
1Scientific RepoRtS |         (2019) 9:19018  | https://doi.org/10.1038/s41598-019-54348-y

www.nature.com/scientificreports

investigating the drivers of the 
spatio-temporal patterns of genetic 
differences between Plasmodium 
falciparum malaria infections in 
Kilifi County, Kenya
Josephine Malinga1,2, Polycarp Mogeni  3, Irene omedo3, Kirk Rockett  4, Christina Hubbart  4, 
Anne Jeffreys4, Tom Williams3,5, Dominic Kwiatkowski  4,6, Philip Bejon3,7 & Amanda Ross  1,2*

Knowledge of how malaria infections spread locally is important both for the design of targeted 
interventions aiming to interrupt malaria transmission and the design of trials to assess the 
interventions. A previous analysis of 1602 genotyped Plasmodium falciparum parasites in Kilifi, Kenya 
collected over 12 years found an interaction between time and geographic distance: the mean number 
of single nucleotide polymorphism (SNP) differences was lower for pairs of infections which were both 
a shorter time interval and shorter geographic distance apart. We determine whether the empiric 
pattern could be reproduced by a simple model, and what mean geographic distances between parent 
and offspring infections and hypotheses about genotype-specific immunity or a limit on the number of 
infections would be consistent with the data. We developed an individual-based stochastic simulation 
model of households, people and infections. We parameterized the model for the total number of 
infections, and population and household density observed in Kilifi. The acquisition of new infections, 
mutation, recombination, geographic location and clearance were included. We fit the model to the 
observed numbers of SNP differences between pairs of parasite genotypes. The patterns observed in 
the empiric data could be reproduced. Although we cannot rule out genotype-specific immunity or a 
limit on the number of infections per individual, they are not necessary to account for the observed 
patterns. The mean geographic distance between parent and offspring malaria infections for the base 
model was 0.5 km (95% CI 0.3–1.5), for a distribution with 68% of distances shorter than the mean. Very 
short mean distances did not fit well, but mixtures of distributions were also consistent with the data. 
For a pathogen which undergoes meiosis in a setting with moderate transmission and a low coverage 
of infections, analytic methods are limited but an individual-based model can be used with genotyping 
data to estimate parameter values and investigate hypotheses about underlying processes.

Ultimately the spatial and temporal patterns of malaria infections at the community level are made up of move-
ments of individual mosquitoes, human hosts and the parasites inside them. Understanding how malaria 
infections spread locally and the processes leading to the observed spatial and temporal distribution patterns 
is important for the design of interventions aiming to reduce and interrupt transmission by targeting foci, to 
estimate the spread of drug resistance, or to prevent resurgence1,2.

Investigating genetic patterns can give insights into how infections spread3–7. The availability of 
high-throughput genotyping methods has enabled the genetic characterization of the malaria parasite, identifying 
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polymorphisms on the genome that can be used to infer the degree of genetic relatedness between infections5,6. 
Using single nucleotide polymorphism (SNP) genotyping, some studies show clustering of parasites into distinct 
sub-populations between Thai and African8–10, West and East African9,11, and Asia and African isolates9,11 while 
others report persistent clustering of genetically identical parasites across years in Senegal8. On a sub-national 
scale, a study from school surveys in western Kenya, an area of high malaria transmission, found no spatial 
structure to genetic relatedness over geographic distance in a well mixing parasite population4. Studies have also 
used genetic information to estimate the risk of imported infections7,12, to estimate transmission networks in 
Swaziland13, to provide confirmatory signals of the decline of transmission in Senegal14,15, and to describe the 
relatedness of parasite pairs between proximal clinics at the Thai-Myanmar border16 and focal transmission in 
Zambia17. However, there are few studies focusing on parasite genotype patterns in the community on a fine scale, 
such as within a district.

A recent study investigated Plasmodium falciparum genotypes in two districts in Kenya, and in one district in 
The Gambia3. All possible pairs of observed parasite genotypes within each site were formed and the number of 
SNPs different calculated. In the sites with longitudinal data, the effect of the time interval on the pairwise SNP 
differences was modified by geographic distance. For short distances, the number of SNPs different increased with 
time, but saturated as distance between parasites increased3.

While these studies provide information on the distribution of malaria parasite genotypes over space and 
time with qualitative inferences on parasite mixing, the underlying parameters and processes leading to these 
patterns have not been well established and the geographic distances between parent and offspring infections 
remain unclear.

In many malaria endemic areas, vector movement is likely to be the most frequent mechanism for the spread 
of infections. Studies have shown that mosquitoes tend to fly relatively short distances from their breeding sites 
in search of blood meals18–20, depending on the distance to human settlements, the availability of easily accessible 
hosts, and whether any barriers to movement exist19,20. In Kilifi, mosquitoes were recaptured in households within 
0.7 km of larval habitats up to 14 days after release18, while in other settings flight distance from release points 
including breeding sites was reported to range from less than 100 m to 3 km21–24, or further25. However, there 
is limited information on the distances between households moved by the mosquito from the initial bite when 
the mosquito becomes infected to the subsequent bites when further humans are infected. After a blood meal, 
the mosquito looks for a resting place to digest the blood and develop eggs and after two to three days, searches 
for a breeding site to oviposit before seeking another host. The extrinsic incubation period (EIP) takes approxi-
mately 10 to 12 days for the mosquito to become infectious, corresponding to roughly two or three feeding cycles. 
Human movement may also inform malaria distribution patterns26,27, especially in populations with low trans-
mission and high rates of imported infections27,28. Hence, simply knowing the dispersal distance from breeding 
sites does not lead to a calculation from which we can predict the mixing of parasite genotypes.

The interaction between time and geographic distance on genetic differences found by Omedo et al. raises 
questions about the processes behind it. The explanation may be stochastic drift or may require additional pro-
cesses such as genotype-specific immunity. The effective repertoire of antigenic variation may be reduced by 
immunity raised from the previous infections with the same or similar genotype. Deliberate infections of the 
same strain in naïve adults as malaria therapy led to shorter patent infections with lower parasite densities than 
infections with a different strain29,30. It is not also known if there is a limit on the number of infections that one 
person can have at a time. There is saturation in the mean multiplicity of infection (MOI) detected with transmis-
sion intensity31,32 but this may be due to the limits of detection. This would decrease the chance of large numbers 
of similar infections circulating in the same household. Recombination may occur in the mosquito during meio-
sis if gametocytes from multiple infections are drawn up in a blood meal. Recombination is likely to be dependent 
on the intensity of transmission and the relative gametocyte densities of the infections33,34 and may play a role in 
the distribution of parasite genotypes across time and space, mainly through reshuffling of alleles that are already 
present.

Our aim is to assess which processes and parameter values are consistent with the observed spatial and tempo-
ral patterns of parasite genetic differences observed in Kilifi County, Kenya3. We develop a stochastic simulation 
model and fit it to the observed number of SNPs different between pairs of parasite genotypes. We estimate the 
distance between parent and offspring malaria infections, and investigate the role of recombination, imported 
infections, and hypotheses about functions of immunity. We evaluate the ability of this method to recover known 
parameter values using simulated data.

Methods
Data sources. Study site. The study was conducted within the area covered by the Kilifi Health and 
Demographic Surveillance System (KHDSS) on the Kenyan Coast. The area covers 891 km2 with a population 
of approximately 260,000 people35. Most of the residents live off small scale farming and fishing. Malaria trans-
mission in Kilifi is seasonal36, with long rains between April and June and short rains between October and 
December. The malaria prevalence reported from both health facilities and community surveys declined over the 
period of the study37,38, attributed mainly to increased coverage of control interventions, improved case manage-
ment and environmental changes37,39.

Sample collection and genotyping. The details of the sample collection and genotyping process have been 
described elsewhere3. Briefly, 1602 P. falciparum -infected blood samples were collected over 14 years between 
1998 and 2011. Of these, 1259 (79%) samples were from hospital cases in children between three months and 13 
years old, 195 were from community surveys with participants between 3 weeks and 85 years old and 148 were 
from short term laboratory cultured samples3. The residence location of the participant providing the sample was 
recorded. The samples were genotyped using the Sequenom MassARRAY iPLEX platform40. Up to 256 SNPs were 
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typed in each sample, across the 14 parasite chromosomes3. Sample success rates and genotyping pass rates were 
determined for each sample and for each SNP. SNPs and samples with high failure rates (>30%) were excluded 
from the final analyses3.

Data preparation. For the present study, the number of SNPs included, ns, is 53. We selected bi-allelic SNPs with 
a minor allele frequency (MAF) of greater than 5%. We denote the presence of a major allele at each SNP position 
by 1 and the minor allele by 0. Each infection is then characterized by a string of zeros and ones to represent the 
observed alleles at each of the selected loci. The base-10 number is generated from this base-2 number to give a 
unique identifier for each infection genotype. We assume that the genotypes represent single infections.

Calculating pairwise time, distance and SNP differences. Following Omedo et al.3, the observed parasite gen-
otypes were paired and the number of SNPs different between them used as the measure of genetic difference. 
Pairwise differences in time in days and distance in kilometres were also computed.

Modelling strategy. We aimed to determine which processes and parameter values were consistent with the 
observed patterns of genetic differences over time and distance in Kilifi, where the observed numbers of SNPs 
different were fewer for parasite pairs with both a shorter time interval and a shorter geographic distance apart3.

We developed a simple individual-based stochastic simulation model describing how malaria infections are 
transmitted over time and space. The acquisition and clearance of individual blood-stage infections in people liv-
ing within homesteads was simulated. The site-specific inputs such as house density, number of people per house, 
the total number of infections and prevalence over time were derived from published estimates from Kilifi35,37. 
We extended the base model to a set of model variants including the effects of imported infections and hypotheses 
about whether there needs to be genotype-specific acquired immunity or a limit on the number of current infec-
tions per individual for model predictions to be consistent with the patterns in the data.

We objectively measured how well the model variants and parameter values fit the data using a likelihood 
function which compares the numbers of SNPs different in pairs of blood samples to those from pairs of simu-
lated infections drawn from the same time points and closest locations. We estimated the mean distance between 
parent and offspring infections and the probability of recombination in multiply infected individuals.

Base model. We refer to the most simple simulation model as the “base model”. The simulation model was 
seeded with a number of initial current infections. Households and people within households were randomly 
selected for each initial infection. The initial infection genotypes were generated by randomly selecting alleles 
based on the MAF in the observed data at each locus for the selected SNPs.

At each five-day time-step, each current infection could give rise to new infections. The number of new infec-
tions for an infection i of age a at time t, niat, was stochastic and was drawn from a Poisson distribution with mean 
μat, so that niat ~ Poisson(μat). The mean number of new infections, μat, was the product of the relative infectious-
ness to mosquitoes of an infection of age a, Ia, and a constant, mt, so that μat = Iamt (Table 1). Values of mt were 
fixed to generate the number of infections which was set to the estimated prevalence in Kilifi multiplied by the 
number of individuals and the MOI corresponding to the prevalence and estimated by a systematic review (32, 
Malinga et al. submitted). Ia followed a decay function which was derived from the estimated period of higher 
infectiousness of an infection41.

Each new infection was assigned a genotype. The genotype was the same as that of the parent infection except 
for two processes, mutation and recombination. Mutations may occur in the new infection, where each allele 
mutated with probability pm. In individuals with more than one current infection, recombination occurred with 
probability pr. If a new infection was the product of recombination, then the infection with which it recom-
bines was drawn at random from the remaining infections in the same individual. The two infections may have 
the same genotype, in which case selfing occurs. Recombination hotspots for different chromosomes have been 
reported42,43, but we assumed that the probability of a break is equal along the length of the chromosome and each 
chromosome could break in only one place42. The new recombinant infection had one genotype in the base model 
due to computational demands. A model version allowing four different sibling genotypes as a consequence of 
meiosis was also included. However, this version substantially increased complexity for little gain in accuracy: 
infections are expected to lead to zero or one subsequent infection due to declining transmission, the chance of 
selecting a pair of simulated infections arising from the same recombinant infection is small and the number of 
infections is tailored to that of Kilifi thus either co-infections or separate infections would allow a similar number 
of recombinations. The effect of a model not capturing the full complexity of the recombinations in the observed 
data would likely be conservative by increasing the imprecision of the estimates. We assumed a constant proba-
bility of clearance of each infection in a five-day time-step, pc.

Each new infection was also assigned a homestead. The homestead was selected randomly, with probability 
according to a function of the distance from the location of the current infection. We assumed that the probability 
follows a normal kernel, simulating diffusion. The cumulative distance of Brownian motion at a specified time 
is given by the kernel for positive distances of a normal distribution with mean of zero and a standard deviation 
denoted by σ. Therefore, the mean distance between parent and offspring infections is given by σ, and 68% of 
distances are shorter than this value (Fig. 1). The probabilities are not scaled so that an isolated household has a 
lower chance of transmitting to other households than does a house which is close to other houses. An individual 
within each homestead was selected at random to host the new infection.
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Model variants. We included alternative model variants to investigate the effect of imported infections 
and whether hypotheses about specific immunity are supported by the observed data. We simulated (i) the base 
model, (ii) the base model with imported infections, whose alleles were chosen with probability equal to the 
individual allele frequencies, (iii) the base model with a limit on the number of current infections: new infections 
cannot establish in a person if they already have the maximum permitted number of infections, (iv) the base 
model with acquired immunity to recently seen genotypes: a new infection cannot establish in a person if they 
have already seen a number of genotypes with a limited number of SNPs different in a recent time period, (v) the 
base model with heterogeneity in transmission at the household level, and (vi) the base model with each combi-
nation of pairs of (ii)–(v).

We did not simulate acquired immunity in individuals in general, but only specific acquired immunity to 
recently seen genotypes since it may affect the spatial and temporal distribution of parasite genotypes.

Model inputs. The area simulated. Population and household density estimates were derived from the 
KHDSS surveillance reports (Table 2). We required 20 homesteads per kilometer squared, with eight residents 
per homestead. Using the estimated parasite prevalence in Kilifi37, and an estimate for MOI of 1.5 corresponding 
to the prevalence31, we would require approximately 200 malaria infections per square kilometer at the beginning 
of the study period declining to 25 by the end. For the whole study area of 891 km2, however, this would have 
high computational demands. Instead we simulated an area of 9 km by 9 km. This is the largest size that could be 
run within 24 hours for the base model and comfortably covers the range of zero to 3 km where the interaction 
between time and distance was observed3. We included 1800 homesteads each with eight people. The number of 
simulated infections present in the 9 km by 9 km square at the same time is around 13,000 at the beginning of the 
study period declining to 2,000 at the end of the study.

At the edge of the grid, infections have a restriction on the direction in which they can move. To avoid arti-
ficially pushing too many infections back towards the centre of the grid, we specified that current infections in 

Quantity Description Units of measurement

ns number of SNPs positive integer

a age of an infection five-day time-step

t time from start of simulation five-day time-step

niat number of new infections for infection iof age a at time-step t Integer, greater or equal to zero

μat mean number of new infections for an infection of age a at time-step t Numeric, greater or equal to zero

mt mean number of new infections for an infection at time-step t Numeric, greater or equal to zero

Ia relative infectiousness to mosquitoes of an infection of age a Numeric, 0 ≤ Ia ≤ 1

pm probability of mutation for one allele per infection cycle Probability

pc probability of clearance per five-day time-step Probability

pr probability of recombination conditional on multiple infections in a host Probability

σ mean distance between parent and offspring infection Kilometres

Table 1. Quantities in the simulation model.

Figure 1. Examples of the normal distribution probability density function for positive values of the distance 
between parent and offspring infections. The dotted lines mark the mean of the distribution; Red line = 0.5 km, 
Blue line = 1.5 km.
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a 5% border at the edge of the 9 km by 9 km grid give rise to half as many new infections per time-step. We used 
the central 6 km by 6 km area for fitting, allowing a 3 km border to minimize edge effects on the pattern of genetic 
differences.

Number of infections and model run time. The model was initialized with 13,000 current infections, distributed 
randomly across homesteads and to individuals within the homesteads.

The model running period was divided into three phases. To achieve the required numbers of infections over 
time, values of mt, the multiplier for the number of new infections for a current infection in time-step t, were set 
to be constant within but to vary between the different phases of the simulation. The value of mt also needed to 
vary slightly according to the input parameter values, in order to reach the required numbers of infections in the 
study area. The initial phase was made up of 1000 five-day time-steps with mt set to lead to an increasing number 
of current infections. This phase was not necessary if the number of initial infections was equal to the number 
required at the start of the study period. The second phase had 1000 time-steps with mt set to keep the number of 
infections constant as a warm-up period to allow the structure in the genetic differences to develop, and the study 
period phase covered the 850 five-day time-steps for the observation period with mt set to reproduce the decline 
in the number of infections observed in Kilifi.

Sensitivity analysis. We conducted sensitivity analyses to investigate the influence of input parameter values 
where the real value was unclear. These include varying the amount of clustering of the distribution of households 
within the study area, the number of initial current infections, the warm-up period and the size of the simulation 
area.

There is also uncertainty surrounding the genotyping of infections from samples collected from individuals 
with multiple P. falciparum infections. It may be that a dominant infection is captured during genotyping, or that 
the process selects different alleles from different infections. For the base model, we assume that only one of the 
infection genotypes is sampled from individuals with multiple or recombinant infections. However, we investigate 
the effect of detecting a mix of alleles for different SNPs from different infections in the same person.

fitting the models to the data. The model was fitted to the data by comparing the number of SNPs differ-
ent between pairs of simulated infections to the number of SNPs different between the observed infections. The 
simulated infections were matched to the observed infections on time-step and location.

The study area was divided into 6 km by 6 km grid squares. The locations of each observed infection in each 
square were transformed from GPS co-ordinates into the co-ordinates of the 6 km by 6 km area, and the date that 
the sample was collected converted into the time-step of the simulation. We nest the 6 km by 6 km square within 
the 9 km by 9 km simulated square. The 3 km buffer serves to provide the correct spatial structure for infections 
within the nested area.

For each observed infection, a number of simulated infections were selected at exactly the same time-step. 
Infected individuals closest to the location of the observed infection were identified, and a maximum of one infec-
tion per individual was sampled. To balance the effects of stochasticity, the requirement for selected infections to 

Parameter Value Reference

Kilifi Characteristics

population density 260,000 people 35

area size (in km2) 891 35

median number of people per homestead (IQR) 8 (6–11)

median homestead density per km2 (IQR) 20 (7–58) (a)

estimated parasite prevalence 60% in 1998; 10% in 2011 37

number of infections per km2 200 in 1998, 25 in 2011 (b)

mean number of new infections per five-day time-step(μt) Varies (c)

General fixed inputs

probability of clearance per five-day time-step, pc 0.025 (d)44,60

probability of mutation per SNP, pm 2.0 × 10−7 (e)

relative infectiousness of an infection by age of infection, Ia Varies (f)41

Table 2. Inputs to the model. (a) The co-ordinates for households in the simulated 9 km by 9 km grid were 
randomly drawn from two independent uniform distributions. (b) The expected number of infections was 
derived from microscopy and RDT prevalence data and multiplied by the MOI corresponding to the prevalence 
in a systematic review (32, Malinga et al. submitted). (c) The values of μt are fixed according one of the phases 
of the simulation to produce the correct numbers of infections estimated for Kilifi in (b). (d) Assuming an 
exponential decay function, a probability of clearance of 0.025 per five-day time-step corresponds to a mean 
duration of infection of 200 days56–58. (e) The probability of a mutation per base pair per generation has been 
estimated to be 1.7 × 10−9 59. We multiplied this by the estimated number of generations in the liver stage, for 
the gametocytes and in the asexual blood-stage, each of 48 hours, before the mature gametocytes are taken 
up in a blood meal. The probability of at least one mutation per SNP per infection cycle is then approximately 
2.0 × 10−7. (f) Assumes an exponential decay function estimated from a period of higher infectiousness of an 
infection (probability of infection >5%)41.
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lie close to the observed location and computational demands, five simulated infections were selected for each 
observed infection per simulation, and each simulation was repeated with ten random seeds.

Within each 6 km by 6 km square k, we formed all possible pairs of observed infections, and for each pair j, 
calculated the observed number of SNPs different, djk. We then calculated the number of SNPs different in the 
simulated data, qjrk within each 6 km by 6 km square k, for each pair j, and for each of the 10 replicates of the sim-
ulated infections r. We gained the mean proportion of SNP differences for the replicates q n/jk s. The Binomial log 
likelihood was used to quantify the amount of support from the data, calculated by summing over all the pairs j 
within each square k and over all the squares.
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The observed pairs are not independent given that one observed parasite genotype contributes to multiple 
pairs of data. Therefore, 95% confidence intervals were obtained by using bootstrap resampling of the observed 
number of SNP differences.

Method evaluation. We evaluated how precisely the method could estimate parameter values. We simu-
lated data with known values for the mean distance between parent and offspring infections, σ, and probability of 
recombination, pr, and then applied the method to the simulated data to see how well the known values could be 
recovered. We used the reference scenario with the base model (Table 3), but with a constant rather than declining 
number of infections over the study period.

Scenarios simulated for the Kilifi setting. We simulate all combinations of the different parameter val-
ues as a grid search (Table 3) and calculate the log likelihoods.

implementation. Implementation The individual based stochastic simulation model was created in R statis-
tical software (version 3.02). The simulations were run on sciCORE (http://scicore.unibas.ch/) scientific comput-
ing core facility at the University of Basel.

ethical approval and informed consent. Ethical approval for the study was obtained from Kenya 
Medical Research Institute (KEMRI) Ethical Review Committee (under SSC No. 2239). Written informed consent 
was obtained from parents/guardians of the study participants. The study methods were carried out in accordance 
with the approved guidelines.

Results
Method evaluation. The method was able to recover known values from simulated data for the mean dis-
tance between parent and offspring infections and the probability of recombination (Fig. 2). The model could 
reproduce reasonable estimates for the mean distance, but the estimates were less precise if the mean distance was 
2.0 km or greater. For longer mean distances, the size of the area simulated may limit the accuracy.

Application to data from Kilifi County. Reproducing the number of infections. We were able to repro-
duce the estimated number of infections in the study area and their decline over the study period by altering the 
input mean number of new infections per current infection (Supplementary Information Fig. 1). The required 
value of this input varied by scenario, where longer mean distances and adding immunity functions increased the 
number of new infections required per current infection per time-step.

Model variants and parameter values consistent with the observed data. We fit each model variant to the observed 
data on the numbers of SNPs different for pairs of parasites. The aim was to determine which model variants and 
parameter estimates were consistent with the observed interaction between the time and geographic distance.

Different values for the probability of recombination in multiply infected individuals resulted in similar values 
for the best-fitting mean distance at the maximum log likelihood (Fig. 3). The probability of recombination had 

Parameters to be estimated by a grid search Value

mean distance between parent and offspring infections (in kilometers) 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 1.00, 
1.20, 1.50, 2.00, 2.50, 3.00

probability of recombination resulting from multiply infected individuals 0.01, 0.50, 1.00

Parameters included in the model variants Value*
imported infections per 1000 people per year (model variant (ii)) 0, 5, 10

total number of current infections per person (model variant (iii)) no limit, 20

maximum number of recently seen similar genotypes for new infection to fail to 
establish (model variant (iv)) no limit, 10

number of SNPs different for defining ‘similar’ genotypes (model variant (iv)) 0, 10

number of time-steps for counting recently seen similar genotypes (model variant (iv)) 0, 40

heterogeneity between houses in transmission (model variant (v)) No heterogeneity, log normal distribution with 
mean μat and standard deviation of 0.01

Table 3. Simulated scenarios. *The base model scenario is indicated by bold font.
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an impact on the log likelihood only for very short mean distances of parasite movement, where it increased vari-
ation in the genotypes and increased the log likelihood. Hence, we adopted one value (0.5) for all further analyses 
shown. The model version allowing four sibling genotypes per recombinant infection produced similar results to 
those of the base model (Supplementary Information Fig. 2).

The estimates of the mean distance between parent and offspring infections vary slightly by model variant, 
although the confidence intervals are wide (Table 4).

Model variant (ii): the base model with imported infections; Model variant (iii): the base model with a limit on 
the number of current infections per person; Model variant (iv): the base model with immunity to recently seen 
similar genotypes; Model variant (v): the base model with heterogeneity in transmission at the household level.

The maximum log likelihood values, a measure of the goodness-of-fit, were similar for the model variants. 
The differences in the log likelihoods between model variants were greatest for the short mean distances, where 
the likelihoods tended to increase when the model variants were likely to increase the variation between the 
genotypes (Fig. 4). While it was not possible to rule out any model variant, the base model alone was sufficient 
to reproduce the observed patterns. This suggests that stochastic drift is sufficient to account for the observed 
interaction.

We explored the possibility that the distribution of distances comprises a mixture of short and longer mean 
distances between parent and offspring infections. This may arise due to a mix of human and vector movement, 
a mix of local and imported infections, because the normal kernel implicitly assumes the same length of time 
between the mosquito bites infecting the mosquito and the human and this is likely to vary, or due to the influ-
ence of wind or interventions on mosquito dispersal18. We simulated data using the base model, but assuming 
a mixture distribution for the mean distance with half of the distances from a distribution with a short and half 
from a distribution with a longer mean distance. Applying the method to the simulated data produced a log like-
lihood profile which was also consistent with the Kilifi data indicating that it is a potential explanation (Fig. 5), 
although the exact values for the mixture proportions and the two means are unknown and would be difficult to 
estimate from this data.

Reproducing time-distance patterns in observed data. For each model variant, the observed interaction shown 
by Omedo and colleagues3 could be reproduced for at least some parameter values. The number of SNPs different 
between pairs of malaria infections increased with geographic distance for short time periods, but this trend was 

Figure 2. Ability of the method to recover known parameter values from simulated data. Black solid line: 
indicates the true parameter value. Red dashed line: the log likelihood. The log likelihood is a measure of the 
support from the data for a parameter value. The estimated parameter value is the one which coincides with 
the maximum log likelihood. In this figure, the estimated parameter values are correct since they align with 
the black lines. The method and simulated data used the base model with the probability of recombination in 
multiply infected individuals set to 0.5 (details of the base model are given in the Methods section).
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less apparent for longer time periods. The predictions for the base model are shown (Fig. 6), and these patterns 
were similar for all model variants including the variants of model combinations (ii)–(iv) with imported infec-
tions, functions of acquired immunity and heterogeneous transmission at the household level.

The residual plot showed that the model fitted well with no systematic patterns in the residuals (Fig. 7).

Sensitivity analysis of the impact of uncertain input values. We explored the impact of varying the inputs in the 
base model on the parameter estimates: the number of initial infections, the warm-up period of the simulation, 
and the degree of clustering of the homesteads. The log likelihood values, measuring how well the model fits, were 
slightly lower overall for the clustered homesteads and with a shorter warm-up period. A smaller number of ini-
tial infections lead to slightly lower log likelihood values for short mean distances, due to the decrease in variation 
in the genotypes. However none of these factors substantially influenced the estimated mean distance between 
parent and offspring infections (Fig. 8). The effect of assuming that the observed genotypes are a mix of alleles 
from multiple infections within individuals was to increase uncertainty in the parameter estimates (not shown).

Discussion
We have developed an individual-based stochastic simulation model of malaria infections to determine processes 
and parameter values which are consistent with the observed patterns of genetic differences in Kilifi County, 
Kenya. The method was able to recover known parameter values reasonably well from simulated data and could 
reproduce the number of infections in the study area during the study period.

The observed spatial and temporal patterns of genetic differences could be reproduced for some parameter 
values for all of the model variants. The log likelihood for the best-fitting parameter values was similar for most 
of the variants. While we cannot rule out effects of imported infections, genotype-specific acquired immunity 
or a limit on the number of current infections per person, they were not necessary to account for the observed 
patterns in the data. This suggests that stochastic drift is a sufficient explanation.

Studies have found that the genotypes of people from the same house are more similar than those from further 
apart in a village44–46 and that index and secondary cases within a radius of 140 m in a study of reactive case detec-
tion (RCD) study in Zambia were more genetically similar than cases from the radii of other index cases17. One 

Figure 3. Patterns of the log likelihood for different values of recombination for the base model. The x-axis 
shows the value of the mean distance between parent and offspring infections. The log-likelihood is a measure of 
support from the data for the parameter values. Red solid line: the base model with probability of recombination 
in multiply infected individuals set to 0.5; Green line: 0.0; Blue line: 1.0.

Model Variant Mean distance in km* (95% CI)

Base model 0.5 (0.3–1.5)

Model variant (ii) 0.4 (0.3–1.5)

Model variant (iii) 1.0 (0.5–2.5)

Model variant (iv) 0.3 (0.3–1.5)

Model variant (v) 0.4 (0.3–1.5)

Table 4. Estimated mean distance between parent and offspring infections for each model variant. *The mean 
distance refers to the standard deviation of the positive half of a normal distribution centered around zero. In 
all cases, the probability of a short distance is highest and 68% of parent-offspring distances are shorter than the 
mean value (Fig. 1).
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might conclude, based on these and the data of Omedo et al., that short distances between parent and offspring 
infections are more likely. The range of possible values for the mean distance between parent and offspring infec-
tions in our study ranged between 0.3 km (0.3 km–1.5 km) and 1.0 km (0.5 km–2.5 km) for the different model 
variants. These results are consistent with these previous findings, since with the distribution used, 68% of the 
distances are less than the mean and 38% are within half of the mean distance.

Our results also indicated that mixtures of short and longer mean distances were consistent with the observed 
data, which could potentially represent vector and human movement. It would be challenging to determine the 
exact mixture of distributions given that the pattern of the log likelihoods is similar for different combinations 
of values. The mixture of distributions we used to investigate whether this would be consistent with the data was 
composed of two normal kernels. If one kernel should represent human movement, then another distribution 
may be more appropriate since it is likely to be incorrect if people only tend to stay elsewhere overnight for dis-
tances too far to get home or if human movement tends to follow major roads rather random movements in all 
directions.

Figure 4. Patterns of the log likelihood by mean distance for the different model variants. Red line: the base 
model; Blue line: the base model with imported infections (model variant ii); Brown line: the base model with 
a limit on the number of current infections per person (model variant iii); Purple line: the base model with 
immunity to recently seen genotypes (model variant iv); Green line: the base model with heterogeneity in 
transmission at the household level (model variant v). Model variant (vi) (combinations of the above variants) 
are not shown since they produced similar results.

Figure 5. Patterns of the log likelihood by mean distance for data simulated from mixture distributions. Data 
was simulated assuming a 50:50 mixture distribution for short and longer mean distances of movement. Black 
line: 0.05 & 3.0 km; Blue line: 0.1 & 2.5 km; Green line: 0.4 & 4.0 km.
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Findings from this study have implications for the assessment and planning of malaria interventions which 
are affected by parasite movement such as vector control, for setting radii for targeted interventions, for designing 
trials to evaluate interventions and for informing estimates of the spread of drug resistance47,48. While targeting 
interventions to areas of relatively higher risk on fine scales has been considered48–50, our findings highlight the 
need to consider the movement of infections between untargeted and targeted zones. A modelling study investi-
gating the contribution of RCD towards malaria elimination in Zambia emphasised the need to limit importation 
of infections from connected high transmission areas, since they could reduce the overall benefits51.

There are some limitations to our method. Some of the parameter inputs in the study area were simplified, 
we did not consider differences according to age in the population, nor did we assume any population turn-over. 
Our rationale was that this simplifies the model and that although general acquired immunity affects the para-
site densities, it does not affect the spatial distribution of genotypes as long as the age-groups are geographically 
mixed in the population. In one model variant, we account for genotype-specific immunity but this is limited to 
recent exposure.

During the study period, the area experienced moderate declining to low transmission intensity and the pro-
portion of infections sampled out of the total number in the area was small: we estimate using the reported prev-
alence37,38 and the relationship between prevalence and MOI31 that this proportion is less than 1%. In addition, 
the number of SNPs sampled was not extensive. Therefore measures of identity by descent (IBD)52–54 or network 
models of transmission13,55 could not be used.

The sampling may have affected the patterns seen, but this is not known. The samples came from hospital 
admissions in children aged three months to 13 years and community surveys in individuals aged three weeks 
to 85 years. We assume that the genotypes in those sampled are no different from those in individuals not sam-
pled. The community surveys were carried out in specific locations but were not otherwise restricted. The hos-
pital sampling may have affected the locations and socio-economic status (SES) of the individuals included. 
Individuals with higher SES may be over-represented because they may be more likely to present for treatment 
or under-represented because they may be less likely to have co-morbidity which can increase the risk of severe 
illness. The distances travelled by the mosquito could potentially be greater in areas of higher SES due to greater 
protection by LLIN or housing.

Figure 6. Predicted effect of time and distance on the number of SNPs different between pairs of infections. 
These predictions are from the base model with the best-fitting value for mean distance (0.5 km).

Figure 7. Plot of residuals by geographic distance. The base model was used with the best fitting value for mean 
geographic distance (0.5 km). We found no evidence of differences in the estimated parameter values between 
the different 6 km by 6 km squares, or over the course of the study period.

https://doi.org/10.1038/s41598-019-54348-y


1 1Scientific RepoRtS |         (2019) 9:19018  | https://doi.org/10.1038/s41598-019-54348-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

This is the first study that we know of which has attempted to estimate parameter values or test hypotheses 
from malaria genotyping data with a low coverage of infections in a setting with moderate transmission. Few 
methods are available and although our method is a blunt tool, we have gleaned some insights. Our findings 
raise questions about whether there is a mixture of more than one distribution for the distances between parent 
and offspring infections, and a potential influence of immunity on the spatial and temporal distribution pat-
terns of genotypes. It may be possible to gain more definitive results by incorporating additional data sources to 
isolate mosquito dispersal or human mobility patterns. To fully utilise the information from genotyping tools, 
purpose-designed datasets have been recommended5, ideally with a greater number of SNPs and greater coverage 
of infections.

Conclusion
The observed interaction between time and space in the patterns of genetic differences between pairs of 
Plasmodium falciparum infections in Kilifi can be reproduced by an individual-based simulation model. The 
model did not need any assumptions about genotype-specific acquired immunity or a limit on the number of 
current infections per person in order to reproduce the patterns, suggesting that stochastic drift is sufficient to 
account for the interaction.

The estimate of the mean distance between parent and offspring infections was 0.5 km (95% CI 0.3–1.5) for 
the base model. The pattern of results was also consistent with a mixture of distributions with short and longer 
mean distances.

Estimates of the spread of infections have implications for the design and evaluation of malaria control and 
elimination interventions. Simulation models fitted to genotyping data can be used as an analytic tool to glean 
insights in settings with moderate transmission and a low coverage of infections where methods are limited.

Data availability
The code and data analysed during this study are available at https://github.com/josemalinga/Patterns-of-genetic-
differences-in-Kilifi.
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