D 

and 3D segmentation, feature extraction and organoid linkage is available under 
https://github.com/fmi-basel/glib-nature2018-materials. An R implementation of 
the Griph algorithm for scRNA-seq analysis is available as an R package at https://
github.com/ppapasaikas/Griph.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Intestinal development of LGR5+ and LGR5− 
organoids. a, LGR5+ and LGR5− single cells sorted from LGR5::DTR-
eGFP reporter mouse 3 h after FACS (left), with box plot showing 
LGR5::DTR-eGFP intensity quantification (right) (n = 602 organoids for 
LGR5+; n = 576 organoids for LGR5−). Box plot elements show quartiles, 
and whiskers denote 1.5× the interquartile range. b, FACS histogram of 
GFP signal of LGR5::DTR-eGFP single cells. Dashed boxes depict gating. 
c, Representative images of 4i imaging showing the same organoids stained 
with DAPI, GFP, lysozyme, proliferating cell nuclear antigen (PCNA), 
aldolaseB and Cell Trace. d, Distribution of eccentricity at 120 h of 
development for LGR5+ and LGR5− starting populations (LGR5+ n = 463 
organoids; LGR5− n = 711 organoids). e, Representative images of LGR5+ 

and LGR5− cells at 120 h of development. Bottom, enlargements depict 
budding organoids and enterocysts. f, Representative images of enterocysts 
stained with DAPI, different cell-type and proliferation markers. g, Left, 
representative images of organoids grown from LGR5+ and LGR5− single 
cells in the presence of Wnt signalling inhibition (IWP-2, 2 µM) or 
activation (CHIR99021, 5 µM). Organoids are fixed at 120 h and stained 
for nuclear marker (DAPI) and enterocyte marker (aldolaseB). Top row 
shows complete well overview; bottom row shows magnified examples of 
single organoid. Right, quantification of enterocysts at 120 h of organoid 
development after Wnt signalling inhibition (IWP-2, 2 µM) or activation 
(CHIR99021, 2 µM) (n = 2 replicates). Data are mean values.
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Extended Data Fig. 2 | Feature selection for organoid development. 
a, Pearson correlation heat map of the 14 selected features used for 
trajectory inference (n = 23,421 organoids). b, Fourteen selected features 
are grouped based on the underlying information. c, Comparison 
between eccentricities calculated on projected images and on 3D volumes 
(n = 16,175 organoids). d, Number of in-focus planes at different time 
points in cleared and uncleared organoids (n = 2,310 organoids). Planes 
are classified as in-focus with a logistic regression using the ratio of 
maximum in-plane intensity to maximum intensity in the whole stack 

as feature. Shading denotes s.d. e, Diffusion maps for pooled LGR5+ and 
LGR5− organoids (14 selected features, n = 23,421 organoids). Colour-
coding denotes starting population and pseudotime. f, Diffusion maps for 
LGR5− (first column, 14 selected features, n = 13,623) and LGR5+ (second 
column, 14 selected features, n = 9,798) organoids, and for the pooled 
dataset with the full feature set (third column, 66 features, n = 23,421). 
Colour-coding denotes enterocytes (aldolaseB), PCNA, Paneth cells 
(lysozyme), organoid area, eccentricity and enterocyst classification  
(in which class 1 denotes enterocysts).
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Extended Data Fig. 3 | Cell types and proliferation markers along organoid development trajectories. Proliferation (PCNA) and cell-type marker 
(lysozyme and aldolaseB) trends on pseudotime for LGR5+ (n = 9,798) and LGR5− (n = 13,623) organoids.



ARTICLE RESEARCH

Extended Data Fig. 4 | Dual illumination inverted light-sheet imaging 
of organoids. a, Cross-sectional view of objective mounting block 
showing illumination paths (light blue dashed line) and imaging path 
(green dashed line). Illumination and imaging objective are solid mounted 
in the aluminium block and immersed in water contained in the reservoir 
(black arrow). b, Side view of microscope objectives arrangement: the 
sample embedded in Matrigel (red arrow) is held on the FEP membrane 
(black arrow) mounted in a sample holder and positioned between the 
two illumination objectives. c, Organoids handling procedure: grown 
organoids are dissociated and single cells are embedded in Matrigel. 
Several Matrigel drops can be transferred into the imaging chamber 
allowing imaging parallelization. d, Illustration of image improvement 
by double illumination. Scattering of single illumination beam by the 

organoid prevents complete and homogenous illumination (red arrows). 
This problem is minimized by double illumination. Scale bar, 25 µm.  
e, Representative images of an organoid expressing H2b–mCherry 
(red) and membrane-bound GFP (green). Slices every 20 µm across the 
organoid volume are shown. Scale bar, 25 µm. f, Workflow of light-sheet 
data analysis. g, Morphological features (major axis, area and volume) 
derived from light-sheet imaging. Budding organoids n = 6, enterocysts 
n = 3. h, Dynamic time-warp mapping of light-sheet data onto the 
trajectory. Budding organoid branch for mean area progression inferred 
from the trajectory (orange line, n = 23,421) and mean area progression 
extracted from time-lapse light-sheet imaging (violet line, n = 6) before 
(left) and after (right) morphing. Red dots indicate positions of real time 
(h) relative to pseudotime. Shading denotes s.d.
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Extended Data Fig. 5 | LGR5 dynamics during organoid development. 
a, Representative images of organoids grown from LGR5+ and LGR5− 
starting populations at 0, 24 and 120 h of development. b, Cell types and 
proliferation markers plotted on pseudotime for LGR5+ (top, n = 9,798) 
and LGR5− (bottom, n = 13,623) starting populations. c, Light-sheet time-
lapse imaging of organoid formation starting from a single LGR5+ cell 

(GFP signal) expressing membrane-bound mCherry (MEM9–mCherry). 
Green arrows are pointing to cells re-acquiring GFP signal from LGR5 
reporter in the organoid crypts. d, Quantification of GFP signal of LGR5 
reporter from time lapse shown in c. Cells localized in the organoid crypt 
are plotted in green, cells localized outside the crypt and on the main body 
are plotted in grey (n = 91 cells).
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Extended Data Fig. 6 | Bulk RNA-seq analysis. a, Principal component 
analysis (PCA) analysis of time-course (0–120 h) bulk RNA-seq shows 
no mouse or batch effect (n = 3 biological replicates). b, Unsmoothed 
gene expression profile mapped on pseudotime trajectory of stem cell 
marker Olfm4. c, Unsmoothed gene expression profiles mapped on 
pseudotime trajectory of cell-type-specific genes. Paneth cell: Lyz1; 
ISC: Lgr5; enterocyte: Apoc3; goblet cell: Muc2; enteroendocrine cell: Sst. 
d, Left, protein abundance and gene expression profile of ISC marker Lgr5 
mapped on pseudotime trajectory. Middle, protein abundance and gene 
expression profile of Paneth cell marker Lyz1 mapped on pseudotime 
trajectory. Right, protein abundance of enterocyte marker aldolaseB 

and gene expression profile of enterocyte marker Apoc3 mapped on 
pseudotime trajectory. e, Smoothed and unsmoothed gene expression 
profile of canonical Wnt target gene Axin2, Fzd2 and non-canonical target 
genes Nfatc2 and Rac1. f, Mean expression profile for each cluster and 
relative quantiles (0.05, 0.25, 0.50, 0.75 and 0.95). Annotation enrichments 
are shown on the right. E.S., enrichment score. g, Unsmoothed gene 
expression profile of Yap1, Tead4 and Ggta1 and top three transcription 
factors (Tead1, Tead4 and Fosl1) contributing to differential gene 
expression between 24 h and 0 h. Data in b, c, e, g are mean and s.d. (n = 3 
biological replicates).
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Extended Data Fig. 7 | YAP1 is necessary but not sufficient for organoid 
formation. a, Fraction of cells per organoid having YAP1 in the ON 
state (green, nuclear localization) or in the OFF state (red, cytoplasm 
localization) over time (n = 1,074 organoids). b, Entropy of YAP1 states 
(that is, variability in YAP1 activation in ON and OFF states) over time 
(n = 1,074 organoids). Shading denotes s.d. c, Quantification of YAP1 
mean intensity after Wnt removal at 48 h or 72 h in organoids fixed at  
72 h or 96 h (n = 4 replicates). Violin plot lines show quartiles. d, Images  
of organoids derived from single cells isolated from organoids at 72 h  
or at 120 h. e, Organoids treated at different time points with control 
or with verteporfin. Fixation at 96 h. Left, representative images; right, 
efficiency quantification (normalization: control, n = 2 replicates). Bar 
plots depict the mean. f, YAP1 overexpressing organoids with or without  
Wnt. Fixation at 96 h. Left, representative images; right, efficiency 
quantification (normalization: control, n = 4 replicates). P = 0.001,  

two-sided t-test. g, Left, images of organoids with Wnt removal at 48 h, or 
after double knockout of LATS1 and LATS2 (LATS DKO). Top, fixation 
at 72 h. Bottom, fixation at 96 h (Wnt removal at 48 h) or 120 h (LATS 
DKO). Right, quantification of enterocysts as retrieved in the left panel 
(n = 4 replicates for Wnt removal at 48 h; n = 3 replicates for LATS DKO). 
P = 0.0001 (Wnt removal); P = 0.002 (LATS DKO), two-sided t-test. 
h, Representative images of control, verteporfin treatment at 48 h, Wnt 
removal at 48 h, YAP1 overexpression, LATS DKO or treatment with 
EREG at 0 h. Top, fixation at 72 h; bottom, fixation at 96 h (Wnt removal 
at 48 h, YAP1 overexpression, LATS DKO) or 120 h (control, verteporfin 
48 h, EREG). i, Scatter plot of Flag mean intensity signal and YAP1 mean 
intensity signal (left) and of Flag mean intensity and aldolaseB mean 
intensity (right) in YAP1-overexpressing organoids at 96 h. Data are 
mean ± s.d.
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Extended Data Fig. 8 | Griph robustness analysis and comparison to 
other methods. Comparison of Griph lower dimensional embedding 
(Griph/LargeVis) to different embedding approaches (PCA, PCA 
combined with distributed stochastic neighbor embedding (t-SNE), 
diffusion maps) and analysis of method sensitivity for variable gene 
selection. Five different sets of variable genes have been selected (using 

Griph to retain 10%, 25% or 50% of genes per bin, by Michaelis–Menten 
fitting of the gene dropout rates as implemented in M3Drop, or by the 
previously described mean-variance fitting procedure48) and analysed.  
a, b, First and second dimension are shown and results are colour-coded 
for enterocyte marker genes (as in Extended Data Fig. 9b) (a) and YAP1 
target genes (as in Fig. 5b) (b). n = 1,863 cells.

 48. Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq 
experiments. Nat. Methods 10, 1093–1095 (2013).
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Extended Data Fig. 9 | scRNA analysis. a, Experimental workflow 
for scRNA-seq. b, Griph-based visualization of single-cell degree of 
expression of marker genes for stem cells, Paneth cells and enterocytes. 
c, Griph-based visualization of single-cell degree of expression of marker 
genes for transient-amplifying cells, goblet cells, enteroendocrine cells, 
tuft cells, immature proximal enterocytes, immature distal enterocytes, 
transient-amplifying cells G1-phase, transient amplifying cells G2-phase, 

early progenitor enterocytes, late progenitor enterocytes, mature proximal 
enterocytes, mature distal enterocytes, enterocytes (villus bottom), 
enterocytes (villus middle), enterocytes (villus top) and enterocytes. 
d, Spearman correlation between expression of YAP1 target genes and 
expression of Dll1, Dll4, Jag1, Jag2 and Atoh1 in single cells at 120 h not 
expressing Paneth, goblet, enteroendocrine, enterocyte and stem-cell 
markers (n = 696 cells).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | YAP1 cell-to-cell variability allows a Notch–
DLL1 event and symmetry breaking. a, Images showing YAP1 variability 
and DLL1+ cells. Magnified view denotes nuclear localization of HES1 in 
the same organoid. Arrows: red (DLL1+ cells), yellow (HES1+ cells). Scale 
bar, 10 µm. b, Images showing overlap of Paneth cells with DLL1+ cells.  
c, MIP images (top) and magnified single plane images (bottom) of: 
control, verteporfin addition at 48 h, Wnt removal at 48 h, LATS double-
knockout (DKO) and EREG treatment. Organoids are fixed at 72 h.  
d, MIP images (top) and magnified single plane images (bottom) 
of: control, verteporfin addition at 48 h, Wnt removal at 48 h, YAP1 
overexpression, LATS DKO and EREG treatment. Organoids are fixed  
at 72 h. e, Fraction of enterocysts (left) and fraction of organoids with 
Paneth cells (right) for control and organoids treated with Ly411575 

or MK-0752 at 0 h. Fixation at 120 h (normalization: control, n = 4 
replicates). Ly411575 P = 0.009; MK-0752 P = 0.003, two-sided t-test. 
Data are mean ± s.d. f, MIP images (top) and magnified single plane 
images (bottom) of organoids treated with control or DAPT at 120 h 
and fixed at 144 h and stained for AldoB (left) or LYZ (right) g, Top, 
annotation enrichment of genes correlated with expression of YAP1 target 
genes in cells expressing YAP1 target genes and Dll1, Dll4, Jag1, Jag2 and 
Atoh1 genes. Bottom, annotation enrichment of genes anti-correlated  
with YAP1 target genes expression in cells expressing YAP1 target genes 
and Dll1, Dll4, Jag1, Jag2 and Atoh1 genes. E.S., enrichment score.  
h, MIP images of organoids at 120 h, showing the canonical Wnt  
signalling response (TCF–GFP) in cells neighbouring Paneth cells.



1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Prisca Liberali

Last updated by author(s): Mar 6, 2019

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Software and code
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Data collection To collect imaging data, custom written segmentation code was used. The code was written in the Liberali lab and implemented with 
MATLAB 2016b (MathWorks) or Python 3.6 (relying on multiple open source Python libraries for scientific computing and image analysis). 
To collect imaging data Wako Software Suite version 1 was used. CellRanger suite 1.3.0 was used to collect sequencing data.

Data analysis To analyze imaging data, Fiji (version 1.0) as well as custom written code in MATLAB 2016b (MathWorks) and Python 3.6 ((relying on 
multiple open source Python libraries for scientific computing and image analysis) was used. To analyze RNA-seq data, custom written R 
code  (exact packages and parameters are described in the methods), STAR (version 2.5.2b), Griph 0.1.1, DAVID Bioinformatics Resources 
6.8, JASPAR2016 Bioconductor package (version 1.6) was used.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

 All data are available in the manuscript or the supplementary materials. All the custom-code is available on GitHub. All genomic data of figure 4 are in Table 1 and 
all single cell-genomic data of figure 6 
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Sample size No sample size calculations were performed. In most cases, we assumed a minimum of  around 100 organoids would be sufficient to 
recognize differences between control and perturbations based upon historical experiments in other contexts. In the time course experiments 
thousands of organoids were analyzed. Thousands of cells have been used for each time point of the single cell RNA sequencing

Data exclusions Exclusion criteria for segmentation and RNA seq experiments were pre-defined.  Parameters used to exclude datapoints were defined based 
on data distributions. Some organoids with segmentation artefact were excluded from the analysis with Z-score filtering. 
In the single cell RNA sequencing analysis high quality cells have been selected based on the maximum second derivative of the UMI count 
distribution, and genes with 0 counts or negligible variance (coefficient of variation, CV< 0.001) across all libraries were removed. 
In the bulk RNA sequencing analysis genes with less than two samples with at least one read per million reads were removed.

Replication All experiments were replicated at least twice (if not indicated otherwise under Statistics and reproducibility) with similar finding. Multiplexing  
experiments and single cell RNAseq were only repeated once due to prohibitive costs. 

Randomization Samples were randomly assigned.

Blinding The same investigators both performed experiments and data analyses therefore  blinding was possible.   

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used anti-AldolaseB (Abcam ab75751, clone EPR3138Y, various lots for example GR121452-7, dilution 1:300),  

anti-Yap (Cell signaling technology mAB #14074, clone D8H1X, lot #4, dilution 1:200),  
anti-FLAG (Sigma-Aldrich F1804, clone M2, lot SLBT765, dilution 1:500),  
anti-Lysozyme (DAKO A0099, clone NA (Polyclonal), lot 20040597, dilution 1:400),  
anti-Dll1 (R&D Systems AF3970, clone NA (Polyclonal), various lots for example YXZ0114081, dilution 1:100),  
anti-Hes1 (Cell signaling technology mAB #11988, clone D6P2U, lot #3, dilution 1:100),  
anti-GFP (Abcam ab5450, clone NA (Polyclonal), lot GR3215617-1, dilution 1:500),  
anti-PCNA (Cell signaling technology mAb #2586, clone PC10, lot #5, dilution 1:600),  
anti-Muccin2 (Santa Cruz #SC-15334, clone NA (Polyclonal), lot K0315 no longer available, dilution 1:200),  
anti-Glp1 (Abcam ab111125, clone EPR4042-407, lot GR74272, dilution 1:200),  
anti-Olfm4 (Cell signaling technology mAB #39141, clone D6Y5A, lot #1, dilution 1:100),  
anti-Ki67 (Abcam ab16667, clone SP6, lot GR216200-1, dilution 1:200), 
Alexa Fluor 488 donkey anti rabbit IgG (Thermo fisher scientific A-21206, clone NA (Polyclonal), lot 1981155, dilution 1:500), 
Alexa Fluor 568 donkey anti rabbit IgG (Thermo fisher scientific A10042, clone NA (Polyclonal), lot 1964370, dilution 1:500), 
Alexa Fluor 488 donkey anti mouse IgG (Thermo fisher scientific A-21202, clone NA (Polyclonal), lot 1890861, dilution 1:500), 
Alexa Fluor 568 donkey anti mouse IgG (Thermo fisher scientific A10037, clone NA (Polyclonal), lot 1752099, dilution 1:500), 
Alexa Fluor 488 donkey anti goat IgG (Thermo fisher scientific A-11055, clone NA (Polyclonal), lot 1827671, dilution 1:500), 
Alexa Fluor 568 donkey anti goat IgG (Thermo fisher scientific A-11057, clone NA (Polyclonal), lot 1711491, dilution 1:500), 
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Alexa Fluor 488 donkey anti sheep IgG (Thermo fisher scientific A-11015, clone NA (Polyclonal), lot 1900213, dilution 1:500), 
Alexa Fluor 568 donkey anti sheep IgG (Thermo fisher scientific A-21099, clone NA (Polyclonal), lot 1878508, dilution 1:500), 
Alexa Fluor 647 donkey anti sheep IgG (Thermo fisher scientific A-21448, clone NA (Polyclonal), lot 1914541, dilution 1:500). 

Validation Validation statements available from manufacturers:  
AldolaseB (https://www.abcam.com/aldolase-b-antibody-epr3138y-ab75751.html),  
anti-Yap (https://www.cellsignal.com/products/primary-antibodies/yap-d8h1x-xp-rabbit-mab/14074),  
anti-FLAG (https://www.sigmaaldrich.com/catalog/product/sigma/f1804?
lang=de&region=CH&gclid=EAIaIQobChMIyfGH3oXr3wIVC-aaCh3l3ALcEAAYASAAEgIdnfD_BwE),  
anti-Lysozyme (https://www.agilent.com/en/product/immunohistochemistry/antibodies-controls/primary-antibodies/lysozyme-
ec-3-2-1-17-(concentrate)-76124),   
anti-Dll1 (https://www.rndsystems.com/products/mouse-rat-dll1-antibody_af3970,  
additional validated in ref: “Distinct expression patterns of Notch ligands, Dll1 and Dll4, in normal and in inflamed mice 
intestine”),   
anti-Hes1 (https://www.cellsignal.com/products/primary-antibodies/hes1-d6p2u-rabbit-mab/11988,  
additional mouse intestinal crypt Immunohistochemistry shown in ref: “Paneth Cell Multipotency Induced by Notch Activation 
following Injury”),   
anti-GFP (https://www.abcam.com/gfp-antibody-ab5450.html),   
anti-PCNA (https://www.cellsignal.com/products/primary-antibodies/pcna-pc10-mouse-mab/2586),  
anti-Muccin2 (Santa Cruz #SC-15334, No longer available from Santa Cruz),  
anti-Glp1 (https://www.abcam.com/glp1-antibody-epr4042-407-ab111125.html),  
anti-Olfm4 (https://www.cellsignal.com/products/primary-antibodies/olfm4-d6y5a-xp-rabbit-mab-mouse-specific/39141),  
anti-Ki67 (https://www.abcam.com/ki67-antibody-sp6-ab16667.html),  
Alexa Fluor 488 donkey anti rabbit IgG (https://www.thermofisher.com/antibody/product/Donkey-anti-Rabbit-IgG-H-L-Highly-
Cross-Adsorbed-Secondary-Antibody-Polyclonal/A-21206), 
Alexa Fluor 568 donkey anti rabbit IgG (https://www.thermofisher.com/antibody/product/Donkey-anti-Rabbit-IgG-H-L-Highly-
Cross-Adsorbed-Secondary-Antibody-Polyclonal/A10042), 
Alexa Fluor 488 donkey anti mouse IgG (https://www.thermofisher.com/antibody/product/Donkey-anti-Mouse-IgG-H-L-Highly-
Cross-Adsorbed-Secondary-Antibody-Polyclonal/A-21202) 
Alexa Fluor 568 donkey anti mouse IgG (https://www.thermofisher.com/antibody/product/Donkey-anti-Mouse-IgG-H-L-Highly-
Cross-Adsorbed-Secondary-Antibody-Polyclonal/A10037), 
Alexa Fluor 488 donkey anti goat IgG (https://www.thermofisher.com/antibody/product/Donkey-anti-Goat-IgG-H-L-Cross-
Adsorbed-Secondary-Antibody-Polyclonal/A-11055), 
Alexa Fluor 568 donkey anti goat IgG (https://www.thermofisher.com/antibody/product/Donkey-anti-Goat-IgG-H-L-Cross-
Adsorbed-Secondary-Antibody-Polyclonal/A-11057), 
Alexa Fluor 488 donkey anti sheep IgG (https://www.thermofisher.com/antibody/product/Donkey-anti-Sheep-IgG-H-L-Cross-
Adsorbed-Secondary-Antibody-Polyclonal/A-11015), 
Alexa Fluor 568 donkey anti sheep IgG (https://www.thermofisher.com/antibody/product/Donkey-anti-Sheep-IgG-H-L-Cross-
Adsorbed-Secondary-Antibody-Polyclonal/A-21099) 
Alexa Fluor 647 donkey anti sheep IgG (https://www.thermofisher.com/antibody/product/Donkey-anti-Sheep-IgG-H-L-Cross-
Adsorbed-Secondary-Antibody-Polyclonal/A-21448). 
 
 

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Male and female outbred mice between 7 and 15 weeks old were used for all experiments.  Mouse lines used: C57BL/6 wild type 
(Charles River Laboratories), Lgr5–EGFP–Ires–CreERT2 (kind gift from Momo Bentires-Alj, University Hospital in Basel), Lgr5::DTR-
EGFP (Genentech, de Sauvage laboratory), H2B-mCherry C57BL/6 x C3H F1 females heterozygous for H2B-mCherry (kind gift 
from T. Hiragi lab, EMBL), Lats1/; Lats2/ (LATS DKO, kind gift from Jeff Wrana, Department of Molecular Genetics, University of 
Toronto, Canada)48, Yap1tm1.1Dupa/J (Yap1flox)49  from The Jackson Laboratory.  

Wild animals The study did not involve wild animals

Field-collected samples The study did not involve samples collected from the field

Ethics oversight All animal experiments were approved by the Basel Cantonal Veterinary Authorities and conducted in accordance with the Guide 
for Care and Use of Laboratory Animals.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Methodology

Sample preparation Murine organoids were collected 5-7 days after passaging and digested with TripLE (Invitrogen) for 20 min at 37 °C. Dissociated 
cells were passed through a cell strainer with a pore size of 20 μm.

Instrument BD Influx cell sorter (Becton Dickinson) and BD FACS Aria III

Software For collection the BD FACS Sortware 1.2.0.142 (for BD Influx cell sorter) or BD FACS Diva 8.0.1 (for BD FACS Aria III). To visualize 
the gating in Extended Data Figure 1b, FLOWJO (FLOWJO, LLC) in version 10.2 was used.

Cell population abundance After final gating, for both Lgr5- and Lgr5+, the average abundance was around 10%. Purity of Lgr5+ and Lgr5- cells was 
determined by fixation of plated cells and quantification of the Lgr5:DTR-EGFP signal 3h after sorting (see Extended data figure 
1a)

Gating strategy To remove debris, dead cells and cell doublets SSC-A/FSC-A gating, SSC-H/SSC-W gating and FSC-H/FSC-W gating were used. Lgr5 
+ and Lgr5- populations were separated based on the Lgr5:DTR-EGFP intensity (Extended data figure 1b).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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Chapter 4: Discussion 
The enduring question of how cellular systems become structured by their own internal 

processes is a long-standing conundrum in stem cell and developmental biology212. It has for 

long been hindered by the technical difficulties to address it17. During my PhD, I used small 

intestinal organoids as a framework for self-organization and symmetry breaking to gain first 

insights into the mechanisms underlying the self-organizing capacity of adult intestinal cells.  

My main achievement was developing a high-throughput multiplexed imaging and analysis 

pipeline for fixed organoid samples which allows inferring the quantitative features for 

thousands of organoids. These paved the way for the first quantitative in-depth image based 

analysis of intestinal organoid development from a single cell into budding organoids at the 

single cell and tissue level. Combining multiplexed imaging analysis with live imaging, 

sequencing and perturbation approaches, we show (in Chapter 3) that different starting 
populations dedifferentiate into a common fetal-like intermediate state. Thus, reinforcing the 

concept of cellular plasticity of the intestine. We demonstrate that this first step resembles 

regeneration in vivo and is driven by homogenous YAP1 activity. After the 4-cell stage YAP1 

subcellular localization becomes heterogeneous between individual cells. We show that this 

heterogeneity is required for the appearance of Paneth cells, which is mediated by Notch-

Delta lateral inhibition, and thus for symmetry breaking to occur. 

 

In the first part of this discussion, I will briefly focus on multiplexed imaging and 

multivariate analysis and how this work contributes to the field of organoid research. In a 

second part, I will enlarge upon how our findings (presented in Chapter 3) aid to answer the 
questions posed in the introduction: Do distinct starting cells go through a common 

intermediate state? Which signaling pathways and gene networks underlie intestinal organoid 

development and what drives symmetry breaking? Finally, I will conclude with my perspective 

on the relevance of our finding in a broader context of organoid research and translational 

medicine. Throughout the discussion, I will propose future directions for subsequent research 

based on the findings of the current work. 
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High-throughput imaging to study organoid development 
Compared to in vivo systems, organoids have the advantage that they are easy 

expandable and amendable for imaging. One major bottleneck of current organoid research 

is however low reproducibility in terms of morphological outcome and maturity of the final 

organoids79. In small intestinal organoids, a broad distribution of morphological traits emerges 

over the five days of organoid development. Individual organoids develop with different paces 

and only a subset of organoids breaks symmetry (Chapter 3, Fig. 1d-g). Likewise, although 
all budding organoids reconstitute the stereotypic crypt-villus morphology of the small 

intestine, the number of crypts per organoid, their spatial arrangement and cell type 

composition can be very diverse (Chapter 3, Fig. 1b). Although different phenotypes give 
insights into distinct molecular mechanism, size, shape and marker diversity within the culture 

is often largely ignored213. 

To cover most of the observed phenotypes and reconstruct the processes that lie at 

the root of the observed differences requires the sampling of hundreds of organoids. To 

distinguish different organoid phenotypes, each organoid need to be described with a set of 

multivariate features taking into account spatial cell arrangement and cell type diversity. High 

throughput imaging of fixed samples combined with computer vision approaches to segment 

and extract characteristic features for each object is well equipped to this task214. This 

combination allows following various complex processes in two-dimensional cell cultures 

including virus infection63, control of transcript variability42 or subcellular organization65. 

However, examples for its usage in three-dimension organoid cultures are sparse215 and so 

far, often focused on drug screening applications. With few exceptions (Lukonin et al., under 

revision) one read-out such as cell viability216 or organoid swelling217 is used to characterize 

each organoid. 

 

4i imaging in organoids 
We show that multiplexed iterative indirect immunofluorescence imaging (4i)65 

combined with computer vision based segmentation and multivariate feature extraction (see 

also Chapter 1, Imaging to study intestinal self-organization) can be a powerful approach 
to study intestinal organoid development. 4i multiplexing allows with a simple and fast protocol 

to expand four color imaging to multiple rounds of antibody staining. Our current 

implementation of 4i for three-dimensional tissue cultures enables us to multiplex up to six 

rounds reliably (Fig.  8). However multiple rounds of acquisition lead to sample degradation 
and epitope loss, rendering the use of certain antibodies in later rounds impossible. Both 

problems have already been observed for most elution based multiplexing approaches65,218. 

Because organoids are three-dimensional tissues embedded in a semi-stable matrix, 
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compared to flat layers of attaching cells, they require harsher elution conditions. This 

treatment leads to translational and rotational movements or even sometimes loss of 

organoids between individual imaging rounds. To circumvent such limitations and increase 

multiplexing capacity, one could improve sample stability by using intramolecular epoxide 

linkages219 or crosslinking of a three-dimensional network of hydrophilic polymers220 to better 

tether the organoids and the extracellular matrix. In addition, promising DNA-barcoded 

antibody based methods, which do not rely on antibody elution steps, have recently been 

reported and should be tested for three-dimensional organoid structures221,222 (for advantages 

and disadvantages see Chapter 2). 
 

 

Trajectories of stereotypic organoid growth 
Our 4i imaging and feature extraction pipeline creates vast amounts of information to 

characterize thousands of heterogeneous organoids based on a characteristic set of 

multivariate features. These features include shape descriptors and intensity measurements 

to approximate protein expression and localization. In contrast to live imaging, fixation comes, 

however, with the flipside that each organoid is only measured at one specific time point of its 

development204. The dynamic information how molecular markers change along organoid 

development is lost. 

I approached this limitation by using trajectory inference (Chapter 3, Fig. 2a, b), which 
for the first time allowed the reconstruction of organoid development into distinct branches: 

Fig.  8 | 4i applied to intestinal organoids. Maximum intensity projection images showing the same organoid imaged 
over six sequential multiplexing rounds. Round 1 (DAPI, YAP1, DLL1); Round 2 (HES1, PCNA), Round 3 (DLL4), Round 

4 (AldolaseB, ZO1), Round 5 (SOX9, β-catenin), Round 6 (AGR2, Serotonin). White lines indicate organoid outlines. 

Experiment conducted as described in the appendix section. 
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budding organoids and enterocsyts. With this method, we were able to follow dynamic 

changes of markers along organoid development (Chapter 3, Fig. 2d, h, Extended Data Fig. 
3 and Extended Data Fig. 5b) and could show that the bifurcation occurs when cysts have 
between 16 to 32 cells (Chapter 3, Fig. 2f). Nonetheless, trajectory inference has strong 
underlying assumptions that can limit its applicability and need to be taken in account204. 

Sampling needs to be sufficiently high to cover infrequent phenotypes, in our particular case 

enterocsyts, and features need to be selected carefully that the process under investigation is 

robustly recapitulated (Chapter 3, Extended Data Fig. 2a, b, f). Both parameters rely on a 
given specific question and must be tested separately. Furthermore, the selection of a good 

markers set is essential to pinpoint the bifurcation point accurately. Our trajectory was 

designed to follow bifurcation from a progenitor state into budding organoids and enterocsyts. 

Since Paneth cells are a clear distinction between these states, the Paneth cell marker 

lysozyme proved essential for trajectory inference. Of note, since the publication of the 

Wishbone algorithm in 2016206, various other inference algorithms able to resolve branching 

trajectories have been described223-225. These algorithms can improve the resolution of the 

inferred pseudo-time trajectories. Thus, I would suggest trying a probabilistic inference 

algorithm such as Palantir225, the Wishbone successor, on our data set and compare its 

performance against Wishbone. 

One drawback of trajectory inference is the non-intuitive nature of pseudotime, which 

can be difficult to align to real-time. However, one can reconcile both by combining trajectory 

information with landmark points obtained from real time imaging. In my work, I used a simple 

mapping between organoid areas of pseudotime and real-time (Chapter 3, Extended Data 
Fig. 4h). In future works, mapping accuracy can be improved by using multiple features and 
more robust mapping algorithm. For example, a live-reporter which corresponds to one of the 

stained markers in the fixed samples can be combined with morphological features for 

mapping. 

Furthermore, mapping fixed datasets of perturbed organoid development against wild 

type organoid development trajectories can become a powerful approach to visualize effects 

of distinct perturbations, compare trends of markers between different conditions and pin point 

timings when different molecular mechanisms occur. 
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Do distinct starting cells go through a common 
intermediate state? 

Recent studies have shed light on the enormous plasticity of the small intestinal tissue 

emphasized by the ability to grow intestinal organoids (see Chapter 1, Intestinal organoid 
development) from LGR5+ intestinal stem cells84 but also from diverse LGR5- populations136 
including, secretory99 and absorptive progenitors100 as well as more mature 

enteroendorcine226, Tuft226, and Paneth cells103 (see Chapter 1, Regeneration of the small 
intestine).  However, whether single cells derived from distinct starting populations follow a 
similar path to the final organoid structures is still not known. Our findings show that both 

LGR5+ and LGR5- starting populations (Chapter 3, Fig. 1a) go through a similar fetal-like 
intermediate state and behave very similar in growth, timing of symmetry breaking and overall 

morphology during organoid development (Chapter 3, Fig. 1c-g). Noteworthy, enterocysts 
were present in organoids derived from both starting populations. This newly described 

subpopulation of organoids fails to break symmetry, never acquires Paneth cells, remain 

spherical and fully differentiate into enterocytes (Chapter 3, Fig 1f and Extended Data Fig. 
1e, f). 

 

Dedifferentiation into a fetal-like state after single cell dissociation 
Despite being cultured with strong activators of the canonical Wnt pathway, LGR5+ 

intestinal stem cells lose their stem cell identity markers, many of which are canonical Wnt 

target genes, within the first ~24 hours of organoid development. Both on the protein level, 

where LGR5::DTR-GFP expression vanishes (Chapter 3, Fig. 2h and Extended Data Fig. 
5a, b) and on the transcript level where stem cell identity genes including Lgr5, Axin2 and 
Olfm4 are downregulated (Chapter 3, Fig. 3b and Extended Data Fig. 6b, e). Likewise, 
LGR5- starting cells lose expression of adult cell type markers (Chapter 3, Fig. 3b). In 
contrast, independent of the starting population, markers associated with fetal development 

(see Chapter1: Development of the intestine) including Sca-1, Clusterin and Annexin-1 are 
strongly upregulated (Fig.  9 and Chapter 3, Fig. 3f). 

 

 

Fig.  9 | Distinct starting populations go 
through a common fetal-like intermediate 
state.  Independent of the starting population, 
intestinal cells dedifferentiate into a homogenous 

fetal-like intermediate state where mature cell 

identities are lost. This multipotent state has the 

capacity to reconstitute all cell types of the small 

intestine. 
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Intriguingly, these behaviors are very similar to recent in vivo findings for injury 

response after parasite infection227 or by dextran sulfate sodium (DSS) induced colitis196. In 

both studies, intestinal cells lost mature cell identity and increased expression of marker genes 

associated with fetal development196,227. Organoid development therefore mimics a 

regenerative response in which mature cell types lose adult identity to reverse into a more 

primitive multipotent and highly proliferative state.  

It should however be noted that while recent comparison showed over 4’500 differently 

expressed genes between adult intestinal stem cells and fetal cells at E11.5124, the assignment 

to a fetal-like state is based on only a small subset of marker genes which are distinct between 

fetal and adult tissue derived organoids101,102. This fetal-like state therefore may indicate that 

certain genes active in fetal development are repurposed in general stress response to enable 

fast proliferation and multipotency rather than cells fully converting back to a fetal intestinal 

cell. Indeed, among the strongest upregulated marker within fetal-like transcriptomes are Sca-

1 which acts as a transcription factor in many stem and progenitor cells228 and Clusterin229 and 

Annexin-1230 that are known to be required in stress response in other contexts230. 

 

Cellular plasticity of distinct starting populations 
Although single cells from both starting populations (LGR5+ and LGR5-) 

dedifferentiated into similar homogenous cysts with fetal-like characteristics, we noted subtitle 

differences in growth depending on the cell origin. Most salient, with ~18% compared to 

~7.5%, LGR5+ cells form organoids at a higher efficiency (Chapter 3, Fig. 1c). Furthermore, 
LGR5+ cells develop slightly faster than organoids derived from LGR5- cells. After 24 hours, 

LGR5+ cells have reached higher number of nuclei and likely as a result are bigger (Chapter 
3, Fig. 1d, e). This trend is consistent over the course of the five days. In contrast to the pure 
LGR5+ intestinal stem cell population, LGR5- cells consist of a pooled population of distinct 

cell types. Although recent findings indicate that almost all these cells can dedifferentiate given 

a strong enough stimulus231, one still has to investigate if it is the case in our experimental 

setup and if all subpopulation of cells do it with comparable efficiencies. Compared to LGR5+ 

cells which are cycling and multipotent, LGR5- can also be non-proliferative and fully 

differentiated. The required more extensive re-modeling of the cellular make up to 

dedifferentiate and reinitiate the cell cycle could explain the longer lag phase and potentially 

lower efficiencies within this cell populations. 

 
Moreover, LGR5- cells have a significant higher propensity to fail symmetry breaking 

(Chapter 3, Fig. 1g). Also, they re-acquire the signal of the stem cell marker LGR5::DTR-GFP 
later and weaker than LGR5+ derived cells (Chapter 3, Fig. 2h). This could indicate that 
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budding organoids derived from LGR5- cells contain less stem cells or that stem cells have 

lower Wnt signaling activity. Interestingly, a lower responsiveness to Wnt signaling has been 

implicated with slower regeneration in older mice after radiation-induced damage232. It will be 

important to carefully investigate where the observed differences stem from and test whether 

the observed reduction in LGR5+ expression affect the regeneration capacities of organoids 

over multiple passages. This would also have crucial consequences for in vivo regeneration 

where crypts reconstituted from non-stem cells may exhibit reduced regeneration abilities for 

subsequent injuries. 

 

The underlying causes for the observed small differences are currently not clear. 

Differences in cellular components including proteins, membrane compartments, organelles 

or DNA modifications could all play a role233. Early studies showed few differences in the active 

histone marks H3K4me2 and H3K27ac at the same genome sites between intestinal stem 

cells, secretory progenitors and absorptive progenitors137,234. This lead to the conclusion that 

intestinal plasticity can be explained by a permissive open chromatin state which is maintained 

throughout differentiation108. Therefore,  cell differentiation would be predominantly 

determined by the environment108. This view has recently shifted, by using ATAQ-seq 

experiments Jadhav et al., demonstrated that despite the similarity in histone modifications, 

strong differences in chromatin accessibility between different cell types exist137. During 

reprogramming, these chromatin barriers have to be overcome rapidly by dynamic 

rearrangements of open chromatin signatures137. However, whether all cell types can undergo 

this reversion and whether it is complete in all dedifferentiated cell types remains still to be 

determined. 

 

In conclusion, our results show that single cells derived from both starting populations 

go through a similar multipotent fetal-like cyst from which all cell types of the small intestine 

can be reconstituted. Regeneration in the intestine is classically believed to be fueled by a 

designated pool of rare reserve stem cells235,236 or by dedifferentiation of cells into an intestinal 

stem cell like state99,100,136 (see Chapter 1: Regeneration of the small intestine) which 
occurs after cells fall back into the signaling environment of the crypt127. In the light of these 

new evidences, it is however likely that the first steps of regeneration are driven by reverting 

into a more primitive multipotent state. This dedifferentiation is fueled by a large pool of diverse 

cell types and not exclusively by few dedicated ‘reserve’ stem cells. Nonetheless, certain cells 

may have a higher propensity to dedifferentiate either due to crypt proximity or because of 

some favorable factors such as high levels of Clusterin138 expression. This may explain the 

observation of ‘dedicated’ reserve stem cells that predominantly repopulate the niche in 

lineage tracing experiments after injury.  
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Further, different cell-type respond to different injuries231 and it is  currently not known 

whether some cell types acquire intestinal stem cell potential only for a short period or long 

term237. To decipher whether some cell types within the intestine retain some sort of “cellular 

memory” of their differentiated state and if so if it has any biological consequences one could 

make use of existing reporter mice and sort distinct subpopulation including, intestinal stem 

cells238, ‘reserve’ stem cells239, ‘revival’ stem cells138, secretory progenitors99, absorptive 

progenitors100 and mature cell types240 and systematically check whether all starting cells 

reconstitute the same organoid morphology and patterning. Time course experiments can be 

used to quantitatively compare growth, efficiency and final morphology between the different 

cell types and should be repeated over multiple passages of organoid growth. Furthermore, I 

would suggest doing ATAQ-seq time course experiments to compare open chromatin 

conformations and probe whether distinct cell types fully revert to a similar state before 

symmetry breaking. This data set could further be compared to fetal intestine samples to 

determine to which degree cells revert to the fetal state. 

It is still not clear why intestinal stem cells which can give rise to all cell types of the 

intestine revert into a more primitive state during regeneration. One explanation could be that 

rapid cellular expansion is more important than maintaining genomic stability. Reversion to a 

fetal-like state that has a high proliferative potential (with a complete cell cycle of around 8 

hours (Chapter 3) compared to 24 hours in stem cells108) but is likely less efficient in DNA 
damage repair241,242 may allow for this expansion more efficient. 

 

Which signaling pathways and gene networks underlie 
intestinal organoid development? 
YAP1 driven dedifferentiation of adult intestinal cells 

We show that this first dedifferentiation step of organoid development is driven by YAP1 

activity. It correlates with the onset of proliferation and suppression of markers of cell type 

identity, the later corroborating similar findings in the intestinal tissue in vivo195,196. A similar 

YAP1 transient reprogramming of differentiated cells into multipotent proliferative cells has 

been described in vivo following colon injury196 and in vitro for mammary, neural and 

pancreatic cells243. How YAP1 activation leads to various genome wide transcriptional 

changes is not fully understood yet. Recently Monroe et al.244 showed that conditional 

overexpression of an active YAP1 mutant (YAP5SA) leads to reversion of adult 

cardiomyocytes into a proliferative state with fetal-like chromatin and transcriptional signatures 
244. Particularly chromatin accessibility at TEAD elements was increased. Instead of acting on 

a specific transcriptional side, YAP1 acts more as global genome remodeler245. The 
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transcriptional co-activator YAP1 preferentially interacts with DNA-binding proteins occupying 

enhancer regulatory regions to recruit chromatin remodeling complexes including p300, the 

SWI/SNF complex as well as the NuRD complexe245. Taken together, it seems that YAP1 is 

able to act at the same time  as an activator and as a repressor of gene expression245. A 

similar YAP1 driven remodeling of chromatin accessibility may underlie the fetal-like reversion 

observed in organoids. 

Specificity of YAP1 activity and the subsequent remodeling depends on temporal 

interactions with various transcription factors and signaling pathway components245. During 

organoid development, YAP1 shows extensive cross talk with multiple signaling pathways. 

YAP1 activation leads to activation of EGF signaling and is mediated by expression of the 

EGFR ligand and direct YAP1 target gene Ereg195. Increased cell proliferation is one of the 

best described effects of YAP1 activation172.  Besides activation of genes directly involved in 

cell cycle progression and regulation (such as FOSL1, Chapter 3, Fig. 3d)172, YAP1 driven 
EGF signaling likely contributes to the observed fast proliferation. Indeed, addition of purified 

EREG leads to increased organoid growth (own observations) and increases the efficiency of 

organoid formation (Chapter 3, Fig. 4f).  Furthermore, YAP1 activity is intricately connected 
to Wnt signaling (discussed in the next paragraph) and cross-talks with Notch-signaling (see 

under What drives symmetry breaking?) 
 

YAP1 interfaces with Wnt signaling to promote fetal like-cysts 
YAP1 activation correlates with repression of canonical Wnt target genes including 

Axin2, and Lgr5191,195 and increased expression of the non-canonical Wnt target genes Nfatc2 

and Rac1 (Chapter 3, Extended Data Fig. 6d, e). Notably, in organoids only a subset of 
genes classically assigned to canonical Wnt signaling in the intestine is affected whereas other 

intestinal canonical Wnt target genes including Cd44246, Ascl2 (a master regulator of intestinal 

stem cells247), and Sox9248 increase during the first dedifferentiation steps of organoid 

development (Fig.  10). However, whether these genes are only activated by β-catenin 
remains to be determined.  

 

Fig.  10 | Dynamics of canonical Wnt signaling genes. 
Whereas Lgr5 and Axin2 show a downregulation during 

the first 48 hours of organoid development, other 

canonical Wnt target genes such as Cd44, Sox9 and 

Ascl2 show an increase in expression during the first 24 

hours. Data from Chapter 3, Supplementary Table 1  
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In the embryonic small intestine until embryonic day 11.5, the non-canonical ligand 

WNT5A is the only source of Wnt124 and Wnt/β-catenin-dependent signaling is actively 

repressed by the transcriptional regulator Id2124. Loss of Id2 results in precocious 

differentiation into adult LGR5+ cells124. Furthermore, fetal spheroids require the addition of 

WNT3A to transition from a fetal to a mature organoid state102. Taken together, dampening of 

canonical Wnt signaling is required to revert LGR5+ cells and retain fetal-like cysts. The early 

steps of organoid development may utilize non-canonical Wnt signaling. Nonetheless, the 

respective roles of canonical and non-canonical Wnt signaling requires further investigation. 

How YAP1 mechanistically dampens Wnt transcriptional output is not clear yet.  

As mentioned above (YAP1 driven dedifferentiation of adult intestinal cells), repression 
at the chromatin level could play a role. Alternatively, direct prevention of nuclear translocation 

of Wnt pathway components by YAP1 have been described190. Interestingly, the reporter 

signal for TCF-GFP, a reporter that is only activated when nuclear β-catenin binds TCF to 

trigger target gene expression, is only detected after Paneth cells appear (Chapter 3, 
Extended Data Fig. 10h), indicating, that β-catenin does not enter the nucleus. However, this 
should be confirmed by immunofluorescence imaging using a β-catenin antibody. 

 

YAP1 protein levels are dependent on WNT3A 
Despite the suppressing effect of canonical Wnt signaling, the protein levels of YAP1 

itself are dependent on WNT3A. Protein levels of YAP1 substantially drop after removal of 

exogenous WNT3A from the medium (Chapter 3 Extended Data Fig. 7c). Furthermore, in 
budding organoids and in the intestine in vivo YAP1 levels are highest around the Wnt gradient 

in the crypt regions (Chapter 3, Fig. 4a)191. Moreover, without supplemented WNT3A LGR5- 
derived organoids cannot form84. 

YAP1 mRNA levels stay constant during organoid development (Chapter 3, Fig. 3e), 
indicating that WNT3A ligands are required to stabilize and amplify the free pool of YAP1, 

possibly by a positive feedback loop where activated and therefore nuclear YAP1 is protected 

from cytoplasmic degradation. Although disputed, YAP1 may act as an active part of the Wnt 

destruction complex. Without canonical Wnt ligands, the destruction complex is in its active 

state and acts as a cytoplasmic sink for YAP1249. Only when WNT3A is present, YAP1 is 

released from the destruction complex into the cytoplasm from where it can translocate to the 

nucleus  

On the other hand, Park et al., proposed an ‘alternative’ Wnt-FZD/ ROR-Ga12/13-Rho-

LATS1/2-YAP1 signaling cascade where Wnt ligands (WNT3A and WNT5A/B) promote YAP1 

activation250. It is independent of the canonical Wnt co-receptor LRP5/6 and blocks canonical 

Wnt signaling by secreted downstream targets of YAP1 including WNT5A/B, DKK1, BMP4, 



  Chapter 4: Discussion Page | 77 

IGFBP4, CTGF and CYR61. Interestingly, we see upregulation of CTGF and IGFBP4 during 

the first 24 hours of organoid growth (CTGF, fold change 4.8, p-value 0.0001; IGFBP4, fold 

change 1.2, p-value 0.07). If this pathway is also active in organoids, DKK1, a specific inhibitor 

for canonical Wnt signaling which interacts with LRP5/6 should not affect YAP1 signaling. 

Furthermore, WNT3A could be replaced with WNT5A/B. Alternatively, if WNT3A is required 

to turn-off the destruction complex, an APC mutant line (where the destruction complex is 

constitutively off) should render organoids independent of WNT3A and activate YAP1 during 

the first hours. Notably, LGR5+ derived organoids can grow without WNT3A in the medium. 

One should check the state of YAP1 in such organoids. 

 

While both mechanisms could explain how the cytoplasmic pool of free YAP1 is stabilized 

it is probably a synergistic mechanism that causes the simultaneous YAP1 nuclear 

translocation (and therefore activation). Currently we do not know what triggers this activation, 

based on the role of YAP1 as sensor of tissue integrity (see Chapter 1, YAP1 dependent 
signaling), it is tempting to speculate that a change in extracellular environment, from a 
crowded tissue context to isolated single cells, promotes YAP1 activation251,252. 

 

YAP1 activation after single cell dissociation 
Stiffness properties of the substrate translate into YAP1 nuclear translocation in intestinal 

stem cells grown in artificial matrices253. Furthermore, organoids with aberrant morphologies 

with flat, stretched nuclei caused by growth defects254 or induced by prostaglandin 2 treatment 

(own observation), show high levels of nuclear YAP1 whereas cells in a packed tissue context 

show cytoplasmic localization (Fig. 11a). These observations point to a role of cell geometry, 
tension forces and local cell crowding in YAP1 regulation also in intestinal organoids. Densely 

packed epithelial cells are often rich in actomyosin cables associated with adherent junctions, 

transmembrane E-cadherins and their associated catenins255. This dense packaging leads to 

suppression of nuclear localization of YAP1 in various contexts182,256 (see Chapter 1, YAP1-
dependent signaling). Single cell dissociation ruptures this connection and allows single cells 
to spread and attach more strongly to the extracellular matrix via focal adhesions (Fig. 11b).  
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Binding to the extracellular matrix firmly by focal adhesions, particularly by β1-integrin, 

activates focal adhesion kinases and SRC signaling. This leads to inhibition of LATS1/2 

activity (mediated by the FAK–SRC–PI3K–PDK1257 pathway or the SRC–RAC1–PAK 

pathway185) and Hippo independent nuclear pore opening186. Both required for full activation 

of YAP1. Interestingly, following damage in the colon, YAP1 is activated by integrin, focal 

adhesion kinase and SRC signaling196 to drive a regenerative response similar to the one 

observed in the small intestine. Furthermore, in vitro growth of single intestinal stem cells relies 

on integrin-based adhesion and cytoskeletal tension253 . Noteworthy, β1-integrin (fold change 

0,4, p-value 0.022), SRC (fold change 0.6, p-value 0.007) and RAC1 (fold change 0.6, p-value 

0.001) show a small but significant increase in expression within the first 24 hours of organoid 

growth. Besides, data stemming from a compound screen done in the lab show that both 

inhibition of SRC and FAK abolish organoid growth. However, it is still not clear whether this 

is caused by the nuclear exclusion of YAP1 or by other growth impairing mechanisms. 

 

Taken together, one should investigate whether single cells upregulate FAK and SRC 

signaling within the first 24 hours of organoid growth. Immunofluorescence using phospho-

FAK antibodies can be used to stain for activated FAK. Furthermore, further pharmacological 

blocking of integrin, SRC and FAK signaling at different time points should be performed to 

probe whether inhibition of any of them affects nuclear localization of YAP1. In addition, YAP1 

has other upstream regulators including cellular stress, cell cycle and apico-basal cell polarity 

(see Chapter 1, YAP1-dependent signaling). Regulation of YAP1 by any of these pathways 
should be taken into account as it may be a combinatorial effect that drives YAP1 activation 

as well as deactivation172. 

 

 

Fig.  11 | Mechanosensing by YAP1. a) Organoids with packed nuclei show deactivation of YAP1 whereas organoids 
with stretched nuclei show high levels of nuclear YAP1. Experimental conditions as described in the appendix section. b) 
Cartoon depicting a model for YAP1 activation. Single cell separation disrupts adherens junctions and allows cells to 

spread and attach to the extracellular matrix more firmly. This promotes the maturation of focal adhesions and YAP1 

activation. 
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Cell-to-cell variability in YAP1 activity after the 4-cell state 
After the 4-cell stage, YAP1 is deactivated within a subset of cells (Chapter 3, Fig. 4a and 

Extended Data Fig. 7a, b). In contrast to isolated cells where the full surface is exposed to 
the extracellular matrix, within growing cysts adherence junctions between cells are restored 

and cells start to compact. Compaction forces onto adherence junctions may lead to active 

shuttling of YAP1 out of the nucleus182 and nuclear pore closing186. Local differences in cell 

crowding caused by asynchronous cell divisions or stochastic variegation in the Matrigel may 

change the ability of individual cells to attach to the matrix, affect the balance between 

extracellular matrix and adherence junction attachment, or change applied compression 

forces onto individual adherent junctions. These small cell-to-cell differences may be sufficient 

to deactivate YAP1 in certain cells and amplify activation of YAP1 in others (Fig. 12). 
Corroborating evidences that local differences in the Matrix may play a role comes from 

experiments in finely controlled designed matrices where a homogenous stiff matrix leads to 

gradual downregulation of YAP1, likely through compaction, as cysts proliferate172,253. 

Symmetry can only be broken when the Matrix softens over time, presumably again leading 

to local differences172,253. 

Furthermore, it will be important to characterize whether asynchrony in cell cycle precedes 

YAP1 variability or is a consequence of it. Besides leading to local asymmetries in crowding, 

the cell cycle state of each cells can affect the activity of YAP1258.  

 

In conclusion, the first steps of organoid development where single cells dedifferentiation 

into a common multipotent intermediate state are marked by an upregulation of the YAP1 

protein and YAP1 activation by nuclear shuttling. The YAP1 driven regenerative program 

 

Fig.  12 | Cell-to-cell variability in YAP1 activity. (Top row) Cartoon shows how local differences in cell density caused 
by asynchronous cell divisions and/or density differences in the extracellular matrix could result in YAP1 variability after 

the 4-cell stage. (Bottom row) In homogeneous and stiff designer matrices, YAP1 is initially activated but becomes 
subsequently homogenous downregulated253. 
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involves cross-talk of multiple signaling pathways including Wnt and EGF signaling and results 

in loss of adult cell identity, multipotency and a high proliferative capacity. Whereas this section 

focused on the first steps of organoid development leading to a homogenous cysts and 

subsequent generation of YAP1 cellular heterogeneity in its activation, the next section will 

carry forward the question about which signaling pathways and gene networks underlie 

intestinal organoid development to the event of symmetry breaking. In particular, I will focus 

on the role of the described YAP1 cell-to-cell variabilities, how they can be quantified and how 

they contribute to symmetry breaking. 

 

What drives symmetry breaking? 
We show that cell-to-cell variability in YAP1 activation induces a Notch-Delta lateral 

inhibition event between the 8-16 cell stage (Chapter 3, Fig. 5d). Cells that retain high levels 
of nuclear YAP1 activate DLL1 and subsequently become Paneth cells (Chapter 3, Fig. 5d, 
e). Currently, it is not clear how YAP1 activity is translated into a Notch-Delta event. In our 
system, high levels of YAP1 activity correlate with high expression of Notch ligands (Chapter 
3, Fig. 5b, c, d). In keratinocytes, YAP1 binding to distant enhancers activates the expression 
of Delta-like ligands259. Similar, in neural crest progenitors, YAP1 induces expression of the 

Notch ligand JAG1259. To probe whether YAP1 binds DLL1 enhancers or promoter regions in 

intestinal organoids, I suggest YAP1 ChIP-seq time course experiment. 

 

Is symmetry breaking driven by deterministic causes? 
Generating asymmetries in lateral inhibition as well as in other genetic fate switches is 

typically attributed to stochastic events (intrinsic noise) within individual cells, which are 

amplified to determine the cellular fate choice in a binary fashion260 (see Chapter 1, Intrinsic 
noise and deterministic cell-to-cell variability in symmetry breaking). However, this 
modeling framework fails to explain how the onset of these event is accurately timed and how 

robust patterns can emerge260. Moreover, at least for binary fate switches, this renders 

symmetry breaking not as a true emergent property of a population of cells but is governed by 

a stochastic event within an isolated cell260. In contrast, our observations argue for a model in 

which symmetry is broken at the population level. We hypothesize that within a growing 

population of cells where the microenvironment changes dynamically, each cell constantly 

senses and translate the current status into YAP1 activity and therefore the propensity to break 

symmetry. Thus, coupling cell-fate decision making to tissue-scale changes. While this is just 

a hypothesis, it could explain how symmetry breaking is timely coupled to the re-establishment 

of tissue integrity, sensed for example by reaching a certain threshold of population density 

after injury. 
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Multifactorial contributions may underlie the Notch-Delta activation 

Is YAP1 variability sufficient to trigger Notch-Delta lateral inhibition? 
Although the role of YAP1 is intriguing, its cellular variability may not be the only factor 

contributing to symmetry breaking. Not every cell with high YAP1 activity between the 8-16 

cell stage is DLL1+ (Chapter 3, Fig 5d). This could be a temporal aspect, where fixation 
preceded the deactivation of YAP1 or the activation of DLL1. Assuming that there is a certain 

threshold of expressed DLL1 receptor on the membrane, which has to be reached to block 

expression of DLL1 in the adjacent cell, it may require a certain time of higher YAP1 activity 

in one cell compared to the neighboring cell until this balance is tipped. To understand the 

temporal aspect of YAP1 variability, live-imaging will be essential. To my knowledge, no 

functional YAP1 reporter exists for intestinal organoids. However, by CRISPR-CAS9 mediated 

tagging of YAP1 with GFP and TEAD1 with mCherry, YAP1 and its main interaction partner 

TEAD1 have been simultaneous tracked in breast epithelial cell lines252. One could use a 

similar tagging strategy for YAP1 within a DLL1 reporter mice99, as a tool to follow YAP1 and 

DLL1 dynamics in the same cell.  

 

Single cell perturbations to introduce YAP1 cell-to-cell variability 
We show with global perturbations that YAP1 variability is required to break symmetry 

and that symmetry breaking is mediated via the Notch pathway (Chapter 3, Fig. 4g, h, Fig. 
5g, Extended Data Fig. 7h and Extended Data Fig. 10c, d-f). However, to probe whether 
YAP1 variability alone is also sufficient to induce symmetry breaking, individual cells in 

homogenous cysts at the ~ 4 cell stage have to be perturbed and the consequences of this 

perturbation followed in real-time. Optogenetic approaches can be developed to cell-

specifically translocate YAP1 either indirectly261 or potentially, as shown for other proteins, by 

directly controlling protein export262. Optogenetics can be implemented on the light sheet 

microscope used for organoid imaging. Alternatively, as shown for SOX21 heterogeneity in 

mouse blastomeres34, siRNAs against YAP1 could be injected into 2-cell stage organoids. 

However, injections are low throughput and, caused by the small size of intestinal cells and 

the reduced cell accessibility within Matrigel, technically challenging. Complementary, 

heterogeneity in a high-throughput fashion could be introduced by using reporter lines where 

YAP1 can be knocked out conditionally with CreERT2263. Here, low Tamoxifen concentration 

could be used to only stochastically knock-out some cells within growing cysts.  
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Multifactorial contributions to trigger lateral inhibition 
Alternative, variability in YAP1 activity alone may not suffice to break symmetry but a 

combinatorial effect may be required to trigger lateral inhibition. Cellular states and spatial 

heterogeneity of cell packing not only affect YAP1 activity but have wide spread consequences 

on individual cells (see Chapter 1, Deterministic cell-to-cell variability) including altered 
signaling activities64 and distinct cell-cell contact areas. Indeed, different cell contact areas 

affect Notch signaling directly264,265. Noteworthy, we also observed pairs of neighboring DLL1+ 

cells, presumably due to a division event which may link lateral inhibition to cell division (own 

observation). Besides, HES1 is expressed in an oscillatory manner in various cell lines266. 

Oscillation of HES1 could give certain cells a higher propensity to undergo lateral inhibition 

which may then be stabilized by YAP1 activity. To determine whether HES1 oscillates during 

intestinal organoid development, HES1-GFP reporter lines can be tested267,268. Moreover, 

fixed samples can be used to correlate the nuclear states of HES1 with nuclear YAP1. This 

analysis will give insight whether differences in levels of HES1 exist, potentially preceding 

YAP1 variability, and whether putative cells with lower nuclear HES1 levels are more likely to 

become DLL1+ in YAP1 high cells. 

 

Three-dimensional segmentation to analyze population context 
To investigate how cell geometry, cellular microenvironment and cellular states 

influence YAP1 activity and Notch-Delta lateral inhibition, these attributes need to be 

measured simultaneously within the same cell in a given organoid. For this, further 

development of the multiplexing and image analysis pipeline presented in this work are 

required. Currently, analysis is mostly conducted on two-dimensional projections of the tissue 

level. To allow population context measurements and single cell quantification, three-

dimensional single cell segmentation and feature extraction need to be implemented. In 

contrast to attaching layers of cells where analysis of the population context is well established 

this type of analysis is currently limited in three dimensional structures. Mainly because of two 

technical limitations: 1) Most tissues are not transparent which causes light scattering and 

limits imaging depth within the tissues269; 2)  segmentation and analysis tools are optimized 

for single plane images and not volumetric image stacks. Preliminary results prove promising 

that with sample stabilization219 and clearing218, imaging quality for organoids can be improved 

substantially (Fig.  13a). Moreover, novel convolutional neural network based three-
dimensional segmentation algorithm allow to segment nuclei with high quality in three 

dimensions270 (Fig.  13a, b). 
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Undoubtedly, there are more technical hurdles to overcome to multiplex single cells in 

three-dimensions such as non-linear signal decay over z, morphological alterations and 

sample movements caused by elution as well as challenges to obtain cell segmentations in 

addition to nuclei segmentations. Nonetheless, these preliminary results are a first step to 

quantitatively correlate YAP1 activity with cell shape, cellular state and population context. 

 

Predictive modeling of YAP1 activity and symmetry breaking 
Such measurements can then be used to build predictive models. Bayesian network 

learning has been shown to successfully infer causal interactions between microenvironment, 

cellular state and virus infection63 and multi linear regression can predict population context 

dependent transcript abundance42. Similar approaches are conceivable to infer causal 

upstream factors of YAP1 activity and DLL1 specification (which could for example be the cell 

shape, local density or cell cycle position) and furthermore may allow to predict YAP1 states 

and DLL1+ cells. 

Subsequently, to understand the interconnections and dynamics resulting in symmetry 

breaking computational models need to be applied. Modelling frameworks such as agent 

based modeling can recapitulate dynamics of complex biological systems271. Various 

modeling approaches have been developed to model organoid cultures in general272 and 

intestinal organoids in particular273,274. These models prove promising to recapitulate aspects 

of self-organization of intestinal organoids but would greatly benefit from high dimensional 

Fig.  13 | Three-dimensional segmentation of cleared organoids. a) Raw images and segmentation masks. 
(Top row) For the same organoid different z-planes stained with a nuclear marker (DAPI) are shown. (Bottom row). 
Corresponding segmentation masks to the DAPI images. Nuclei are segmented on the volume not plane wise. b) 
Three-dimensional representation of the segmentation shown in a. Different colors correspond to individual 
nuclei. Images acquired on a Yokogawa (CellVoyager 7000S), with an enhanced CSU-W1 spinning disk (Microlens 

enhanced dual Nipkow disk confocal scanner), a 60x water immersion (NA = 1.2) Olympus objective, and a Neo 

sCMOS camera (Andor, 2,560 × 2,160 pixels) with 2x2 binning. Organoids prepared as described in the appendix 

section, sample stabilization based on Ref. 219 clearing based on Ref. 218. Three-dimensional segmentation algorithm 

based on Ref. 270. Segmentation implemented by Markus Rempfler from the Friedrich Miescher institute for 

biomedical research faculty for advanced imaging. 
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quantitative data and single cell perturbation approaches. Ultimately, the aim of such efforts 

is to determine to which degree YAP1 activity and subsequent symmetry breaking are 

predictable, identify potential upstream regulators of these processes and gain understanding 

in dynamics leading to these outcomes. 

 

In summary, more experimental evidences are required to understand causal factors 

underlying the variability in YAP1 activity and how these variabilities translate into a Notch-

Delta event. Nevertheless, the well-established regulation of YAP1 by structural features of 

the microenvironment argues that symmetry breaking in intestinal organoids is not a random 

unpredictable process but rather that (measurable) factors of the tissue context control the 

behavior of individual cells. Nonetheless, symmetry breaking may involve the coincidence of 

multiple dynamic event.  

 

Symmetry breaking, Paneth cells and the emergence of other cell types 
We show that DLL1+ cells (which mark secretory progenitors 99) subsequently become 

Paneth cells (Chapter 3, Fig. 5e and Extended Data Fig. 10b). This constitutes the first 
symmetry breaking event in intestinal organoids. Within this work we do, however, not address 

what mechanism underlies this maturation into Paneth cells. Likely only a subset of DLL1+ 

cells maturate into Paneth cells (Chapter 3, Fig 5e), whereas the other cells will become other 
secretory cell types. Indeed, single cell sequencing data (Extended Data Fig. 9c) show that 
besides Paneth cells other secretory cells including goblet cells, enteroendocrine and Tuft cell 

re-emerge. Moreover, also intestinal stem cells and enterocytes are reconstituted (Fig.  14). 
Remarkably enough all within the first three days of organoid development.  

 

 

Differentiation of each of these cell types requires distinct signaling inputs (see 

Chapter 1: Signaling pathways controlling the intestinal epithelium). During 
homeostasis, as progenitors migrate away from the crypt they experience changing 

concentration gradients of Wnt, BMP and other signaling molecules shown to promote their 

differentiation and maturation (Fig.  15a). Nevertheless, the same cell types are reconstituted 
within a homogenous WNT3A environment during early stages of organoid development (Fig.  
15b). 

Fig.  14 | Reconstitution of adult cell types. Representative 
images (maximum intensity projections) showing the 

appearance of markers for Paneth cells (Lysozyme), intestinal 

stem cells (LGR5::DTR-GFP), enterocytes (AldolaseB) and 

enteroendocrine cells (Serotonin) on the protein level. 

Organoids are fixed at day 3. Experimental conditions as 

described in the appendix section. 
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When these cell fates are specified and how the different signaling environments 

required for these specifications are established is still not well understood. Interestingly, in 

the embryo maturation of LGR5+ cells is initiated by a switch from non-canonical to canonical 

Wnt signaling124. Thus, after passing through a fetal-like cyst state and establishment of Notch-

Fig.  15 | Cell differentiating hierarchy in the small intestine and intestinal organoids. a) During homeostasis, intestinal 
stem cells continuously produce fast proliferating transient amplifying precursor cells. These cells give rise to various 

differentiated cell types while migrating away from the crypt signaling environment. Maturation of each cell type requires 

distinct signaling inputs. b) During organoid development, different cell types revert into a fetal-like multipotent state from 
which all cell types of the small intestine can be reconstituted. Cell type specification occurs under a homogenous WNT3A 

environment. Faded colors indicate cell types for which the exact time of specification is not known. Dotted lines indicate cell 

types for which the required signaling inputs are not known. Putative signaling requirements are based on literature108 and 

experimental observations (Chapter 3). 
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Delta lateral inhibition an additional switch toward canonical Wnt signaling in a subset of cells 

may partly underlie cell maturation in organoid development.  Again, controlled by YAP1 

dynamics where deactivation could release inhibition of canonical Wnt signaling to promote 

the reestablishment of LGR5+ cells from fetal progenitors124 as well as Paneth cell 

differentiation154,155 from DLL1+ progenitors. Corroborating results for theses speculations 

come from the observation that DLL1+ cells lose nuclear YAP1 while still in WNT3A-CM 

(Chapter 3, Fig. 5f and Extended Data Fig. 10a). Besides, asynchronous oscillations of the 
cell cycle and potentially HES1 could contribute to distinct cell differentiation275. 

 

Cell-to-cell variabilities reveal distinct signaling activities 
Although these models are currently pure speculation, they serve as an example of 

how temporal signaling cross-talk within individual cells could explain distinct self-organized 

responsiveness in homogenous conditions. Different activity states of signaling and genetic 

networks within individual cells of an organoid appear as cellular heterogeneity in fixed 

samples. Indeed, in addition to YAP1 other key factors involved in cell type specification 

including the transcription factors HES1, SOX9 and the cell cycle position show cell-to-cell 

variability during the first three days of organoid development (Fig.  16). Whether they are a 
downstream consequence of YAP1 variability or if they occur independently of YAP1 is yet to 

be determined. 

 

It will be important to characterize the sources of these variabilities and there extend 

at different times preceding to, around and after the first symmetry breaking event. Correlation 

of signaling and transcriptional activity within individual cells with known expression pattern 

for cell type specification will aid as a first step to deepen our understanding on how different 

Fig.  16 | Cell-to-cell variabilities in intestinal organoid 
development. For each time point, representative images 
(maximum intensity projection) show different markers 

stained within the same organoid over multiple imaging 

rounds. After 48 hours, HES1 (a Notch target), the 

proliferation marker PCNA (which is elevated in G1/S 

phase of the cell cycle) and SOX9 (a marker implicated in 

Paneth cell specification) show cellular heterogeneity in 

protein expression. 
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cell types emerge. Thus, allowing the identification of key interactions required to specify 

distinct cell types and device perturbation strategies to probe causality. 

 

Further improvements in multiplexing (see above under Three-dimensional 
segmentation to analyze population context) or alternative image-based transcriptome and 
proteome analysis (as discussed in Chapter 2) can be implemented to move toward this goal. 
Although technically challenging, by barcoding individual organoids, single cell sequencing 

may allow the comparison of transcripts of individual cells within an organoid in an unbiased 

transcriptome wide fashion276. Alternatively, single cell sequencing could be done at different 

cell stages (2, 4, 8, 16, 32-cell stages). These early stages potentially can be separated by 

size gating and FACS sorting. Complementarily, multiplexed smFISH measurement or in-situ 

sequencing can be extremely powerful approaches to reveal multiple cellular heterogeneities 

while preserving spatial information. 

 

Reconstitution of the niche 
More broadly, it will be fascinating to disentangle how crypt reconstitution progresses 

after the specification of Paneth cells. For example, are Paneth cells the first and only 

symmetry breaking event in a truly self-organizational sense (where order emerges from 

homogenous conditions without guidance from a positional cue) after which subsequent steps 

are instructed by step wise refinement of prior asymmetries guided by a Paneth cell mediated 

WNT3 gradient? In other words, to link back to the frameworks introduced in the introduction, 

can intestinal organoid development be described by a self-organized Turing-like mechanism 

to generate the first asymmetries which are then refined by cell fate patterning akin to 

positional information? Clearly, after the removal of Wnt from the medium (after day 3), 

secreted WNT3 gradients act as strong morphogens instructing local proliferation and likely 

are decoded into cellular decisions and morphological changes104 required to drive crypt 

formation. Nonetheless, most cell types occur before removal of WNT3A. How does the 

occurrence of Paneth cells links to these later events? What is the minimal number of Paneth 

cells required to build a sufficient Wnt gradient? How do differentiated cells coordinate 

migration and rearrange to build the crypt? These and many more open questions remain and 

answering them will likely reveal even more principles of self-organization in intestinal 

organoid formation. 
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Future perspectives and conclusion 

Many biological processes only unfold after cells can attach to an extracellular matrix 

and interact in three-dimensions. Compared to two-dimensional cell cultures, studying these 

processes comes however with increased complexity and technical requirements. Organoids 

are a great tool to bridge the gap between two-dimensional cell cultures and living animals. 

Thus, allowing investigating aspects of development, regeneration and homeostasis not 

accessible before. These insights hold the promise of being translated into improved and novel 

human therapies. For example, by developing strategies to boost regeneration173 or by 

generating organoids to apply them to cell replacement or whole-organ transplantation277,278. 

While current efforts to improve protocols so that organoids resemble more their in 

vivo counterparts279-281 and the development of bioengineering methods to make organoids 

more reproducible79 are important, I would argue that faster progress in this direction would 

greatly benefit from a better insight of what the model system in use truly recapitulates. 

Moreover, to efficiently devise strategies to support regeneration and prevent malignant 

growth, it will be crucial to understand the mechanisms endowing single cells with the capacity 

to reconstruct various damaged tissues in different contexts237. Symmetry breaking is a 

fundamental requirement to reestablish homeostasis282 and aberrant symmetry breaking can 

have severe consequences for a self-organizing system. Thus, it will be indispensable to 

deepen our understanding about symmetry breaking events driving regeneration on a cellular 

and tissue level 237. 

 

YAP1-dependent signaling holds great promise in this regard. It will be essential to 

gain insights on how YAP1 senses and regulates tissue integrity during regeneration. How 

cellular heterogeneities in YAP1 activation are created and propagated to contribute to 

cellular decision making in organoids remains an open question. The prospect that cells 

actively sense and integrate cellular as well as tissue dynamics to create deterministic cell-

to-cell variabilities which ultimately leads to symmetry breaking and that this could one day 

become predictable is to me fascinating. It is truly captivating to try to elucidate the nature of 

determining upstream factors, the extend of variabilities also in other molecules and how 

much biological information they contain.  

Moreover, further improvements in multivariate imaging technologies combined with 

modeling approaches will allow studying how dynamic integrations between individual cells 

give rise to many more emergent properties besides symmetry breaking in population of 

cells. Thus, unravelling basic patterns and mechanisms of self-organization. 
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On the practical side, knowledge about deterministic factors underlying symmetry 

breaking will allow the adaptation of culture conditions so that symmetry is broken more 

homogenously. Thus, approaching the problem of low reproducibility in organoid culture 

system. For example, by using controllable designer matrices instead of Matrigel253, by 

spatially restricted light induced softening of the surrounding matrix or by spatiotemporal 

controlled release of Notch ligands283. 

 

Besides, it will be exciting to probe how universal the observed mechanisms underlying 

organoid regeneration are. Do different types of injury elicit similar mechanisms for intestinal 

repair? Indeed, exposure to interferon-γ triggers a similar fetal-like reversion as observed in 

intestinal organoids in vivo227. Thus, indicating that multiple types of triggering signaling are 

able to cause a similar regenerative response. Whether they all converge to YAP1 to drive 

identical self-organizing pattern will be exciting to study. Likewise, by comparing human and 

mouse derived organoids, it will be fascinating to see to which degree regenerative responses 

are conserved from mouse to human and to what degree they mimic developmental programs. 

 

In conclusion, within this thesis we study the self-organizing potential of single 

intestinal cells. We show that plasticity of stem-cell and non-stem populations leads to cellular 

dedifferentiation into a common feta-like homogenous cysts from which morphogenesis and 

patterning akin to the small intestine emerges. We demonstrate that organoid development 

resembles regeneration in vivo and is driven by YAP1 activity. Our results reinforce the 

evidence that YAP1 acts as a sensor for cellular and tissue integrity and give novel insights 

on how transient and variable YAP1 activation couples Notch-Delta mediated cell-fate 

decision to three-dimension tissue level changes. This work illustrates how cutting-edge 

imaging approaches such as 4i multiplexing and light-sheet microscopy combined with 

sequencing enable the study of emergent collective behaviors of interacting cells. It shows the 

power of intestinal organoids to study basic research question and gives first insights on how 

asymmetric structures can emerge from homogenous conditions. 
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Abbreviations 

AGR2	 Anterior	gradient	2		
ALPI	 Alkaline	phosphatase	
AMPK	 AMP-activated	protein	kinase		
APC	 Adenomatosis	polyposis	coli	
ASC	 Adult	stem	cell	
ATAQ-seq	 Assay	for	Transposase-Accessible	Chromatin	using	sequencing	
ATOH1	 Atonal	homolog	1	
AXIN2	 Axis	inhibition	protein	2	
BMI1	 B	cell-specific	Moloney	murine	leukemia	virus	integration	site	1	
BMP1/4	 Bone	Morphogenetic	Protein	1/4	
CAS9	 CRISPR	associated	protein	9	
CBC	 Crypt	base	columnar		
CD4/4	 Cluster	of	differentiation	4/8	
CDX	 Caudal	homebox	
CHIP-seq	 Chromatin	immunoprecipitation	followed	by	sequencing	
CKIα Casein	kinase	Iα	
CM	 Conditioned	media	
CRISPR	 Clustered	regularly	interspaced	short	palindromic	repeats	
CTGF	 Connective	tissue	growth	factor		
CYR61	 Cysteine-rich	angiogenic	inducer	61	
DAPI	 4ʹ,6-diamidino-2-phenylindole	
DKK1	 Dickkopf	1	
DLL1/4	 Delta-like	protein	1/4	
DNA	 Deoxyribonucleic	acid		
DTR	 Diphtheria	toxin	receptor	
DVL	 Disheveled	
ECM	 Extracellular	matrix	
EGF	 Epidermal	growth	factor	
EGFR	 Epidermal	growth	factor	receptor	
EHS	 Engelbreth-Holm-Swarm	
EREG	 Epiregulin	
ERK1	 Extracellular	signal-regulated	kinases	
ESC	 Embryonic	stem	cell	
FACS	 Fluorescence-activated	cell	sorting	
FAIM	 Facility	for	advanced	imaging	and	microcopy	
FAK	 Focal	adhesion	kinase	
FGF	 Fibroblast	growth	factor		
FMI	 Friedrich	Miescher	Institute	
FOSL1	 FOS	Like	1	
FZD	 Frizzled		
GFP	 Green	fluorescent	protein	
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GSK3	 Glycogen	synthase	kinase	3	
H2B	 Histone	2B	
HES	 Hairy and enhancer of split 1 
HOPX	 Homeodomain-only	protein	homeobox	
IF	 Immunofluorescence	
IGFBP4	 Insulin	Like	Growth	Factor	Binding	Protein	4	
iPSC	 Induced	pluripotent	stem	cell	
ISC	 Intestinal	stem	cell	
JAG1	 Jagged	1	
KLF4	 Krüppel-like	factor	4	
KO	 Knockout	
KRAS	 Kirsten	rat	sarcoma	viral	oncogene		
LATS1/2	 Large	tumor	suppressor	homolog	1	/	2	
LEF	 Lymphoid	enhancer-binding	factor	
LGR4/5	 Leucine-rich	repeat-containing	G-protein	coupled	receptor	4/5	
LINC	 Linker	of	Nucleoskeleton	and	Cytoskeleton	
LRIG1	 Leucine-rich	repeats	and	immunoglobulin-like	domains	1	
LRP5/6	 Low-density lipoprotein receptor-related protein 5/6 
MAP4K	 Mitogen-activated	protein	kinase	kinase	kinase	kinase	
MAPK	 Mitogen-activated	protein	kinase	
MCF10A	 Michigan	Cancer	Foundation	10	A	
MOB	 Mps	one	binder	
MOB1A	 MOB	kinase	activator	1	
MOB2A	 MOB	kinase	activator	2	
MST1/2	 mammalian	STE20-like	protein	kinase	1/2	
MYC	 Myelocytoma	
NA	 Numerical	aperture		
NF2	 Neurofibromatosis	type	2	
NURD	 Nucleosome	Remodeling	Deacetylase	
OCT4	 Octamer-binding	transcription	factor	4	
PAK	 p21-activated	kinase		
PCNA	 Proliferating	cell	nuclear	antigen	
PCP	 Planar	Cell	Polarity	
PDK1	 Phosphoinositide-dependent	kinase-1		
PDX1	 Pancreatic	and	duodenal	homeobox	1)	
PDZ	 PSD-95/Dlg-A/ZO-1		
PI3K	 Phosphoinositide	3-kinase	
PKB	 Protein	kinase	B	
PSC	 Pluripotent	stem	cell	
RA	 Retinoic	acid	
RAC1	 Ras-related	C3	botulinum	toxin	substrate	1	
RBPJ	 Recombination	Signal	Binding	Protein	for	Immunoglobulin	Kappa	J	Region	
RNF43	 Ring	Finger	Protein	43	
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ROCK	 Rho-	associated,	coiled-coil	containing	protein	kinase		
ROR	 Receptor	tyrosine	kinase-like	orphan	receptor	
RSPO	 Roof	plate	specific	spondin	
RUNX2	 Runt-related	transcription	factor	2	
SAV1	 Salvador homologue 1	
SDS	 Dextran	Sodium	Sulfate		
SHH	 Sonic	hedgehog	 
SMAD	 Sma	genes	mothers	against	decapentaplegic	
SNF	 Sucrose	Non-Fermenting		
SOX2/9/21	 Sry-related	HMG	box	
SRC	 Sarcoma	gen	
SWI	 Mating-type	switching		
TAO1	 	Thousand-and-one	amino	acids	1	
TAZ	 Transcriptional	co-activator	with	PDZ-binding	motif	
TCF4	 T-cell factor 4	
TEAD1	 TEA	domain	family	member	1	
TERT	 Telomerase	reverse	transcriptase 
TGF	 Transforming	growth	factor	
TNF	 Tumor	necrosis	factor	
WNT	 Wingless-type	mouse	mammary	tumor	virus	(MMTV)	integration	site		
WNT3/5A	 Wingless	and	Int-1	3/3a	
YAP1	 Yes-associated	protein	1	
ZNRF3	 Zinc	and	ring	finger	3	
ZO1	 Zonula	occludens-1	
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Methods 

Organoid lines  

All animal experiments were approved by the Basel Cantonal Veterinary Authorities and 

conducted in accordance with the Guide for Care and Use of Laboratory Animals. Male and 

female outbred mice between 7 and 15 weeks old were used for all experiments.  Mouse lines 

used: C57BL/6 wild type (Charles River Laboratories), Lgr5–EGFP–Ires–CreERT2 (kind gift 

from Momo Bentires-Alj, University Hospital in Basel), Lgr5::DTR-EGFP (Genentech, de 

Sauvage laboratory), H2B-mCherry C57BL/6 x C3H F1 females heterozygous for H2B-

mCherry (kind gift from T. Hiragi lab, EMBL), Lats1∆/∆; Lats2∆/∆ (LATS DKO, kind gift 

from Jeff Wrana, Department of Molecular Genetics, University of Toronto, Canada)28, 

Yap1tm1.1Dupa/J (Yap1flox)48  from The Jackson Laboratory. For Lgr5-GFP/mem9-mCherry 

organoids, Lgr5–EGFP–Ires–CreERT2 organoids were infected with rLV.EF1.mCherry-

Mem-9 lentiviral particles (Clontech, Takara Bio USA). For H2b-mCherry/mem9-GFP 

organoids, H2b-mCherry organoids were infected with LV.EF1.AcGFP1-Mem-9 lentivirus 

particle (Clontech, Takara Bio USA). For doxycycline inducible hYap1 overexpression 

organoids, C57BL/6 wild type organoids were infected with in-house produced FUW-tetO-

wtYAP viral particles (Addgene plasmid # 84009) together with rLV.EF1.Tet3G-9 viral 

particles (Clontech, Takara Bio USA). For TCF-GFP organoids C57BL/6 wild type 

organoids were infected with TOP-GFP (Addgene plasmid #35489). For Yap1 KO, 

Yap1tm1.1Dupa/J (Yap1flox) organoids were infected with CRE (Puro) EF1a lentivirus in PBS 

(GeneTarget cat # LVP-520 PBS) or as control with pEGIP (Addgene plasmid #26777) at 0 

hours. 

 

Organoid culture 

Organoids were generated from isolated crypts of the murine small intestine as previously 

described49. In brief, the section of the initial part of the small intestine was opened 

lengthwise, cleaned with cold PBS and, after removal of villi by scraping with a cold glass 

slide, sliced into small fragments roughly 2 mm in length. The tissue was then incubated in 

2.5 mM EDTA/PBS at 4 °C for 30 min with shaking. Supernatant was removed and pieces of 

intestine were re-suspended in DMEM/F12 with 0.1% BSA. The tissue was then shaken 

vigorously. To collect the first fraction, the suspension was passed through a 70 µm strainer. 



The remaining tissue pieces were collected from the strainer and fresh DMEM/F12 with 

0.1% BSA was added, followed by vigorous shaking. The crypt fraction was again collected 

by passing through a 70 µm strainer. In total, 4 fractions were collected. Each fraction was 

centrifuged at 300g for 5 min at 4 °C. Supernatant was removed and the pellet was re-

suspended into Matrigel with medium (1:1 ratio) and plated into 24 well plates. Organoids 

were kept in IntestiCult Organoid Growth Medium (STEMCELL Technologies) with 100 

μg/ml Penicillin-Streptomycin for amplification and maintenance.  

 

Time course experiments of fixed organoid samples 

Organoids were collected 5-7 days after passaging and digested with TrypLE (Thermo Fisher 

Scientific) for 20 min at 37 °C. Dissociated cells were passed through a cell strainer with a 

pore size of 30 µm (Sysmex). For all experiments, single alive cells were sorted by FACS 

(Becton Dickinson FACSAria cell sort or Becton Dickinson Influx cell sorter). Forward 

scatter and side scatter properties were used to remove cell doublets and dead cells. To obtain 

Lgr5+ or Lgr5- starting populations, cells were gated as shown in (Extended Data Fig. 1b). 

Sorted cells were collected in ENR medium composed of advanced DMEM/F-12 with 15 

mM HEPES (STEM CELL Technologies) supplemented with 100 μg/ml Penicillin-

Streptomycin, 1×Glutamax (Thermo Fisher Scientific), 1×B27 (Thermo Fisher Scientific), 

1xN2 (Thermo Fisher Scientific), 1mM N-acetylcysteine (Sigma), 500ng/ml R-Spondin (kind 

gift from Novartis), 100 ng/ml Noggin (PeproTech) and 100 ng/ml murine EGF (R&D 

Systems). Collected cells were mixed with Matrigel (Corning) in a medium to Matrigel ratio 

of 1:1. In each well of a 96 well plate, 5µl droplets with 3000 cells were seeded (except for 

Lgr5 time course experiments where 1300 and 3500 cells were seeded for Lgr5+ and Lgr5- 

respectively). After 20 min of solidification at 37 °C, 100 µl of medium was overlaid. From 

day 0 to day 1, ENR was supplemented with 20% Wnt3a-conditioned medium (Wnt3a-CM), 

10 μM Y-27632 (ROCK inhibitor, STEMCELL Technologies) and 3 µM of CHIR99021 

(GSK3B inhibitor, STEMCELL Technologies, cat # 72054). From day 1 to 3 ENR was 

supplemented with 20% Wnt3a-CM and 10 μM Y-27632. From day 3 to 5, only ENR was 

added to the cells. Wnt3a-CM was produced in-house by Wnt3a L-cells (kind gift from 

Novartis) 

 

Compound treatments 

Single cells derived from C57BL/6 wild type organoids were plated in a 96-well plate and 

exposed to 5 µM Verteporfin (SIGMA-ALDRICH, cat # SML0534) or DMSO (SIGMA-



ALDRICH, cat # D8418) diluted in ENR medium at different time points (0, 24, 48, or 72 

hours). Organoids were fixed at different time points for analysis. Doxycycline inducible 

hYap1 overexpression organoids were treated with 0.05 µg/ml Doxycycline hyclate 

(SIGMA-ALDRICH, cat # D9891) or ddH2O diluted in ENR medium right after single cell 

sorting and organoids were fixed at 72 or 96 hours. Lats1/2 double DKO organoids were 

exposed to 1 µg/ml 4-Hydroxytamoxifen (SIGMA-ALDRICH, cat # H6278) or DMSO one 

day before single cell isolation and fixed at different time points. Single cells derived from 

organoids C57BL/6 wild type were treated with 10 µM DAPT (Stemgent cat # 04-0041) or 

DMSO diluted in ENR medium, from single cell isolation until fixation at 96 hours, or 

treated at 120 hours and fixed at 144 hours. Single cells derived from organoids C57BL/6 

wild type were treated with Ly411575 0.5 µM (kind gift from Novartis) or MK-0752 (kind 

gift from Novartis) 0.5 µM or DMSO in addition to the ENR medium, from 0 hours until 

fixation at 120 hours. Single cells Lgr5::DTR-EGFP positive and Lgr5::DTR-EGFP negative 

derived from organoids Lgr5::DTR-EGFP were treated with CHIR99021 5 µM (GSK3B 

inhibitor, STEMCELL Technologies cat # 72054) or IWP-2 2 µM (Porcupine Inhibitor, 

STEMCELL Technologies cat # 72124) or DMSO 5 µM or DMSO 2 µM diluted in ENR 

medium, from single cell isolation until organoids fixation at different time points. Single 

cells derived from organoids C57BL/6 wild type were treated with Ereg 0.5 µg/ml (R&D 

System cat # 1068-EP-050) or PBS in addition to the ENR medium, from 0 hours until 

fixation at different time points.  

 

Re-plating experiment 

Single cells (C57BL/6 wild type) were isolated from budding organoids at 120 hours and 

from spheres at 72 hours, that on average have more Yap1 activity. Same number of cells per 

condition were plated in different wells of 96-well plates and cultured for 24 hours.  

 

Fixed sample preparation and imaging 

Organoids are embedded in a Matrigel droplet. Due to the nature of the droplet, individual 

organoids are located at different heights in the Matrigel drop. To allow imaging of all 

organoids within a similar z-range, each 96-well plate was centrifuged at 3000 rpm for 10 

min in a pre-cooled centrifuge at 10 °C prior to fixation. Organoids were fixed in 4% PFA 

(Electron Microscopy Sciences) in PBS for 45 min at room temperature. Day 0 plates were 

fixed 3h after seeding. For time course and compound experiments, organoids were 

permeabilized with 0.5% Triton X-100 (Sigma-Aldrich) for 1 h and blocked with 3% Donkey 



Serum (Sigma-Aldrich) in PBS with 0.1% Triton X-100 for 1 h. Primary and secondary 

antibodies were diluted in blocking buffer and applied as indicated in Table S2. Cell nuclei 

were stained with 20 μg/ml DAPI (4',6-Diamidino-2-Phenylindole, Invitrogen) in PBS for 15 

min. Cells were stained with 1 µg/ml of Alexa Fluor® 647 carboxylic acid succinimidyl ester 

(CellTrace, Invitrogen) in carbonate buffer (1.95 ml of 0.5 M NaHCO3, 50 μl of 0.5 M 

Na2CO3, both from Sigma-Aldrich, in 8 ml of water for 10 ml of buffer).   

High-throughput imaging was done with an automated spinning disk microscope from 

Yokogawa (CellVoyager 7000S), with an enhanced CSU-W1 spinning disk (Microlens-

enhanced dual Nipkow disk confocal scanner), a 40x (NA = 0.95) Olympus objective, and a 

Neo sCMOS camera (Andor, 2,560 × 2,160 pixels). For imaging, an intelligent imaging 

approach was used in the Yokogawa CV7000 (Search First module of Wako software). For 

each well, one field was acquired with 2x resolution in order to cover the complete well. This 

overview fields were then used to segment individual organoids on the fly with a custom 

written ImageJ macro which outputs coordinates of individual organoid positions. These 

coordinated were then subsequently imaged with high resolution (40x, NA = 0.95). For each 

site, z-planes spanning a range up to 60 µm were acquired. For time course and compound 

experiment 5µm z-steps were used. For multiplexing 2 µm or 3 µm z-steps were used. 

 

Multiplexed imaging 

To allow multiple rounds of antibody staining and imaging for the same organoids, the 4i 

multiplexing protocol was applied to 3D organoid cultures. In brief, plates were 

permeabilized with -20 °C Methanol (Sigma-Aldrich) for 30 min at -20°C followed by 

blocking with 3% donkey serum in PBS for 1 h at room temperature. For each round of 

imaging, organoids were stained with 20 μg/ml DAPI in PBS for 15 min. Additionally for the 

first round, cell were stained with 1 µg/ml of Alexa Fluor® 647 carboxylic acid succinimidyl 

ester. For each round of staining, primary and secondary antibodies were diluted in 3% 

donkey serum with added 200 mM NH4Cl and applied as indicated in Table S2. Plates were 

imaged in imaging buffer (700mM N-Acetyl-Cysteine, Sigma-Aldrich, in ddH2O, pH 

adjusted to 7.4). After each round of imaging, antibodies were eluted for 3 times 10 minutes 

with elution buffer (0.5 M L-Glycine, 5 M Urea, 5 M Guanidinium chloride, 70 mM TCEP-

HCl, all in ddH20 with pH adjusted to pH2.5, all chemicals from Sigma-Aldrich). Plates were 

re-blocked after each round of imaging for 1 h at room temperature and antibodies of the next 

round were applied.  For the multiplexed Lgr5 time course the following staining were used: 

Round 1 (DAPI, anti-GFP, anti-Lysozyme and CellTrace), Round 2 (DAPI and anti-PCNA), 



Round 3 (DAPI and anti-Aldolase B). For the multiplexed Yap1 time course the following 

staining were used: Round 1 (DAPI, anti-Yap1, anti-Dll1 and CellTrace), Round 2 (DAPI 

and anti-Hes1) 

 

 

Organoid clearing 

To optically clear organoids after immunofluorescence staining, organoids were incubated for 

20 min in a refractive index(RI)-matching solution50 (9.2 ml 60% iodixanol solution, Sigma-

Aldrich D1556, 4 g N-methyl-D-glucamine, Sigma Aldrich M2004, 5 g diatrizoic acid, 

Sigma Aldrich D9268, dissolved in 6.3 ml of ddH20). Per well of a 96-well plate, 200 µl of 

RI-matching solution were added. After 20 min of sample incubation the organoids were 

imaged in the IR-matching solution. 

 

Image analysis and organoid feature extraction 

Organoid segmentation in MIPs. For each acquired confocal z-stack field, maximum 

intensity projections (MIP) were generated. All MIP fields of a well were stitched together to 

obtain MIP well overviews for each channel. The high resolution well overviews were used 

for organoid segmentation and feature extraction. Each individual organoid was 

automatically segmented based on CellTrace signal. For small round organoids up to 84h 

after fixation we applied a watershed algorithm on a binary mask generated by Otsu 

thresholding. For bigger organoids observed 84h post fixation, a watershed algorithm was 

applied on prediction maps generated by a fully convolutional neural network (FCN). This 

network follows a U-Net architecture51 with ResNeXt building blocks52 and two output 

channels: The first predicts whether a pixel belongs to the foreground (i.e. an organoid) or 

not, whereas the second predicts whether a pixel is at the interface of two distinct organoids,  

thus acting as a mechanism for separating individual organoids with non-convex shape in the 

watershed. 

 

Features MIP. For each segmented organoid, features describing shape (22 features) and 

features quantifying intensities for each acquired channel and staining round were extracted 

(11 features for each individual staining for each imaging round). 

To quantify low abundance signal on MIP masks, each organoid mask was partitioned into 

superpixels. These superpixels were calculated with the SLIC (Simple Linear Iterative 

Clustering) method initialized uniformly with regions of approximately the size of a single 



cell (2000 pixel). For each organoid, we calculated mean signal strength for each superpixel 

and ranked all of them in descending order. Subsequently, the mean over the top-k superpixel 

means was calculated in order to obtain a measure that is robust to local noise due to the 

spatial aggregation over the superpixels but sensitive enough to quantify signal that is only 

observed in subregions of the entire organoid. For our experiments, we found k=10 to be an 

informative threshold. 

 

Enterocyst classification 

 A binary SVM classifier was trained to group organoids into budding organoids and 

enterocysts based on shape as well as intensity features.  

 

Organoid linkage over imaging rounds. In each subsequent round of multiplexing, the 

position of the same organoid can slightly move or organoids can be lost due to segmentation 

errors. To re-identify the same organoid over multiple rounds, a custom linkage algorithm 

was developed. In short, for each segmented organoid in a round, the outline polygon is 

extracted and stored in a spatial index, based on the R*Tree algorithm. We then fix the first 

available imaging round as reference round and search for intersections with polygons of 

other rounds. We call such intersections a link between a segmentation of the reference round 

segref and the segmentation of the target round segtarget. To consider shifts between imaging 

rounds, we expand each polygon by 100 pixels. In a refining step, we assign a similarity 

score to each intersection and keep only the closest, in terms of rounds, and most similar 

links. The similarity score is defined as the area of the intersection divided by the area of the 

union of segref and segtarget multiplied by a distance term. The distance term is defined as 1 if 

the L1 distance between segref and segtarget is 0 and exponential decreases as the L1 distance 

increases. Union and intersection are operations from the set theory. 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖(𝑠𝑠𝑠𝑠𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠𝑔𝑔𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡))
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖(𝑠𝑠𝑠𝑠𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠𝑔𝑔𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡))

 ∙  𝑠𝑠𝑒𝑒𝑒𝑒(−0.001 ∙ 𝐿𝐿1(𝑠𝑠𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟,𝑠𝑠𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡 ))  

 

In a last step, we traverse all links, starting from each polygon of the reference round and 

group all connected segmentations as an organoid object.  

 



3D segmentation and analysis. Given the organoid segmentation from processing the MIP 

as described in the previous section, the corresponding confocal stack was cropped to its 

mask region for each individual organoid. Two segmentation models were deployed on these 

stacks, one for 3D organoid segmentation and one for individual nuclei. 

 

In-focus planes. The ratio of in-plane maximum intensity to the maximum intensity in the 

stack was used as metric for the plane being in-focus, being close to 1 in the regions of high 

intensity and decaying to 0 towards the background/empty planes. A logistic regression was 

fitted to transform this metric into a probability measure.  

 

3D Organoid segmentation. 3D organoid segmentations were generated by applying an FCN 

to the CellTrace channel of the individual crops. The FCN is applied slice-by-slice and 

generates probability maps of pixels belonging to the foreground. The probabilities in planes 

that are not classified as “in-focus” are set to zero in order to make the segmentation more 

robust. Pixels that originate from outside the original MIP mask (e.g. from an adjacent 

organoid that is partially within the crop) are also masked out. 

 

3D Features. A set of 20 features was calculated on each segmented 3D stack, including 

volume, lumen and area estimates, major/minor axis lengths, elevation angle as well as 

statistics on the in-focus planes. 

 

Single cell segmentation. Following the scheme used for the organoid segmentation, a FCN 

was designed to segment individual nuclei in the DAPI channel of the cropped stacks. This 

FCN outputs both a foreground probability map, as well as a separator probability that peaks 

at the interface of two distinct nuclei. These two prediction maps are then combined by a 

watershed algorithm to yield a segmentation of individual nuclei. In order to obtain an 

estimate for the cytosol, the mask obtained from the organoid segmentation is partitioned 

such that pixels in its foreground are assigned to the closest nucleus. Pixels segmented as 

nucleus are removed from the cytosol. The method is applied on a slice-by-slice basis. The 

output is used for estimating cell count per organoid and quantifying marker intensities. 

 

Estimating cell count. For each stack, individual nuclei are counted in every slide and 

summed up. The final estimate is then corrected by an experiment specific correction factor, 

accounting for the fact that we expect each nucleus being imaged in multiple planes. This 



avoids having another linking step that tries to determine whether two nuclei in subsequent 

planes are from the same physical object or not. The experiment specific correction factor is 

estimated based on hand annotated nuclei counts. Before counting, a nuclei size filter was 

applied to remove miss-segmentations.  

 

 

Trajectory of organoid development  

For trajectory inference Wishbone, an algorithm originally developed to infer branching 

trajectories within a multivariate feature space of mass cytometry or single cell RNA 

sequencing data was used. Wishbone allows to infer a trajectory of organoid development 

based on their features and to identify the branch points between budding organoids and 

enterocyst. To use wishbone with imaging data, the original python Wishbone package was 

slightly adapted. A new imaging data type as well as additional possibilities to normalize data 

were added. Trajectory inference comprised the following steps: (1) A z-score based filtering 

was applied to remove segmentation outliers and imaging artefacts from the dataset, resulting 

in a dataset of 9798 Lgr5+ organoids and 13623 Lgr5- organoids (2) Data were power 

transformed followed by zero-mean, unit-variance normalization (3) Pseudotime ordering is 

inferred from molecular events and is dependent on the features selected to describe them. 

For initial diffusion map computation, the full pooled dataset with 23421 organoids and 66 

features was used as input (full feature set, including morphological features, intensity 

features for DAPI, Lysozyme, PCNA and AldolaseB). Diffusion maps were then computed 

on the 10 first PCA components of the input dataset after removal of highly redundant 

features with Pearson correlation > abs(0.95) (Extended Data Fig. 2f) (4) To refine the 

separation between budding organoids and enterocyst around branch point and to minimize a 

stretch or compression in pseudotime compared to real time, we included an additional 

feature refinement step. To select a subset of features which optimally separate between 

budding organoids and enterocyst along time, we plotted for each of the features trends over 

time for budding organoid and enterocysts individually and selected features which allowed 

best to separate between groups. By this step we refined the final feature set used for 

diffusion map computation to 14 features (Extended Data Fig. 2a b). Any step of feature 

selection can introduce biases but we confirmed that the time progression and bifurcation are 

also present using the full feature set (Extended Data Fig. 2f). After calculation of diffusion 



maps the pooled Lgr5+ and Lgr5- dataset was divided into Lgr5+ and Lgr5- groups. For each 

group individual, the three top diffusion components were used to infer a Wishbone 

trajectory. To find a continuous branching trajectory, Wishbone relies on the definition of a 

starting cell and a selected set of waypoints which help to refine the trajectory. For the 

starting cell, a random 1 cell stage cell was selected. 200 waypoints were set manually based 

on 3D diffusion plots to represent regions along the entire trajectory and its branches equally. 

To plot marker expression along trajectory, the trajectory was divided into 120 bins. Nuclei 

numbers were calculated for a subset of the full trajectory as described under Estimating cell 

count. 

Dynamic time warping for trajectory 

Dynamic time warping: An inferred trajectory is able to capture continuous progression of 

organoids along their development with pseudo temporal ordering. Pseudo-time ordering is 

inferred from features describing molecular events which can have a huge dynamic range 

between different organoid stages and can result in a pseudotime progression which does not 

necessarily represent development of the system in real time. To approximate the relation 

between real time and pseudotime we used dynamic time warping to map trajectory data 

against real time data extracted from light sheet imaging. DTW algorithms compute the local 

stretch or compression between one-time axis of one time series (query) against the time axis 

of a reference time series. The query sequence is warped non-linearly to find the optimal 

mapping onto the reference53. Since budding organoids represent the majority of organoids 

after branching (~80 percent of the data) only budding organoids (n=6) from light sheet data 

were used to calculate the warping. Based on the extracted light sheet imaging data, an 

average path of area progression every hour from hour 0 to hour 120 was calculated. The 

mean area progression extracted from the light sheet was then matched against the area 

progression from the pseudotime trajectory (averaged into 120 bins). The fastdtw package in 

python was used to map each point of the budding organoid branch (query branches) to the 

corresponding point of the light sheet data. This mapping between real time points and 

pseudotime points allows then to infer relations between real time and pseudotime (Extended 

data figure 4h).  

RNA-seq mapping: To allow comparison between pseudotime trajectories of protein 

abundance and mRNA levels from fixed time points, RNAseq real time data were mapped 

onto the corresponding position on a pseudotime axis based on the inferred relations between 



real time and pseudotime (i.e the real-time axis was compressed and stretched in accordance 

with the compression and stretching observed in the pseudotime trajectory) 

Organoid mapping on trajectory 

To analyze Yap1 protein abundance along pseudotime, organoids with staining for Yap1 

protein abundance (Yap1 organoids) were mapped on the trajectory inferred from the Lgr5 

dataset based on their area and type (budding organoids or enterocyst).  Yap1 organoids 

where classified into budding organoids or entercysts using an svm classifier. This 

information was then used to assign each organoid to either the budding organoid or the 

enterocyst branch of the trajectory. To define the position on the respective branch, the 

organoid area was used to place each Yap1 organoid into the trajectory bin with the closest 

mean area. Yap1 intensity in each bin was then averaged and smoothed with a moving 

average filter. 

 
Light sheet microscope setup and imaging 

The custom light sheet microscope system (Extended Data Figure 4) is composed of two 

illumination branches (excitation beams shown in blue) and one imaging branch (emitted 

light shown in green). Excitation laser beams (LuxXPlus 488-60, OBIS 561-50 and 

LuxXPlus 630-150) are combined inside a laser combiner (SOLE-6 Light Engine, Omicron-

Laserage Laserprodukte) and laser beams are collimated (0.7 mm beam diameter) at the end 

of optical fiber (kineFLEX; Qioptiq). Neutral density filters (NE10B, NE20B, NE30B, 

NE40B; Thorlabs), mounted in a filter wheel (96A357, Ludl Eletronics Product), are placed 

after the fiber to further attenuate laser intensity. The laser beam is first split into three laser 

branches by using three consecutive beam splitter cube (BS010, Thorlabs); in one laser 

branch the beam size remains unchanged while the in the other two laser branches beams are 

expanded by beam expanders (GBE02-A and GBE05-A, Thorlabs). In this way, the three 

laser branches result in light-sheet thicknesses (FWHM) of 1.1 μm, 2.2 μm and 3.3 μm at the 

sample. Each laser branch is split by a beam splitter cube (BS010, Thorlabs) into the two 

illumination objectives. The following arrangement is replicated in front of each illumination 

objective. Switching between the different laser branches and thus beam diameters is done by 

using a pair of right angle prisms (MRA35-E02, Thorlabs) mounted with a custom made 

support on a rotary stages (SR2812-S, SmarAct) that redirect only one laser branch beam 

through an aperture towards a scan unit. The scan unit comprises two galvanometric scanners 

(6210HM40B, Camtech) and a scan lens (ACA254-075-A, Thorlabs) mounted on a linear 



stage (SLC2490-S, SmarAct). The light sheet is generated by scanning the laser beam with 

the second galvanometric scanner. Light sheet is de-magnified onto the sample by a 10X 0.3 

NA water immersion objective lens (CFI Plan Fluor 10XW, Nikon) and a tube lens (f = 200 

mm; Nikon). A 25X 1.1 NA objective (CFI75 Apo 25XW; Nikon) is used to collect the 

emitted fluorescence. The emitted light is then directed by a prism mirror (87-393; Edmund) 

towards a tube lens (f = 200 mm; Nikon) and image is acquired by an sCMOS camera (Zyla 

4.1, Andor). A motorized filter wheel (96A357; Ludl Electronic Products) which contains the 

emission filters (488 LP Edge Basic Longpass Filter - F76-490; 561 LP Edge Basic Longpass 

Filter- F76-561; HC Dualband Emitter R 488/568 - F72-EY2, Semrock, AHF) is mounted 

before the camera. Because illumination and detection objectives are water dipping lens they 

are fixed on customized aluminum blocks and sealed in a custom made water reservoir made 

of polyaceral that can be filled with water so that the front lenses of all objectives are 

completely covered. 

 

Sample mounting. A custom designed imaging chamber made of polyamide (PA2200) is 3D 

printed using selective laser sintering (RapidObject). A 25 μm thin membrane made of FEP 

(Katco) is placed into a groove of the imaging chamber and glued with biocompatible 

silicone glue (Silpuran 4200; Wacker) applied to the bottom of the chamber and left to cure 

overnight similar to what described in Strnad et al. 201654. The internal surface of the 

membrane is plasma treated and then washed with ethanol once and rinsed three times with 

water before being UV sterilized for 20min. The imaging chamber is placed on a holder 

attached to a three-axis positioning system made of three perpendicularly arranged linear 

positioners (SLC-24; SmarAct) mounted using custom aluminum adapters. The sample part 

of the microscope is enclosed in an environmentally controlled incubator (37 °C, 5% CO2, 

Life Imaging Service). 

 

Organoids Imaging. H2b-mCherry / mem9-GFP organoids were collected and digested with 

TrypLE (Thermo Fisher Scientific) for 20 min at 37 °C. Alive double positive 

(mCherry/GFP) cells were sorted by FACS and collected in medium containing advanced 

DMEM/F-12 with 15 mM HEPES (STEM CELL Technologies) supplemented with 100 

μg/ml Penicillin-Streptomycin, 1×Glutamax (Thermo Fisher Scientific), 1×B27 (Thermo 

Fisher Scientific), 1xN2 (Thermo Fisher Scientific), 1mM N-acetylcysteine (Sigma), 

500ng/ml R-Spondin (kind gift from Novartis), 100 ng/ml Noggin (PeproTech) and 100 

ng/ml murine EGF (R&D Systems). 2500 cells were then embedded in 5ul drop of 



Matrigel/medium in 60/40 ratio. Drops were placed in the imaging chamber and incubated 

for 20 min before being covered with 1ml of medium. For the first three days, medium was 

supplemented with 20% Wnt3a-CM and 10 μM Y-27632 (ROCK inhibitor, STEMCELL 

Technologies). For the first day, in addition, 3µM of CHIR99021 (STEMCELL 

Technologies) were supplemented. After 2 hours incubation in a cell culture incubator the 

imaging chamber was transferred to the microscope kept at 37C and 5% CO2. Different 

single cells were selected as starting positions and imaged every 10 min for up to 5 days. A 

volume of 150 -200µm was acquired with a Z spacing of 2µm between slices. Medium was 

exchanged manually under the microscopy every day. 

 

Light sheet data analysis. For area and volume calculation of light sheet data we proceeded 

as follow. Initially raw data were cropped around the minimum organoids bounding box in 

order to reduce storage space. Data were two time down sampled to speed up processing and 

new Z planes are interpolated to achieve X,Y,Z isotropic voxel size. Each single plane 

intensity image is then converted to binary image based on an intensity threshold. Organoid 

volume, major axis and area are computed from the segmented regions.  

To quantify Lgr5-GFP intensity during organoid development (Video S4) single cells in the 

bud or in the body of the organoid were randomly selected manually and intensity was 

measured at different days of development. 

 

Dll1+ and Paneth cell overlap.  

Number of Dll1+ cells and Paneth cells at different cell stages were quantified manually 

based on anti-Dll11 and anti-Lysozyme antibody staining’s in cropped organoid z-stack 

images.  

 

Yap1 cell state classification 

Nuclear and cytosol mask were obtained as described under Single cell segmentation. A 

nuclei size filter was applied to remove miss-segmentations. Both nucleus and cytosol mask 

are used to calculate intensity statistics for the marker of interest.  

 

Yap1-on/off states. For each nucleus, we first calculate the mean nuclear Yap1 intensity and 

then, normalize it by the corresponding plane-wise Yap1 intensity mean 𝜇𝜇 and standard 

deviation 𝜎𝜎 according to 𝐼𝐼′ = (𝐼𝐼 − 𝜇𝜇) 𝜎𝜎⁄ . The plane-wise mean 𝜇𝜇 and standard deviation 𝜎𝜎 

for this are calculated on the combined nucleus and cytoplasm masks (i.e. the foreground 



covering all cells) of the corresponding plane. The resulting normalized nuclear Yap1 signal 

𝐼𝐼′ is then used to discriminate the different states. Nuclei with normalized nuclear Yap1 

intensity greater than 0.1 were defined as Yap1-on, while those with normalized nuclear Yap1 

intensity less than -0.1 were defined as Yap1-off. Nuclei with values falling into the range [-

0.1, 0.1] were considered as ambiguous and excluded from further analysis.  

By counting the nuclei in Yap1-on and Yap1-off states within an organoid, we calculate the 

relative frequency 𝑒𝑒(𝑘𝑘) of each state 𝑘𝑘 within the organoid and in turn, its’ Yap1-state 

entropy 𝑆𝑆 as 𝑆𝑆 = ∑ 𝑒𝑒(𝑘𝑘) log2 𝑒𝑒(𝑘𝑘)𝑘𝑘∈{on,off} . 

 

Yap1 quantification in Dll1+ cells. To quantify signal intensity of the membrane protein 

Dll1, the intensity statistics were only computed on the border of the cytosol mask (to the 

outside of the cell) in a range of 5 px. The resulting total Dll1 intensity for each cell is then 

normalized by the mean 𝜇𝜇 and standard deviation 𝜎𝜎 of the total Dll1 intensity over all cells of 

the dataset according to 𝐼𝐼′ = (𝐼𝐼 − 𝜇𝜇) 𝜎𝜎⁄ . Cells with normalized total Dll1 intensity values 

greater than 0.5 were defined as Dll1 positive, those with values below -0.1 as Dll1-negative. 

Again, cells in the range [-0.1, 0.5] are considered ambiguous and excluded from further 

analysis. Cell stages with less than one hundred partially Dll1 active organoids were not 

considered for Dll1-positive analysis. 

 

Time-course WT Bulk RNA purification 

RNA was isolated using Single Cell RNA Purification Kit (Norgen Biotek Corporation, Cat 

#51800) pooling 30 wells of 96-well plates (C57BL/6 wild type). RNA purification was 

performed in triplicate and for each day of organoid development (0 hours – 120 hours). 

Three different organoid lines C57BL/6 wild type have been used. A step of DNAse 

treatment was included (RNase-Free DNase I Kit, Cat #25710) for two replicates of samples 

(0 h – 120 h).  

RNA sequencing libraries were prepared using the TruSeq Illumina mRNA Library Prep and 

sequenced with the Illumina HiSeq2500 platform. Reads were mapped to the UCSC mouse 

genome mm10 using STAR (version 2.5.2b, 55) with parameters --outFilterType BySJout --

outFilterMultimapNmax 20 --outMultimapperOrder Random --alignSJoverhangMin 8 --

alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --alignIntronMin 20 --

alignIntronMax 1000000 --alignMatesGapMax 1000000 --outSAMmultNmax 1. Genes 

expression level were quantified with the QuasR Bioconductor package56, using gene 



annotations from the TxDb.Mmusculus.UCSC.mm10.knownGene Bioconductor package. 

Log2(CountsPerMillion) (log2(cpm)) of uniquely mapped genes were used to describe 

similarities and differences among the samples by Principal Component Analysis (PCA) 

(Extended Data Fig. 6a). 

Differentially expressed genes were determined with the package edgeR (version 3.20.5,57) 

by fitting a three-factor model (timepoint + mouse + dnase treatment ) to the counts of genes 

that were detected in 2 or more samples with at least one read per million reads. For 

visualization of gene expression profiles averages of mean-centered log2(cpm) were mapped 

into pseudotime trajectory, applying the time warping shift described above to the fixed time 

points of Rna purification. For calculation of between gene correlations, averages of mean-

centered log2(cpm) were used. The gene correlation matrix was then hierarchically clustered 

using Euclidian distances between correlation profiles. To display clusters profiles, clusters 

averages and quantiles were calculated. Cluster enrichment analysis was performed with 

DAVID Bioinformatics Resources 6.8. 

Transcription Factor Binding Site Analysis was done applying an elastic net regression model 

(package glmnet, 58) to the differential gene expression 24 hours versus 0 hours as follows: 

First, promoter regions were defined as a windows of 1500 bp centered on the transcript start 

site, only retaining a single region per gene. Transcription factor binding sites (TFBS) for 519 

vertebrate motifs from the JASPAR2016 Bioconductor package (version 1.6) were predicted 

by converting the positional frequency matrices to log2-odds matrices (using a pseudocount 

of 1.0 per position and base and a uniform base frequencies as background), and then 

scanning the promoter regions with a cut-off score of 10.0 or the maximal motif score if less 

than 10. For each promoter region, the fraction G+C bases (fGC) and the CpG observed over 

expected ratio (oeCpG), defined as fraction of CG dinucleotides divided by the product of the 

fractions of C and G mononucleotides, were calculated and used in the linear model as 

regressors in addition to the predicted numbers of TFBS to control for sequence composition. 

The elastic net model was fit using alpha of 0.2 and lambda of 0.0588 identified based on a 

10-fold cross-validation grid search over combinations of alpha and lambda values. The fitted 

model coefficients (beta values) represent the magnitude of contributions of each 

transcription factor to the differential gene expression between the two time-points. For 

visualization, only transcription factors with positive beta values (TFBS in the promoter is 

predicted to increase the transcription of the target gene from 0 hours to 24 hours) and 

positive log2FoldChange (log2FC) between 24 hours and 0 hours were considered.  



To assess whether gene expression changes between 24 hours and 0 hours in the bulk RNA 

sequencing data resemble the observed expression changes in a intestine regenerative 

response, Pearson correlation coefficients between log2FC(24 hours-0 hours) and 

log2FC(Yap1 KD-Yap1 OE) expression changes were calculated.  

 

Single cell RNA-Sequencing  

Single cells were isolated from organoids at 72 hours and organoids at 120 hours (C57BL/6 

wild type) and passed through a cell strainer with a pore size of 30 µm. Cellular suspensions 

were loaded on a 10x Genomics Chromium Single Cell instrument to generate single cell 

GEMs. Single cell RNA-Seq libraries were prepared using GemCode Single Cell 3’ Gel Bead 

and Library Kit according to CG00052_SingleCell3'ReagentKitv2UserGuide_RevB. GEM-

RT was performed in a Bio-Rad PTC-200 Thermal Cycler with semi-skirted 96-Well Plate 

(Eppendorf P/N 0030 128.605): 53 °C for 45 minutes, 85 °C for 5 minutes; held at 4 °C. 

After RT, GEMs were broken and the single strand cDNA was cleaned up with DynaBeads® 

MyOneTM Silane Beads (Life Technologies P/N 37002D). cDNA was amplified using a 

Bio-Rad PTC-200 Thermal cycler with 0.2ml 8-strip non-Flex PCR tubes, with flat Caps 

(STARLAB P/N I1402-3700): 98 °C for 3 min; cycled 12x: 98 °C for 15 s, 67 °C for 20 s, 

and 72 °C for 1 min; 72 °C for 1 min; held at 4 °C. Amplified cDNA product was cleaned up 

with the SPRIselect Reagent Kit (0.6X SPRI). Indexed sequencing libraries were constructed 

using the reagents in the Chromium Single Cell 3’ library kit V2 ( 10x Genomics P/N-

120237), following these steps: 1) Fragmentation, End Repair and A-Tailing; 2) Post 

Fragmentation, End Repair & A-Tailing Double Sided Size Selection with SPRIselect 

Reagent Kit (0.6X SPRI and 0.8X SPRI); 3) adaptor ligation; 4) post-ligation cleanups with 

SPRIselect (0.8X SPRI); 5) sample index PCR using the Chromium Multiplex kit (10x 

Genomics P/N-120262); 6) Post Sample Index Double Sided Size Selection- with SPRIselect 

Reagent Kit (0.6X SPRI and 0.8X SPRI). The barcode sequencing libraries were quantified 

using a Qubit 2.0 with a Qubit TM dsDNA HS Assay Kit (Invitrogen P/N Q32854) and the 

quality of the libraries were performed on a 2100 Bioanalyzer from Agilent using an Agilent 

High Sensitivity DNA kit (Agilent P/N 5067-4626). Sequencing libraries were loaded at 

10pM on an Illumina HiSeq2500 with 2 × 50 paired-end kits using the following read length: 

26 cycles Read1, 8 cycles i7 Index and 98 cycles Read2. The CellRanger suite (1.3.0) was 

used to generate the aggregated gene expression matrix from the BCL files generated by the 

sequencer based on the mm10 Cell Ranger mouse genome annotation files. 



Single-cell expression profiles (raw UMI counts) were analysed using Griph (see below), 

which yields a graph encoding cell to cell relationships along with a 2D embedding. The 

graph represents cells as nodes and similar cells are connected by weighted edges. This graph 

was also used to identify the k-nearest-neighbours of each cell for smoothing of expression 

values in visualizations as indicated. The 2D embedding generated using the LargeVis 

module from Griph (see below) places similar cells close to each other in two dimensions.  

In order to control for variable cell size and quality, marker gene expression in individual 

cells were normalized as follows: For a given set of marker genes, the log2 scaled UMI 

counts were first smoothed by calculating the average over 10-nearest-neighbor cells and 

then summed up (eobs). Then, 200 control gene sets, containing equal numbers of genes as the 

marker genes and having a similar average expression distribution over all cells were 

randomly sampled. The mean of the expression of these control gene sets was calculated 

(eexp) and used to generate a normalized marker gene expression score as ns = (eobs – eexp) for 

mapping to colors. For all the 72 hours cells and for 72 hours cells not expressing Paneth, 

Goblet, Enteroendocrine, Enterocyte or Stem cell markers, Spearman correlation coefficients 

between the normalized expression scores of Yap1 target genes (Table S1) and Notch 

receiving cell marker genes (Dll1, Dll4, Jag1, Jag2, Atoh1) were calculated.  

For the identification of genes that are co-expressed with Yap1 target genes, raw UMI counts 

for variable genes used by griph (see below) from 72 hours organoid cells were normalized 

using “computeSumFactors” from the scran package version 1.10.159 and “normalize” from 

the scater package version 1.10.060.  The average Yap1 target gene expression was calculated 

for each cell as the mean log2 normalized UMI over variable Yap1 target genes (n=135), and 

cells with high expression of Yap1 targets were selected as the cells with a value greater than 

0.8 (75 cells). Spearman correlation coefficients and p values were then calculated, separately 

in these cells and in all other cells, between the average Yap1 target gene expression and the 

log2 normalized UMI counts in other variable gene (n=8,025) using the R function cor.test. 

Finally, raw p values were corrected for multiple testing by calculating false discovery rates 

using the R function p.adjust with method=”fdr”. Annotation enrichment of genes that are co-

expressed with Yap1 target genes or anti-correlated with Yap1 target genes expression was 

performed with DAVID Bioinformatics Resources 6.8. 

 

Single Cell Clustering and Visualization Using Griph 

The objective of any single cell clustering and projection technique is to obtain a high-quality 

embedding of the cell gene-count data that, ideally, both adequately captures the biological 



variance and at the same time is robust to extraneous technical noise. Griph (Graph Inference 

of Population Heterogeneity) is a graph-based clustering and visualization framework that: 

• Uses as features a small set of data-derived cell prototypes that encapsulate the 

biological variability inherent to the dataset at hand and ensures that cells are 

embedded in a subspace with an appropriate level of granularity.  

• Is robust in the presence of severe signal distortions typically present in single 

cell-datasets. 

• Can accurately identify cell types while being lean on memory usage and 

operating at near-linear time complexity by employing state-of-the-art 

techniques in graph structure estimation and partitioning along with recent 

advances in efficient graph representation, querying and projection. This extends 

the potential applicability of our algorithm to datasets with millions of cells. 

• Naturally controls for known sources of unwanted variance by enforcing 

topological constraints on node connectivity. 

Pre-processing of data before input to Griph  

By default Griph operates on raw read counts and employs a strategy for feature selection 

(see section 1b.). As such, there is no need to employ pre-processing steps for library 

normalization or gene filtering. There is, however, no policy for cell filtering and therefore 

exclusion of low-quality cells (e.g based on library size and/or number of mitochondrial 

reads) is recommended before employing Griph. 

 

Algorithmic details 

The algorithm proceeds in two steps: 

1. In an initialization step a graph is constructed and clustering is performed on a 

representative subset of cells. 

2. In the second step the cluster centroids estimated during initialization serve as 

reference bases for efficiently constructing a full graph of the data and for estimating 

clusters across the complete set of cell libraries 

1. Graph reconstruction and cluster identification of cluster on a sampled cell population 

1a. Cell sampling 

Random sampling on imbalanced datasets in terms of cell type frequencies can result in 

omission of rare cell types along with overrepresentation of the cells that belong to the most 



common classes. In order to sample effectively the space of cell types we employ a filtering 

approach: 

The average similarity of a cell to the remaining cell population is partly a function of the 

frequency of that cell type’s library.  In addition, average similarity of cells is an increasing 

function of the cell library size. We observed that a simple linear model adequately captures 

the dependence of average cell similarity, as this is captured by Spearman’s rho, to the library 

size. We thus use this fit in order to exclude a preset fraction of cells f that have an average 

similarity higher that what is expected based on their library size. 

1b. Selection of informative genes 

Prior to algorithm initialization genes with 0 counts or negligible variance (coefficient of 

variation, CV< 0.001) across all libraries are removed. Selection of informative genes is 

based on estimation of their dispersion on the sampled subset of cells. We used the semi-

parametric approach followed in 61. Briefly, genes are split in bins according to their mean 

expression across the whole dataset. The median and median absolute deviation of the genes’ 

coefficient of variation are then calculated for each bin.  

Finally, a robust Z-score is calculated for each gene i belonging to a gene expression bin bi 

as: 

 

𝑍𝑍𝑖𝑖 =
𝐶𝐶𝐶𝐶𝑖𝑖 −𝑀𝑀𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑖𝑖(𝐶𝐶𝐶𝐶𝑏𝑏𝑖𝑖)

𝑀𝑀.𝐴𝐴.𝐷𝐷(𝐶𝐶𝐶𝐶𝑏𝑏𝑖𝑖)
 

 

Selection of the top  n  overdispersed genes is then simply based on the sorted vector of the 

calculated robust Z-scores.  

 

1c. Kernel construction 

A squared similarity matrix of the sampled cells is constructed using a composite kernel from 

four similarity metrics: 

1. 1-Canberra distance on log transformed gene counts. 

2. Pearson’s correlation coefficient on log transformed count. 

3. Spearman’s correlation coefficient on the raw gene counts. 

4. 1-Hellinger distance on the raw gene counts. 

Each of these metrics captures different aspects of the gene count distributions and offer 

complementary views of cell-to-cell similarity.   



The four metrics are combined in a single similarity index between two cells ci, cj using the 

kernel function: 

 

𝐾𝐾�𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀(𝑅𝑅𝑖𝑖2,𝑅𝑅𝑗𝑗2) 
 

where cosd is the cosine distance and Ri, Rj   are the mean-centered rank vectors of the four 

metrics of the two cells against the remaining cells. 

1d. Graph-structure estimation and batch correction using the graphical lasso. 

At this point we cast the problem of cluster identification as a graph community detection 

task.  Note that the similarity matrix estimated above is symmetric and non-negative and can 

therefore be used as the input for graphical model selection methods that are typically applied 

in undirected graphical models (UGMs). We use the QUIC implementation 62 of the 

graphical lasso algorithm (glasso) for regularized inverse covariance matrix estimation 63 in 

order to obtain a sparse graph structure. The glasso algorithm enforces an L1 type 

regularization to its estimate of the inverse covariance matrix using the objective function: 

 

log detΘ − tr(SΘ)− ‖Θ‖1 ∗ 𝑅𝑅 

 

where Θ is an estimate Σí1 for the inverse covariance matrix, S is the empirical covariance 

matrix of the data, ‖Θ‖1 is the L1 norm of Σí1, and R is a regularization parameter. Non-zero 

entries of the Σí1 directly correspond to the edges in the reconstructed graph. Edges are 

finally weighted by the corresponding entries of S. 

Importantly, glasso can accommodate variable-specific regularization terms. In that case R is 

a p x p regularization matrix and ∗ indicates component-wise multiplication.  This 

reformulation allows us to inject prior information on variable relationships to the 

optimization function. We take advantage of this formulation to encode batch levels; same-

batch variables are penalized with a higher regularization parameter alleviating the graph 

from batch-originating topologies. In the extreme, case edges between same batch variables 

can be completely disallowed and can only become part of the same graph module through 

intermediary connections that indicate batch-independent relationships. Thus, batch-encoding 

using topological constraints provides a flexible, natural way for batch correction avoiding 

corruption and/or overcorrection of the input data. 

1e. Edge reweighting using structural similarity of nodes.  



Noise distortions in the input data can give rise to spurious structures in the graph topology. 

Typical examples are long vertex chains resulting from library-size gradients or hub-like 

structures produced by high-library-quality cells. In order to moderate such effects, we 

introduce an edge reweighting step using personalized pagerank (PPR), a measure of 

structural similarity between nodes that captures both local and global properties of the graph 

topology 64. PPR quantifies the probability of a random walk landing on a terminal vertex t 

when starting from a source vertex s: 

 

𝑃𝑃𝑃𝑃𝑅𝑅𝑠𝑠[𝑠𝑠] = ℙ[𝑋𝑋𝐿𝐿 = 𝑠𝑠] 
 

where XL is the landing vertex of a random walk of length 𝐿𝐿~𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼).  
Edge weights are then updated using a symmetrized version of PPR: 

 

𝑊𝑊𝑖𝑖𝑗𝑗
∗ =𝑊𝑊𝑖𝑖𝑗𝑗 ∙

(𝑃𝑃𝑃𝑃𝑅𝑅𝑗𝑗[𝑠𝑠] + 𝑃𝑃𝑃𝑃𝑅𝑅𝑖𝑖[𝑗𝑗])
2   

 

PPR reweighting reduces the effects of noise distortions allowing information to flow 

through the graph, effectively flattening the edge-weight distribution. 

1f. Graph sparsification 

In order to increase efficiency of steps whose complexity depends on graph sparsity (mainly 

PPR calculation and community detection, see complexity analysis table) the graph is further 

sparsified after each steps 1d. and 1e.  We use two complementary graph sparsification 

policies: 

• mutual k-nearest neighbor-based pruning where an edge is retained if it is among 

the top k neighbors of both adjacent vertices. 

• Top k-nearest neighbors fraction-based pruning where an edge is retained if its 

weight is within the top f fraction of edge weights of the vertex. 

1g. Cluster identification using community detection. 

Identification of clusters is performed using the multilevel Louvain algorithm for community 

detection 65 on the reweighted graph. 

 

2. Efficient graph re-construction and clustering for the complete cell dataset  

 



In the second step of the algorithm we utilize the centroids of the c clusters identified in the 

sampling step as reference bases to calculate the full kernel matrix for the full cell population 

p. Kernel matrix calculation is performed as above, that is: 

 

𝐾𝐾�𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀(𝑅𝑅𝑖𝑖2,𝑅𝑅𝑗𝑗2) 
 

where now 𝑅𝑅𝑖𝑖,𝑅𝑅𝑖𝑖𝑗𝑗 are vectors of length c.  

Note that the complexity of calculating R for all cells with n features (genes) is O(c p n) (as 

opposed to O(p2 n) ), linear to the numbers of cells, effectively reducing calculation time.  

However, calculation of the full matrix K for graph construction would still require O(p2c) 

calculations. We sidestep explicit calculation of K using the LargeVis approach for 

construction of an approximate k-nearest neighbor graph 66. LargeVis combines random 

projection trees with neighbor exploring techniques to efficiently obtain a highly accurate k-

nearest neighbor graph. LargeVis queries can operate on cosine distance space allowing its 

direct application to this task. The complexity of LargeVis graph construction is O(p) thus 

preserving linear complexity of graph reconstruction to the number of cells.  

The graph is further sparsified at this step as described above (section 1f). 

Finally, cluster identification on the full reconstructed graph proceeds as above using the 

multilevel louvain algorithm for community detection.  

 

Graph Visualization 

The weighted adjacency matrix A of the full graph is used directly or after conversion to  a 

distance matrix (1-A) as the input for  three different methods of graph visualization: 

• LargeVis 66 provides a scalable and effective method for graph visualization. 

• t-Distributed Stochastic Neighbor Embedding (tSNE) 67.  

• A graph projection based on the Fructherman Reingold algorithm for force-

directed graph drawing 68. 

 

Implementation  

• The code for selection of informative genes was adapted from the authors 

implementation available at: https://github.com/10XGenomics/single-cell-

3prime-paper. 

https://github.com/10XGenomics/single-cell-3prime-paper
https://github.com/10XGenomics/single-cell-3prime-paper


• For graph manipulation and projection, personalized pagerank calculation and 

community detection we used the igraph R package implementations . igraph is 

available at http://igraph.org/ 

• The LargeVis code for k-nearest neighbor graph construction and visualization 

was ported to Griph from the R implementation available at: 

https://github.com/elbamos/largeVis 

• The Rtsne R package used for tSNE projections is available at https://cran.r-

project.org/web/packages/tsne/  

 

Griph robustness analysis and comparison to other methods 

In order to compare the lower dimensional embedding produced by griph, and also to analyze 

the sensitivity to the method for variable gene selection, 4 different embedding approaches 

(griph/LargeVis, PCA, PCA combined with t-SNE or diffusion maps) were systematically 

applied to 5 different sets of variable genes (selected using griph to retain 10%, 25% or 50% 

of genes per bin, by Michaelis-Menten fitting of the gene dropout rates as implemented in 

M3Drop, or by the mean-variance fitting procedure described in 69.  

 

http://igraph.org/
https://github.com/elbamos/largeVis
https://cran.r-project.org/web/packages/tsne/
https://cran.r-project.org/web/packages/tsne/

