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2. Abbreviations 

Akt    Protein kinase B 

AMD   Age-related macular degeneration 

ANG   Angiopoietin 

AP    Alkaline phosphotase 

BacMam   Baculovirus mediated gene transduction of mammalian cell 

BCA   Bicinchoninic Acid 

BM   Basement membrane 

c-Kit   Stem cell growth factor receptor 

Co-IP   Co-immunoprecipitation 

C-terminal   Carboxy-terminal 

CTLA   Cytotoxic T lymphocyte protein 

DAG   Diacylglycerol 

DLL4   Delta-like ligand 4 

DMEM   Dulbecco’s modified  Eagle’s  medium 

DNase   Deoxyribonuclease  

DSS   Distal splice site 

DTT   Dithiothreitol 

EBNA-1   Epstein-Barr nuclear antigen 1  

EBV   Epstein-Barr virus 

E.coli   Escherichia coli  

ECD   Extracellular domain 

ECM   Extracellular matrix 

EC(s)    Endothelial cell(s) 
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EDTA   Ethylenediamine tetraacetic acid 

EM   Electron microscopy 

Endo F   Endoglycosidase F 

eNOS   Endothelial nitric oxide synthase 

EPCs   Endothelial precursor cells 

Eph   Ephrin 

ERK   Extracellular signal-regulated kinase 

Fab   Fragment antigen-binding antibody 

FAK   Focal adhesion kinase 

FATP   Fatty acid transport protein 

FBS   Fetal bovine serum 

Fc    Fragment crystallizable 

FGFs   Fibroblast growth factors 

Flk-1   Fetal liver kinase-1 

Flt-1   Fms-like tyrosine kinase-1 

Fyn   Proto-oncogene tyrosine-protein kinase 

Grb   Growth factor receptor bound 

HEK293   Human embryonic kidney cells 

HEPES   4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid 

HIF   Hypoxia-inducible factor 

HRP   Horseradish peroxidase 

HSPG   Heparin sulfate proteoglycan 

Ig    Immunoglobulin 

IMAC   Immobilized metal ion affinity chromatography 

IP3    Inositol 1,4,5-trisphosphate 
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IPTG   Isopropyl β-D-1-thiogalactopyranoside 

IT    Isothermal reaction buffer 

ITC   Isothermal titration calorimetry 

IR    Infrared 

JCSG   Joint Center for Structural Genomics 

JMD   Juxtamembrane domain 

Kd    Equilibrium dissociation constant 

kDa   Kilo-Dalton 

KDR   Kinase insert domain-containing receptor 

KID   Kinase insert domain 

LB    Luria Bertani 

LCP   Lipidic cubic phase 

LED   Light-emitting diode 

MAPK   Mitogen-activated protein kinase 

MEK   Mitogen-activated protein kinase kinase 

MMPs   Matrix metalloproteinases 

MMS   Microseed matrix screening 

MST   Microscale thermophoresis 

mTOR   Mammalian target of rapamycin 

MW   Molecular weight 

NICD   Notch intracellular domain  

Nrp   Neuropilin 

N-terminal  Amino-terminal 

PAE   Porcine aortic endothelial 

PBS   Phosphate-buffered saline  
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PCR   Polymerase chain reaction 

PDGF   Platelet-derived growth factor 

PDGFR   Platelet-derived growth factor receptor 

PDL   Programmed cell death ligand 

PEG   Polyethylene glycol 

PEI   Polyethyleneimine 

PEM    Protein Expression Medium  

PI-3 KINASE  Phosphatidylinositol 3‘-kinase 

PIP2   Phosphatidylinositol (4,5)-bisphosphate 

PIGF   Placenta growth factor 

PKC   Protein kinase C 

PLC   Phospholipase C 

PNGase F  Peptide: N-glycosidase F 

PSF   Progression free survival 

PSS   Proximal splice site 

PTB   Phospho-tyrosine binding 

PVDF   Polyvinylidene fluoride 

RTK   Receptor tyrosine kinase 

SAXS   Small angle X-ray scattering 

scFv   Single chain variable fragment 

SDS-PAGE  Sodium dodecylsulfate polyacryl gel electrophoresis 

SEC   Size exclusion chromatography 

Sf21   Spodoptera frugiperda cells 

SH    Src-homology 

SHB   Src homology-2 protein in beta-cells 
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SHC   Src homology 2 domain-containing transforming protein 

SHP   Src-homology phosphatase 

TB    Terrific Broth 

TBST   Tris-buffered saline  

TGF    Transforming growth factor 

Tm    Melting temperature 

TM    Transmembrane 

TMD   Transmembrane domain 

TSAd   T cell specific adapter  

VD    Vapour diffusion 

VEGF   Vascular endothelial growth factor   

VEGFR   VEGF receptor 
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3. Summary 

Angiogenesis is the formation of new blood vessels from pre-existing vasculature and 

plays an essential role in normal organ development and in specific diseases in all 

higher organisms. Angiogenesis is therefore required already early in embryogenesis 

when the new blood and lymphatic systems develop. In adult organisms angiogenesis 

is required in numerous processes such as in vessel formation and remodeling in the 

female reproductive cycle, during wound healing, or in bone formation and remodeling. 

Aberrant excessive vessel formation, i.e. pathological angiogenesis, plays an 

important role in tumor progression, in diabetic retinopathy, rheumatoid arthritis or in 

psoriasis. The lack of angiogenesis leads to multiple vascular failure such as coronary 

artery disease. It is well established that the correct balance between pro- and anti-

angiogenic growth factors, cytokines, and extracellular matrix components is essential 

for vascular homeostasis. One of the critical regulators of both physiological and 

pathological angiogenesis discovered more than 30 years ago is Vascular Endothelial 

Growth Factor (VEGF), regulating endothelial cell (EC) proliferation, migration, and 

survival but also vascular topology and permeability. VEGF is a family of cysteine 

linked dimeric growth factors consisting of five members, VEGF-A, -B, -C, -D and 

Placenta Growth Factor (PlGF). These soluble or matrix associated proteins bind to 

three type V receptor tyrosine kinases (RTKs), VEGF-receptor (VEGFR)-1 (also known 

as Flt1), VEGFR-2 (KDR/Flk1), and VEGFR-3 (Flt4). VEGFRs consist of an 

extracellular domain (ECD) built from seven immunoglobulin (Ig)-homology domains 

required for ligand binding and subsequent receptor dimerization. A single 

transmembrane (TM) helix connects the ECD to the cytoplasmic part containing a split 

tyrosine kinase domain. Ligand binding to VEGFR ectodomains promotes dimerization 

of receptor monomers, followed by receptor autophosphorylation and kinase 

activation. The activated receptor contains specific tyrosine residues in the kinase 

domain and the carboxy-terminal (C-terminal) domain acting as docking sites for a 

plethora of signaling proteins involved in multiple cellular signaling pathways.  

Ig-homology domains 1-3 (VEGFR-3) or 2-3 (VEGFR-1 or -2) of the ECD form the 

ligand binding site, while domains 4-7 are involved in homotypic receptor contacts 

fulfilling a regulatory function, which was the subject of this thesis. I used isothermal 
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titration calorimetry (ITC) in this study to determine the thermodynamic properties of 

ligand binding and dimer formation. The data show that the free energy of VEGF-A 

binding to domains 1-3 or the full-length ECD of VEGFR-2 is entropy driven and 

enthalpically unfavourable. Most importantly, the Gibbs free energy of VEGF-A binding 

to the full length ECD is 1.12 kcal/mol higher compared to the binding energy of 

domains 1-3. The endothermic component arising from the homotypic receptor 

contacts in domains 4-7 thus reduces the overall binding affinity of the full-length 

VEGFR-2 ECD by about 10 fold. This suggests that the homotypic interactions in 

domain 4-7 play a regulatory role in ligand binding and receptor activation, e.g. by 

promoting conformational rearrangements of receptor monomers required for active 

dimer formation. This mechanism might also prevent spontaneous activation of 

VEGFR-2 in the absence of ligand. 

I also tried to crystallize the ECD of VEGFR-2 in complex with ligand. However, 

although I used a multitude of receptor ECD constructs, I did not obtain diffracting 

crystals. I therefore became involved in an accompanying project in the lab focusing 

on the crystal structure of the full-length VEGFR-1 ECD in complex with VEGF-A. This 

structure revealed distinct homotypic contacts in Ig-homology domains 5 and 7. To 

further characterize the contacts in domain 5 biochemically and to investigate their 

functional relevance in receptor activation I generated mutants disrupting specific 

hydrogen bonds and salt bridges involved in homotypic contact formation. The data 

showed a significant decrease in receptor phosphorylation activity upon stimulation 

with ligand. Similarly, I could show reduced receptor activity when the homologous 

residues were mutated in VEGFR-2. The biochemical characterization of these 

mutants thus document the regulatory role of domain 5 in VEGFR activation and 

identify domain 5 as a promising target for developing allosteric inhibitors of VEGFRs. 

The speciality of drugs proposed to target domain 5 lies in their ability to access the 

target receptor at a regulatory site in the extracellular receptor domain, which is easily 

accessible from the blood stream. In addition, the proposed drugs will be highly specific 

as compared with the currently used kinase inhibitors. 
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4. Zusammenfassung 

Angiogenese ist die Bildung neuer Blutgefässe aus existierenden Gefässsystemen 

und spielt eine essenzielle Rolle während der normalen Entwicklung und einigen 

Krankheiten in allen höheren Organismen. Daher findet Angiogenese schon in der 

frühen Embryogenese statt um neue Blut- und Lymphgefässe zu entwickeln. In 

erwachsenen Organismen ist Angiogenese in einigen Prozessen notwendig, wie der 

Bildung und dem Umbau von Gefässen während des weiblichen 

Reproduktionszykluses, während der Wundheilung und dem Auf- und Umbau von 

Knochen. Abnormale exzessive Gefässbildung, also pathologische Angiogenese, 

spielt eine wichtige Rolle in der Tumorentwicklung, der diabetischen Retinopathie, der 

rheumatischen Arthritis oder der Psoriasis. Der Verlust der Angiogenese wiederum 

führt zu mehreren Gefässversagen wie in der koronalen Arterienerkrankung. Es ist gut 

etabliert, dass das richtige Gleichgewicht zwischen pro-und antiangiogenetischer 

Wachstumsfaktoren, Cytokinen, und extrazellulärer Matrixkomponenten essenziell ist 

für die Gefässhomeostase. Ein kritischer Regulator für die physiologische wie auch 

pathologische Angiogenese, der vaskuläre endotheliale Wachstumsfaktor (VEGF), 

wurde schon vor mehr als 30 Jahren entdeckt. VEGF reguliert endotheliales 

Zellwachstum, -migration und -überleben, aber auch Gefässtopologie und -

permeabilität. VEGF ist ein Familie aus Cystein verbundenen dimeren 

Wachstumsfaktoren , die aus fünf Mitgliedern besteht: VEGF-A, -B, -C, -D und 

Plazenta Wachstumsfaktor (PIGF). Diese löslichen oder Matrix-assoziierten Proteine 

binden drei Typ V Rezeptortyrosinkinasen (RTKs), VEGF-rezeptor (VEGFR)-1 (auch 

Flt1 genannt), VEGF-rezeptor (VEGFR)-2 (KDR/Flk1) und VEGF-rezeptor (VEGFR)-3 

(Flt4). VEGFR besteht aus einer extrazellulären Domäne (ECD) mit sieben 

immunoglobulin(IG)-homologen Domänen und wird für die Ligandbindung und die 

darauffolgende Rezeptordimerisierung benötigt. Eine einzelne transmembrane (TM) 

Helix verbindet die ECD mit dem cytoplasmatischen Teil, welcher eine Tyrosin 

Kinasendomäne beinhaltet. Die Bindung eines Liganden and der VEGFR Ectodomäne 

induziert die Dimerisierung des monomeren Rezeptors gefolgt von der 

Autophosphorylierung des Rezeptors und der Aktivierung der Kinase. Die aktive 

Kinase enthält spezifische Tyrosinseitenketten in der Kinasedomäne und der C-
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terminalen Domäne und agiert als Andockstellen für eine Vielzahl von Signalproteinen, 

die in mehreren zellulären Signalwegen involviert sind. 

Das Thema dieser Dissertation war die Untersuchung der Ligandenbindungsstelle, die 

durch Ig-homogen Domäne 1-3 (VEGFR-3) oder 2-3 (VEGFR-1) der ECD ausgebildet 

wird, sowie der regulatorischen Funktion der Domäne 4-7, die mit dem homotypischen 

Rezeptor interagiert. Es wurde isothermale Titrationskalometrie verwendet, um die 

thermodynamischen Eigenschaften der Ligandbindung und der Dimerisierung zu 

bestimmen. Die Daten zeigen, dass die Bindung von VEGF-A an die Domänen 1-3 

oder die ganze ECD des VEGFR-2 entropisch, hedoch nicht enthalpisch favorisiert ist. 

Wichtig ist, dass die Gibbs-Energie zwischen VEGF-A und der vollen ECD 1.12 

kcal/mol höher als die Bindungsenergie der Domäne 1-3 ist. Die endothermale 

Komponente kommt von homotypischen Rezeptorkontakten in der Domäne 4-7, die 

die Gesamtbindungsaffinität zwischen dem Liganden und der vollen VEGFR-2ECD um 

das zehnfache reduziert. Dies weist auf eine homotypische Interaktion hin, die eine 

regulatorische Rolle spielt, indem sie Konformationsänderungen des monomeren 

Rezeptors fördert, die zur Bildung eines aktiven Rezeptordimers führt. Dieser 

Mechanismus könnte die spontane Aktivierung von VEGFR-2 in der Abwesenheit des 

Liganden verhindern.  

Ich habe versucht die VEGFR2-ECD zusammen mit dem Liganden zu kristallisiern. 

Trotz mehreren versuchen mit verschiedenen ECD-Konstrukten wurden keine Kristalle 

erhalten. Dies führte dazu, dass ich mich an einem verwandten Projekt beteiligte; der 

Kristallisation des VEGFR1-ECD/VEGF-A Komplexes. Diese Kristallstruktur zeigt 

homotypische Interaktionen mit der Ig-homologen Domäne 5 und 7 auf. Um die 

funktionelle Relevanz festzustellen, wurden spezifische Wasserstoffbrücken und 

Salzbrücken, welche wichtig für die Bindung mit der homotypischen Domäne 5 sind, 

durch Mutationen gebrochen. Daten dieser Mutanten zeigten, dass die 

Phosphorylierungsakitivität dieser Rezeptoren signifikant reduziert ist, wenn sie mit 

Liganden stimuliert werden. In gleicher Weise wurde die Aktivität beeinträchtigt, wenn 

die entsprechenden Seiten der Domäne 5 der homologen VEGFR-2 mutiert wurden. 

Die biochemische Charakterisierung dieser Mutanten dokumentiert die regulatorische 

Rolle der Domäne 5 in VEGFR-Aktivierung und identifiziert sie als einen 

vielversprechenden Startpunkt zur Entwicklung allosterischer Inhibitioren für den 
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VEGF Rezeptor. Ein wichtiger Aspekt eines potenziellen Mwdikamentes wäre, dass 

es an die regulatorische Stelle der extrazellulären Rezeptordomäne binden könnte, 

welche aus dem Blut erreichbar ist. Zusätzlich wäre diese vorgeschlagene Droge 

hochspezifisch verglichen mit heutigen Kinaseinhibitoren. 
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5. Introduction 

Angiogenesis is an important process, in which formation of new blood vessels takes 

place via extension or remodeling from the existing capillaries. It is an indispensable 

process required for the vertebrate development. In a developing embryo, the 

cardiovascular system forms in the very beginning to establish the oxygen diffusion, 

metabolite and nutrient exchange in rapidly expanding tissues of the embryo. 

Vasculogenesis is the de novo process of formation of the primitive network of vessels 

from mesoderm derived endothelial precursors (angioblasts). Pericytes and smooth 

muscle cells are recruited to stabilize this early network. This primary capillary plexus 

is progressively remodeled by the angiogenic processes to establish a mature 

circulatory network. Vasculogenesis, mostly known to be limited to embryonic 

development, can also support neovascularization from the bone marrow derived 

endothelial precursor cells (EPCs) in adulthood. Angiogenesis is the essential process 

for the maturation of the new vasculature during embryonic development. During 

adulthood, it is required only during the formation of new capillaries in response to 

injured tissue, during physical training, when physiological metabolic demand 

increases and during menstrual cycle of women. Therefore, ECs are considered 

stable, showing limited turnover in the adult vasculature (Risau, 1997).  Angiogenesis 

can occur by two distinct mechanisms: sprouting and intussusception (Djonov et al., 

2002). During sprouting angiogenesis, the vascular ECs proliferate and migrate 

(sprout) into a proteolytically degraded extracellular matrix (ECM) guided by 

angiogenic signals to form a new branch derived from an existing vessel. During 

intussusception (non-sprouting), the vessel proliferates to extend into the lumen 

leading to splitting of vessel in two. Initial expansion of the capillary plexus takes place 

via both the processes namely sprouting and intussusception but consequent growth 

and remodeling is attained by intussusception. 

5.1. Molecular basis of angiogenesis 

Vessel formation is known to be induced by a variety of molecular players such as 

growth factors, cytokines, growth factor receptors and transcription factors. Out of the 

various models of angiogenesis, the sprouting mechanism has more thoroughly 
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studied molecular basis. Proangiogenic molecules such as VEGF, angiopoietin (ANG-

2), fibroblast growth factors (FGFs) activate the dormant vessels. It leads to 

detachment of pericytes from the basement membrane by the proteolytic degradation 

facilitated by the matrix metalloproteinases (MMPs). VEGF plays a key role by 

increasing the permeability of the EC layer leading to remodeling of the preexisiting 

matrix (Carmeliet et al., 2011). One of the ECs assumes a tip cell like character in 

presence of VEGFRs, neuropilins (Nrps) and Notch ligands. The tip cell extends its 

filopodia and starts migrating towards high levels of VEGF which activates the signaling 

of VEGFR-2 with its co-receptor Nrp1. These cells then start expressing high levels of 

Notch ligand Delta-like ligand 4 (DLL-4), which interacts to Notch receptors on the 

adjacent ECs, releasing the cleaved Notch intracellular domain (NICD). NICD is a 

transcriptional regulator which down regulates the expression of Vegfr2 and Nrp1 on 

the cells adjacent to tip cells while increasing the expression of a decoy receptor, 

VEGFR-1 which has greater affinity for the ligand VEGF. Hence these adjacent cells 

acquire the characteristic of the stalk cells (Lundkvist et al., 2007).  Notch plays a 

crucial role in specification of tip and stalk cells, by acting as a negative feedback loop 

to VEGF signaling (Jakobsson et al., 2009). The growing sprouts follow the guidance 

cues of a VEGF gradient and migrate towards molecules such as semaphorins and 

ephrins. Behind the tip cells the stalk cells proliferate for sprout elongation and lumen 

formation. Macrophages support the fusing of two tip cells (anastomosis) by interacting 

with the filopodia from the two tip cells. A connected lumen is formed after fusing of tip 

cells to allow blood flow which delivers nutrient and oxygen and consequently subsides 

the angiogenic signals. ECs become quiescent and acquire a phalanx phenotype 

which regulates blood flow and tissue perfusion. The ECs express platelet-derived 

growth factor (PDGF) and attract the pericyte precursors which differentiate in 

response to transforming growth factor (TGF-β) into mural cells. This brings 

stabilization in the newly formed vessel by reducing EC proliferation, migration and 

vessel leakage. Levels of angiogenic signal are reduced, whereas paracrine and 

autocrine signals including VEGF, FGF, Ang1 and Notch from ECs and support cells 

maintain ECs in quiescence. The vessel is further matured by recreating cell-cell 

junctions and deposition of basement membrane (BM) to promote vessel stabilization 

(Eichmann et al., 2012) (Figure 1). 
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Figure 1: Molecular mechanism of vessel formation. (a) Quiescent vessel is activated by 
angiogenic factors and tip cell is selected for branch formation. (b) Tip cells are directed by 
guidance signals for migration. Stalk cells proliferate, elongate and form lumen after fusion. 
Stalk cells attract pericytes and basement membrane deposition for attaining stabilization. (c) 
Neovessels are perfused with lumen formation. Quiescent phenotype is attained by re-
establishing junctions, pericyte maturation and release of vascular maintenance signals.  
adapted from (Carmeliet et al., 2011) 
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This complex process of angiogenesis, has crucial involvement of VEGF family 

members. It is evident from the studies of knockout mice. Homozygous gene deletion 

of either VEGF-A or VEGFRs in mice leads to embryonic death in utero between 

embryonic day 8.5 and 10.5, due to abnormal vascular development. Even deletion of 

a single VEGF-A allele is sufficient to lead to lethality at embryonic day 11-12 

(Carmeliet et al., 1996; Ferrara et al., 1996). Subcellular localization also plays a crucial 

role in VEGFR-2 signaling. Signaling of VEGFR-2 from intracellular compartments 

induces arterial morphogenesis (Lanahan et al., 2010). Matrix bound isoforms of VEGF 

are known to stimulate branching, whereas soluble isoforms lead to enlargement of 

vessels. Autocrine VEGF produced by ECs contributes to the attainment of blood 

homeostasis whereas paracrine VEGF produced by tumor and stromal cells leads to 

increase in vessel branching (Lee et al., 2007). 

Vessel perfusion into different areas of the body also involves defining the ECs of an 

arterial or venous specification. Ephrin (Eph) receptor tyrosine kinase family is involved 

in this event. Eph receptors and their ligands (Ephrin) are both TM proteins and require 

cell to cell contact for their signaling. EphrinB2 is preferentially expressed in arterial 

ECs while its receptor EphB4 is mainly expressed in venous ECs (Wang et al., 1998).  

5.2. Pathological angiogenesis 

The imbalance of pro- and anti-angiogenic factors (known as `angiogenic switch‘) can 

lead to pathological angiogenesis. Pathologies hallmarked by excessive vessel growth 

include cancers, retinopathies induced by age (age-related macular degeneration, 

AMD), psoriasis, arthritis or diabetes. Moreover, insufficient vessel growth and 

abnormal vessel regression can lead to neurodegeneration, hypertension, heart and 

brain ischemia and pre-eclampsia and osteoporosis (Carmeliet, 2003). 

Cancers have several modes of vessel formation and they can switch in between these 

modes: (1) Avascular tumors can induce vessel formation by angiogenic sprouting, (2) 

pre-existing vessels can split by a process known as intussuception, (3) tumor cells 

can grow around preexisting vessels known as vessel cooption, (4) tumor cells can 

line along vessels, acting as replacement cells for ECs (vascular mimcry), (5) due to 

cytogenetic abnormalities in chromosomes, putative cancer stem cells are allowed to 
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differentiate into ECs (6) EPCs recruited from bone marrow also contribute to tumor 

angiogenesis (Carmeliet et al., 2011).  

The tumor can tip the balance towards an angiogenic phenotype in presence of several 

factors such as metabolic and mechanical stress, mutation of oncogenes and 

inflammation (Carmeliet et al., 2000). The demand for oxygen and nutrients in a tumor 

of size around 2 mm in diameter exceeds the local supply, making it hypoxic. Hypoxia 

initiates the upregulation of the transcription factor hypoxia-inducible factor 1 (HIF-1) 

which induces the expression of proangiogenic molecules such as VEGF, PIGF, FGFs 

and interleukin-8 (Baish et al., 2000). The tumor vasculature due to imbalance of VEGF 

family ligands, form disorganized structural alterations such as unequal distribution of 

vessel branches, form chaotic networks of leaky vessels and frequent lack of pericytes 

(Nagy et al., 2010). Some tumors begin with well vascularized tumors due to co-option 

on existing vessels. In defense against co-option, the host vessels start to express high 

autocrine levels of Ang2, consequently leading to vessel regression. As the vessels 

undergo apoptosis, the tumor becomes secondarily avascular and hypoxic. The tumor 

rescues itself by secreting high levels of VEGF, to initiate new angiogenic sprouting 

from these vessels for its further survival and growth (Holash et al., 1999). 

Clearly, tumor growth and metastasis depends solely on angiogenesis. The late Judah 

Folkman, in 1971, performed pioneering work in the field. He proposed to block the 

nourishment of tumors by cutting its blood supply as a new anticancer strategy. 

(Folkman, 1971).  

The proliferative retinopathies such as diabetic retinopathy and wet AMD are leading 

cause of vision loss worldwide. Both the disorders are characterized by extensive 

proliferation of new blood vessels, triggered mainly by angiogenic factor VEGF 

(Caldwell et al., 2003; Gariano et al., 2005). The new leaky vessels formed leads to 

retinal edema and sub-retinal fluid accumulation, subsequently resulting in impaired 

vision. Hence, inhibition of VEGF is the strategy used clinically for treating ischemia-

related retinopathies (Kim et al., 2012). 

5.3. Therapeutic approaches 

Since VEGF family members are the crucial regulators of both developmental and 

pathological angiogenesis, many therapeutic approaches target the VEGF/VEGFR 



Doctoral thesis Mayanka Asthana 
 

22 
  
 

signaling system. One of the strategies utilized by the antiangiogenic therapies is to 

prevent VEGF ligand binding to the receptor by blocking either of the binding sites. 

Bevacizumab (Avastin), a humanized monoclonal anti-VEGF antibody has been 

approved by the US Food and Drug Administration in combination with chemotherapy 

or cytokine therapy for many advanced metastatic cancers, including non-squamous 

non-small cell lung cancer, colorectal cancer, renal cell cancer and breast cancer. Anti-

VEGF fragment antigen-binding antibody (Fab) ranibizumab (Lucentis) and a VEGF 

aptamer pegaptanib (Macugen) are used to treat leaky neovessels in patients suffering 

from wet AMD (Biswas et al., 2011; Carmeliet et al., 2011; Carneiro et al., 2011). 

Another approach applied for the clinical treatment is use of small molecule inhibitors. 

These bind to the intracellular domain of the receptor and inhibit the catalytic activity 

of the tyrosine kinase domain, by interfering with the ATP binding pocket (Type I), or 

preventing the kinase domain from attaining the active conformation (Type II). Sunitinib 

(Sutent) and Pazopanib (Votrient) are used to treat renal cell carcinoma, Sorafenib 

(Nexavar) for metastatic renal cell carcinoma and hepatocellular carcinoma, and 

Vandetanib (Zactima) for medullary thyroid cancer. Also aflibercept (Regeneron), the 

“VEGF Trap” which is a soluble chimeric protein constituting Ig-homology domain 2 of 

VEGFR-1 and Ig-homology domain 3 of VEGFR-2, predimerized by a constant region 

(Fc-region) of human IgG1, is used to neutralize the ligands VEGF-A, VEGF-B and 

PlGF in patients with metastatic colorectal cancer as well as wet macular degeneration 

(Holash et al., 2002). To block VEGFR-2 signaling, a fully humanized monoclonal 

antibody targeting the ligand binding site on the receptor ECD called ramucirumab, is 

used for treating advanced gastric or gastro-esophageal adenocarcinoma (Krupitskaya 

et al., 2009). Alitalo and colleagues generated monoclonal antibody against VEGFR-3 

that inhibits homodimer and heterodimer formation but does not block ligand binding 

(Tvorogov et al., 2010). They showed inhibition in sprouting, migration and signal 

transduction of microvascular ECs. 

A new approach in therapeutics which should theoretically result in effective tumor 

growth inhibition, is to use combination of anti-VEGF agents with other angiogenic 

inhibitors or inhibitors from non-related pathways. Since, VEGF-A inhibition studies 

show considerable increase in the number of tumor-infiltrating lymphocytes. Hence 

clinical trials are being performed which use a combination of anti VEGF-A treatment 
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with immune checkpoint inhibitors eg. Cytotoxic T lymphocyte protein 4 (CTLA4) or 

programmed cell death ligand (PDL1) (Shrimali et al., 2010). Also the sequential 

treatments with VEGF-A inhibitors and inhibitors of mammalian target of rapamycin 

(mTOR) such as everolimus (Afinitor Disperz; Novartis) have resulted in increased 

progression free survial (PSF) in patients with metastatic renal cell carcinoma (Motzer 

et al., 2015) . 

Despite of many clinical benefits of these anti-angiogenic therapies, there are several 

more challenges and concerns to be solved. Problem is the development of resistance 

to the treatment. Some tumors become unresponsive during treatment and produce 

other proangiogenic factors and induce angiogenesis independent of the VEGF 

pathway. Vessel pruning by VEGF blockade sometimes aggravates hypoxia, leading 

to recruitment of various immune cell subsets, and release of angiogenic factors such 

as PlGF, FGFs, chemokines and ephrins (Bergers et al., 2008). Depriving a tumor of 

blood vessels, switches it to become more invasive by selecting “hypoxia” resistant 

clones and making it more metastatic. Tumors also adopt other modes of 

vascularization besides sprouting, such as vessel co-option or vascular mimicry and 

recruitment of bone-marrow derived progenitor cells which are less sensitive to VEGFR 

inhibition. 

Hence, there is urgent need for the development of predictive biomarkers which can 

differentiate between responders and non-responders, refining molecular targeting, 

development of appropriate combinatorial therapies and finally more bench to bedside 

studies, to improve the efficacy of the antiangiogenic therapies.  

5.4. VEGFs/VEGFR signaling cascade 

The VEGF family comprises 5 mammalian dimeric glycoproteins designated VEGF-A, 

VEGF-B, VEGF-C, VEGF-D and PlGF. In addition VEGF E, found in parapox viruses 

and VEGF-F, found in snake venoms are highly related structurally to mammalian 

VEGFs (Shibuya, 2003; Yamazaki et al., 2009). VEGFs undergo either proteolytic 

processing (VEGF-C and VEGF-D) and/or alternative splicing (VEGF-A, VEGF-B and 

PlGF), to give rise to distinct isoforms, leading to diverse signaling functions. VEGFs 

bind with high affinity in an overlapping pattern to type V RTKs namely VEGFR-1, 

VEGFR-2 and VEGFR-3, to exert their biological effects (Takahashi et al., 2005). The 
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receptors are dimerized upon ligand binding leading to activation of the tyrosine kinase 

and autophosphorylation of tyrosine residues to initiate multiple signal transduction 

pathways. Signaling output is further modified by binding of co-receptors, such as Nrp, 

heparin sulfate proteoglycans (HSPG) and integrins (Koch et al., 2011).  

VEGFRs have a similar structural arrangement comprising of seven Ig-homology 

domains in the extracellular region, a single TM helix, a juxtamembrane domain (JMD), 

a split tyrosine-kinase and a long tail at C-terminal. The Ig-homology domains 1-3 

present in the ECD are involved in ligand binding to different extents in distinct ligand 

receptor interactions. And the membrane proximal Ig-homology domains 4-7 are 

involved in proper positioning of receptor dimers.  

5.4.1. The ligands 

VEGF-A 

VEGF-A plays a crucial role in vascular development during embryo formation, 

maintenance of proper vessel function in adults and also in disease. It is produced in 

vascular ECs and immune cells. Alternatively spliced variants of human VEGF-A 

encodes eleven different isoforms with distinct biological properties: VEGF-A121, 

VEGF-A145, VEGF-A148, VEGF-A162, VEGF-A165, VEGF-A165b, VEGF-A183, VEGF-A189, 

VEGF-A206 (Bates et al., 2002; Lange et al., 2003), newly discovered VEGF-A111 and 

VEGF-A111b (Gu et al., 2013) . 

The gene of VEGF consists of eight exons: where exon 1, and four residues of exon 

2, encode for the signal peptide; exon 3 and exon 4 encodes for VEGFR-1 and 2 

binding sites; exon 5 encodes a sequence which is recognized for cleavage by plasmin 

and metalloproteinases; exon 6 and 7 respectively encode for the heparin binding site 

and the Nrp binding site; and exon 8 encodes for a unique sequence (Claffey et al., 

1995; Keyt et al., 1996; Lee et al., 2005). On the basis of the presence of sub-exon 8a 

or sub-exon 8b, the VEGF isoforms are classified in two different subfamilies: full 

agonists (VEGF-xxx) and partial agonists (VEGF-xxxb) (Gu et al., 2013) (Figure 2). 

Based on the ability to bind to heparin sulfate or Nrp co-receptors, the isoforms are 

further categorized as cell bound isoforms (VEGF-A189, VEGF-A206), isoforms which 
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have both the soluble and cell bounded properties (VEGF-A165), and soluble isoforms 

which lack the binding domains (VEGF-A121, VEGF-A111) (Houck et al., 1991). 

The distinct isoforms, generated from alternative splicing of VEGF-A, are 

indispensable for normal development. This is evident from different studies using 

transgenic mice. Mice embryos expressing only VEGF-A120 show severe defects in 

lung vascular development, vascularization of retina, and myocardial ischemia. Due to 

congenital birth defects half of the embryos died in perinatal period within 2 weeks after 

birth (Carmeliet et al., 1999; Stalmans et al., 2002).  Knockout of VEGF-A164 or VEGF-

A188 in mice results in lethality after birth or death between embryonic day 9.5 and 13.5 

(Carmeliet et al., 1999). These studies show the importance of the presence of VEGF-

A isoforms containing exon 6-8 encoding the heparin and Nrp binding domain in the 

normal development. 

Mice expressing only VEGF-A164 are reported to be healthy with a normal retinal 

angiogenesis, but mice with only VEGF-A188 have reduced arterial development in 

retinas and disrupted development of secondary ossification centers and knee joint 

dysplasia (Maes et al., 2004). These findings indicate the role of diverse VEGF 

isoforms having distinct functions in the vascular and arterial development with VEGF-

A165 as the central player. 
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Figure 2: Schematic representation of the structure of VEGF-A isoforms. (a) VEGF-A 
gene containing 8 exons. (b) and (c) Alternative splicing of exon 8 at proximal splice site (PSS) 
leads to a full agonist (VEGFxxx) and distal splice site (DSS) creates anti-angiogenic splice 
variant (VEGFxxxb). (Gu et al., 2013) 

VEGF-B  

The VEGF-B gene consists of seven exons and alternative splicing gives rise to two 

isoforms: VEGF-B167 and VEGF-B186. The isoforms differ in their C-terminal due to the 

presence of acceptor splice sites in exon 6 but have an identical 116 amino acid amino-

terminal (N-terminal) region. VEGF-B167 comprises a basic C-terminal which is able to 

tightly bind HSPGs on the cell surface and in the ECM (Olofsson et al., 1996a). VEGF-

B188 is a freely diffusible isoform which consists of a hydrophobic C-terminal and 

undergoes O-glycosylation. But after undergoing proteolytic processing VEGF-B188 

can bind to Nrp-1 (Olofsson et al., 1996b). The homodimers of the both isoforms are 

expressed in numerous tissues simultaneously and bind to VEGFR-1 and Nrp-1 for 

transducing their signal (Makinen et al., 1999).  

VEGF-B is highly expressed in myocardium, skeletal muscle and vascular smooth 

muscle, brown adipose tissue and neuronal tissue (Bry et al., 2014; Enholm et al., 

1997). Although VEGF-B has high sequence homology and similar receptor binding 

patterns as of VEGF-A, reports suggest it has very weak angiogenic activity. The 

knockout of VEGF-B in mice seems to be viable and fertile with no noticeable vascular 

or developmental defects, which is contrasting to a VEGF-A knockout (Kivela et al., 
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2014). However they show smaller hearts and impaired recovery from cardiac 

ischemia and dysfunctional coronary vasculature (Bellomo et al., 2000).  

A recent study has shown VEGF-B as a key regulator of energy metabolism. They 

demonstrate that VEGF-B regulates the fatty acid transport by increasing the 

expression of fatty acid transport proteins (FATPs) across the endothelium. The 

deficient mice for VEGF-B showed a decreased level of lipids in heart, muscle and 

brown adipose tissue while accumulation of lipids in the white adipose tissues instead 

(Hagberg et al., 2010).  

VEGF-B also plays a neuroprotective role facilitated directly by VEGFR-1 expressing 

neuronal cells. Mice lacking VEGF-B show degeneration of sensory neurons, while the 

treatment with VEGF-B, rescue neurons from apoptosis (Dhondt et al., 2011). Hence 

VEGF-B seems to have a wide range of function and a potential molecule through 

which one can study the association between angiogenesis and tissue metabolism. 

VEGF-C 

VEGF-C is secreted as a dimeric protein comprising long N-terminal and C-terminal 

propeptides flanking the VEGF homology domain. This uncleaved VEGF-C undergoes 

two proteolytic maturation steps to yield multiple processed forms. The first proteolytic 

cleavage takes place at the C-terminal by furin which generates an intermediate form, 

having moderate affinity for VEGFR-3. The second cleavage takes place at the N-

terminal and silk homology domain present at the C-terminal by A disintegrin and 

metalloproteinase with thrombospondin motifs 3 (ADAMTS3) resulting in fully mature 

form which is able to bind to VEGFR-3 with higher affinity (Joukov et al., 1996; Joukov 

et al., 1997). This fully processed form of VEGF-C also has a significant affinity for 

VEGFR-2. VEGF-C has a major role in lymphangiogenesis. It is also strongly 

expressed in various normal human tissues such as large intestine epithelium, and 

mammary duct epithelium, skeletal and cardiac muscle, thyroid, ovary, and the 

prostate and a variety of cancerous tissues (Joory et al., 2006). VEGF-C is absolutely 

essential for development of lymphatic vessels as even loss of single allele leads to 

lymphedema. And VEGF-C knockout mice die as embryos due to defective lymphatic 

vasculature and of edema (Karkkainen et al., 2003).    
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VEGF-D 

VEGF-D is produced as a precursor protein, similar to VEGF-C. Proteolytic processing 

generates mature forms which are capable of binding to both VEGFR-3 and VEGFR-

2 leading to growth and development of blood vessels and lymphatics. Surprisingly, 

VEGF-D knockout mice are viable with minimal defects (Baldwin et al., 2005). Though 

VEGF-C and VEGF-D show similar bioactivities but recent studies indicate towards 

their distinct signaling mechanisms . Mature form of VEGF-D consist of distinct amino 

acid residues in the N-terminal α-helix which are required for binding VEGFR-3 and 

VEGFR-2 whereas in VEGF-C same set of residues are involved in binding to both the 

receptors (Davydova et al., 2016). Exact role of VEGF-D is not known yet. But studies 

show VEGF-D influences the metastasis of cancerous cells (Stacker et al., 2001).  

VEGF-E 

VEGF-E submembers are encoded by genome of Orf virus, a parapoxvirus known to 

infect sheep, goats and human (Lyttle et al., 1994). Different subtypes of VEGF-E 

which are derived from several strains of Orf virus: VEGF-ENZ-2,  VEGF-ENZ-7, VEGF-

ENZ-10, VEGF-ED1701 and VEGF-EVR634 (from pseudo cowpox virus strain) (Meyer et al., 

1999; Ogawa et al., 1998; Wise et al., 1999; Wise et al., 2003). Their amino acid 

sequence is only 20% to 25% identical to VEGF-A (Lyttle et al., 1994). They bind with 

high affinity and stimulate VEGFR-2 but not VEGFR-1 nor VEGFR-3. They vary in their 

ability to bind Nrp-1. VEGF-ENZ-2, VEGF-ENZ-10, and VEGF-ED1701 can bind Nrp-1 

whereas VEGF-ENZ-7 and VEGF-EVR634 are unable to bind Nrp-1. VEGF-E NZ-7 

transgenic mice have shown induction of significant angiogenesis with fewer side 

effects, hence it is a potential target to be used as pro-angiogenic factor in the clinics 

(Kiba et al., 2003). 

PlGF 

PlGF is mainly expressed in the placenta but is also found in low levels in other tissues, 

such as the heart, lung, thyroid, liver, skeletal muscle and bone (Persico et al., 1999). 

Alternative splicing of the human PlGF gene generates four different isoforms 

exhibiting different binding properties: PlGF-1 and PlGF-3 are freely diffusible whereas, 

PlGF-2 and PlGF-4 comprise a C-terminal domain encoding the heparin binding 
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domain and hence are cell membrane associated isoforms (Maglione et al., 1993; 

Yang et al., 2003). PlGF binds to VEGFR-1 and sVEGFR-1 (soluble receptor lacking 

TM and intracellular domains) (Kendall et al., 1993). PlGF-2 can also bind to Nrp-1 and 

Nrp-2 due to the presence of additional 21 basic amino acids at the C-terminal 

(Gluzman-Poltorak et al., 2000). 

VEGFR-1 activation by PlGF leads to transphosphorylation and activation of VEGFR-

2 and hence amplifies VEGF-A signaling (Autiero et al., 2003). Though PlGF is very 

similar to VEGF-B in many respects, PlGF is able to induce stronger VEGFR-1 tyrosine 

phosphorylation compared to VEGF-B (Anisimov et al., 2013). Similar to VEGF-B, the 

deletion of PlGF in mice does not affect the development of vessels in the embryo 

(Carmeliet et al., 2001). However PlGF is able to stimulate angiogenesis in pathological 

conditions such as heart and lung ischemia, as efficiently as VEGF-A (Luttun et al., 

2002). PlGF, apart from being expressed in vascular cells, is also found in pathological 

conditions in fibroblasts, leucocytes, hepatocytes, bone marrow derived cells, neurons, 

epithelial cells and tumor cells. Hence PlGF has been a target molecule for being 

clinically exploited posing no severe side effects to normal physiology. But there has 

been conflicting data between pharmacological PlGF blockade studies, which use 

several anti-PlGF antibodies and PlGF knockout studies (Dewerchin et al., 2012). 

Hence, more studies are required to be conducted to know the exact function and 

therapeutic potential of PlGF. 

5.4.2. VEGFRs 

VEGFR-1 

VEGFR-1 is encoded by the Flt-1 (Fms-like tyrosine kinase 1) gene in humans. 

Alternative splicing of this gene gives rise to two isoforms: membrane bound VEGFR-

1 and sVEGFR-1 (Kendall et al., 1993). VEGFR-1 binds with high affinity to VEGF-A, 

VEGF-B, PlGF and some VEGFs in snake venom. VEGF-A binds with more than 10 

fold higher affinity to Ig-homology domains 2 and 3 of VEGFR-1 when compared to 

VEGFR-2 (Wiesmann et al., 1997). However, the kinase domain of VEGFR-1 shows 

weak tyrosine autophosphorylation activity and poorer signal transduction than 

VEGFR-2 (Seetharam et al., 1995; Waltenberger et al., 1994). Study on chimeric 
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VEGFR-1/2 molecules reveal the presence of negative regulatory sequence in the 

juxtamembrane region responsible for attenuation of kinase activity and 

phosphatidylinositol 3’-kinase (PI-3 KINASE) activation (Gille et al., 2000). 

Furthermore, mutation of the amino acid N1050 to D in the activation loop of kinase 

domain of VEGFR-1, lead to increase in its activity (Meyer et al., 2006). Tyrosine 

phosphorylation pattern depends on the type of ligand binding to VEGFR-1 and hence 

resulting in a distinct signaling output (Cunningham et al., 1997; Sawano et al., 1997). 

It is evident from a study showing binding of the ligand VEGF-A to VEGFR-1 that leads 

to phosphorylation of Y1213, whereas PlGF binding phosphorylates Y1309 (Autiero et 

al., 2003). Distinct conformational arrangements arising in the extracellular region of 

VEGFR-1 due to binding of different ligands may be attributed as a reason for different 

signaling outcomes. Several molecules interacting with the phosphorylated tyrosine 

residues in the intracellular kinase domain of VEGFR-1 have been identified, such as 

p85/PI-3 KINASE,  phospholipase C (PLCγ1), Src-homology (SH) phosphatase-2 

(SHP2 or Nck), and growth factor receptor bound-2 (Grb2) protein (Matsumoto et al., 

2001). Due to the weak kinase activity and modest signaling output of the VEGFR-1, 

the characterization of its signaling network has been very challenging and much more 

needs to be explored. 

VEGFR-1 is expressed in various cell types, including vascular ECs, dendritic cells, 

pericytes, macrophages, monocytes and hematopoietic stem cells (Hattori et al., 2002; 

Sawano et al., 2001). VEGFR-1 knock out mice embryos die at embryonic day 8.5-9 

due to increased proliferation of EPCs and disorganized vessel formation (Fong et al., 

1995). However, mice expressing kinase domain deleted VEGFR-1 have normal 

vasculature and are viable (Hiratsuka et al., 1998). Thus, VEGFR-1 has been 

suggested to act as a decoy receptor during embryonic development by sequestering 

excess VEGF-A and preventing over activation of VEGFR-2. Moreover, the membrane 

localization of the receptor plays a crucial role, since 50% of mice expressing sVEGFR-

1 die at embryonic day 8.5 to 9.0 due to disorganized vasculature (Hiratsuka et al., 

2005). Further the occurrence of sVEGFR-1 consisting of the first six Ig-homology 

domains, acting as a ligand scavenger was demonstrated from the study of Shibuya et 

al (Shibuya et al., 1990). sVEGFR-1 is known to be expressed in the human placenta 

and its overexpression has pathological implications such as causing pre-eclampsia. 

(Fan et al., 2014; Maynard et al., 2003). The negative regulatory role of VEGFR-1 is 
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also evident from a study which shows the existence of VEGFR-1/2 heterodimers, 

involved in blocking of VEGF-A induced extracellular-signal-regulated kinase (ERK1/2) 

activation and Ca2+ entry (Cudmore et al., 2012). Apart from being able to negatively 

regulate the homodimer activity of VEGFR-2, the phosphorylated VEGFR-1 is also 

involved in transphosphorylation of VEGFR-2 (Autiero et al., 2003).  Though the 

underlying mechanisms by which VEGFR-1 and VEGFR-2 regulate each other 

remains to be revealed. 

VEGFR-2 

The human VEGFR-2 (also called KDR, Kinase insert domain-containing receptor) 

gene was cloned in 1991 and was found to be located at chromosome 4 (Terman et 

al., 1991). The canonical activation of VEGFR-2 occurs by binding to alternatively 

spliced variants of VEGF-A, VEGF-E and proteolytically processed forms of VEGF-C 

and VEGF-D. Ig-homology domains 2 and 3 are involved in ligand binding. Moreover, 

there is a study showing in cultured cells, existence of pre-formed receptor dimers with 

certain kinase activity (Sarabipour et al., 2016). VEGFR-2 also exists as a soluble 

isoform (sVEGFR-2) in various tissues such as the skin, heart, spleen, kidney, ovary, 

and in plasma. It is believed to act as a scavenger for VEGF-C and hence negatively 

regulates VEGFR-3 induced lymphangiogenesis (Albuquerque et al., 2009; Ebos et 

al., 2004).  

VEGFR-2 is the major player involved in angiogenesis and vasculogenesis. It mediates 

migration, proliferation, cell survival and permeability in ECs by binding to VEGF-A 

ligand. VEGFR-2 knockout mice die at embryonic day 8 to 9 due to lack of a functional 

vasculature similar to mice deficient for VEGF-A (Shalaby et al., 1995). Apart from 

being expressed in vascular and lymphatic ECs, VEGFR-2 is also found in neuronal 

cells, hematopoietic stem cells and retinal cells (Kabrun et al., 1997; Shiote et al., 2005; 

Yang et al., 1996). Although VEGFR-2 has lower binding affinity to ligand VEGF-A 

compared to VEGFR-1, astonishingly VEGFR-2 exhibits strong kinase activity upon 

ligand binding. The dimerization of VEGFR-2 leads to conformational changes and 

activation by autophosphorylation of multiple intracellular tyrosine residues. Each 

phosphotyrosine residue serves as a binding site for regulatory proteins via their SH 

or phospho-tyrosine binding (PTB) domains, leading to distinct downstream signaling. 
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The chief autophosphorylation sites in human VEGFR-2 bound to VEGF-A are: Y801 

in the JMD, Y951 in the kinase insert domain (KID), Y1054 and Y1059 in the activation 

loop and Y1175 and Y1214 in the C-terminal (Kendall et al., 1999; Matsumoto et al., 

2005; Takahashi et al., 2001). Phosphorylation of Y951 residue leads to binding of T 

cell specific adapter (TSAd) protein via its SH2 and PTB domains (Matsumoto et al., 

2005). TSAd then further interacts with cytoplasmic tyrosine kinase c-Src via its SH3 

domain to regulate cytoskeleton components such as actin, cell-cell adhesion 

molecules and matrix components. Src additionally phosphorylates focal adhesion 

kinase (FAK) at cell-cell junctions which then regulates cell shape, adhesion and vessel 

permeability (Claesson-Welsh, 2016; Matsumoto et al., 2005). Phosphorylation sites 

Y1054 and 1059 are required by the receptor for acquiring complete kinase activation 

and catalytic activity (Dougher et al., 1999; Kendall et al., 1999; Manni et al., 2014a). 

Tyrosine 1175 is the chief phosphorylation site which interacts with PLC-γ via its SH2-

domain and leads to its activation. Phosphorylated PLC-γ then hydrolyses the 

membrane phospholipid phosphatidylinositol (4,5)-bisphosphate (PIP2) releasing 1,2-

diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). IP3 triggers the release of 

intracellular calcium and DAG activates protein kinase C (PKC). PKC in turn then 

activates the Ras-independent mitogen-activated protein kinase (MAPK) pathway 

(Raf-MEK-ERK) leading to changes in gene transcription and thereby cell migration, 

proliferation and cell fate specification (Cunningham et al., 1997; Koch et al., 2012; Xia 

et al., 1996). PLC-γ signaling plays a crucial role in vasculogenesis. A study with mice 

shows, both plc-γ gene deletion and mutation of site Y1173 (in humans Y1175) leads 

to death of embryo in 9.0 days due to decreased vasculogenesis and erythropoiesis 

(Sakurai et al., 2005). Phosphorylation at site Y1175 initiates multiple downstream 

signaling cascades. The same site also binds to other adaptor proteins, SHB (Src 

homology-2 protein in beta-cells) and Src homology 2 domain-containing transforming 

protein (SHC2 or SCK) (Koch et al., 2011). Phosphorylated SHB binds to FAK which 

regulates cell migration and cell attachment (Abedi et al., 1997). The inactivation of 

genes of adaptor proteins in mice leads to impaired vessel function and tumor growth 

(Koch et al., 2012). Activated SHB also stimulates lipid kinase PI-3 KINASE, which 

further activates Protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS). 

This leads to increased cell survival and nitric oxide-induced vascular permeability 

(Roskoski, 2007). Phosphorylated Y1214 recruits Nck and proto-oncogene tyrosine-
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protein kinase (Fyn), and subsequently activates the p38MAPK pathway which 

stimulates migration in ECs (Lamalice et al., 2004) Figure 3.  

 

 

Figure 3: VEGF-A165 mediated signal transduction of VEGFR-2 (Koch et al., 2012) 

 

VEGFR-3 

VEGFR-3 (also called Flt-4) binds to ligands VEGF-C and VEGF-D with its Ig-

homology domains 1 and 2 present in the ECD (Jeltsch et al., 2006; Leppänen et al., 

2011). VEGFR-3 is synthesized as a precursor molecule and proteolytically processed 

at the fifth Ig-homology domain in the ECD. The two split ECD domains are bound by 

a disulfide bridge (Pajusola et al., 1994). VEGFR-3 is mainly known for its requirement 

in lymphatic endothelial development but is also cited for its mechanistic role in early 

vessel development. Tip cells also expresses VEGFR-3, in blood vascular cells during 

early embryonic development (Nilsson et al., 2010). VEGFR-3 knockout mice die at 

embryonic day 10 to 11 due to defective vascular development (Dumont et al., 1998). 
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VEGFR-3 binding to ligands VEGF-C and VEGF-D leads to phosphorylation of 

residues at C-terminal: Y1230, Y1213, Y1265, Y1337 and Y1363 (Dixelius et al., 

2003). Upon phosphorylation, site Y1337 recruits SHC and Grb2, leading to activation 

of Ras and mitogenic signaling (Fournier et al., 1995). Akt activation via PI-3 KINASE 

and p42/p44 MAPK activation via PKC are other known downstream signaling 

cascades of phosphorylated VEGFR-3 (Makinen et al., 2001). VEGFR-2 and VEGFR-

3 can form heterodimers upon binding to ligand VEGF-C. Interestingly a change in 

autophosphorylation pattern of VEGFR-3 present in the heterodimers is observed, 

which might also lead to distinct downstream signaling as compared to the 

homodimeric form. The two residues Y1337 and Y1363 present at the C-terminal do 

not get phosphorylated of the above five autophosphorylation sites (Dixelius et al., 

2003). VEGFR-2/3 heterodimers regulate migration and proliferation of lymphatic ECs 

and are found to be present on tip cell filopodia of developing blood vessels and 

immature lymphatic sprouts (Nilsson et al., 2010). VEGFR-3 can also be activated 

independent of ligands by c-Src activation via integrins leading to vessel expansion in 

lymphatic system and regulating interstitial fluid uptake (Galvagni et al., 2010).  

5.5. Aims of the thesis 

The establishment of the blood and lymphatic vascular system are crucial 

requirements for the development of an embryo (Karkkainen et al., 2003). In addition, 

dysregulated vasculogenesis and angiogenesis in adults has implications in numerous 

pathological conditions (Shibuya, 2011). The members of the VEGF family are known 

to be key regulators in both the physiological and pathological vessel development 

(Shibuya, 2014; Smith et al., 2015). The five VEGF ligands interact with three type V 

RTKs, VEGFR-1, VEGFR-2 and VEGFR-3 with overlapping specificity (Koch et al., 

2011). The ECD of VEGFRs comprises seven Ig-homology domains. The first 3 

domains mediate ligand binding, whereas the membrane proximal domains 4-7 are 

involved in ligand-induced receptor dimerization. Ligand binding allows dimerization of 

the ECD in a precise conformation, followed by exact positioning of the TM and 

intracellular domains for initiating autophosphorylation of the kinase domain and 

subsequent activation of downstream signaling. Our previous low resolution single 

particle electron microscopy (EM) and small angle solution scattering (SAXS) data 
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suggested homotypic contacts in domains 4-7 (Kisko et al., 2011; Ruch et al., 2007).  

To gain information on the molecular details of the homotypic interactions occuring in 

VEGFR-2 required for activation of the receptor, we applied several strategies for 

crystallization of VEGFR-2 ECD complexes. In order to study the function of individual 

Ig-domains in receptor activation we investigated the interaction of VEGFR-2 ECD with 

ligand using various biophysical techniques. 

We and others have shown that homotypic interactions occuring between receptor 

dimerization upon ligand binding are indispensible for VEGFR-2 and -3 activation 

(Hyde et al., 2012; Leppänen et al., 2013; Yang et al., 2010). Domains 4-7 of VEGFRs 

thus represent novel allosteric receptor-regulatory sites. 

Our aim was to investigate the structure of ligand induced homotypic contacts in full 

length ECD/ligand complexes of VEGFR-1. We validated the biological relevance of 

the molecular details found in the structural study by carrying out functional studies in 

cell culture. This will provide an insight for the future development of highly specific 

inhibitory drugs. 
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6. Materials and Methods 

6.1. Cloning, expression and purification of VEGFR-2 ECD 
subdomains for crystallization experiments 

6.1.1. Cloning of a VEGFR-2 ECD subdomain construct for insect cell 
expression 

The construct VEGFR-2 domains 2-5 was polymerase chain reaction (PCR) amplified 

and cloned into the insect cell expression vector pFL by PCR subcloning (Geiser et al., 

2001) using the following primers. 

Fwd 5’-

CTGCGTGGAGACCAGAGCCGCATCTGTTCAAGATTACAGATCTCCATTTATTGC

TTCT -3’  

Rev 5’- GTGATGGTGATGGTGATGTCTGCCCTCGATACCCCTGGTCACGTGG -3’.  

6.1.2. Cloning of VEGFR-2 constructs for baculovirus mediated 
transduction in mammalian (HEK293S GnTi-) cells 

The cDNA of VEGFR-2 ECD subdomains 1-7, 2-7 and 1-3 were PCR amplified from 

their respective pcDNA3 plasmids using Phusion High-Fidelity DNA polymerase 

(Finnzymes) and the following primers. 

Fwd 5’- 

GCTGGCTAGCGTTTAAACTTAAGCTTGGTACCATGGAGAGCAAGGTGCTGCT -3’ 

Rev 5’- 

CGGGCCCTCTAGACTCGAGCGGCCGCTTATCAGTGATGGTGATGGTGATG -3’.  

Following incubation at 72°C for 10 min with Taq Plus Precision polymerase 

(Stratagene), the amplicons were ligated to the pGEM-T vector (Promega). The inserts 

were cut from these vectors with NheI and XhoI (Fermentas), purified from TAE 

agarose gels with the Qiaquick gel extraction kit (Qiagen) and ligated to pFL plasmids. 

The VSV-G cDNA was PCR amplified using Phusion High-Fidelity DNA polymerase 

(Finnzymes) and the following primers: 

Fwd 5’- AGCACGTGGGATCCGAATTCAAC-3' 
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Rev 5’- CTGCACTCTAGAGGGGTGAATTCCATA-3' 

The PCR amplicons and pUCDM (Fitzgerald et al., 2006) were digested with BamHI 

and XbaI (Fermentas), purified from TAE agarose gels with the Qiaquick gel extraction 

kit (Qiagen) and ligated using T4-ligase (Fermentas). 

The Cre/LoxP recombination reaction between the acceptor plasmid pFL carrying the 

VEGFR-2 ECD subdomains and the donor plasmid pUCDM carrying VSV-G was 

performed at 37°C for 60 min (New England BioLabs). Escherichia coli (E. coli) DH10β 

cells were transformed with the reaction mixture by electroporation and incubated for 

1 h at 37°C. Then they were plated on agar plates containing ampicillin and 

chloramphenicol. The colonies were picked and plasmid DNA was extracted with a 

Miniprep kit (Qiagen). The constructs were verified by sequencing the plasmid-DNA 

(Microsynth AG). 

6.1.3. Cloning of mouse mVEGFR-2 ECD constructs for expression 
in mammalian (HEK293 EBNA) cells 

The mouse VEGFR-2 ECD subdomain constructs were PCR amplified from an 

artificially synthesized sequence (Genewiz) encoding the mouse VEGFR-2 ECD cDNA 

using the primers shown in Table 1. 
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mVEGFR-2 
Construct 

5’-3’ Primer Sequence 

 

Domains 1-7 

Fwd 5’- CTCGTCTCTAGACGCCTCTGTGGGTTTGCCTGG -3’ 

Rev 5’- 
TGCTTAGCGGCCGCTCATCAGTGATGGTGATGGTGATGGGGGCCCTGG
AACAGCACCTCCAGCAAGTTGGTCTTTTCCTGGGCAC-3’ 

 

Domains 2-7 

Fwd 5’- CTCGTCTCTAGACCGAGATTACAGATCACCATTCATCGC -3’ 

Rev 5’- 
TGCTTAGCGGCCGCTCATCAGTGATGGTGATGGTGATGGGGGCCCTGG
AACAGCACCTCCAGCAAGTTGGTCTTTTCCTGGGCAC-3’ 

 

Domains 1-6 

Fwd 5’- CTCGTCTCTAGACGCCTCTGTGGGTTTGCCTGG -3’ 

Rev 5’- 
TGCTTAGCGGCCGCTCATCAGTGATGGTGATGGTGATGGGGGCCCTGG
AACAGCACCTCCAGTAGGATGATGAGCTGTTTGACCAGG-3’ 

 

Domains 2-5 

Fwd 5’- CTCGTCTCTAGACCGAGATTACAGATCACCATTCATCGC -3’ 

Rev 5’- 
TGCTTAGCGGCCGCTCATCAGTGATGGTGATGGTGATGGGGGCCCTGG
AACAGCACCTCCAGCCTGATCACATGGAAGGAGATGACC -3’ 

 

Domains 1-3 

Fwd 5’- CTCGTCTCTAGACGCCTCTGTGGGTTTGCCTGG -3’ 

Rev 5’- 
TGCTTAGCGGCCGCTCATCAGTGATGGTGATGGTGATGGGGGCCCTGG
AACAGCACCTCCAGAGGCTTTGTGTGAACTCGGACAAAT-3’ 

 

Domains 4-7 

Fwd 5’- CTCGTCTCTAGAC ACAAAGCCTTTTATTGCTTTCGGTAGTG-3’ 

Rev 5’- 
TGCTTAGCGGCCGCTCATCAGTGATGGTGATGGTGATGGGGGCCCTGG
AACAGCACCTCCAGCAAGTTGGTCTTTTCCTGGGCAC-3’ 

 

Domains 5-7 

Fwd 5’- CTCGTCTCTAGACGTCCCACCCCAGATCGGTGAG-3’ 

Rev 5’- 
TGCTTAGCGGCCGCTCATCAGTGATGGTGATGGTGATGGGGGCCCTGG
AACAGCACCTCCAGCAAGTTGGTCTTTTCCTGGGCAC-3’ 

Table 1:  Primers used for cloning mouse VEGFR-2 ECD subdomains in the pCEP4-Pu vector 
for expression in mammalian (HEK293 EBNA) cells. 

 

The PCR products and the backbone of the pCEP4-Pu plasmid (obtained from Dr. 

Richard Kammerer) were digested with the NheI and NotI restriction enzymes prior to 

ligation using T4-ligase (Fermentas). 



Doctoral thesis Mayanka Asthana 
 

40 
  
 

6.1.4. Cloning of glycosylation lacking VEGFR-2 constructs for 
mammalian (HEK293 EBNA) cell expression 

An artificially synthesized sequence (Genewiz) for human VEGFR-2 ECD with all 

asparagine residues substituted with glutamine residues was used as a template for 

PCR amplification of ECD subdomains using Phusion high-fidelity DNA polymerase 

(Finnzymes) and the primer shown in Table 2.  

 

Construct 5’-3’ Primer Sequence 

 

Domains 1-3 
mutant 

Fwd 5’- CTC GTC GCT AGC CTC CGT GGG ACT CCC TTC -3’ 

Rev 5’- 
TGCTTAGCGGCCGCTCATCAGTGATGGTGATGGTGATGGGGGCCCTGGA
ACAGCACCTCCAGGTGCACCCTCACGAAGGTGCTCTG-3’ 

 

Domains 2-5 
mutant 

Fwd 5’- CTCGTCGCTAGCC GACTACAGGAGCCCCTTTATCGCCTCC -3’ 

Rev 5’-
TGCTTAGCGGCCGCTCATCAGTGATGGTGATGGTGATGGGGGCCCTGGA
ACAGCACCTCCAGTCTTGTGACGTGGAAGGAGATCACCCTC -3’ 

 

Domains 1-3 
wild-type 

Fwd 5’-CTCGTCGCTAGCC GGTTTGCCTAGTGTTTCTCTTGATCTGCC -3’ 

Rev 5’-
TGCTTAGCGGCCGCTCATCAGTGATGGTGATGGTGATGGGGGCCCTGGA
ACAGCACCTCCAGATGGACCCTGACAAATGTGCTGTTCTTC -3’ 

 

Domains 2-5 
wild-type 

Fwd 5’-
CTCGTCGCTAGCCGATTACAGATCTCCATTTATTGCTTCTGTTAGTGACC -
3’ 

Rev 5’-
TGCTTAGCGGCCGCTCATCAGTGATGGTGATGGTGATGGGGGCCCTGGA
ACAGCACCTCCAGGGTCACGTGGAAGGAGATCACCCTCTC -3’ 

 

Domains 1-7 
wild-type 

Fwd 5’-CTCGTCGCTAGCC GGTTTGCCTAGTGTTTCTCTTGATCTGCC -3’ 

Rev 5’- 
TGCTTAGCGGCCGCTCATCAGTGATGGTGATGGTGATGGGGGCCCTGGA
ACAGCACCTCCAGCTCCAAGTTCGTCTTTTCCTGGGCAC-3' 

Table 2:  Primers used for cloning of wild-type and glycosylation-lacking mutant (asparagines 
mutated to glutamines) human VEGFR-2 ECD subdomains in the pCEP4-Pu vector used for 
expression in mammalian (HEK293 EBNA) cells. 
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The amplified inserts were cloned into the HEK293 EBNA expression plasmid pCEP4-

Pu following a classic restriction digestion/ligation method, using the NheI and NotI 

restriction enzymes. 

6.1.5. Protein production of ligands 

Human VEGF-A121 and pox virus VEGF-E NZ2 with an N-terminal 6xhistidine tag were 

produced in Pichia pastoris by Thomas Schleier as described before (Scheidegger et 

al., 1999).  

6.1.6. Production and purification of human VEGFR-2 ECD 
subdomain proteins in insect cells 

All human VEGFR-2 ECD variants were expressed in Spodoptera frugiperda (Sf)21 

insect cells, which were maintained in suspension in serum-free InsectXpress medium 

(Lonza) at 27°C with agitation at 90 rpm. Recombinant baculovirus was produced in 

Sf21 cells in serum-free Insect-XPRESS medium (Lonza) at 27°C. Large scale protein 

expression of ECD and dimeric Ig homology domains 2-7 (VEGFR-2 domains 2-7 

GCN4) was carried out in a 5-l benchtop fermenter sparged with an air/oxygen mix on 

demand to maintain a 36% O2 saturation. The culture in the vessel was agitated at 140 

rpm impeller speed and maintained at 27°C and pH 6.2. All other ECD variants were 

expressed in baffled Erlenmeyer flasks. Sf21 cell cultures were infected with 

recombinant baculovirus when they had reached a density of 1x106 cells/ml. The 

supernatant was harvested 72 h after infection by centrifugation at 1000xg, 

concentrated using a tangential flow ultrafiltration device with a 10 kDa cut-off 

membrane (for the VEGFR-2 domains 2-4 construct a 3 kDa cut-off membrane was 

used instead) to a 500 ml volume and buffer exchanged with 50 mM HEPES pH 7.5, 

300 mM NaCl. The proteins were purified by immobilized metal ion affinity 

chromatography (IMAC) using 5 ml His-Trap HP columns (GE Healthcare). Non-

specifically bound proteins on the resin were washed away with buffer (50 mM HEPES 

pH 7.5, 300 mM NaCl) supplemented with 40 mM imidazole. The strongly bound 

proteins were then step eluted with high (400 mM) amounts of imidazole. VEGFR-2 

ECD and VEGFR-2 domains 1-3 were eluted with a 0-500 mM imidazole gradient in 

Tris buffered saline (50 mM Tris, 300mM NaCl) at pH 8.0. The proteins were further 
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purified by size exclusion chromatography (SEC) on a Superdex 200 HR 16/600 

column (GE Healthcare) equilibrated with 50 mM HEPES pH 7.5, 150 mM NaCl. 

Complexes for crystallization were formed by mixing VEGFR-2 ECD variants with 

ligands in 1:2 molar ratio and purified by SEC on Superdex 200.  

6.1.7. Production and purification of mouse VEGFR-2 ECD 
subdomains in mammalian cells 

The HEK293 EBNA cell line (R620-07, Invitrogen) was maintained in Dulbecco’s  

modified Eagle’s medium (DMEM) High Glucose supplemented with L-Glutamine (1-

26F03-I, Bioconcept), 10% fetal bovine serum (FBS) and 250 μg/ml of G418 (108321-

42-2, InvivoGen). Four μg of plasmid pCEP4-Pu containing the mVEGFR-2 ECD 

subdomain cDNA were dissolved in 0.4 ml serum-free medium and were mixed with 8 

μl of PEI (Polyethyleneimine, stock 1mg/ml, Aldrich 408727, 25 kDa branched). The 

mixture was incubated for 10 min at room temperature to allow for DNA-PEI complex 

formation. The mixture was then added to HEK293 EBNA cells grown in a 6-cm culture 

dish, in which the medium was replaced with 1.2 ml DMEM containing 0.5% FBS, and 

was incubated for 3 h. Then, 0.8 ml of DMEM with 2% FBS was added to the culture 

and the cells were incubated for 20 h. Finally, the medium was exchanged with DMEM 

containing 10% FBS, 250 μg/ml G418 (108321-42-2, InvivoGen) and 1 μg/ml 

puromycin (A11138-30, Gibco) for selection of transfected cells. The cells were 

maintained under selection pressure for 7 days. Positive clones of transfected cells 

were selected and expanded to scale-up the production of mVEGFR-2 ECD 

subdomains. Briefly, two 15-cm culture dishes, each with a confluent monolayer of 

selected cells that had been gradually adapted in DMEM with 1% FBS were transferred 

to a sterile baffled Erlenmeyer shaking flask containing 50 ml Protein Expression 

Medium (PEM) without L-glutamine (12661-013, Gibco) supplemented with 2 mM 

Glutamax (35050-038, Gibco), 250 μg/ml G418 (108321-42-2, InvivoGen) and 1 μg/ml 

puromycin. The suspension cultures were grown at 37°C, 5% CO2 with agitation at 100 

rpm. The cell density of the cultures were maintained below 3x106cells/ml and scaled 

up to a volume of approximately 2 l. This expanded culture was centrifuged at 1000xg 

in a fixed-angle rotor for 30 min at 4°C. The culture supernatant was passed through a 

0.45-μm filter and, concentrated with a 10 kDa molecular weight (MW) cut-off 

tangential flow concentrator to an approximate volume of 500 ml. The sample was 
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buffer exchanged twice with 500 ml of buffer containing 50 mM HEPES pH 7.5, 300 

mM NaCl and further concentrated to 250 ml. It was then loaded on a 5 ml His-Trap 

HP column (GE Healthcare) and washed with 50 mM HEPES pH 7.5, 300 mM NaCl, 

20 mM imidazole. The protein was eluted with a gradient of 40-500 mM imidazole and 

concentrated to 5 ml using a 10 kDa MW cut-off centrifugal concentrator. The sample 

was filtered with a 0.45-μm syringe filter and passed over a Superdex 200 16/60 

column (GE Healthcare). VEGFR-2 ECD variants were mixed with human VEGF-A121 

for complex formation and purified by SEC as described in section 6.1.6. 

6.1.8. Cloning, expression and purification of soluble Fab 

Previous members of the group (Thomas Schleier and Dr. Sandra Markovic-Mueller) 

had selected a single chain variable fragment (scFv) from the ETH2-Gold phage-

display library that could bind to VEGFR-2 domain 1 (Silacci et al., 2005).  Initially, the 

scFv antibody fragment bearing a flexible polypeptide linker Gly4SerGly4SerGly4 was 

cloned into the phagemid vector pHEN followed by reformatting into a Fab (termed 

ADH9) by subcloning into the pMX9 vector. Then, Mach1 E. coli competent cells were 

transformed with this construct (Fab ADH9 in the pMX9 vector) by electroporation. The 

cells were subsequently grown in Terrific Broth (TB) medium supplemented with 0.1% 

glucose plus chloramphenicol (17 μg/ml) at  37°C and induced with 1 mM isopropyl β-

D-1-thiogalactopyranoside (IPTG) when the culture reached an OD 600 of 0.8. After  

induction,  the  culture  was  grown  at  30°C  for  12 h, centrifuged  at 2500xg at  4°C 

for  15 min  and  the  pellet was resuspended  in lysis  buffer containing 50 mM Tris pH 

7.5, 150 mM NaCl, 1 mg/ml lysozyme, 20 ug/ml DNase and 2 complete protease 

inhibitor  tablets (11836170001 Merck). The  cells  were  homogenized  with a Turrax 

disperser (IKA) and  lysed  in a  high-pressure  Emulsiflex  C-3 homogenizer  

(Avestin®)  at  15000  psi.  Non-lysed cells,  cell  debris, and  aggregates  were  

removed  by centrifugation  at  13000xg  for  45 min. The Fab was  purified  from  the  

filtered  supernatant by IMAC on a 1 ml His-Trap HP column (GE Healthcare),  

equilibrated with 5 ml  binding  buffer:  50  mM  Tris  pH  7.5,  150  mM  NaCl,  10  mM  

imidazole.  Samples were eluted with elution buffer: 50 mM Tris pH 7.5, 150 mM NaCl, 

500 mM imidazole. The proteins were further purified by SEC on a Superdex 200 HR 

16/600 column (GE Healthcare) equilibrated with 20 mM HEPES pH 7.5, 150 mM 
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NaCl. Eluted fractions, containing the Fab were collected, concentrated, frozen in liquid 

nitrogen and stored at -80°C. 

6.2. Biochemical and biophysical characterization of recombinant 
proteins 

6.2.1. Limited proteolysis 

Five microliter of VEGFR-2 domains 1-7/VEGF-A121 complex at a concentration of 10 

mg/ml was digested with 5 μl of several proteases namely Glu-C, trypsin, papain, α-

chymotrypsin and subtilisin (Sigma-Aldrich) at various ratios (1:10, 1:100 and 1:1000 

of the 1 mg/ml of stock solutions) in buffer containing 50 mM HEPES pH 7.5 and 150 

mM NaCl. The mixture was incubated for 90 min or 16 hr at room temperature and 4°C 

respectively. The reaction was stopped by boiling for 1 min at 90°C in Laemmli buffer 

(0.25 M  Tris-HCl pH 6.8, 0.5 M DTT, 10% SDS, 50% glycerol, 0.5% Bromophenol 

Blue). Samples were stored at -20°C prior to analysis by sodium dodecylsulfate 

polyacryl gel electrophoresis (SDS-PAGE). 

6.2.2. Differential scanning fluorimetry 

The extent of protein unfolding was measured for the purified VEGFR-2 domains 1-7, 

2-7 and 1-3 proteins in their monomeric form as well as in complex with VEGF-A121 in 

one of the following buffers: (1) phosphate-buffered saline (PBS) containing 137 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, (2) 10 mM HEPES pH 7.5, 100 

mM NaCl, and (3) 25 mM HEPES pH 7.5, 500 mM NaCl, at a final concentration of 20 

M. Next, SYPRO Orange dye (5000x, Invitrogen) was added to the protein solutions 

to a final dilution of 10x. Melting curves were measured by heating the samples from 

25°C to 95°C at 1°C increments with a 5 sec incubation at each increment using a 

Rotor-Gene Q real time PCR machine (Rotor disc 72, Qiagen). Fluorescence intensity 

was measured using excitation/emission wavelengths of 485 nm/575 nm. Data 

analysis was performed with the Rotor-Gene Q series software 2.0.2. 

 



Doctoral thesis Mayanka Asthana 
 

45 
  
 

6.2.3. Isothermal titration microcalorimetry  

VEGFR-2 ECD and VEGFR-2 domains 1-3 were purified by SEC using a Superdex 

200 column (GE Healthcare) equilibrated with 20 mM HEPES pH 7.5 buffer, containing 

150 mM NaCl before being used for ITC. The relevant fractions were pooled, 

concentrated. All samples were filtered and degassed prior to analysis. VEGF-A121 ITC 

titrations against VEGFR-2 ECD and VEGFR-2 domains 1-3 were carried out at 4°C 

using an iTC200 calorimeter (MicroCal; GE Healthcare). VEGFR-2 constructs were 

used in the calorimeter cell at a concentration of 10-30 μM and the VEGF ligands in 

the syringe at 150-250 μM. To increase the signal-to-noise ratio, the following 

parameters were used: one initial injection of 0.6 μl followed by 14 more injections of 

2.6 μl at an injection speed of 1 μl/s, with data filter of 1 s and 500 s recovery time 

between each peak. The data were concatenated using the ConCat program 

(MicroCal) and processed and analyzed using Origin Version 7.0 software (OriginLab) 

supplemented with the ITC plug-in provided by the instrument manufacturer. 

6.2.4. Microscale thermophoresis (MST) 

VEGF-A121 was labeled using the Monolith NT Protein Labeling kit BLUE-NHS (MO-

L003, NanoTemper Technologies) by optimizing the manufacturer’s guidelines. The 

concentration of labeled VEGF-A121 was maintained constant at 100 nM. The 

corresponding unlabeled binding partner (VEGFR-2 domains 1-7 and 1-3) was titrated 

in 2:1 dilutions, with the highest final concentration chosen about 20-fold above the Kd 

expected from previously published ITC results (Brozzo et al., 2012). Thus, the highest 

final concentrations were 25 μM for VEGFR-2 domains 1-7 and 0.98 μM for VEGFR-2 

domains 1-3. The measurements were performed at 4°C in 20 mM HEPES buffer, pH 

7.5 containing 150 mM NaCl. Hydrophilic capillaries (NanoTemper Technologies) were 

used for the measurements on a Monolith NT.115 system (Nano Temper 

Technologies) using 100% LED and 20% IR-laser power. Laser on and off times were 

set at 30 s and 5 s respectively. Domains 1-7 quantification was carried out by fitting 

the three data sets that had the same concentration range using the Prism software. 

Since the three datasets overlapped very well with no systematic offset in the Y-axis, 

the fitting was done without normalisation. All points were fitted as a single data set, 

rather than taking the mean and weighting the fit by the error on the mean, as the 
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former method makes no assumptions about the sampling error in the three 

experiments. 

6.3. Functional analysis of Ig-homology domain 5 mutants of 
VEGFR-1 and 2 

6.3.1. Cloning of VEGFR-1 mutants for functional analysis 

VEGFR-1 was PCR amplified and cloned into the mammalian expression vector 

pcDNA3.1+ (Invitrogen) by PCR subcloning (Geiser et al., 2001) using the following 

primers: 

Fwd 5’-TTTTTGGTACCGCCACCATGGTCAGCTACTGGG-3’  

Rev 5’-TTTTTGCGGCCGCTTATCAAGCGTAGTCTGGGACGTCGTATGGGTAAC-

3’.  

TM mutations (TM_ANGG and TM_ΔSSS) were introduced into pcDNA3.1+ VEGFR-

1 wild-type construct by PCR subcloning (Geiser et al., 2001) using appropriate primers 

(Table 3). We applied site-directed mutagenesis for generating the domain 5 

interaction mutations on wild-type and TM activated constructs. For introducing the 

third mutation we used the mutated constructs as a template for subsequent site-

directed mutagenesis. 

Mutations 5’-3’ Primer Sequence 

 

Domain 5_E513A/K517A 

Fwd 5’- 
GGCAATAATAAAGGGAAAGAATGCCATGGCTAGC 
ACCTTGGTTGTGGCTGACTCTAGAATTTCTGG-3’ 

Rev 5’- 
GCTAGCCATGGCATTCTTTCCCTTTATTATTGCCATGCG
CTGAGTGATGCTCTCAATTCTGTTTC-3’ 

 

Domain 5_T455W/E513K/ 
K517A 

Fwd 5’- 
CTGACTTGTTGGGCATATGGTATCCCTCAACCTACAATC
AAGTGGTTC-3’ 

Rev 5’- 
GTTGAGGGATACCATATGCCCAACAAGTCAGGATTTGTC
TGCTGCCCAGTGG-3’ 
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Domain 5_T455E /K517A 

Fwd 5’- 
CATCACTCAGCGCATGGCAATAATAGAAGGAAAGAATGC
CATGGCTAGCACCTTG-3’ 

Rev 5’- 
CTAGCCATGGCATTCTTTCCTTCTATTATTGCCATGCGCT
GAGTGATGCTCTC-3’ 

 

Domain 5_T455E / E513A 
/K517A 

Fwd 5’- 
CAGCAGACAAATCCTGACTTGTTGGGCATATGGTATCCC
TCAACCTACAATC-3’ 

Rev 5’- 
GTTGAGGGATACCATATGCCCAACAAGTCAGGATTTGTC
TGCTGCCCAGTGGGTAG-3’ 

 

TM_ANGG 

Fwd 5’- 
GAAAAGGGCCAACGGCGGTGAAATAAAGACTGACTACC
TATCAATTATAATGGAC-3’ 

Rev 5’- 
AGTCTTTATTTCACCGCCGTTGGCCCTTTTCATTTTTCGG
ATAAAGAGGGTTAATAGGAG-3’ 

 

TM_ANGG_ 

Domain 5_ E513K /K517A 

Fwd 5’- 
GGCAATAATAAAGGGAAAGAATGCCATGGCTAGCACCTT
GGTTGTGGCTGACTCTAGAATTTCTGG-3’ 

Rev 5’- 
GCTAGCCATGGCATTCTTTCCCTTTATTATTGCCATGCG
CTGAGTGATGCTCTCAATTCTGTTTC-3’ 

 

TM_ANGG_ Domain 
5_T455W/E513K/ K517A 

Fwd 5’- 
CTGACTTGTTGGGCATATGGTATCCCTCAACCTACAATC
AAGTGGTTC-3’ 

Rev 5’- 
GTTGAGGGATACCATATGCCCAACAAGTCAGGATTTGTC
TGCTGCCCAGTGG-3’ 

 

 

 

TM_ΔSSS 

Fwd  5’-
CCGAAAAATGAAAAGGGAAATAAAGACTGACTACCTATC
AATTATAATGGAC-3’ 

Rev 5’- 
GTAGTCAGTCTTTATTTCCCTTTTCATTTTTCGGATAAAG
AGGGTTAATAGGAG-3’ 

 

TM_ΔSSS_ 

Domain 5_ E513K /K517A 

Fwd 5’- 
GGCAATAATAAAGGGAAAGAATGCCATGGCTAGCACCTT
GGTTGTGGCTGACTCTAGAATTTCTGG-3’ 

Rev 5’- 
GCTAGCCATGGCATTCTTTCCCTTTATTATTGCCATGCG
CTGAGTGATGCTCTCAATTCTGTTTC-3’ 
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TM_ΔSSS_ 

Domain 5_ T455W/E513K/ 
K517A 

Fwd 5’- 
CTGACTTGTTGGGCATATGGTATCCCTCAACCTACAATC
AAGTGGTTC-3’ 

Rev 5’- 
GTTGAGGGATACCATATGCCCAACAAGTCAGGATTTGTC
TGCTGCCCAGTGG-3’ 

 

 Table 3: Primers used for cloning VEGFR-1 mutants for functional analysis.  

The constructs were amplified by PCR using Phusion High-Fidelity DNA polymerase 

(Finnzymes). Template DNA was digested by adding 1 μl of DpnI (Fermentas) to the 

PCR product mixture and incubating for 8 h at 37°C. Subsequently, electrocompetent 

E.Coli DH10β were transformed with 0.5 μl of the digested PCR mixture and plated on 

Luria Bertani (LB)-Ampicilin agar plates. Positive colonies were picked after 16 h 

incubation at 37°C and inoculated in 5 ml overnight cultures. Plasmid DNA was then 

extracted with a Miniprep kit (Qiagen). The mutations were verified by sequencing 

plasmid DNA (Microsynth AG). 

6.3.2. Cloning of VEGFR-2 mutants for functional analysis 

Our starting material was wild-type VEGFR-2 cloned in the pBE vector (a modified 

pEGFP-N1 vector; Takara Bio Europe/Clontech), suitable for mammalian expression. 

We also subcloned VEGFR-2 domain 7 R726A from the expression vector 

pcDNA5/FRT (Invitrogen) into the pBE vector. The pBE vector was PCR amplified 

using the following primers: Fwd 5’-

GAAAAGACGAACTTGGAAATCATTATTCTAGTAGGCACGGCGGTG-3’ and Rev 5’-

CATCGCTGCTCCCCGAAGAGCTCGCTCCGGCTC-3’. The homology regions 

needed for integration are underlined. The insert VEGFR-2 domain 7 R726A was 

amplified with the following primers: Fwd 5’-

CTTCGGGGAGCAGCGATGGAGAGCAAGGTGCTGCTGGCCGTC - 3’ and Rev 5’-

GATTTCCAAGTTCGTCTTTTCCTGGGCACCTTTATTATGAAAAATGCCTC-3’. The 

underlined non-annealing 5’ tails were complementary to the homology regions of the 

5’ ends of the primers used above for the vector linearization. PCR amplified plasmid 

and insert were assembled in vitro using the Gibson assembly (Gibson et al., 2009).  

(Figure 4). 
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Figure 4: Schematic representation of Gibson assembly using PCR-linearized plasmids.  

The VEGFR-2 domain 5 T446E/K512A and T446E/ E508K/K512A mutations were 

introduced into the pBE VEGFR-2 construct by cloning two overlapping fragments of 

the gene harbouring mutations into the vector backbone in a single Gibson assembly 

(Gibson et al., 2009)  reaction using the primers shown in Table 4. 
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Mutations 5’-3’ Primer Sequence 

 

Domain 5_E508K/K512A 

Fwd 5’- 
AAAGGAAAAAACGCAACTGTAAGTACCCTTGTTATCCAAG
CGGCAAATG-3’ 

Rev 5’- 
CTTACAGTTGCGTTTTTTCCTTTAATTAGAGCAAATTGATTT
TTATTAACTTC-3’ 

 

Domain 5_T446E/K512A 

Fwd 5’- 
TCAATTTGCTCTAATTGAAGGAAAAAACGCAACTGTAAGTA
CCCTTGTTATCCAAGCGGCAAATG-3’ 

Rev 5’- 
CTTACAGTTGCGTTTTTTCCTTCAATTAGAGCAAATTGATT
TTTATTAACTTC-3’ 

 

Domain 5_T446E/ 
E508K/K512A 

 

Fwd 5’- 
CAAACGCTGACATGTGAAGTCTATGCCATTCCTCCCCCGC
ATC-3’ 

Rev 5’- 
GAATGGCATAGACTTCACATGTCAGCGTTTGAGTGGTGCC
GTAC-3’ 

 

Domain 7_R726A_Domain 
5_ T446E/K512A 

Fwd 5’- 
TCAATTTGCTCTAATTGAAGGAAAAAACGCAACTGTAAGTA
CCCTTGTTATCCAAGCGGCAAATG-3’ 

Rev 5’- 
CTTACAGTTGCGTTTTTTCCTTCAATTAGAGCAAATTGATT
TTTATTAACTTC-3’ 

 

Domain 7_R726A_ Domain 
5_T446E/ E508K/K512A 

 

Fwd 5’- 
CAAACGCTGACATGTGAAGTCTATGCCATTCCTCCCCCGC
ATC-3’ 

Rev 5’- 
GAATGGCATAGACTTCACATGTCAGCGTTTGAGTGGTGCC
GTAC-3’ 

Table 4: Primers used for cloning VEGFR-2 mutants for functional analysis. 

The PCR products were digested with 1 μl DpnI ((New England Biolabs) in the 

presence of NEB4 buffer for 8 h at 37°C, and then purified using the MiniElute PCR 

purification kit (Qiagen). An insert-plasmid mastermix was prepared such that each 

Gibson assembly reaction consisted of 2.7 μl 5x isothermal reaction buffer (5x IT 

buffer), 2 μl insert-plasmid mastermix (containing 75 ng plasmid and an 8-fold molar 

excess of insert), 5.3 μl 1:1000 diluted T5 exonuclease (New England Biolabs, 10’000 
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U/ml), 1.6 μl of 1:10 diluted Phusion HF DNA polymerase (NEB, 2’000 U/ml), 1.3 μl 

Taq DNA ligase (NEB M0208L, 40’000 U/ml, undiluted) and H2O to a final volume of 

13.5 μl. The 5x IT buffer consisted of 25% PEG 8000 (Sigma-Aldrich), 500 mM Tris 

HCl pH 7.5, 50 mM MgCl2, 50 mM DTT, 1 mM of each dNTP (New England Biolabs) 

and 5 mM NAD+ (New England Biolabs). The reactions were incubated in the PCR 

machine at 50°C for 1 h. Chemically competent E.Coli Mach1 cells were transformed 

with 2 μl of the above assembly mixture and plated on LB-Kanamycin agar plates. Cell 

colonies were picked after an incubation of 16 h at 37°C and inoculated in 5 ml 

overnight cultures. Plasmid DNA was extracted with a Miniprep kit (Qiagen). The 

mutations were verified by sequencing the plasmid DNA (Microsynth AG). 

6.3.3. Cloning of VEGFR-1/2 chimeric constructs for functional 
analysis 

For cloning the chimeric VEGFR-1/2 constructs, consisting of VEGFR-1 ECD (residues 

1-752) and the intracellular domain of VEGFR-2 (residues 759-1356) we PCR-

amplified wild-type, domain 5_E513K/K517A and domain 5_T455W/E513K/K517A 

VEGFR-1 ECD from their respective constructs in the pcDNA 3.1+ vector using the 

following primers: Fwd-

5’CTTCGGGGAGCAGCGATGGTCAGCTACTGGGACACCGGGGTCCTGCTGTG-3’ 

and Rev-5’ 

GATTTCCAAGTTCGTCTTTTCCGAGGTTCCTTGAACAGTGAGGTATGCTGAAC-3’ 

The DNA fragments were integrated into the wild-type VEGFR-2 pBE plasmid by 

replacing VEGFR-2 ECD using the Gibson assembly as described in section 6.3.2. For 

this, the pBE VEGFR-2 plasmid was linearized using the following primers: Fwd 5’-

TAAAGGTTTTACTGCTTTAAAAAACTCCCACATCCCCCTGAACTGAAAC-3’ and 

Rev 5’- CATCGCTGCTCCCCGAGCTCGCTCCGGCTC-3’. 

6.3.4. Cloning of VEGFR-1 for lenti viral expression 

In order to stably transfect PAE cell lines expressing domain 5 mutants using lenti 

viruses, we PCR-amplified wild-type, domain 5_E513K/K517A and domain 

5_T455W/E513K/K517A VEGFR-1 from their respective constructs in the pcDNA 3.1+  

vector using the following primers: 
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Fwd  5’- 

ATCCACCGGTCGCCACCATGATGGTCAGCTACTGGGACACCGGGGTCC-3‘ and 

Rev 5’- 

GATTGTCGACGCGGCCGCTTTATATCAAGCGTAGTCTGGGACGTCGTATGG-3‘  

and subcloned them into the transfer vector plasmid pRRLSIN.cPPT.PGK-GFP.WPRE 

(Addgene) by Gibson assembly as described in section 6.3.2. For this, the 

pRRLSIN.cPPT.PGK-GFP.WPRE plasmid was linearized and amplified using the 

following primers: 

Fwd 5’ 

GGACCCCGGTGTCCCAGTAGCTGACCATCATGGTGGCGACCGGTGGAT-3‘and 

Rev 5’- 

CCATACGACGTCCCAGACTACGCTTGATATAAAGCGGCCGCGTCGACAATC-3‘ 

Chemically competent E.Coli Mach1 cells were transformed with the above assembly 

mixture and plated on LB-Ampicillin agar plates. Cell colonies were picked after 

overnight incubation at 37°C and inoculated in 5 ml overnight cultures. Plasmid DNA 

was extracted with a Miniprep kit (Qiagen). The mutations were verified by sequencing 

the plasmid DNA (Microsynth AG). 

6.3.5. Cell Culture 

Porcine aortic endothelial cells (PAE), human embryonic kidney epithelial 293 cells 

(HEK293), HEK293T and NIH3T3 cells were grown in DMEM supplemented with 10% 

FBS and 1% penicillin–streptomycin. Cells were cultured in a humidified atmosphere 

at 37°C and 5% CO2. 

6.3.6.  Transient transfections 

NIH3T3 cells were seeded in 3.5-cm dishes and allowed to reach 60% confluence, at 

which point their medium was replaced with 1.6 ml fresh DMEM containing 0.5% FBS. 

Four μg plasmid DNA carrying either the VEGFR-1/2 or VEGFR-2 cDNA was dissolved 

in 0.4 ml serum-free culture medium and mixed with 8 μl PEI. After 10 min incubation 

at room temperature, allowing for the successful formation of a DNA-PEI complex, the 
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mixture was added to the cells. Following 5 h incubation at 37°C, an additional 2 ml 

DMEM containing 10% FBS was added and the cells were incubated for 20 h prior to 

analysis.  

Alternatively, HEK293 and NIH3T3 cells, grown to 60% confluence in 3.5-cm dishes, 

were transfected with plasmid DNA containing the VEGFR-1 or VEGFR-2 cDNA using 

either FuGENE (Promega) or Lipofectamine 2000 or 3000 (Invitrogen) according to the 

manufacturer’s instructions. 

6.3.7. Generation of stably transfected PAE cells by chemical 
transfections 

PAE cells were plated 6-9 h prior transfection in 10-cm dishes. Cells were 40-50% 

confluent prior to transfection. Twenty μg linearized plasmid DNA containing the 

VEGFR-1 cDNA dissolved in 2 ml serum-free DMEM were mixed with 40 μl PEI. The 

mixture was incubated for 10 min at room temperature. The medium in the culture 

dishes was replaced with 6 ml DMEM containing 0.5% FBS and the DNA/PEI complex 

was added for 5 h. Cells were passed into ten 10-cm plates 40 h after transfection in 

different dilutions (1:5, 1:10, 1:50, 1:100, 1:200, 1:400, 1:600, 1:800, 1:1000, 1:2000) 

and selection was applied by adding 500 μg/ml G418 (Geneticine) to the medium. 

Single cell colonies were picked with clone rings with grease after 14 days and 

transferred to 1-cm wells to grow in the presence of selection drug. Once cells were 

90% confluent they were passed in 6-cm plates and frozen into aliquots. 

6.3.8. Generation of stably transfected PAE cells by lentiviral 
transductions 

HEK293T cells plated at 85-90% confluence in 10-cm culture dishes were used for 

transfections. Twelve μg of transfer vector containing the VEGFR-1 cDNA was mixed 

with 4 μg each of the packaging plasmids pMDLg/pRRE and pREV, and 4 μg of the 

envelope plasmid pVSVg-PMD2.G in 2 ml serum-free medium (Opti-MEM; Life 

technologies). Seventy two μg PEI was added to this mixture and incubated at room 

temperature for 10 min. Subsequently, 5 ml fresh DMEM was added to it. The plated 

cells were incubated for 3 h with the above mixture. Afterwards, 5 ml DMEM containing 

5% FBS was added and the cells were incubated for 72 h at 37°C. The supernatants 
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were collected and centrifuged for 5 min at 180xg to remove cell debris, and stored at 

4°C. Prior to transfection, they were concentrated by ultracentrifugation at 80,000xg 

(24,000 rpm on a SW-28 ultracentrifuge rotor) for 1.5 h at 4°C and resuspended in 100 

μl PBS. The concentrated virus solution was added to PAE cells grown in 3.5-cm 

dishes at 60% confluence for 24 h. To increase the efficiency of infection, polybrene 

(Hexadimethrine bromide, Sigma H9268) was added to a final concentration of 4 μg/ml. 

After 24 h, the medium was changed to 2 ml DMEM containing 10% FBS, and the cells 

were incubated for 72 h at 37°C prior to VEGFR-1 expression analysis.    

6.3.9. Immunocytochemistry 

PAE cells stably expressing VEGFR-1 were grown on glass coverslips coated with 

Poly-L-Lysine (P4707, Sigma) to 60% confluence. Cells were fixed with 3.7% 

formaldehyde in PBS for 20 min at 37°C, permeabilized for 10 min with 0.1% (wt/vol) 

NP-40 in PBS, and blocked for 20 min in 5% (wt/vol) bovine serum  albumin (BSA) in 

PBS at room temperature. The samples were sequentially exposed to primary (1:400) 

and fluorescently labelled secondary (1:1000) antibodies in PBS containing 1% BSA, 

and embedded in Gelvatol (15% Gelvatol [Celanese Corporation, Lanaken, Belgium], 

33% glycerol, 0.1% sodium azide). The coverslips were washed thrice with PBS after 

each step. Images were acquired with an Olympus IX8 equipped with an Andor 

iXonEM camera and with a Leica SP5 laser scanning confocal microscope at 60X 

magnification. 

6.3.10. VEGF receptor activity assay 

PAE, HEK293, or NIH3T3 cells were  serum  starved in DMEM  supplemented  with  

1%  BSA  and  stimulated  with  VEGF or PlGF for 10 and 5 min respectively, at 37°C. 

Cell lysates were prepared in lysis buffer (50 mM Tris pH 7.5, 100 mM NaCl, 0.5% 

[wt/vol] Triton X-100) supplemented with a protease inhibitor  cocktail  (Complete  Mini 

EDTA-free,  Roche Diagnostics),  phosphatase  inhibitors  (200  μM Na3VO4, 10 mM 

NaF, 10 mM sodium pyrophosphate, 30 mM p-nitrophenly-phosphate, 80 mM 

glycerophosphate, and  20  μM  phenylarsine  oxide) and 10% glycerol. The 

Bicinchoninic Acid (BCA) assay (Pierce BCA Protein assay kit; Thermo Fischer 

Scientific) was used to determine the total amount of protein in the lysates. Lysates 
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were  diluted  with Laemmli buffer  (0.25M  Tris-HCl pH 6.8, 0.5M DTT, 10% SDS, 50% 

Glycerol, 0.5% Bromophenol Blue), incubated at 95°C for 1 min, resolved on 8%  SDS 

polyacrylamide gels, transferred to polyvinylidene (PVDF,GE Healthcare) membranes, 

and immunoblotted with primary antibodies (dilution 1:1000) followed by secondary 

alkaline phosphatase-coupled  antibodies  (dilution 1:10000),  and  developed  with   

the Novex  AP  Chemiluminescent Substrate (Invitrogen). The signal was detected on 

a GE Healthcare ImageQuant RT ECL scanner and densitometrically quantified using 

the ImageJ gel analysis plugin. 

The antibodies used were as follows: pY1175-VEGFR-2 (2478, Cell Signaling), 

tVEGFR-2 (2479, Cell Signaling), α-tubulin (T5168 Sigma-Aldrich), anti-rabbit IgG 

HRP-linked (7074S, Cell Signaling), anti-mouse   IgG HRP-linked   (7076S,   Cell   

Signaling). Alkaline phosphotase (AP) conjugated secondary antibodies were obtained 

from Jackson  ImmunoResearch. The fluorescently labeled  Dylight 488 secondary 

antibody was purchased from Abcam. The protein marker used for all SDS-PAGE and 

western blot experiments was PageRuler™ Plus Prestained Protein Ladder, 10 to 250 

kDa (26619, ThermoFisher). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Doctoral thesis Mayanka Asthana 
 

56 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

.  



Doctoral thesis Mayanka Asthana 
 

57 
  
 

7. Results 

7.1. Structural characterization of VEGFR-2 ECD complexes 

7.1.1. Expression and purification in insect cells 

A great motivation for this project was the limited structural information available on 

the ECD of VEGFR-2. Our main aim was to perform biophysical and structural studies 

in order to understand the regulatory role of the various extracellular Ig-homology 

domains in VEGFR-2 activation. To achieve this goal, we engineered several multi-

domain fragments of VEGFR-2 ECD for high-level expression in insect cells. We also 

included VEGFR-2 domains 2-7 GCN4 in our study, which contains the two-stranded 

coiled-coil domain of the yeast transcription activator GCN4 at the C-terminal followed 

by the membrane proximal end of VEGFR-2 ECD (Table 5). Such design may mimic 

the stability provided to the ECD by the transmembrane domains (TMD) in the native 

form of the receptor, present in the cell membrane. 

For expression in insect cells, we used the Multibac baculovirus expression vector pFL 

(Berger et al., 2004) or the commercially available pFASTBAC-1 vector (Invitrogen). 

The constructs VEGFR-2 domains 1-7, 2-7 and 2-7 GCN4 in pFL and VEGFR-2 

domains 1-3 in pFASTBAC-1 were already present in the laboratory. The construct 

VEGFR-2 domains 2-5 was cloned during this work into one of the two multiple cloning 

sites of pFL. All constructs contained the endogenous VEGFR-2 signal sequence to 

trigger protein secretion and a C-terminal 8xhistidine tag with a preceding factor Xa 

cleavage site for removal of the tag. The pFL and pFASTBAC plasmids with the various 

ECD constructs were used to generate baculovirus for Sf21 insect cell infection and 

consequent recombinant protein expression. Several types of media were tested for 

the growth of Sf21 cells in suspension. We found that the medium from Lonza 

promoted cell growth, while reducing cell clumping of Sf21 cells in suspension (Figure 

5). To further minimize cell clumping, we also assessed the growth of cells in 

suspension in different vessels, including square bottles, flat-bottom and baffled 

Erlenmeyer flasks and a small-scale bioreactor. We found that the small-scale 

bioreactor minimized cell clumping and promoted cell growth. VEGFR-2 domains 1-7  

and 2-7 GCN4 were expressed in a 4 l Sf21 culture in a small-scale bioreactor, 
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whereas all other proteins were expressed in 4 l cultures in baffled Erlenmeyer flasks. 

Due to technical difficulties we were able to optimize expression of only two constructs 

in the bioreactor. The optimal purification protocol involved a first step of IMAC to 

remove most of the impurities, followed by a second step of SEC for removing 

remaining aggregates. The cultures in Erlenmeyer flasks gave yields ranging from 0.5–

1.6 mg per l of cultured cells, whereas protein expression in the bioreactor resulted in 

a final yield of 10-13 mg/l due to better aeration than in shaker cultures. This gave 

sufficient material for carrying out initial characterization and crystallization 

experiments.  

The elution profiles of the purified proteins from a calibrated Superdex 200 column is 

shown in Figure 6. The elution profiles of constructs VEGFR-2 domains 1-7, 2-7, 2-7 

GCN4 and 2-5 indicates a homogenous receptor preparation. On the other hand, the 

elution profile of the VEGFR-2 domains 1-3 construct shows clear signs of 

polydispersity. The first two peaks, at 48 ml and 64 ml respectively, correspond to the 

aggregates and oligomers eluted at the void volume (45 ml), whereas the monomeric 

protein was eluted at a retention volume of 84 ml, as shown in Figure 6d. The protein 

purity of all the constructs judged from SDS-PAGE was found to be 95%. However, 

SDS-PAGE of the eluted fractions showed diffuse bands and the proteins were 

detected at higher MW than expected (calculated MW are as follows: domains 1-7: 88 

kDa, domains 2-7: 78 kDa, domains 2-7GCN4: 80.2 kDa, domains 1-3: 39.4 kDa, 

domains 2-5: 51.5 kDa). This can be attributed to heterogeneous glycosylation of the 

proteins expressed in insect cells (potential N-glycosylation sites are shown in Table 

5). To improve this, we designed new constructs for expression in mammalian cells. 
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Figure 5: Test of different media for their suitability for suspension culture of Sf21 cells. 
Growth curves of Sf21 cells in suspension were monitored for three different culture media: 
Insect-XPRESS (Lonza), SF4-Baculo Express ICM (Bioconcept) and SF900 II SFM (Gibco). 
Cells cultured in the Insect-XPRESS medium achieved maximum cell density, while showing  
the least clumping. 

 

Domain 
boundaries 

Amino 
acids 

 

Domains 1-7 20-764 
 

Domains 2-7 118-
756  

 
Domains 2-7GCN4 118-

756  
 

Domains 1-3 20-335 
 

 
Domains 2-5 118-

550  
 

 

 

Table 5: VEGFR-2 ECD recombinant proteins expressed in insect cells. 
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Figure 6:  SEC profiles of VEGFR-2 ECD subdomains expressed in insect cells. Soluble 
proteins were produced in Sf21 cells and purified from the culture supernatant by IMAC and 
SEC. The Superdex S200 elution profiles (left panel) with their corresponding SDS-PAGE 
analysis (right panel) are shown. (a) VEGFR-2 domains 1-7 (b) VEGFR-2 domains 2-7 (c) 
VEGFR-2 domains 2-7 GCN4 (d) VEGFR-2 domains 1-3 (e) VEGFR-2 domains 2-5. Black 
bars indicate the fractions that were loaded for SDS-PAGE. 

7.1.2. Expression and purification in mammalian cells 

VEGFR-2 has 18 potential N-gylcosylation sites within the extracellular domain. As 

insect cells are unable to produce sialylated complex glycans, we expressed VEGFR-

2 ECD subdomains in mammalian cells in order to obtain near native-like post-

translational modifications in the secreted proteins. Since complex glycans could 

interfere with protein crystallization, we used HEK293S GnTi− cells which lack the 

capability to process N-linked glycans on glycoproteins from the high mannose to the 

complex mature form resulting in more homogeneously glycosylated protein. 

Furthermore, these proteins greatly facilitate enzymatic removal of the bulk of the 

attached N-linked glycans via Endoglycosidase F (EndoF) (Reeves et al., 2002). 

7.1.2.1. Baculovirus mediated gene expression of VEGFR-2 ECD subdomains in 
mammalian cells 

We expressed VEGFR-2 ECD subdomains by adapting the baculovirus mediated gene 

transduction of mammalian cells (BacMam) system as shown in Figure 7. In contrast 

to other commonly used viral vectors, baculoviruses are insect cell viruses that can be 

modified to express proteins in mammalian cells without initiating a replication cycle. 
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The viruses can be manipulated to accommodate large inserts of foreign DNA and 

have a good biosafety profile. 

Three different constructs were made having different genes of interest: VEGFR-2 

domains 1-7 (residues 20-764), 2-7 (residues 118-756) and 1-3 (residues 20-335) 

containing the factor Xa cleavage site and an 8xhistidine tag. VEGFR-2 domains 1-7 

would provide insights for the full extracellular domain. VEGFR-2 domains 2-7 was 

also cloned to remove the flexible domain 1, which might cause difficulty in crystal 

formation. VEGFR-2 domains 1-3 was cloned to get more insight into the contribution 

of domain 1 in ligand binding to domains 2 and 3. The acceptor vector was 

reengineered from the pFL vector (Fitzgerald et al., 2006), and carried the gene of 

interest, a mammalian promoter (CMV), mammalian transcriptional regulatory 

elements and a poly A signal. The acceptor vector was recombined by cre-loxP 

recombination to a donor vector containing a VSV-G gene under an insect cell 

promoter (polh). The VSV-G gene was incorporated for enhancing virus titer. E.Coli 

DH10EMBacYFP were transformed with the donor-acceptor plasmid pairs, and the 

resulting bacmid DNA was used to transfect Sf21 and produce the baculoviruses. The 

resultant baculovirus was concentrated 400 times by ultracentrifugation through a 

sucrose cushion (25% w/w sucrose, 5 mM NaCl and 10 mM EDTA), and 100 μl of this 

concentrated virus was used to infect HEK293S GnTi- cells in 6-well plates. However, 

the protein yields from BacMam transductions in HEK293S GnTi- cells were not 

significantly higher when compared to PEI transfections in HEK293T cells, even when 

concentrated baculovirus was used (Figure 8). In addition, the protein yield (~50 

μg/100 ml of culture) did not meet our requirements for milligram quantities of soluble 

proteins produced in a relatively short time for crystallization trials.  
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Figure 7. Strategy for VEGFR-2 ECD subdomain expression by baculovirus mediated 
gene transduction in mammalian cells. The ECD variant gene is inserted into an acceptor 
vector (pSI-AA), which is recombined to a VSV-G bearing donor vector (pUCDM) to generate 
the dimeric expression vector. E.Coli DH10EMBacYFP cells are then transformed with the 
dimeric expression vector to generate the bacmid DNA, which is used for infecting Sf21 cells 
for baculovirus production.  The baculovirus is in turn used for transducing HEK293S GnTi- 
cells for protein production. The purified proteins can be enzymatically deglycosylated by 
EndoF. 
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Figure 8: Comparison of different expression systems for the production of VEGFR-2 
ECD subdomains. The various VEGFR-2 ECD subdomains (D1-7, D1-2 and D1-3) were 
expressed in HEK293T and HEK293S GnTi- cells by either chemical transfection or using the  
BacMam strategy. The expression levels of the various VEGFR-2 ECD subdomains was 
probed in the culture supernatants by western blotting using an anti-His antibody, which 
recognizes the histidine tag of all three recombinant proteins. 

7.1.2.2. Expression and purification of mouse VEGFR-2 ECD subdomains in 
HEK293 EBNA cells 

In order to achieve protein expression in sufficient quantities to carry out structural 

analysis experiments, we assessed stable gene expression in mammalian cells. In 

these studies, we used the mouse homologue of VEGFR-2. The human and mouse 

VEGFR-2 ECD have high degree of sequence identity (80% by CLUSTALW). Stable 

cell lines expressing mouse VEGFR-2 ECD subdomains (Table 6) were generated in 

HEK293 EBNA cells, which express the Epstein-Barr nuclear antigen 1 (EBNA-1). The 

product of the EBNA-1 gene drives the episomal amplification of expression plasmids 

carrying the origin of replication derived from the Epstein-Barr virus (EBV). Thus, these 

cells under selection pressure (Puromycin) are expected to increase recombinant 

protein expression levels by permitting more plasmid copies to persist in the 

transfected cells throughout the production phase. 
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All the constructs were cloned in the pCEP4-Pu vector and carried a 6xhistidine tag 

and a C-terminal precision protease cleavage site to allow tag removal. The stable 

HEK293 EBNA cells expressing VEGFR-2 domains 2-5, 1-3 and 4-7 were not 

expanded due to very weak expression.  On the other hand, stable cells expressing 

VEGFR-2 domains 1-7, 2-7, 1-6 and 5-7 could be upscaled to 4 l cultures in Erlenmeyer 

flasks. The recombinant proteins were purified by IMAC followed by a second 

purification step of SEC. The SEC profiles show VEGFR-2 domains 1-7, 1-6 and 5-7 

eluting with a predominantly monodisperse peak, whereas VEGFR-2 domains 2-7 

gave a broad polydisperse peak indicating oligomerization (Figure 9). The eluted 

fractions were analyzed by SDS-PAGE. Due to N-glycosylation, the proteins ran at a 

higher MW (domains 1-7: 120 kDa, domains 2-7: 110 kDa, domains 1-6: 100 kDa and 

domains 2-5: 70 kDa) than their theoretical MW (domains 1-7: 86.5 kDa, domains 2-7: 

75.4 kDa, domains 1-6: 75 kDa and domains 5-7: 39.3 kDa). High protein yields were 

obtained upon purification, in the range of 2.5-4.2 mg/l.  All recombinant proteins, either 

glycosylated or deglycosylated with Peptide: N-glycosidase F (PNGase F) and Endo F 

were used for crystallization experiments. 

 

Domain 
boundaries 

Amino 
acids 

 

Domians 1-7 20-762 
 

Domains 2-7 123-762 
 

Domains 1-6 20-661 
 

Domains 5-7 421-762 
 

 
Table 6: Mouse VEGFR-2 ECD subdomain recombinant proteins expressed in HEK293 EBNA 
cells. 
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Figure 9: SEC profiles of mouse VEGFR-2 ECD subdomains expressed in mammalian 
cells. Soluble proteins were produced in HEK293 EBNA cells and purified from the culture 
supernatant by IMAC and SEC. The Superdex S200 elution profiles (left panel) with their 
corresponding SDS-PAGE (right panel) are shown. (a) mVEGFR-2 domains 1-7 (b) mVEGFR-
2 domains 2-7 (c) mVEGFR-2 domains 1-6 (d) mVEGFR-2 domains 5-7. Black bars indicate 
the fractions that were loaded for SDS-PAGE. 
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Since we achieved higher expression with the mouse VEGFR-2 ECD constructs in 

HEK293 EBNA cells than with the human VEGFR-2 ECD constructs in insect cells 

(section 7.1.2.1), we decided to use this expression system for human VEGFR-2 ECD 

subdomains as well. Additionally, mammalian cells should provide a more 

physiologically relevant environment for VEGFR-2. However, glycosylation may be a 

bottleneck for obtaining crystals. Thus, we cloned constructs of human VEGFR-2 ECD 

subdomains (domains 1-7, 2-5 and 1-3) in the pCEP4-Pu vector, with all asparagine 

residues replaced with glutamine residues, leading to proteins lacking any N-

glycosylation. However, the transfected HEK293 EBNA cells did not survive, possibly 

due to accumulation of glycosylation-lacking misfolded proteins. This suggests that at 

least some of the N-glycosylation sites are absolutely essential for proper protein 

folding.  

7.1.3. Crystallization of VEGFR-2 ECD complexes 

Recombinantly produced proteins underwent extensive crystallization screening using 

commercial 96-well screens (Table 7), both at 4°C and 20°C. Complexes of VEGFR-2 

ECD subdomains with different ligands (VEGF-A121 or VEGF-E) were either pre-

formed and purified by SEC or formed in situ in the crystallization drop. Co-

crystallization of receptor with ligand was preferred to crystallization of monomeric  

receptor for two reasons: (a) the receptor-ligand complex is the more biologically 

relevant form of the receptor, and (b) complex formation may substantially stabilize the 

receptor and increase the chances of crystallization. Additionally, mutiprotein 

complexes containing ligand, antibody fragments (scFV and Fab) and recombinant 

VEGFR-2 ECD proteins were also subjected to crystallization screening. Hanging–

drop and sitting-drop methods for vapour diffusion (VD), or in lipidic cubic phase (LCP) 

in batch, were used with two different drop ratios per reservoir (1:1 and 1:2 

protein:reservoir volume) for crystallization trials. Furthermore, we used seeding with 

crystals of VEGFR-1, a VEGFR-2 homologue, for initiating crystal growth or inducing 

nucleation and growth at a lower level of supersaturation than might otherwise 

spontaneously occur. The crystals of VEGFR-1 domains 1-6 and 2-7 were crushed 

and used as seed stock to be dispensed into all the conditions of the screen, following 
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the random microseed matrix screening (MMS) technique. In situ limited proteolysis 

was also performed by adding either α-chymotrypsin or subtilisin in a 1:100 (w/w) ratio 

to the complexes just before crystallization (Table 8). 

 

 Commerial Screens 
 

Supplier 

Joint Center for Structural Genomics 
(JCSG) core screen I-IV suites 

Qiagen 

pH clear I-II Qiagen 
Additive screen HT Molecular dimension 
PEG suite Qiagen 
Morpheus  Molecular dimension 
Proplex Molecular dimension 
saltRX Hampton research 
Stura footprint screen Molecular dimension 
PACT premier screen Molecular dimension 

Table 7: Commercial screens used for crystallization trials. 

7.1.3.1. Co-crystallization of VEGFR-2 ECD subdomains with ligands 

For co-crystallization experiments, VEGFR-2 ECD subdomains and ligands VEGF-A121 

and VEGF-E were expressed and purified separately. SEC-purified and concentrated 

proteins were mixed in a 1:2 molar ratio and subjected to another round of SEC to 

isolate the complex. The SEC profiles of human and mouse VEGFR-2 ECD variants 

in complex with either VEGF-A121 or VEGF-E from a Superdex 200 column are shown 

in Figure 10 and Figure 11 respectively. The two separate peaks correspond to the 

VEGFR-2 ECD subdomain-ligand complex and to unbound ligand, as confirmed by 

SDS-PAGE: both receptor and ligand were present in the peak corresponding to the 

complex. The peak corresponding to the complex was collected, concentrated to 2-6 

mg/ml and used for crystallization screening. 
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Figure 10: SEC profiles of human VEGFR-2 ECD subdomains complexed with ligands. 
The receptor subdomains and ligands were mixed in 1:2 molar ratio and purified over a 
Superdex 200 column. (a) VEGFR-2 domains 1-7 co-eluting with VEGF-A121 in a peak with 
retention volume 18.3 ml. The excess VEGF-A121 elutes at 29.3 ml. (b) VEGFR-2 domains 2-
7GCN4 co-eluting with VEGF-A121 in a peak with retention volume 60 ml. The excess VEGF-
A121 elutes at 70 ml. (c) VEGFR-2 domains 1-3 co-eluting with VEGF-A121 in a peak with 
retention volume 78.2 ml. The excess VEGF-A121 elutes at 92.5 ml. (d) VEGFR-2 domains 2-
5 co-eluting with VEGF-E in a peak with retention volume 72 ml. The excess VEGF-E elutes 
at 92.9 ml. (e) VEGFR-2 domains 2-5 co-eluting with VEGF-A121 in a peak with retention 
volume 72 ml. The excess VEGF-A121 elutes at 92.3 ml. The results of SDS-PAGE analysis of 
the various SEC fractions under reducing conditions are shown in the right panel. The coloured 
bars indicate the fractions from the corresponding SEC peaks that were loaded for SDS-PAGE. 
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Figure 11: SEC profiles of mouse VEGFR-2 ECD variants complexed with ligand. The 
mouse receptor subdomains were mixed with human ligands in 1:2 molar ratio and purified 
over a Superdex 200 column. (a) mVEGFR-2 domains 1-7 co-eluting with VEGF-A121 in a peak 
with retention volume 63.5 ml. The excess VEGF-A121 elutes at 92.5 ml. (b) mVEGFR-2 
domains 2-7 co-eluting with VEGF-A121 in a peak with retention volume 14.5 ml. The excess 
VEGF-A121 elutes at 18 ml. (c) mVEGFR-2 domains 1-6 co-eluting with VEGF-A121 in a peak 
with retention volume 70.5 ml. The excess VEGF-A121 elutes at 97.8 ml. The coloured bars 
indicate the fractions from the corresponding SEC peaks that were loaded for SDS-PAGE. 
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7.1.3.2.  Co-crystallization of VEGFR-2 ECD/VEGF-E with scFV 

Since we did not obtain any crystals from the experiments described in section 7.1.3.1, 

we used scFv A7 as a chaperone to facilitate the crystallization of VEGFR-2 ECD-

ligand complexes. ScFv A7 targets the ligand binding domains 2-3 without interfering 

with VEGFR-2 ECD/VEGF-A complex formation. The antibody was isolated from the 

ETH-2 Gold library, expressed in E.coli Mach 1 cells, and characterized by Dr. Dragana 

Avramovic, as previously described (Ballmer-Hofer et al., 2018). For carrying out co-

crystallization trials, VEGFR-2 ECD, VEGF-E and scFv A7 were mixed in a molar ratio 

of 1:2:3, and purified by SEC (Figure 12). The chromatograph shows a main peak at 

25 ml, expected to correspond to the trimeric complex, with a shoulder that could be 

due to the binding of oligomeric scFvs. The eluted fractions were subjected to SDS-

PAGE analysis, which confirmed the co-elution of all three proteins; the fractions from 

the shoulder showed the presence of scFvs with a MW between 25 and 37 kDa. The 

unbound scFv A7 and VEGF-E, which were present in excess, eluted at higher 

retention volumes of 42 ml and 38 ml respectively. The fractions comprising the 

complex were concentrated and used for crystallization trials.  

Despite screening a broad range of crystallization conditions no crystals were 

obtained. The co-crystallization of scFv A7 with VEGFF-2 ECD and VEGF-E was 

possibly impaired because the flexible GS-linker connecting the heavy and light 

segments of the binding protein may interfere with the formation of crystal contacts.  

 

 
Figure 12: SEC profile of the VEGFR-2 domains 1-7/VEGF-E/scFv A7 complex. 
Recombinant VEGFR-2 domains 1-7, VEGF-E and scFv A7 were mixed in 1:2:3 molar ratio 
and purified over a Superdex S200 column. The left panel shows the SEC profile of VEGFR-2 
domains 1-7 co-eluting with VEGF-E and scFv A7 at a retention volume of 25 ml. Excess scFv 
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A7 and VEGF-E elute at higher retention volumes, i.e 42 ml and 38 ml respectively. The right 
panel shows SDS-PAGE analysis of the eluates under reducing and non-reducing conditions. 
The black bars indicate the fractions from the corresponding SEC peak that were loaded for 
SDS-PAGE. 

7.1.3.3. Co-crystallization of VEGFR-2 ECD/VEGF-A121 with Fab  

To overcome potential problems with the flexible linker present in the scFv we used a 

Fab fragment that contains the variable and one of the constant regions of the light and 

heavy antibody chains for co-crystallization trials. Additionally, the Fab offers a larger 

hydrophilic surface that may support the formation of additional crystal contacts. 

We used a Fab antibody fragment that binds to the flexible domain 1 of VEGFR-2 ECD. 

This could provide more stability to ECD when complexed with ligand and hence 

increase the likelihood of crystallization. The Fab ADH9 fragment was expressed by 

IPTG induction using the Mach1 E. coli strain. The recombinant Fab was extracted 

from the periplasm and the lysate was purified by IMAC. Subsequently, the Fab was 

subjected to SEC and the elution profile shows two major peaks (Figure 13). The first 

peak of aggregates eluted near the void volume (Peak1: 49.6 ml); the second 

polydisperse peak (Peak2: 86.6 ml) shows the presence of Fab oligomers. The protein 

yield after purification was in the range of 0.5-1.5 mg/l. The Fab fractions under SDS-

PAGE conditions showed a MW of approximately 50 kDa. 

 

 
Figure 13: SEC profile of the Fab fragment. IMAC-purified Fab ADH9 was further purified 
over a Superdex S200 column, resulting in a broad elution peak at a retention volume of 86.6 
ml (left panel). The right panel shows the SDS-PAGE analysis of the eluted fractions. The black 
bar indicates the fractions from the corresponding SEC peak that were loaded for SDS-PAGE. 
The band corresponding to Fab ADH9 ran at approximately 50 kDa. 
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For co-crystallization experiments, VEGFR-2 ECD was mixed with VEGF-A121 and 

ADH9 Fab in a 1:2:3 molar ratio and purified by SEC using a Superdex S200 column. 

Co-elution was confirmed by a shift in the elution volume towards higher molecular 

weight, from 18.3 ml corresponding to the VEGFR-2 domains 1-7/VEGF-A121 complex 

(Figure 10a) to 18 ml (Figure 14). Also the presence of all three components with 

appropriate MW of VEGFR-2 domains 1-7 (~86.5 kDa), Fab ADH9 (~50 kDa) and 

VEGF-A121 (~30kDa) in the eluted fractions, as shown by SDS-PAGE under non-

reducing conditions, confirmed the formation of a triple complex between Fab ADH9, 

VEGFR-2 domains 1-7 and VEGF-A121. However, the peak corresponding to unbound 

Fab fragment at 23.9 ml did not resolve completely from the major peak of the complex. 

Nonetheless, the fractions corresponding to the complex were collected, concentrated 

to 2-6 mg/ml and used for crystallization trials, which however were unsuccessful. 

Since the complex did not elute as a single monodisperse peak but had a small 

shoulder, which indicates possible dissociation or heterogeneity, VEGFR-2 domains 

1-7/VEGF-A121 complexes and ADH9 Fab were purified individually and mixed prior to 

crystallization in a lower (1:2) molar ratio. Still, none of these experiments yielded any 

crystals. 

 

Figure 14: SEC profile of the VEGFR-2 domains 1-7/VEGF-A121/Fab ADH9 complexes. 
VEGFR-2 domains 1-7, VEGF-A121 and Fab ADH9 were mixed in 1:2:3 molar ratio and purified 
over a Superdex S200 column. The trimeric complex eluted at a retention volume of 18 ml. 
The excess Fab ADH9 and VEGF-A121 eluted at 23.9 ml and 29 ml respectively. The right 
panel shows SDS-PAGE analysis of the eluates under reducing and non-reducing conditions. 
Fractions from the first peak (black bar) show a band around 100 kDa, corresponding to 
VEGFR-2 domains 1-7 (Expected MW: 86.5 kDa). The band at around 50 kDa corresponds to 
Fab ADH9 and the band between 37 kDa and 25 kDa to VEGF-A121 (Expected MW: 30kDa). 
The fractions corresponding to excess Fab ADH9 are indicated with a green bar. 
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Construct 

 

Method of 
crystallization 

 

Temperature of 
incubation of 

plates (ºC) 

 

Concentrations 
used for 

crystallization 

hVEGFR-2 domains 
2-5 /VEGF-A121 

VD 20 and 4 2-5 mg/ml 

hVEGFR-2 domains 
2-5 /VEGF-E 

VD 20 and 4 2-5 mg/ml 

hVEGFR-2 domains 
1-3/VEGF-A121 

VD 20 and 4 2-6 mg/ml 

hVEGFR-2 domains 
2-7GCN4/ VEGF-A121 

VD 20 and 4 2-5 mg/ml 

hVEGFR-2 ECD/ 
VEGF-A121/ Fab 

ADH9 

VD, MMS, 

α-chymotrypsin to 
the drop 

20 and 4 2-6 mg/ml 

hVEGFR-2 
ECD/VEGF-E/ scFV 

A7 

VD 20 2-6 mg/ml 

hVEGFR-2 
ECD/VEGF-A121 

 

VD, MMS, LCP, 

α-chymotrypsin 
and subtilisin to 

the drop 

20 and 4 2-6 mg/ml 

hVEGFR-2 
ECD/VEGF-E 

VD 20 3-6 mg/ml 

mVEGFR-2 
ECD/VEGF-A121 

VD, MMS, LCP, α- 
chymotrypsin to 

the drop 

20 and 4 2-6mg/ml 

mVEGFR-2 domains 
2-7/ VEGF-A121 

VD 20 and 4 2-6mg/ml 

mVEGFR-2 domains 
1-6/VEGF-A121 

VD 20 and 4 2-6mg/ml 
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mVEGFR-2 domains 
5-7 

VD 20 and 4 2-6mg/ml 

 Table 8: Summary of crystallization trials of VEGFR-2 ECD complexes. 

 

7.2. Biochemical and biophysical characterization of VEGFR-2    
ECD complexes 

7.2.1. Analysis of unstructured regions in VEGFR-2 ECD 

Although we were able to express and purify many VEGFR-2 ECD variants (section 

7.1.1 and 7.1.2), we failed to obtain crystals from any of them. This could be due to 

long stretches of disordered regions within protein domains, which may hinder 

crystallization. In these cases, more sophisticated protein engineering might become 

necessary to displace these disordered residues. One approach would be to replace 

these regions with equivalent residues of homologue proteins that are known or 

predicted to be less flexible. Alternatively, the predicted disordered residues can be cut 

out and the ends joined by short flexible linkers. We investigated intrinsic disordered 

regions in VEGFR-2 ECD computationally using a prediction algorithm called 

FoldIndex (Prilusky et al., 2005). This is an ab initio method, which predicts the 

inherently unstructured regions in the protein taking into account a balance between 

attractive and repulsive forces. Figure 15 shows that VEGFR-2 ECD is predicted to 

have 5 disordered regions. Two of these disordered segments are quite long consisting 

of 35-40 residues. One of them corresponds to Ig-homology domain 3 and the other 

lies in Ig-homology domain 5. The smaller (5-7 residues) unstructured segments are 

in Ig-homology domain 6 and 7, and the linker region connecting Ig-homology domains 

4 and 5. 
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Figure 15: Schematic representation of probability of disorder in human VEGFR-2  ECD 
protein predicted by the FoldIndex algorithm. FoldIndex plot for VEGFR-2 ECD. Positive 
and negative numbers represent ordered and disordered protein, respectively. Amino acid 
sequences suggested as being ordered are shown in green, whereas disordered sequences 
are shown in red.   

7.2.1.1. Limited proteolysis 

Limited proteolysis was attempted on the VEGFR-2 ECD/VEGF-A121 complex with a 

series of dilutions of proteases to find conditions leading to the digestion of the 

unstructured parts while leaving the rest of the protein intact. Comparing the limited 

proteolysis experiments from shorter to longer incubation times also helped in 

identifying the protease that yielded a more stable fragment upon digestion. Figure 16 

shows that digestion with 1:10 and 1:100 GluC and papain and 1:1000 α-chymotrypsin 

Domain 3 
Domain 5 

Domain 3 

Domain 5 

Domain 6 

Domain 7 

Domain linker 4-5 
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did not have any effect on the protein. On the other hand, incubation with 1:10 trypsin, 

and 1:100 α-chymotrypsin and subtilisin gave much smaller fragments in the range of 

50-37 kDa. Higher concentrations (1:10) of α-chymotrypsin and subtilisin resulted in a 

very fast (within 90 min) and complete proteolysis. Treatment with 1:1000 subtilisin 

gave bigger stable fragments in the range of 100-50 kDa. Figure 16d shows the results 

of limited proteolysis with subtilisin of deglycosylated VEGFR-2 ECD/VEGF-A121 

complex: the fragments generated by 1:1000 subtilisin appeared sharper in SDS-

PAGE. Based on these results, we carried out in-situ proteolysis by adding α-

chymotrypsin and subtilisin to complexes right before setting up crystallization 

experiments. However, no crystals were obtained. Future experiments to identify the 

stable region boundaries of the proteolytic fragments by mass spectrometry may help 

designing new constructs more suitable for crystallization. 
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Figure 16: Limited proteolysis analysis of the VEGFR-2 ECD/VEGF-A complex. (a), (b) 
and (c) SDS-PAGE analysis of VEGFR-2 ECD/VEGF-A complex digested with proteases (Glu-
C, trypsin, papain, α-chymotrypsin, subtilisin) at dilutions 1:10, 1:100 and 1:1000 for 90 min at 
room temperature (RT) and overnight (o/n) at 4°C. (d) SDS-PAGE analysis of deglycosylated 
VEGFR-2 ECD/VEGF-A complex with PNGase F(1:100) and digested with 1:1000 subtilisin.  
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7.2.2. Thermal stability assay 

In order to investigate the thermal stability of human VEGFR-2 subdomains 1-7, 2-7 

and 1-3 upon binding of ligand VEGF-A121 in different buffers, we performed a 

fluorescence-based thermal shift assay using an environmentally sensitive dye, Sypro 

Orange. Melting curves were obtained in the following buffers: (1) PBS, (2) 10 mM 

HEPES pH 7.5, 100 mM NaCl, and (3) 25 mM HEPES pH 7.5, 500 mM NaCl. Unfolding 

of monomeric proteins showed high melting temperature (Tm) values ranging from 

54°C to 63°C (Figure 17). VEGFR-2 domains 2-7 and 1-3 complexed with ligand 

showed a shift towards higher Tm values compared to their corresponding monomers, 

indicating a stabilization effect due to ligand binding in all three buffers. However, 

ligand binding to VEGFR-2 domains 1-7 showed a slight decrease in the Tm value 

suggesting destabilization. Although in all the buffers the proteins were highly stable, 

we chose the low ionic strength buffer for carrying out further biophysical experiments.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Colour Name Colour Name 

 

R2 D17 PBS  R2 D27 A 500 mM NaCl 

 

R2 D17 A PBS  R2 D13 500 mM NaCl 

 

R2 D27 PBS  R2 D13 A 500 mM NaCl 

 

R2 D27 A PBS  R2 D17 100 mM NaCl 

 

R2 D13 PBS  R2 D17 A 100 mM NaCl 

 

R2 D13 A PBS  R2 D27 100 mM NaCl 

 

R2 D17 500 mM NaCl  R2 D27 A 100 mM NaCl 

 

R2 D17 A 500 mM NaCl  R2 D13 100 mM NaCl 

 

R2 D27 500 mM NaCl  R2 D13 A 100 mM NaCl 

(a) 

(b) 
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Figure 17: Effect of buffers on thermal stability of VEGFR-2 ECD subdomains and their 
complexes. (a) First derivative curves of thermal denaturation (“melting”) of VEGFR-2 
domains 1-7, 2-7 and 1-3, monomeric or complexed with VEGF-A121, in buffers (1) PBS, (2) 10 
mM HEPES pH 7.5, 100 mM NaCl, and (3) 25 mM HEPES pH 7.5, 500 mM NaCl. The protein 
solution was heated in the presence of a hydrophobic dye (SYPRO Orange). (b) Bar graph 
showing the Tm in degree Celsius, calculated from the melting curves shown in (a), for the 
different constructs and buffers.  

7.2.3. Thermodynamic analysis of VEGFR-2 ECD complexes 

To assess the contributions of the membrane proximal Ig-domains 4-7 to the binding 

of full-length ECD (domains 1-7) to the ligand, we investigated the heat energies 

associated with complex formation by ITC. We compared the thermodynamic 

parameters for VEGF-A121 binding to VEGFR-2 full-length ECD with that to the minimal 

ligand-binding domains 1-3. The recombinant receptor proteins used were produced 

in insect cells and purified as described in section 7.1.1. The obtained isotherms 

(Figure 18) indicate that binding of VEGF-A121 to VEGFR-2 ECD is entropically driven 

and enthalpy disfavoured. The derived binding constant for domains 1-7 was 0.9 μM, 

while the binding constant for domains 1-3 was only 0.14 μM. Surprisingly, the 

presence of the membrane proximal Ig-homology domains in the full-length construct 

reduces the binding affinity.  
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(b) 

 

Figure 18. Quantification of VEGFR-2 ECD/VEGF-A interaction by ITC. (a) Raw titration 
data (upper panel) and integrated and concentration normalized isothermograms (lower panel) 
of VEGF-A121 binding to the VEGFR-2 domains 1-3 (left) and domains 1-7 (right) constructs. 
Solid lines in the isothermograms represent the best fit according to the “One Set of Sites” 
model. (b) Thermodynamic signature of complex formation, showing the Gibbs free energy 
(ΔG), enthalpy (ΔH), and entropy (-TΔS) associated with receptor-ligand binding. 

 

These results were also confirmed by another biophysical technique, MST. MST is a 

technique used to study binding affinities of interacting biomolecules in solution, 

resembling their natural environment (Jerabek-Willemsen et al., 2011). An infrared 

laser is used for local heating and the molecule mobility in the resulting temperature 

gradient is analyzed by fluorescence. MST allows quantitative analysis of protein 

interactions from low amounts of sample without requiring an immobilization step. 

However, it fails to provide any kinetic information (i.e association and dissociation 

rates) of the reaction. For the measurements, the ligand VEGF-A121 was fluorescently 

labelled using an optimized primary amine labelling kit protocol (section 6.2.4). The 

studies were conducted by titrating the unlabelled binding partner VEGFR-2 domains 

1-7 or 1-3, to a fixed concentration of labelled VEGF-A121. The binding constant for the 

full-length ECD construct was measured to be between 0.77 and 1.24 μM (95% 

confidence interval) (Figure 19a), which is in agreement with the binding affinity value 

for the same construct obtained by ITC. The binding affinity of VEGFR-2 domains 1-3 

for VEGF-A121, however, could not be precisely determined, and it was estimated by 

(a) Time (min) Time (min) 
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simulation to be approximately 10 nM (Figure 19b). One should bear in mind that MST 

works poorly for affinities higher than the low nano-molar range. The binding data 

obtained from both techniques corroborate the hypothesis that the membrane proximal 

domains (domains 4-7) reduce the receptor affinity for the ligand by approximately 10 

fold.  

 

 
Figure 19. Quantification of VEGFR-2 ECD/VEGF-A121 interaction by MST. (a) Unlabeled 
VEGFR-2 domains 1-7 was titrated into a fixed concentration of labeled VEGF-A121. The Kd 
value calculated from the fit is in the range of 0.7662 to 1.244 μM (95% confidence interval). 
Measurements were performed in triplicates. (b) Unlabeled VEGFR-2 domains 1-3 was titrated 
into a fixed concentration of labeled VEGF-A121.The Kd value based on fits and simulations 
was estimated to be in the low nanomolar range. 

 

 

 

 

 

 

(a) 

(b) 
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7.3. Functional analysis of ligand binding and activation of 
VEGFR-1 

7.3.1. Functional analysis of VEGFR-1 domain 5 mutants 

The crystal structure of the VEGFR-1 dimer complexed with VEGF-A supports the 

hypothesis that homotypic contacts between the two receptor monomers occur in 

domain 5 (Section 7.4). In particular, the highly conserved amino acids T455 (β strand 

B), K517 (β strand E) and E513 in the D-E loop of domain 5 are involved in inter-chain 

hydrogen bonds and salt bridges. In order to investigate the functional significance of 

the domain 5 interface in the receptor dimer, we generated mutant constructs unable 

to form these non-covalent interactions and studied their ability to respond to VEGF-A 

activation.  

Several mutants were generated in which charged residues were replaced with neutral 

amino acids (E513A, K517A) or vice versa (T455E). Also, the T455W mutation was 

introduced to substitute a polar amino acid (T) with a non-polar bulky residue (W). 

However, these single mutants were not used in our study because, their individual 

effect on receptor activation might have been too small to lead to any gain or loss of 

function. Instead, the double mutant T455E/K517A was used based on a previous 

study by Leppaenen et al, which used the equivalent VEGFR-3 T446/E/K516A mutant 

to validate the importance of domain 5 interface in VEGF-C-induced VEGFR-3 

activation (Leppänen et al., 2013). Furthermore, the double mutant E513A/K517A was 

generated to study the effect of loss of charge in the domain 5 interface in receptor 

activation.  

However, before we could investigate the effect of domain 5 homotypic interactions in 

VEGFR-1 activation, a suitable activity assay had to be established. Although VEGFR-

1 contains a classical tyrosine kinase domain, it shows poor kinase activity even in 

overexpressing ECs, and therefore, its signaling activity remains elusive (Waltenberger 

et al., 1994). On the other hand, the homologous protein VEGFR-2 shows strong 

kinase activity upon ligand binding (Shibuya, 2006). The structural basis for the 

strikingly different kinase activity between these highly conserved proteins can be 

attributed to a set of amino acid residues present in the juxtamembrane regions of 

VEGFR-1, leading to the inhibition of its phosphorylation activity (Gille et al., 2000). 
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These non-conserved amino acids are three serine residues in VEGFR-1, which are 

replaced by the sequence ANGG in VEGFR-2 (Figure 20). In order to enhance the 

activity of VEGFR-1, we designed juxtamembrane mutant constructs that either lacked 

the three serine residues or contained the ANGG sequence from VEGFR-2 instead. 

Initially, the mutants were transiently expressed in HEK293 cells. However, the inability 

to specifically detect total VEGFR-1 present in these cells due to the lack of a suitable 

antibody led to non-conclusive results and prevented us from using these constructs 

for further experiments. 

 

 

Figure 20: Alignment of juxtamembrane regions of VEGFR-1 and VEGFR-2.  Adapted 
from Gille et al.   

We henceforth set to optimize the functional assay by using stably transfected PAE 

cell lines as an alternative expression system, which also offers a more physiological 

environment for functional studies of VEGFR-1. A series of control experiments were 

performed on stable PAE cell lines expressing wild-type VEGFR-1, where several 

commercial antibodies were tested for their ability to specifically detect the total levels 

of VEGFR-1 by western blot. Antibodies from Abcam (ab32152) and Santa Cruz 

Biotechnology (sc-31173) were not suitable since they gave false positive results in 

the non-transfected cells, and the antibody available from R&D systems (AF321) did 

not show any band at the expected molecular weight (150 kDa). We obtained the best 

results with the antibody offered from Cell Signaling (2893S), which was both specific 

and selective in detecting VEGFR-1 in whole cell lysates (Figure 21a). However, the 

antibody from Santa Cruz Biotechnology (sc-31173) worked well in 

immunocytochemical staining of PAE cell lines stably expressing wild-type VEGFR-1, 

confirming its correct localization at the plasma membrane (Figure 21b; VEGFR-1 

staining in green). A summary of our experiments with various VEGFR-1 antibodies, 

showing their different applicability, is shown in Table 9. 
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Figure 21: Antibodies used for VEGFR-1 detection. (a) Immunoblot analysis on cell lysates 
from non-transfected or VEGFR-1-expressing PAE cell lines using several antibodies against 
VEGFR-1. Samples from equal cell numbers  were loaded in each gel. (b) Immunostaining of 
non-transfected or VEGFR-1-expressing PAE cells using the Santa Cruz anti-VEGFR-1 
antibody and a Dylight 488-labeled secondary antibody. Left panel: Dylight 488 fluorescence 
image; middle panel: phase contrast image; right panel: overlay. 

 

 
Antibodies 

 

 
Dilution 

  
Blocking/ 
dilution 
buffer 

 
Incubation 

Time/temperature 

 
Immuno-
floresce

nce 

 
Western blot 

Flt-1 (C17) 
(sc-31173 
Santa Cruz 
Biotechnolog
y, Inc.) 

 
1:400 

 
1% BSA in 

PBS 

One hour at room 
temperature 

Good × 

VEGF 
Receptor 1 
Antibody  
(2893S Cell 
Signaling) 

 
1:1000 

 
5% BSA in 

TBST 
 

 
Overnight at 4°C × 

Good 
 

Anti Flt-1 
(AF321 R&D 
systems) 

 
1:200 

 
5% BSA in 

TBST 

 
One hour at room 

temperature 

_ × 

Anti-VEGF 
Receptor 1 
[Y103] 
(ab32152 
Abcam) 

 
1:1000 

 
5% BSA in 

TBST 
 
 

Overnight at 4°C 
× 

_ 

Anti-
phospho-Flt-
1 (Tyr1213)  
(07-758 
Millipore) 

 
1:1000 

3% milk in 
TBST with 
washes in 

water 

 
 

Overnight at 4°C 

_  
Good 

Anti-Phospho 
Flt-1 
(Tyr1213) 
(AF4170 
R&D 
systems) 

 
1:1000 

 
5% milk for 

blocking 
and 2% milk 
for antibody 

in TBST 

 
One hour at room 

temperature 

_ × 

Table 9: Antibodies tested for detection of VEGFR-1 expression in PAE cells. TBST: Tris-
buffered Saline, 0.1 % Tween-20. 

Next, we studied the parameters regulating ligand-induced VEGFR-1 activation in 

stable PAE cell lines. We tested two VEGFR-1 ligands, PlGF and VEGF-A165, at 

different concentrations and with different stimulation times, and assessed VEGFR-1 
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activation by detecting Y1213 phosphorylation by western blot (Figure 22). We chose 

Y1213 based on studies of VEGFR-1-associated proteins, which revealed that 

phosphorylated Y1213 within VEGFR-1 is a major binding site for PI-3 KINASE and 

Nck (Igarashi et al., 1998). VEGF-A165 was recombinantly produced in our laboratory, 

whereas PlGF was obtained from three different sources: Reliatech (PlGF-2, 300-020), 

R&D systems (264-PG-010) and Peprotech (100-06). We detected VEGFR-1 

phosphorylation only upon stimulation with PlGF from Peprotech and VEGF-A165. PlGF 

was able to stimulate VEGFR-1 phosphorylation when used at 0.25 nM or 1.5 nM for 

5 min, whereas VEGF-A165 required 10 min of stimulation to give comparable results 

(Figure 22a). Maximal receptor activation was achieved after stimulation with 0.25 nM 

PlGF from Peprotech for 5 min (Figure 22b). 

 

Figure 22: Ligand-induced VEGFR-1 activation. (a) PAE cells stably expressing VEGR-1 
were stimulated with various concentrations of VEGF-A121 or PlGF from different sources, for 
different time points. The levels of Y1213 phosphorylated and total VEGFR-1 were assessed 
in whole cell lysates by western blotting.  (b) Western blot analysis of time-course of VEGFR-
1 phosphorylation (Y1213) in stable PAE cells expressing wild-type VEGFR-1 when stimulated 
with 0.25nM PlGF. 
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Having established an expression system and kinase assay to study VEGFR-1 

activation, we proceeded to study the activity of domain 5 double (E513A/K517A; 

T455E/K517A) and triple (T455W/E513A/K517A; T455E/E513A/K517A) VEGFR-1 

mutants. The constructs were cloned into the mammalian expression vector pcDNA3.1 

and used to generate stable PAE cell lines through chemical transfection (PEI; Aldrich 

408727, 25 kDa branched). Most of the mutants showed weak expression levels 

compared to the wild-type (Figure 23a). Alternatively, we generated PAE cell lines 

stably expressing wild-type, domain 5_E513A/K517A and domain 

5_T455W/E513A/K517A VEGFR-1 by lentivirus transduction. However, the 

expression levels of the various VEGFR-1 constructs in the PAE cell lines generated 

by lentiviral transduction were poor compared to the expression of wild-type VEGFR-

1 in PAE cell lines generated by PEI transfection (Figure 23b). We suspect that the 

large size of the inserts (4 kb) reduced the viral packaging efficiency and hence led to 

weak expression of recombinant proteins. Therefore, we were unable to use these cell 

lines to study receptor phosphorylation of the domain 5 mutants upon ligand activation, 

and we sought an alternative system using chimeric VEGFR-1/2 constructs as 

described in the following section 7.3.2.  
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Figure 23: Stable PAE clones expressing wild-type and domain 5 mutants of VEGFR-1. 
(a) PAE cells lines expressing either wild-type, T455E/K517A, E513K/K517A or 
T455E/E513K/K517A VEGFR-1 were generated by chemical transfections with PEI. Whole 
cell lysates from different cell clones were analyzed by western blotting using an anti-VEGFR-
1 antibody (2893S Cell Signaling). Samples from equal number of cells were loaded..  (b) PAE 
cells lines expressing either wild-type, E513K/K517A or T455E/E513K/K517A VEGFR-1 were 
generated by lentriviral transduction. Whole cell lysates were analyzed by western blotting 
using an anti-VEGFR-1 antibody (2893S Cell Signaling). The expression levels of VEGFR-1 
were compared to those from PAE cells transfected with wild-type VEGFR-1 using PEI.  Equal 
protein loading was confirmed with an anti-β-actin antibody. 

7.3.2. Functional analysis of chimeric VEGFR-1/2 domain 5 mutants 

As an alternative strategy to study VEGFR-1 activation and its dependency on the 

homotypic interactions involving domain 5, we generated chimeric VEGFR-1/2 

constructs, consisting of the extracellular domain of VEGFR-1 (residues 1-752; wild-

type, domain 5_E513K/K517A and domain 5_T455W/E513K/K517A), followed by the 



Doctoral thesis Mayanka Asthana 
 

91 
  
 

intracellular domain of VEGFR-2 (residues 759-1356). Stable PAE cell lines were 

generated by chemical transfections (PEI; Aldrich 408727, 25 kDa branched). Upon 

clonal selection, the total expression levels of the chimeric receptor was assessed by 

Western blot using an anti-VEGFR-2 antibody, since the anti-VEGFR-1 antibody was 

specific for the intracellular domain of the receptor (Figure 24). We obtained a strong 

expressing clone for wild-type chimeric VEGFR-1/2 (clone 8; lane 3) but only weak 

expressing clones for the domain 5 mutants. Because of the unequal expression of 

wild-type and mutant PAE cell lines we were unable to carry out quantitative kinase 

activity studies in this system. 

 

 

Figure 24: Stable PAE clones of VEGFR-1/2 wild-type and domain 5 mutants. PAE cells 
lines expressing either wild-type, E513K/K517A or T455E/E513K/K517A VEGFR-1/2 chimeras 
were generated by PEI transfections. Whole cell lysates from different cell clones were 
analyzed by western blotting using an anti-VEGFR-2 antibody. Samples from equal number of 
cells were loaded. 

However, we could achieve similar expression levels between wild-type and domain 

5_E513K/K517A VEGFR-1 constructs in transiently transfected NIH3T3 cells. 

Consequently, the cells were stimulated with 0.25 nM PlGF (Peprotech; 100-06) for 5 

min according to our previous results (Figure 22) and receptor activation was assessed 

in whole cell lysates by immunoblotting with an antibody specific for pY1175, the major 

phosphorylation site of VEGFR-2. Wild-type VEGFR-1/2 showed considerably higher 

phosphorylation activity compared to chimeric mutant E513K/K517A (Figure 25). 

Similar kinase assays using the triple mutant T455W/E513K/K517A were inconclusive 

due to unequal expression of mutant and wild-type receptors. However, the results with 

the double mutant indicate that the homotypic contacts in domain 5 revealed by our 
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VEGFR-1 ECD/VEGF-A structure are functionally relevant and thus crucial for ligand 

induced dimerization and receptor activation. 

 

Figure 25: Effect of domain 5 mutations on activation  of chimeric VEGFR1/2 constructs. 
NIH3T3 cells transiently expressing chimeric VEGFR-1/2 [VEGFR-1 ECD (residues 1-752) and 
intracellular domain of VEGFR-2 (residues 759-1356)] wild-type and domain 5 mutants were 
stimulated with 0.25 nM PlGF for 5 min. Phosphorylation activity was determined in whole cell 
lysates by immunoblotting with pY1175 and tVEGFR-2 (total) antibodies. Samples from equal 
number of cells were loaded. 

7.3.3. Functional analysis of VEGFR-2 domain 5 mutants 

To further verify the relevance and universality of the domain 5 homotypic contacts 

observed in our VEGFR-1 structure in receptor activation, we mutated the 

corresponding residues (T446, E508 and K512) in the domain 5 of VEGFR-2. We first 

tested whether HEK293 cells expressing wild-type VEGFR-2 were a suitable system 

to study ligand-induced receptor activation. Transient transfection were carried with 

several different transfection agents and the total levels of VEGFR-2 were assessed 

by immunoblotting. Lipofectamine 2000 and Lipofectamine 3000 showed superior 

transfection efficiency when compared to Fugene (Figure 26). Mock transfected cells 

were used as a negative control. However, the basal levels of receptor activation were 

too high. The spontaneous transactivation of the receptor kinase, possibly because of 

overexpression at the cell membrane, prevented us from using these cells to study the 

effect of domain 5 homotypic interactions on ligand-induced receptor activation (Figure 

27).  
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Figure 26: Effect of different transfection agents on the expression of VEGFR-2 in 
HEK293 cells. HEK293 cells were transfected with the pBE VEGFR-2 plasmid, using different 
transfection reagents: Lipofectamine 2000, Fugene and Lipofectamine 3000. Cells were 
harvested 25 h post-transfection and whole cell lysates were analyzed by western blotting 
using an anti-VEGFR-2 antibody. Samples from equal number of cells were loaded. 

 

Figure 27: VEGFR-2 overexpression in HEK293 cells prevents ligand-induced activation. 
HEK293 cells transiently expressing VEGFR-2 wild-type and domain 5 mutants were 
stimulated with 1.5 nM VEGF-A165. Phosphorylation activity was determined in whole-cell 
lysates by immunoblotting with pY1175 and total VEGFR-2 antibodies. Samples from equal 
number of cells were loaded. 

 

On the contrary, we were successful in generating NIH3T3 cells expressing wild-type 

VEGFR-2 with low basal activity that was sensitive to ligand stimulation. The cells were 

transiently transfected using Lipofectamine 2000 and PEI, with PEI transfections being 

more efficient and giving clearer protein bands compared to Lipofectamine 2000 

transfection. Therefore, we used transient transfections of NIH3T3 cells with PEI to 

express the domain 5 T446E/K512A and T446E/ E508A/K512A VEGFR-2 mutants. 

The cells were stimulated with 1.5 nM VEGF-A165 for 10 min and receptor activation 
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was assessed in whole cell lysates by immunoblotting with an antibody specific for 

pY1175. Receptor phosphorylation was greatly reduced in domain 5 double 

(T446E/K512A) and triple (T446E/ E508A/K512A) mutants compared to the wild-type 

(Figure 28). This shows that the conserved key residues involved in domain 5 

interactions are crucial for VEGF-A-induced VEGFR-2 tyrosine autophosphorylation. 

In order to investigate the mutual importance of domain 5 and 7 homotypic interactions 

in VEGFR-2 activation, we made additional mutant constructs: domain 7_R726A, 

domain 7_R726A_domain 5_ T446E/K512A, domain 7_R726A_ domain 5_T446E/ 

E508K/K512A. The mutation R726A in domain 7 has been reported earlier to 

significantly reduce kinase activation due to the inability to form the inter-receptor salt 

bridge leading to destabilization of the receptor dimers (Hyde et al., 2012; Yang et al., 

2010). Also, an analogous mutation R737A in domain 7 of VEGFR-3 together with 

domain 5 homotypic mutations showed an additional inhibitory effect in activation of 

VEGFR-3 (Leppänen et al., 2013). However, these constructs could not be tested 

during this work due to lack of time. 

 

Figure 28: Effect of domain 5 mutations on VEGFR-2 activation. NIH3T3 cells transiently 
expressing VEGFR-2 wild-type and domain 5 mutants were stimulated with 1.5 nM VEGF-A165. 
Phosphorylation activity was determined in whole-cell lysates by immunoblotting with pY1175 
and total VEGFR-2 antibodies. Samples from equal number of cells were loaded. 
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7.4 Structure of the full-length VEGFR-1 ECD in complex with 
VEGF-A 

In this section, a re-print of the publication of results obtained during PhD is attached 

to give an overview. My contribution is the biochemical analysis of receptor mutants. 
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SUMMARY

Vascular endothelial growth factors (VEGFs) regulate
blood and lymph vessel development upon activation
of three receptor tyrosine kinases: VEGFR-1, -2,
and -3. Partial structures of VEGFR/VEGF complexes
based on single-particle electron microscopy, small-
angle X-ray scattering, and X-ray crystallography
revealed the location of VEGF binding and domain
arrangement of individual receptor subdomains.
Here, we describe the structure of the full-length
VEGFR-1 extracellular domain in complex with
VEGF-Aat 4 Å resolution.We combinedX-ray crystal-
lography, single-particle electron microscopy, and
molecular modeling for structure determination and
validation. The structure reveals themolecular details
of ligand-induced receptor dimerization, in particular
of homotypic receptor interactions in immunoglob-
ulin homology domains 4, 5, and 7. Functional
analyses of ligand binding and receptor activation
confirm the relevance of these homotypic contacts
and identify them as potential therapeutic sites to
allosterically inhibit VEGFR-1 activity.

INTRODUCTION

The formation of functional blood and lymphatic vessels is a

keystone during embryo development and is essential for sup-

plying all organs with oxygen and nutrients and for disposal of

catabolites. Vascular endothelial growth factors (VEGFs) are

themain drivers of vasculogenesis, the de novo formation of ves-

sels, and angiogenesis, the formation of new vessels frompreex-

isting vasculature (reviewed in Smith et al., 2015; Shibuya, 2014;

Moens et al., 2014). VEGFs activate VEGFR-1, -2, and -3, repre-

senting the type V subfamily of receptor tyrosine kinases (RTKs)

in the human kinome (Shibuya, 2013).

Mutation or ablation of a specific VEGFR gave rise to distinct

disease profiles (Shibuya, 2014), documenting signal diversity

among these three receptors. Both ablation of VEGFR-1

and -2 were embryonic lethal; the former due to severe disorga-

nization of blood vessels (Fong et al., 1995) and the latter

because of the complete absence of endothelial cells (Shalaby

et al., 1995). Interestingly, mice expressing kinase-deficient

VEGFR-1 instead of wild-type showed only minor vascular de-

fects (Hiratsuka et al., 1998, 2001). Deregulated expression of

a soluble splice variant of VEGFR-1, encompassing only the

extracellular domain (ECD) and acting as a ligand trap (Kendall

and Thomas, 1993), is associated with vascular defects such

as the placental deficiency preeclampsia (Luttun and Carmeliet,

2003; Maynard et al., 2003) or corneal (Ambati et al., 2006) and

retinal avascularity (Luo et al., 2013).

RTK activation requires ligand-mediated dimer or multimer

formation, which instigates transmembrane signaling resulting

in activation of the intracellular kinase domain (Lemmon and

Schlessinger, 2010). The exact structural changes driving this

process are unique for each RTK subfamily and are not known

for VEGF receptors.

A low-resolution structure of a VEGFR-2 ECD/ligand complex

showed that of the seven immunoglobulin homology domains (Ig

domains) comprising the receptor ECD, Ig domains 1–3 form the

ligand binding site while domains 4–7 are involved in homotypic

receptor contacts, presumably regulating receptor dimerization

and activation (Ruch et al., 2007). In addition, high-resolution in-

formation for Ig domains D2–3 and D1–2 of VEGFR-2 and -3,

respectively, bound to VEGF (Lepp€anen et al., 2010, 2013;

Brozzo et al., 2012) is available. For VEGFR-1, there are X-ray

structures for VEGF-A, -B, and placental growth factor (PlGF),

respectively, in complex with D2 (Christinger et al., 2004; Wies-

mann et al., 1997; Iyer et al., 2010). These structures show

how the membrane distal Ig domains mediate ligand binding,

in particular how three highly variable loops present in all VEGF

family ligands interact with the receptor ECD. High-resolution in-

formation on the VEGFR membrane-proximal Ig domains has so

far been obtained by crystallizing specific subdomains in isola-

tion. The crystal structure of Ig domain 7, together with functional

experiments using receptor mutants (Yang et al., 2010), revealed

the importance of homotypic contacts between the conserved

residues R726 and D731 present in the EF loop for ligand-

induced activation of VEGFR-2. A recent crystal structure of Ig

domains 4–5 of VEGFR-3 pointed to additional receptor-recep-

tor interactions in D5 (Lepp€anen et al., 2013). These D5
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interactions were a consequence of crystal packing. However,

similar to the D7 contacts observed earlier for VEGFR-2 (Yang

et al., 2010; Hyde et al., 2012; Ruch et al., 2007), functional anal-

ysis showed that these contacts are indispensable for receptor

activation. We focused on the structural characterization of

full-length VEGF receptor ECD complexes and succeeded in

determining the structure of the VEGFR-1 ECD in complex with

VEGF-A at 4 Å resolution. The structure allows for the first time

detailed visualization of ligand binding and ligand-induced ho-

motypic interactions in a complete VEGF receptor ECD/VEGF

complex and opens new possibilities for future drug design.

RESULTS

Structure Determination of the VEGFR-1 Extracellular
Domain/VEGF-A Complex
We determined the structural organization of the full-length ECD

of VEGFR-1 in complex with VEGF-A using X-ray crystallog-

raphy. Human VEGFR-1 baculovirus expression constructs

encompassing Ig domains D1–7, D1–6, and D2–7 (Figure 1A)

were expressed in insect cells, purified, and crystallized in com-

plex with VEGF-A. Complex formation between ligand and re-

ceptor ECD proteins and monodispersity of the complexes was

determined by size-exclusion chromatography coupled to

multi-angle light scattering (SEC-MALS) and small-angle X-ray

scattering (SAXS; Supplemental Experimental Procedures).

VEGF-A co-eluted from an SEC column with the VEGFR-1 ECD

(Figure S1A), and molecular weight determination by SEC-MALS

indicated 1:1 dimer formation of the full-length VEGFR-1 ECD

with VEGF-A (Figure S1B). In addition, an increase in the radius

of gyration (Rg) and of the maximal length of the complex

(Dmax) in the presence of ligand was observed in the distance dis-

tribution function determined by SAXS, confirming the presence

of a stable ligand/receptor complex (Figure S1C).

After various optimization rounds, we obtained crystals of the

D1–6 complex diffracting to 4 Å that were suitable for structure

determination (Table 1). Crystals belonged to space group C2

with one complex per asymmetric unit and a solvent content of

70%. Enabled by a novel data collection strategy (Weinert

et al., 2015), the structure of the VEGFR-1 D1–6/VEGF-A com-

plex was solved by a combination of molecular replacement

(MR) and single-wavelength anomalous dispersion (SAD) using

iodide-soaked crystals (Figure 1B). The resulting electron den-

sity map revealed the D2 region and the ligand, positioned by

molecular replacement, and contained continuous electron den-

sity for the missing Ig domains (Figure S2). D3, D4, and D5 were

placed by additional rounds of phased molecular replacement,

and proper sequence assignment was performed by replacing

the molecular replacement search models with the correspond-

ing homology models generated by the SWISS-MODEL homol-

ogy modeling server. Because of their less well-defined electron

density and the lack of good homology modeling templates, D1

and D6 were modeled using the Foldit structure prediction game

(Cooper et al., 2010). The best D1 and D6 models were selected

for further manual refinement based on their performance as

search models in molecular replacement (Figure S3).

Anomalous scattering of selenium-methionine (Se-Met) is a

powerful structure and sequence validation tool. In the absence

of diffracting Se-Met derivative crystals, we turned to sulfur SAD

to validate our final model of the VEGFR-1 D1–6/VEGF-A com-

plex (Figure 2). With weakly diffracting crystals, careful data

collection was crucial to obtain the accuracy necessary for res-

olution of the small anomalous signals. Despite the crystals dif-

fracting only to 4 Å resolution, more than half of all anomalous

scatterers, including every disulfide bridge in the Ig domains

and the VEGF-A ligand, as well as several methionines were as-

signed in the anomalous difference Fourier maps, verifying sub-

unit placement as well as sequence assignment (Figure 2B). In

addition, positive electron density present in the Fo � Fc maps

for N-linked glycans around the asparagine residues predicted

to be glycosylated further aided in exact sequence assignment.

To complete the molecular structure of the VEGFR-1 ECD, we

also used crystals of the VEGFR-1 D2–7/VEGF-A complex

diffracting to 4.8 Å. The D1–6 complex structure was used as a

search model for molecular replacement of the D2–7/VEGF-A

complex (Figure 1C). To create a composite model of the

D1–7/VEGF-A complex, we superimposed the two structures,

D1–6/VEGF-A and D2–7/VEGF-A (root-mean-square deviation

[RMSD] of 1.76 Å for 1,128 residues of the D2–6 region) and

connected the D7 portion of the D2–7/VEGF-A model with the

D1–6/VEGF-A-based model (Figure 1D).

Overall Architecture of the VEGFR-1 ECD/VEGF-A
Complex
The structures of the D1–6 and the D2–7 VEGF-A complexes both

show 2:2 stoichiometry and contain two sets of 1:1 complexes in

the asymmetric unit related by 2-fold non-crystallographic

symmetry (NCS). In the composite model of the VEGFR-1 ECD/

VEGF-A complex (Figure 1D), two receptor chains are bridged

with the dimeric VEGF-A ligand in the D2–3 region and related

by 2-fold symmetry throughout the long axis of the complex.

The complex has overall dimensions of �160 Å 3 �230 Å 3

�80 Å and is characterized by the existence of three cavities:

the upper one formed between the VEGF-A dimer D3 and D4 do-

mains of two receptor chains (dimensions �65 Å 3 �50 Å); the

middle one between the D4 and D5 domains (�30 Å 3 �15 Å);

and the lower one between the D5, D6, and D7 domains (�55 Å

3 �50 Å). VEGF-A binding to D2 and D3 induces a twisted

arrangement between these two domains, with a bending angle

of �135�. This is followed by intertwining of receptor chains in

D4–5 bringing two protomers in close proximity to each other.

The twist angle between D4 and D5 within the same chain is

60�. Additional homotypic contacts are observed betweenD7do-

mains. In ourmodel the D7 dimer deviates from the D1–6/VEGF-A

2-fold axis, which is a consequence of crystal packing of the D2–

7/VEGF-A complex. This finding suggests flexibility in the D6–7

region due to a longer linker between these two domains.

To confirm the overall structure of the VEGFR-1 ECD/VEGF-A

complex, we additionally visualized the complex by negative

stain electron microscopy (Figure 3A). The calculated class aver-

ages showed excellent agreement with projections of the crystal

structure (Figure 3B). All class averages show dimeric VEGFR-1

ECD chains bridged by VEGF-A. Interestingly, a slight bend is

observed in the membrane-proximal region, confirming the

kinked D6–7 region seen in the D2–7/VEGF-A crystal structure.

As there is a clear preference for the complex to adsorb to the

grid showing the front view, only one class was generated of

the side view.
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Structure and Glycosylation of Individual Ig Domains
This is the largest structure determined so far in the VEGF

receptor family and allows us to describe the structure and

arrangement of the individual Ig domains of VEGFR-1. With

the exception of D6, all Ig domains of VEGFR-1 belong to the I

Figure 1. Structure of the VEGFR-1 Extracel-

lular Domain in Complex with VEGF-A

(A) Schematic overview of the domain organization

of VEGFR-1. Crystallized constructs are indicated.

Cartoon representation of the VEGFR-1 D1–6/

VEGF-A complex (B) and of the VEGFR-1 D2–7/

VEGF-A complex (C) structures. The chains of

the VEGF-A homodimer are shown in purple and

orange, the two chains of VEGFR-1 D1–6 in yellow

and magenta, and the VEGFR-1 D2–7 chains

in light and dark gray. N-linked glycans are de-

picted as spheres. The N- and C-terminal residues

of VEGF-A, and VEGFR-1 D1–6 and D2–7,

respectively, visualized in the two structures are

indicated.

(D) Composite model of the VEGFR-1 ECD/VEGF-A

complex. One half of the complex is represented as

surface with N-linked glycans depicted as spheres

and the other half as a cartoon with N-linked gly-

cans depicted as sticks. The D7 homodimer shown

in gray was positioned by superimposing VEGFR-1

D2–7/VEGF-A onto VEGFR-1 D1–6/VEGF-A. The

dimensions of the complex and the axis of rotation

relating the two views are also shown.

set of the Ig domain superfamily. D1 (res-

idues 32–130) was modeled by Foldit

players and subsequently rebuilt during

refinement. Although the experimental

electron density map suggested large

disordered regions, the 2Fo� Fc maps al-

lowed us to build all residues except the

D-E loop (residues 78–84), which was

disordered. Additional electron density

around N100 confirmed the presence of

an N-linked glycan, and the position of a

disulfide bridge between C53 and C107

was validated by sulfur-SAD experi-

ments. The structure of D2 (residues

132–225) was solved before (Wiesmann

et al., 1997), and our structure addition-

ally shows N-glycosylation of N164 and

N196. D1 is bent away by �80� from D2

and has no contact with the ligand. The

bent conformations of the D1–2 modules

of VEGFR-1 and VEGFR-3 (Lepp€anen

et al., 2013) are very similar and can be

aligned with an RMSD of 1.66 Å for 161

residues (Figure S4). D3 (residues 226–

330) is an elongated Ig domain with

N-glycosylation of N251 and N323. D4

(residues 333–426) is a smaller Ig domain

not disulfide bridged between the b

sheets and lacking b strand 4. D4 is gly-

cosylated at N402 and N417. D5 (resi-

dues 428–554) is the largest Ig domain in VEGF receptors due

to a long C-D loop that connects two b sheets. Residues 474–

486 within this region were disordered and therefore omitted

from the final model. In D5, we observed N-glycosylation of

N547 and verified the positions of the disulfide bridge between
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C454 and C535 and of all methionines by S-SAD (Figure 2). With

our data, we obtained for the first time structural information on

D6 of VEGF receptors, which belongs to the C2 set of Ig do-

mains. D6 (residues 555–654) contains strands of intermediate

length in both b sheets, a disulfide bridge between C577 and

C636, and an N-linked glycan at N625. D7 (residues 661–750)

was modeled using D7 of VEGFR-2 (PDB: 3KVQ) as a template.

Due to the low resolution of the VEGFR-1 D2–7 complex data-

set, we do not further discuss its structural details. However,

D7 of the two protomers form a dimeric arrangement as

described in the crystal structure of isolated VEGFR-2 D7

(Yang et al., 2010).

VEGF-A Interacts with D2 and D3 of VEGFR-1
Ligand binding to VEGFR-1 takes place in Ig domains 2 and 3.

With our structure, we can now describe the complete ligand

binding site of VEGFR-1, while earlier published VEGFR-1 com-

plex structures contained only D2 (Christinger et al., 2004; Iyer

et al., 2010; Wiesmann et al., 1997). In the VEGFR-1 D1–6/

VEGF-A model, residues 13–108 of VEGF-A121 are visible in

the electron density. Each receptor chain interacts with both

VEGF-A protomers (Figure 4A). The surface buried on one recep-

tor chain by the bound VEGF-A dimer is �1,500 Å2, with D2 and

D3 contributing similar interface areas (�800 Å2 for D2 versus

�700 Å2 for D3). VEGF-A residues interacting with D2 are part

of the N-terminal helix a1 of the ligand protomer A (M17, F18,

Y21, Q22, and Y25) and of strands b2 (I46, K48), b4 (Q79, M81,

I83), and b5 (Q89, I91) of protomer B (Figure 4B). While the inter-

face between ligand and D2 is largely hydrophobic, the contacts

with D3 are hydrophilic, comprising a number of possible ionic

interactions. There is an overall positive charge of the D3 region

that comes in contact with the ligand. We identified several

charged residues from all three loops (L1, L2, and L3) of VEGF-A

interacting with D3. The most prominent conserved residue is

E64 in L2 that engages five charged residues located in D3 of

the receptor (N259, R261, R280, Q284, and N290) in

hydrogen-bond- and salt-bridge-type interactions. Another res-

idue from L2, D63, forms salt bridges with R224 located in the

D2–3 linker (Figure 4C). In addition, E44 in L1 and K84 in L3

form hydrogen bonds with Q263 of D3. Loops 1 and 3 also carry

hydrophobic residues such as P40, I43, and P85 that form a

complementary surface with D3 of VEGFR-1. I43 protrudes

Table 1. Data Collection and Refinement Statistics

VEGFR-1 D1–6/VEGF-A VEGFR-1 D2–7/VEGF-A

Data Collection

Crystal Native Iodide-SAD Sulfur-SAD Native

Wavelength (Å) 1 1.6 2.066 1

Space group C2 C2 C2 C2

Unit cell

a, b, c (Å) 166.7, 123.1, 167.4 166.7, 125.1, 167.9 166.6, 125.0, 168.3 163.5, 121.5, 141.6

a, b, g (�) 90.0, 109.6, 90.0 90.0, 109.6, 90.0 90.0, 109.4, 90.0 90.0, 90.02, 90.0

Resolution (Å) 50–4.0 (4.14–4.0) 50–4.1 (4.21–4.1) 50–4.0 (4.11–4.0) 50–4.8 (4.972–4.8)

Rmeas (%) 19.5 (194.7) 18.8 (221.6) 16.8 (277.4) 11.3 (190.4)

CC1/2 0.998 (0.607) 1 (0.749) 1 (0.695) 0.999 (0.755)

I/sI 9.53 (1.28) 16.35 (1.76) 23.72 (1.50) 10.57 (1.15)

Completeness (%) 99.6 (99.4) 99.8 (99.9) 99.5 (95.9) 99.8 (99.85)

Redundancy 6.9 (7.1) 27.9/24.5 60.2 (26.7) 6.9 (6.8)

Refinement

Resolution (Å) 20–4.0 20–4.8

No. of reflections 26,740 13,416

Rwork/Rfree 28.5/31.5 34.5/38.2

No. of atoms 11,400 11,106

Protein 11,078 10,882

Glycan 322 224

Water – –

B Factors

Protein 182.5 301.8

Glycan 236.2 301.2

Water – –

RMSDs

Bond lengths (Å) 0.004 0.004

Bond angles (�) 0.71 1.02

Only one crystal was used to obtain each of the above datasets. Values in parentheses are for the highest resolution shell.
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into the hydrophobic pocket on the D3 surface formed by V262,

M264, V278, and F292. Due to the low resolution of our structure,

some of the above described interactions remain tentative.

Structural comparison of receptor binding epitopes for the

VEGFR-1 ligands VEGF-A, PlGF, and VEGF-B shows that all

three ligands interact similarly with the D2 of VEGFR-1 (Fig-

ure S5). The interaction between the loop L2 of the three ligands

with D3 is also very similar since D63 of VEGF-A is strictly

conserved and E64 is conserved in PlGF and substituted by

aspartate in VEGF-B. Differences are observed in the way the

three ligands interact through the loops L1 and L3 with D3 of

VEGFR-1. While the sequence and structure conservation in

these regions is high between VEGF-A and PlGF, this is not the

case for VEGF-B. Superposition of the VEGFR-1 D2/VEGF-B

complex onto our structure tentatively reveals the structural

arrangement of loops L1 and L3 of VEGF-B in relation to receptor

domain D3. These loops are moved away from D3 and are not

involved in any receptor/ligand interactions in agreement with

a recent study (Anisimov et al., 2013) showing that VEGF-B

does not require D3 for high-affinity binding. Anisimov et al.

also showed that VEGF-B does not promote signaling down-

stream of VEGFR-1. PlGF and VEGF-A, on the other hand, are

angiogenic ligands, and the interaction of L1 with D3 is important

for receptor activation.

VEGFR-1 D4 and D5 Form Homotypic Interactions in the
Presence of Ligand
The structure of the VEGFR-1 D1–6/VEGF-A complex reveals

homotypic interactions in D4 and D5, covering altogether a sol-

vent-accessible area of �1,073 Å2 per chain (Figures 5A and

5B). The interface between Ig domain 4 is small (�201 Å2 per

chain) and includes several residues that may take part in

hydrogen-bond interactions. R351 in the A-B loop interacts

with K379 from the C-E loop, and K393 of the C-E loop could

be positioned to interact with the backbone of either S380 or

A381 of the adjacent C-E loop (Figure 5C). Determining which

interaction is more likely is difficult at the resolution of our data-

set. The interactions between the residues in the E-F loop pro-

posed earlier based on a KIT ECD structure (Yuzawa et al.,

2007) and the VEGFR-2 D7 structure (Yang et al., 2010) are

not visible in our data.

The homotypic contacts in D5 are, like in VEGFR-3, centered

on the fully conserved residues T455 (b strand B) and K517 (b

strand E) that form hydrogen bonds with the backbone atoms

of S436 and A434 of the other chain (Figure 5C). Furthermore,

a glutamate residue in the D-E loop (E513) conserved in all

VEGFRs interacts via hydrogen bond with Q429 and via a salt

bridge with K433 of the other chain. While the fully conserved

residues are part of the rigid b sheet, their interacting partners

Figure 2. Native-SAD as Validation Tool
(A) Ribbon representation of VEGFR-1 D3 (upper panel) and VEGFR-1 D5 dimer (lower panel) with sulfur peaks detected in anomalous difference Fourier maps.

The map is contoured to 4s.

(B) Ribbon representation of the VEGFR-1 D1–6/VEGF-A complex structure with 86 sulfur atoms presented as spheres. Fifty-one sulfur atoms (60%)

colored in red were detected at 3s in anomalous difference Fourier maps. The sulfur atoms colored in yellow belong mostly to methionines and were not

detected.
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are not conserved and belong to the flexible strands A and A0 and
the helical protrusion between them.

Homotypic Contacts in D4–7 Increase Ligand Binding
and Are Essential for Receptor Activation
The purified receptor ECD was monomeric, indicating that the

homotypic interactions in D4–7 are weak and apparently depend

on ligand-mediated receptor dimerization (Figure S1). We used

isothermal titration calorimetry to assess the contribution of the

membrane-proximal Ig domains 4–7 to the binding affinity of

the full-length ECD of VEGFR-1 for VEGF-A. Similar to VEGFR-3

(Lepp€anen et al., 2013), D1–7 of VEGFR-1 had significantly

higher affinity for the ligand than D1–3 (Figure 6A). The binding

affinity of VEGFR-1 D1–7 for VEGF-A was in the low nanomolar

range (�2 nM) while the affinity of VEGF-A for VEGFR-1 D1–3

was 20 times lower (i.e., � 50 nM). Binding of VEGF-A to D1–3

was entropically favored while binding to D1–7 was enthalpically

driven (Figure 6B). Thus, the presence of Ig domains 4–7

increased binding affinity for VEGF-A, presumably due to stabi-

lization through homotypic receptor-receptor contacts in D4–7.

Based on the structural data described here and in our earlier

work (Lepp€anen et al., 2010, 2013; Brozzo et al., 2012; Ruch

et al., 2007; Kisko et al., 2011), we predicted that the contacts

in D5 are essential for receptor function. We mutated the

residues involved in the D5 interaction and determined receptor

activity in transfected NIH3T3 cells. The activity of VEGFR-1 was

too low to obtain high-quality biochemical data; therefore, we

mutated the corresponding residues in D5 of VEGFR-2 based

on a homology model of this domain (for details of the mutants

used, see Figure 6D). In the mutant T446E/K512A, residue

T446 was replaced by E and K512 by A, thus preventing

hydrogen-bond and salt-bridge formation in the dimeric receptor

complex. This mutant showed drastically reduced ligand-

induced receptor phosphorylation (Figure 6C). Taken together,

these data show that the contacts in D5 revealed by our

VEGFR-1 ECD/VEGF-A structure are essential for receptor

activation.

DISCUSSION

We present here the first full-length VEGF receptor ECD struc-

ture in complex with one of its ligands, revealing all structural

details of VEGF-A binding to VEGFR-1. Most importantly, our

structure shows the structural details of the homotypic contacts

in D4–7 in the context of the full-length receptor ECD. The func-

tional analysis of these interactions proves their relevance for re-

ceptor activation. We propose that the exact positioning of

ligand-bound receptor protomers in active dimers, which is

essential for kinase activation, is mediated by the concerted

interplay of receptor/ligand interactions in D2–3 and receptor-re-

ceptor interactions in D4, D5, and D7.

Receptor Binding Specificity of Distinct VEGF Ligands
Using chimeric receptor constructs, it was proposed earlier that

D2 is responsible for the ligand specificity of VEGFRs (Davis-

Smyth et al., 1996; Cursiefen et al., 2004; Holash et al., 2002).

Structural and biochemical analysis also showed that D3 did

not significantly increase affinity of VEGFR-1 ECD constructs to-

ward VEGF-A (Wiesmann et al., 1997). Based on these earlier

studies, interaction with D3 seems therefore not to increase

the receptor binding affinity of VEGF. Our structure shows signif-

icant interaction of all three loops of VEGF with D3, suggesting

Figure 3. Negative -Staining EM Analysis of the VEGFR-1 D1–7/VEGF-A Complex

(A) A gallery of 24 2D class averages from image classification is shown.

(B) Comparison of the VEGFR-1D1–7/VEGF-A EMclass averageswith the compositemodel shown in Figure 1. Representative class averages (labeled with a star

in [A]) are compared with selected 2D projections and with the corresponding 3D volume models of the VEGFR-1 D1–7/VEGF-A complex. The volumes were

filtered at 25 Å resolution. The class average in (B) was rotated by �180� relative to its orientation in (A). Scale bars represent 10 nm.
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that, in the full-length receptor, both D2 and D3 are required for

receptor signaling. D3/VEGF interaction apparently triggers re-

ceptor ECD intertwining, thus inducing homotypic interactions

in D4–5 and D7, which are essential for receptor activation. We

propose that the D3/VEGF interaction plays a role as a sensor

for modification of homotypic interactions in D4–7 depending

on the strength of the induced twist between D2 and D3. This

might ultimately lead to different functional output by distinct

VEGF ligands. With the structure of the VEGFR-1 ECD/VEGF-A

complex and the comparison of receptor binding epitopes in

VEGF-A, PlGF, and VEGF-B, we provide a structural basis for un-

derstanding the different signal outputs generated by these three

VEGFR-1 ligands (Figure S5).

The next question that arises is why do VEGF-C, -D, and -E not

bind to VEGFR-1? Sequence conservation between different

VEGF family members varies in the three binding loops. While

the residues in loop L2 are highly conserved within the VEGF

family, there are significant sequence and structural differences

in the N-terminal helix a1 and in loops L1 and L3, which presum-

ably define receptor specificity of the ligands. The interactions

between residues E44 in L1 and K84 in L3 of VEGF-A with D3

of VEGFR-1 are not conserved in VEGF-C, -D, and -E (Figure S6),

and may thus determine receptor specificity.

Structural comparison of VEGF-A binding to VEGFR-1, as

described here, with binding to VEGFR-2 (PDB: 3V2A) shows

similar types of interactions. The ligands in the two structures

have very similar structures and can be aligned with an RMSD

of 0.86 Å for 190 aligned residues. The difference exists in the

orientation of D3 toward D2, where VEGF-A binding to

VEGFR-1 induces a stronger twist by 11� between D2 and D3

(Figure S4). With the exception of E64 in VEGFR-1, which en-

gages more residues in salt-bridge- and hydrogen-bond-type

interactions, loop L2 interacts similarly with D3 of VEGFR-1 or

VEGFR-2.

To fully understand the differences in the signaling output by

VEGFRs upon binding to a particular VEGF ligand, one needs

to consider also the role of co-receptors. Distinct ligands pro-

mote ternary complex formation, which has an impact on recep-

tor trafficking and signaling (Ballmer-Hofer et al., 2011).

Role of Homotypic Receptor Contacts in VEGFR
Activation
Our structural analysis describes for the first time the details of

homotypic contacts in the membrane-proximal domain of type

V RTKs in the context of a full-length ligand-bound receptor

ECD. In addition, we show that mutation of the interacting

interface attenuates receptor activity. This is in agreement with

earlier findings showing that homotypic contacts in D4–7 are

indispensable for activation of VEGFR-3 (Lepp€anen et al.,

2013) and VEGFR-2 (Yang et al., 2010), and documents the

strong similarity with type III RTKs such as PDGFR (Yang et al.,

2008) and KIT (Yuzawa et al., 2007; Reshetnyak et al., 2015;

Yang et al., 2010). Mutation of the interface of the homotypic

contacts renders KIT oncogenic (Reshetnyak et al., 2015) and

Figure 4. Binding Interface between VEGF-A and VEGFR-1 D2–3

(A) Cartoon representation of D2 and D3 of one receptor chain colored in yellow and VEGF-A chains in orange (chain A) and purple (chain B). Secondary structure

elements are labeled. Three loops in VEGF-A are designated L1, L2, and L3.

(B) VEGFR-1 interaction with the VEGF-A monomer A including N-terminal helix a1 and loop 2 (upper panel) and with the VEGF-A monomer B including loops 1

and 3 (lower panel). The key residues of the ligand are highlighted as sticks and labeled. VEGFR-1 charge distribution at the interaction surface is presented as a

surface potential model (calculated with the APBS module in PyMol).

(C) Interactions of charged residues in VEGF-A L2 (upper panel) and L1 and L3 (lower panel) with VEGFR-1 D3. Hydrogen bonds and salt bridges are shown as

green dashed lines.
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promotes ligand-independent kinase activation. In agreement

with this, we showed earlier that antibody-like molecules such

as DARPins (Stumpp et al., 2008; Binz et al., 2004) binding D4

or D7 of VEGFR-2 block receptor signaling (Hyde et al., 2012).

Ligand-induced homotypic ectodomain contacts in the mem-

brane-proximal domain are thus required for tight control of

type III and V receptors. A detailed comparison of type III and

V receptor ECD structures and possible implications for the

mechanism of receptor activation was published recently by Ver-

straete et al. (2011).

Receptor-receptor interactions in D4 revealed in this work are

in agreement with earlier studies on VEGFR-1 (Barleon et al.,

1997) and VEGFR-2 (Shinkai et al., 1998) that pointed at the

importance of this domain in ligand-induced receptor dimeriza-

tion. Similar interactions were, on the other hand, not observed

in the VEGFR-3 D4–5 structure (Lepp€anen et al., 2013). Since

theD4 interactions in VEGFR-1 occur through theC-E loop,which

is longer in this receptor compared with the other homologs, they

might only be relevant for VEGFR-1 functionality. In our structure,

we did not observe the previously proposed D4 interactions be-

tween residues in the E-F loop of KIT (Yuzawa et al., 2007).

Homotypic interactions in D5 have interesting structural char-

acteristics, with one interacting side composed of a rigid b sheet

(b strands B, D, and E) and the other side being more flexible

(strands A and A0; Figure 5C). The flexible strands A and A0 are
directly linked to D4, suggesting an order of homotypic contact

formation following ligand binding (i.e., formation of interactions

in D4 will be transmitted downstream to D5). This may also

explain heterodimer formation giving rise to VEGFR-1/VEGFR-

2 (Cudmore et al., 2012) and VEGFR-2/VEGFR-3 (Harris et al.,

2013) ligand complexes, where one interacting face is rigid and

fully conserved and the other more flexible, allowing for differen-

tial bond formation.

Here, we show detailed structural information for the isolated

ECD of VEGFR-1 in complex with ligand. In cells, however, the

receptor ECD is membrane bound and separated from the trans-

membrane domain (TMD) via a short linker. We showed earlier

that a distinct conformation of the TMD is required for VEGFR

activation (Manni et al., 2014; Dell’Era Dosch and Ballmer-Hofer,

2010). It is therefore likely that the conformation of the most

membrane-proximal D7 domain and the linker separating it

from the TMD is affected by the presence of the TMD. In other

words, the exact structure of D7 in a ligand-bound, mem-

brane-associated receptor might differ from the structure deter-

mined for the soluble ECD described here. So far, only low-res-

olution single-particle electron microscopy structures are

available for such membrane-proximal domains in the epidermal

growth factor receptor (Mi et al., 2008) and KIT (Opatowsky et al.,

2014), respectively. We propose that the D7 interactions initially

observed in VEGFR-2 (Yang et al., 2010; Ruch et al., 2007), and

now confirmed for VEGFR-1, represent a checkpoint during

formation of active receptor dimers. The restriction ofmobility to-

ward the TMD imposed by homotypic contacts in D5 andD7may

be responsible for stringent control of VEGFR activation.

Taken together, the availability of the structural details of the

full-length VEGFR-1 ECD in complex with VEGF-A presented

Figure 5. Homotypic Interactions between Ig domains 4 and 5 of VEGFR-1

(A) Surface representation of the D4–5 dimer. D4 on two chains are colored in pale yellow and light magenta and D5 is shown in yellow-orange and purple. The

rotation axis relating the views is shown. The twist angle between D4 and D5 within the same chain is 60�.
(B) Cartoon representation of the D4–5 dimer with labeled b strands. The E-F loop in D4 is colored in green, illustrating that residues that are part of this loop in

VEGFR-1 do not interact.

(C) Zoom-in view into the interface of D4 (top) and D5 (bottom). Interacting residues are shown as sticks and hydrogen bonds and salt bridges as green

dashed lines.
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here allow a detailed mechanistic interpretation of the role of in-

dividual Ig domains in receptor dimerization and activation. Most

drugs targeting VEGF receptors to interfere with aberrant vascu-

larization available today are specific for VEGFR-2. The role of

VEGFR-1 in angiogenesis, and particularly in tumor angiogen-

esis, has recently attracted high attention as it seems to be rele-

vant for de novo vascularization as demonstrated for instance by

Massena et al. (2015). Additional relevance of VEGFR-1 in path-

ological angiogenesis has been observed in cancer models (Van

de Veire et al., 2010; Schomber et al., 2007). The discovery of the

mechanism of receptor activity modulation by domains 4–7

described here opens new possibilities for developing novel,

highly specific VEGF receptor antagonists for future medical

applications.

EXPERIMENTAL PROCEDURES

Crystallization and Structure Determination

Crystallization

The VEGFR-1 D1–6/VEGF-A and the VEGFR-1 D2–7/VEGF-A complexes used

for crystallizationwere partially deglycosylated with PNG-ase F and purified by

SEC. Both complexes were crystallized in sitting drops at 20�C. The best dif-

fracting crystals of the VEGFR-1 D1–6/VEGF-A complex were obtained from a

reservoir solution containing 200 mM CaI2, 100 mM 2-(N-morpholino)ethane-

sulfonic acid (pH 6.5), and 10–14% PEG 3000 (w/v) and of the VEGFR-1 D2–7/

VEGF-A complex from a reservoir solution containing 200 mM NaCl, 100 mM

Na/K-phosphate (pH 6.2), and 10% PEG 8000 (w/v). The crystals of both com-

plexes belonged to space group C2 with one complex per asymmetric unit, a

solvent content of 70%, and the following cell parameters: VEGFR-1 D1–6/

VEGF-A a = 166.7, b = 123.1, c = 167.4 Å, b = 109.6�; VEGFR-1 D2–7/

VEGF-A a = 163.5, b = 121.5, c = 141.6 Å, b = 90.02�. Iodide derivatives of

the VEGFR-1 D1–6/VEGF-A complex were prepared by soaking the crystals

in a reservoir solution containing 100 mM CaI2 for 3 hr. For cryoprotection,

the crystals were transferred stepwise into mother liquor containing increasing

concentrations of glycerol to a final concentration of 20%, flash frozen, and

stored in liquid nitrogen.

Structure Determination

All datasets were collected on the X06DA beamline at the Swiss Light Source

(SLS) at the Paul Scherrer Institute in Villigen, Switzerland on a PILATUS 2M

detector (Dectris). A complete dataset to 4 Å resolution was collected from a

single native crystal of the VEGFR-1 D1–6/VEGF-A complex. Highly redundant

anomalous data were obtained from a single large crystal derivatized with io-

dide that was measured on multiple positions and orientations using the high-

precision multi-axis goniometer PRIGo (Waltersperger et al., 2015).

Data were indexed, integrated, and scaled with XDS (Kabsch, 1993) and

further processed with CCP4 programs (Collaborative Computational Project,

Number 4, 1994). The structure of the VEGFR-1 D1–6/VEGF-A complex was

Figure 6. Quantification of VEGFR-1/VEGF-A Interaction by Isothermal Titration Calorimetry and Receptor Activity of D5 Mutant

(A) Raw titration data and integrated and concentration normalized isothermograms of VEGF-A binding to the VEGFR-1 D1–3 (left panels) and VEGFR-1 D1–7

(right panels). Solid lines in the isothermograms represent the best fit according to the ‘‘One Set of Sites’’ model.

(B) Thermodynamic signature of complex formation (enthalpy and entropy contribution to the Gibbs free energy of binding) differs between the two constructs of

the receptor.

(C) Ligand-mediated activation of wild-type and VEGFR-2 D5 mutant receptor. Shown are western blots for wild-type and mutant T446E/K512A VEGFR-2.

Activities were determined with phospho-specific antibodies as described in Supplemental Experimental Procedures.

(D) Sequence alignment of subdomain D5 involved in homotypic contacts in VEGFR-1, -2, and -3. Asterisks indicate conserved amino acids in D5 of VEGFR-1, -2,

and -3, and colored residues indicate residues involved in homotypic contacts.
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determined by MR-SAD, as implemented in the program suite PHASER

(McCoy et al., 2007). The partial molecular replacement solution obtained us-

ing the structure of the VEGFR-1 D2/VEGF-A complex (PDB: 1QTY) as a

search model allowed for the identification of heavy atom sites and substruc-

ture completion. Initial phases were improved by solvent flattening and

extended to 4 Å by 2-fold non-crystallographic symmetry averaging with the

program DM (Cowtan et al., 2012). The missing Ig-homology domains were

positioned by phased molecular replacement in MOLREP (Vagin and Teplya-

kov, 2010) using the following structures as search models in the following or-

der: for D4 VEGFR-3 D4 (PDB: 4BSJ), for D5 VEGFR-3 D5 (PDB: 4BSJ), and for

D3 VEGFR-2 D3 (PDB: 2X1X). To construct a model with the full VEGFR-1

sequence, we created homology models for the Ig domains D3-D5 using the

corresponding MR search models as templates in SWISS-MODEL (Biasini

et al., 2014). The homology models were superimposed onto the domains

positioned by molecular replacement and single Ig domains were connected

generating the VEGFR-1 D2-D5/VEGF-A model.

We first attempted to fit D1 and D6 using homology models as well, but the

resulting models had a poor fit without clear difference density to guide model

building. To overcome this, D1 and D6 were submitted to the Foldit structure

prediction game (Cooper et al., 2010). Players were provided a set of five start-

ing models from I-TASSER (Zhang, 2008). Players then modified the structure

to minimize the Rosetta energy function; 339 and 443 players participated in

the D1 and D6 puzzles, respectively, over a 2-week period. A very diverse

set of models was generated, which were clustered to within 2 Å RMSD.

The 1,000 top-scoring models were then used for molecular replacement

with PHASER. A candidate model was chosen with high log likelihood gain

and translational function Z score for further manual refinement (Figure S2).

The D6 and D1 models were added sequentially to the VEGFR-1 D2-D5/

VEGF-A model, followed by manual rebuilding in COOT (Emsley and Cowtan,

2004) and refinement in PHENIX (Adams et al., 2002) as for the homology

models. NCS, secondary structure, and reference structure restraints were

applied throughout the refinement process. For the final refined structure,

Ramachandran values were 83.6% favored, 13.8% allowed, and 2.6% outlier.

The structure of the VEGFR-1 D2–7/VEGF-A complex was determined to

4.8-Å resolution by molecular replacement in PHASER using the D2–6 part

of the VEGFR-1 D1–6/VEGF-A structure and the structure of the VEGFR-2

D7 dimer (PDB: 3KVQ) as search models. The structure was improved by

rigid-body refinement in PHENIX. A composite model of the full-length

VEGFR-1 ECD/VEGF-A complex was constructed in COOT by secondary

structure match superposition of the D1–6 and D2–7 structures (RMSD of

1.76 Å for 1,128 residues of the D2–6 region).

Native SAD Experiments

Highly redundant diffraction data were collected from a very large native crys-

tal (700 mm) of the VEGFR-1 D1–6/VEGF-A complex at an X-ray energy of 6 keV

(2.0663 Å wavelength) applying a recently described method (Weinert et al.,

2015). Individual datasets of 360� were measured from multiple positions

and orientations of the crystal giving 4,320� in total with the anomalous signal

extending to 4.5 Å. The final VEGFR-1 D1–6/VEGF-A model was refined

against these long-wavelength data in PHENIX, which allowed for calculation

of anomalous difference Fourier maps for sulfur. The anomalous peaks around

all disulfide bridges in Ig domains and in the VEGF ligand and additionally

around several methionine sulfurs confirmed the accuracy of the model.
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Figure S1 related to Figure 1 and 6. Purification and biophysical characterization of the VEGFR-1 ECD monomer and the VEGFR-
1 ECD/VEGF-A complex in solution.  

A, SDS-PAGE analysis of purified VEGFR-1 ECD, VEGF-A121 and the VEGFR-1 ECD/VEGF-A121 complex. The preformed complex was 

purified by size exclusion chromatography (SEC) on Superdex 200 and used for further biophysical and structural analyses. B, Size exclusion 

coupled to multi-angle light scattering (SEC-MALS) of VEGFR-1 ECD alone and in complex with VEGF-A121. The UV-profiles are shown 

along with the mass distribution of each peak calculated from the MALS data. Experimentally determined Mr values were, for the VEGFR-1 

ECD 89.7 kDa and for the VEGFR-1 ECD/VEGF-A121 complex 206.3 kDa (theoretical values 83.3 and 196.8 kDa, respectively). C, SAXS 

analysis of VEGFR-1 ECD and of the complex with VEGF-A121. Left panel: Scattering intensity as a function of scattering vectors. Right 

panel: GNOM distance distribution functions.  
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Figure S2, related to Figure 1. Quality of the experimental electron density map. 

Electron density map as obtained from MR-SAD phasing in PHASER and subsequent density modification in DM. The map is contoured at 

1.5 σ and exhibits clear solvent-protein boundaries. The figure is centered on two VEGFR-1 D2/VEGF-A complexes positioned by molecular 

replacement and related by 2-fold crystallographic symmetry around y axis (VEGFR-1 D2 is colored red, VEGF-A is colored yellow). A, view 

on the whole unit cell along the y axis. B, Zoom-in of panel a. The density corresponding to Ig-domains D1, D3 and D4 is indicated by labels. 
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Figure S3 related to Figure 1. PHASER scores for molecular replacement of Foldit models for Ig-domain 1 (A) and Ig-domain 6 (B).  

Translation function z-scores (TFZ) and log-likelihood gains for the fitted domain (LLG1) were used to select a model for further use (red 

circle). Electron density fit only weakly correlated with Rosetta energy (Total Energy, color with labels giving ranked energy). 
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Figure S4 related to Figure 1. Comparison of the VEGFR-1 ECD/VEGF-A complex with known partial structures of VEGFR-2 and 

VEGFR-3.  

A, Top, and B, side views of the VEGFR-1 ECD / VEGF-A model (pink/yellow) with four known partial structures of VEGFR-2 (green) or 

VEGFR-3 (cyan) superimposed. From N- to C-terminus: VEGFR-3 D1-2 (PDB: 4BSK); VEGFR-2 D2-3/VEGF-A complex (PDB: 3V2A) 

(green/orange); VEGFR-3 D4-5 dimer (PDB: 4BSJ); and VEGFR-2 D7 dimer (PDB: 3KVQ). Structural alignments were obtained by SSM 

superposition in Coot. C, The same four superpositions presented separately. Rotations relative to the orientation in B are designated. 
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Figure S5. Related to Figure 4. Structural comparison of receptor binding epitopes in VEGF-A, PlGF and VEGF-B. 

A-C, Interaction of VEGF-A (orange) with VEGFR-1 D2-3 (yellow) as in Figure 4b. VEGFR-1 D2 complexes with PlGF (PDB: 1RV6) and 

VEGF-B (PDB: 2XAC) were superimposed onto D2 of the VEGFR-1 D1-6/VEGF-A complex structure. Parts of the ligands are shown: A, 

monomer A, helix α1 and loop 2; B and C, monomer B, loops 1 and 3. D, Interaction of E64 of VEGF-A with VEGFR-1 D3 and comparison 

with the corresponding residues in PlGF (E72) and VEGF-B (D64). Hydrogen bonds and salt bridges are shown as gray dashed lines. E, F, 

Interaction of VEGF-A L1 and L3 with VEGFR-1 D3 with the same loops of PlGF (E) and VEGF-B (F) superimposed. There is a high 

sequence and structure homology between L1 and L3 of VEGF-A and PlGF. L1 and L3 of VEGF-B have clearly different structural features. 

G, Structure-based sequence alignement of VEGF-A (13-109), PlGF (21-115) and VEGF-B (13-109). Residues that interact with VEGFR-1 

D2 are colored in red. VEGF-A residues that interact with VEGFR-1 D3 are colored in blue and underlined and the homologues residues in 

PlGF and VEGF-B that could play similar roles are colored in blue.  

 

 

 

  



6 
 

 
 

Figure S6 related to Figure 4. Structural comparison of the loops L1 and L3 of different VEGF family members. 

A, Interactions between the loops L1 and L3 of VEGF-A (purple) and VEGFR-1 D3 (yellow). The key interacting residues are shown as sticks 

and hydrogen bonds as gray dashed lines. VEGF-C (magenta, PDB: 2X1W), VEGF-D (deep teal, PDB: 2XV7) and VEGF-E (salmon, PDB: 

3V6B) were superimposed onto our VEGFR-1 structure to compare L1 and L3 loops. B, Sequence alignement of the L1 and L3 regions of 

different VEGFs. VEGF-A residues E44 and K84 that interact with Q263 of VEGFR-1 and their counterparts in other VEGFs are highlighted 

in yellow. 
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Supplemental Experimental Procedures 

 

Production and purification of recombinant proteins 

Human VEGF-A121 (here denoted as VEGF-A) was produced in Pichia pastoris as described before (Scheidegger 

et al., 1999). Human VEGFR-1 D1-3 (residues 1-339), D1-6 (residues 1-660), D2-7 (residues 132-750) and D1-7 

(residues 1-750) were expressed as secreted proteins in Sf21 insect cells, as described previously (Brozzo et al., 

2012). The proteins were purified from culture supernatant by immobilized metal affinity chromatography (IMAC) 

followed by size exclusion chromatography (SEC) on Superdex 200 HR 16/600 (GE Healthcare) equilibrated in 

25 mM HEPES pH 7.5 and 500 mM NaCl. For the formation of VEGFR-1 ECD/VEGF-A complexes, an equimolar 

amount of receptor and ligand were mixed and the complexes were purified by SEC. 

 

Size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) 

100 μl protein samples at a concentration of 1 mg/ml were injected onto a Superdex 200 HR 10/300 column for 

SEC-MALS determination (GE Healthcare). The column was equilibrated in 25 mM HEPES pH 7.5, 500 mM 

NaCl at 20°C, using an Agilent 1100 HPLC system. Light scattering and differential refractive index were recorded 

using a Wyatt miniDAWN Tristar detector and a Wyatt Optilab rRex detector, respectively. Wyatt Astra software 

was used to collect and process the data and to calculate the molar mass from a global fit of the light scattering 

signals from three detectors at different angles and the differential refractive index signal.  

 

Small angle X-ray solution scattering (SAXS) 

SAXS data acquisition was performed at the X12SA-beamline (cSAXS) at the Swiss Light Source at the Paul 

Scherrer Institute in Villigen, Switzerland. The intensities of the scattered X-rays were recorded on a Pilatus 2M 

detector using a wavelength of λ = 1 Å. Data was collected in the scattering vector range of 0.008 Å-1 - 0.4 Å-1, 

where the length of the scattering vector is given as s = 4πsinθ/λ (2θ is the scattering angle). Silver behenate was 

used as a standard for calibration of the s-range (Huang et al., 1993). Three concentrations were measured per 

protein sample using quartz capillaries with a diameter of 1 mm (Hilgenberg GmbH). To record background 

scattering, the protein buffer was measured in the same capillaries prior to protein data acquisition. Exposures of 

0.5 s were taken at ten different spots along the capillary. The data was monitored for radiation damage and all 

frames showing no radiation damage were merged and averaged for further data processing. The collected SAXS 

data were integrated and radially averaged utilizing our own MATLAB-scripts (J. Missimer & K. Kisko, 

unpublished). Using PRIMUS from the ATSAS (Petoukhov et al., 2012) program package14, the background 

scattering was subtracted and data of different concentrations were merged. In order to check for proper protein 

folding of all measured samples Kratky-plots were calculated. The distance distribution function P(r) was 

calculated using GNOM and the program AUTOGNOM. 

 

Negative stain single particle electron microscopy (EM) 

In order to stabilize the VEGFR-1 D1-7/VEGF-A complex for negative stain EM, samples were prepared using 

GraFix (Kastner et al., 2008). Briefly, 150 pmol of the complex were applied onto a 5-20 % glycerol gradient 

containing 20 mM HEPES pH 7.5, 150 mM NaCl in the presence or absence of 0.2% glutaraldehyde. The samples 

were centrifuged for 18 hrs at 40’000 rpm in a SW60Ti rotor (Beckman-Coulter), which correlates to an average 

RCF value of 164’326 x g. The gradients were harvested from bottom to top with a peristaltic pump collecting 120 
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μl fractions. Protein containing fractions were detected using Roti®-Quant reagent (Carl Roth GmbH + Co. KG) 

for protein quantitation according to Bradford. In addition, protein containing fractions were analyzed by SDS-

PAGE to verify the presence of the complex. Cross-linking reactions were quenched with the addition of 5x 

quenching buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.4 M glycine). For negative stain EM, 5 μl of undiluted 

sample was adsorbed to a freshly glow discharged thin carbon film supported on a 200 mesh copper grid and 

incubated for 1 min. at room temperature. The excess sample was blotted away using filter paper. Three 

consecutive washes using 20 mM HEPES pH 7.5, 150 mM NaCl and one wash with 2% uranyl acetate was 

performed followed by 20 s staining with fresh 2% uranyl acetate. Negative stain EM data were collected on a 

CM-100 microscope (Philips) equipped with a Veleta 2k x 2k CCD camera (Olympus). The voltage used was 80 

kV and the magnification was set to a nominal value of 130’000 x. From 126 micrographs 4883 particles were 

picked manually using XMIPP (Scheres et al., 2008). Inferior particles and particles with a z-score >3 were 

discarded. 4536 particles were boxed in 100 x 100 pixel boxes and subjected to alignment and classification into 

24 2D class averages using maximum-likelihood target function (ML2D) implemented in XMIPP using 100 

iterations (Scheres et al., 2005). After 49 iterations ML2D reached convergence. 

 

Comparison of the crystal and EM structure of the VEGFR-1 D1-7/VEGF-A complex  

The composite model of the VEGFR-1 D1-7/VEGF-A complex was converted into density volume filtered to 25 

Å resolution using the Bsoft software package  (Heymann and Belnap, 2007). The volume was then used to 

calculate projections at an angular interval of 15° with the SPIDER image processing suite (Frank et al., 1996). 

The projections with the most similar features to the experimental 2D averages were selected. Density volumes 

and ribbon diagrams were displayed and oriented with the UCSF Chimera package (Pettersen et al., 2004). 

 

Isothermal titration calorimetry (ITC) 

The measurements on VEGFR-1 were performed at 20°C in 25 mM HEPES pH 7.5, and 150 mM NaCl (ITC-

buffer) using an iTC200 calorimeter (MicroCal®, GE Healthcare). The proteins were purified on a Superdex 200 

10/300 column (GE Healthcare) equilibrated in ITC-buffer and dialyzed against ITC-buffer overnight at 4°C prior 

to analysis. The calorimeter cell contained VEGFR-1 D1-7 or VEGFR-1 D1-3 at concentrations ranging from 4.4 

to 30 μM and the ligand VEGF-A121 was used in the syringe at concentrations ranging from 22.5 to 100 μM. All 

samples were equilibrated to the measurement temperature and degassed prior to ITC analysis. The following 

settings were applied: one initial injection of 1 μl followed by 15 injections of 2.6 μl at an injection speed of 1 μl/s 

with a data filter of 1 s and 300 s recovery time between each peak. The software Origin 7.0 (OriginLab®) was 

used for data analysis. 

 

Cell transfection and determination of receptor activity 

NIH 3T3 cells were grown in 10% calf serum in Dulbecco’s Modified Eagle’s Medium (DMEM) and transfected 

using a modified peGFP-N1 vectors (Takara Bio Europe/Clontech) carrying either wt VEGFR-2, or a mutant 

T446E/K512A where residue K512 was replaced by A and T446 by E. All expression vectors were generated by 

Gibson assembly (Gibson et al., 2009). 8 μg DNA in 0.8 ml serum-free medium were mixed with 16 μl PEI 

(Polyethyleneimine, stock 1 mg/ml, Aldrich 408727, 25 kDa branched), incubated for 10 minutes at RT for the 

complex to form. The medium in the culture dishes was replaced with 1.6 ml DMEM containing 0.5% serum and 

the DNA/PEI complex was added for 5 hrs. Cells were incubated for 20 hrs after addition of 1 ml DME with 10% 
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serum. The cells were serum-starved in DMEM supplemented with 1% bovine serum albumin (BSA) and 

stimulated with 1.5 nM VEGF-A for 10 min at 37°C. Cell lysates were prepared in lysis buffer (50 mM Tris pH 

7.5, 100 mM NaCl, and 0.5% w/v Triton X-100) supplemented with protease inhibitor cocktail (Roche diagnostics, 

Risch-Rotkreuz Switzerland), phosphatase inhibitors (200 μM Na3VO4, 10 mM NaF, 10 mM sodium 

pyrophosphate, 30 mM p-nitrophenyl-phosphate, 80 mM glycerophosphate, and 20 μM phenylarsine oxide), and 

10% glycerol. Cell lysates were diluted with Lämmli buffer (20 mM Tris pH 6.8, 5% SDS, 10% mercaptoethanol, 

0.02% bromphenol blue) and the proteins separated on 8% SDS polyacrylamide gels and blotted to Polyvinylidene 

(PVDF, Thermofisher Scientific, Zug Switzerland) membranes. We used 55B11 (2479, Cell Signaling Technology 

Europe) and phospho-Y1175 (2478, Cell Signaling Technology Europe) for determining VEGFR-2 activity. All 

primary antibodies were used at dilutions of 1:1’000, followed by secondary alkaline phosphatase-coupled 

antibodies (6440-04, Southern Biotech, Birmingham USA) at a dilution of 1:10’000. The blots were developed 

with AP chemiluminescent detection substrate (Life Technologies, Carlsbad USA) and the immunoblots were 

analyzed on a GE Healthcare ImageQuant RT ECL scanner and densitometrically quantified using the ImageJ gel 

analysis plugin. Relative activity is given as the ratio of the intensities of the bands corresponding to VEGF treated 

versus non-treated receptor detected by phospho-Y1175 antibody. 
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8. Discussion and Outlook 

VEGFRs, upon binding to their cognate ligands, initiate signaling cascades across the 

plasma membrane for carrying out processes such as angiogenesis and 

lymphangiogenesis. The ligand binds to the receptor ECD and induces distinct 

conformational changes promoting dimerization and instigating TM signaling resulting 

in intracellular kinase activation. Low-resolution structural information on the VEGFR-

2 ECD/ligand complex, derived from single particle EM and SAXS, revealed that Ig-

homology domains 1-3 are involved in ligand binding while membrane proximal 

domains 4-7 form homotypic contacts presumably required for receptor activation 

(Kisko et al., 2011; Ruch et al., 2007). High-resolution structural data on ligand binding 

to subdomains 1-3 show the details of the interactions between the variable loops 

present in VEGF ligands and the receptor domains. A high-resolution crystal structure 

and functional studies of the membrane proximal Ig-homology domain 7 document the 

relevance of the homotypic contacts mediated by conserved charged residues, namely 

R726 and D731 present in the βE-F loop, in activation of the VEGFR-2 complexed with 

ligand (Hyde et al., 2012; Yang et al., 2010). Structural information of Ig-homology 

domains 4-5 of VEGFR-3 show weak lateral interactions in domain 4 and close 

homotypic contacts in domain 5 between receptor monomers (Leppänen et al., 2013). 

Thus, although information on small isolated subdomains for VEGFR-2 exists, the 

exact mechanism of how the ligand induces interactions in the membrane proximal 

domain leading to receptor activation remains unclear. 

8.1. Crystallization of VEGFR-2 ECD ligand complexes 

A great motivation for this thesis was to identify conformational changes present in the 

membrane proximal Ig-homology domains of VEGFR-2 which are triggered by ligand 

binding. To carry out such a structural study, appropriate systems for the expression, 

purification and characterization of various VEGFR-2 constructs were required. In this 

thesis, we describe the successful establishment of such systems, as well as initial 

approaches employed for their crystallization. 

Protein expression in Pichia pastoris was not pursued because earlier expression trials 

in the laboratory resulted in the generation of degraded protein. E.coli expression also 
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lead to misfolded protein in inclusion bodies (Stuttfeld, 2011). In earlier studies carried 

out for determining the crystal structures of single VEGFR Ig-homology domains, E.coli 

expression could be used only after refolding (Christinger et al., 2004; Iyer et al., 2010; 

Wiesmann et al., 1997; Yang et al., 2010). In order to produce larger VEGFR ECD 

fragments, eukaryotic expression systems are more suitable to achieve properly folded 

recombinant proteins (Aricescu et al., 2006). Therefore, we chose to express the 

recombinant receptor proteins in mammalian or insect cells, and we achieved protein 

yields up to several milligrams (0.5-13 mg/l). It is known that there are several potential 

N-glycosylation sites within the ECD of the VEGFRs (Terman et al., 1991), which might 

hamper protein crystallization. Moreover, recombinant proteins produced in insect cells 

are heterogeneously glycosylated, which makes deglycosylation by EndoF or PNGase 

only partially successful (Hollister et al., 2002). Thus, expression in HEK293S GnTi- 

cells is a promising option in order to obtain homogeneously glycosylated proteins. As 

a matter of fact, there are some reported structures of RTK ECDs where the 

recombinant proteins were expressed in HEK293S GnTi- cells (Shim et al., 2010; 

Verstraete et al., 2011).  In order to overcome the low expression yields in 

glycosylation-deficient HEK293S GnTi- cells, a baculovirus-mediated gene 

transduction system for mammalian cells (BacMam) has been developed (Dukkipati et 

al., 2008), and successfully applied to solve the structure of the platelet-derived growth 

factor receptor (PDGFR) Ig-homology domains 1-3 in complex with PDGF (Shim et al., 

2010). In this thesis, I adapted this system for establishing recombinant protein 

production of VEGFR-2 ECD subdomain constructs. However, even using high-titer 

virus in high volumes did not yield high protein expression in mammalian cells when 

compared to chemically transfected HEK293T or HEK293S GnTi- cells, possibly due 

to poor efficiency of our recombinant baculoviruses for transducing mammalian cells 

(Figure 8). There are only a few recently published studies exploring factors for 

improving the entry of baculoviruses in mammalian cells, for which the mechanism has 

been less well known (Mansouri et al., 2016; O'Flynn et al., 2012).   

Since we were unable to generate enough protein for crystallization studies from 

HEK293S GnTi- cells using the BacMam system, we explored alternative stable 

mammalian expression systems, such as the HEK293 EBNA system. HEK293 EBNA 

cells express the EBNA-1 protein, which drives the episomal amplification of 

expression plasmids carrying the origin of replication derived from the EBV. Thus, 
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these cells under selection pressure (Puromycin) are expected to increase 

recombinant protein expression levels by permitting more plasmid copies to persist in 

the transfected cells throughout the production phase. We established high expression 

suspension cultures and obtained homogeneous protein of high purity from 

mammalian HEK293 EBNA cells for the mouse VEGFR-2 ECD constructs, which 

share a sequence identity of 80% with the human VEGFR-2 ECD. Unfortunately, 

excessive crystallization trials of both glycosylated and deglycosylated mouse VEGFR-

2 ECD proteins did not give rise to any crystals. On the other hand, using the above 

established HEK293 EBNA expression system in a followup study from our lab gave 

for the first time highly diffracting crystals of domains 4-5 (allosteric site) of human 

VEGFR-2 (Thieltges et al., 2018).  

Since our extensive crystallization trials with differently glycosylated constructs were 

unsuccessful, we sought an alternative method to facilitate crystallization. We 

successfully generated VEGFR-2 ECD/VEGF-A/antibody fragment complexes for co-

crystallization trials (Griffin et al., 2011). The antibody fragments aid in stabilizing 

flexible protein domains to a distinct conformation leading to improved structural 

homogeneity of the sample. ScFvs have been commonly used for crystallization 

studies. A comparative evaluation of scFv and Fab fragments showed that the 

presence of both constant domains can further stabilize the variable domains in the 

Fab fragment (Rothlisberger et al., 2005).  Crystallization of the extracellular region of 

another RTK, HER2 (also known as Neu receptor), was aided by a Fab called herceptin 

(Cho et al., 2003). The need for such crystallization chaperones for VEGFR-2 becomes 

evident when one considers that the Ig-homology domains present in the ECD are 

connected with flexible linkers, particularly domains 1-2, which exist in a bent 

conformation, as suggested by the structural data on VEGFR-3 and VEGFR-1 

(Leppänen et al., 2013) (Section 7.4). This structural conservation indicates that the 

flexibility in domain 1 may be physiologically essential, for receptor function, and might 

be required for interacting with co-receptors such as neuropilins. Also, binding studies 

on VEGFR-2 ECD/VEGF complexes suggest a regulatory role of Ig-homology domain 

1 (Shinkai et al., 1998). Therefore, we chose scFv and Fab fragments of antibodies 

targeting either domain 1 or domains 2-3 of VEGFR-2 ECD to stabilize the highly 

flexible ligand-binding region of the receptor (Figures 12 and 14). In addition to the 

flexibility due to the linker regions, VEGFR-2 ECD complexes also lack the stability in 
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the membrane proximal regions, which in the physiologically relevant form of the 

receptor is provided by the TMD embedded in the cell membrane. It has been shown 

earlier by our lab that distinct conformation of the TMD is crucial for stabilizing ligand-

receptor complex formation and activation (Dell'Era Dosch et al., 2010; Manni et al., 

2014b).  We therefore sought to mimic this stabilization by generating complexes with 

receptor constructs containing a GCN-4 leucine zipper domain at the C-terminal of the 

membrane proximal domain 7. 

Extensive crystallization trials of VEGFR-2 ECD/VEGF-A complexes with or without 

stabilizing antibody fragments did not yield crystals. It is possible that flexible loops 

other than those in the ligand-binding domain and other unstructured regions in the 

protein impair crystallization. Indeed, bioinformatics analysis predicted the presence of 

extensive disordered regions in VEGFR-2 ECD domains 3 and 5 (Figure 15). New 

constructs with redefined domain boundaries based on a preliminary limited proteolysis 

study presented in this thesis on hVEGFR-2 ECD/VEGF-A complex might be helpful. 

Treatment with subtilisin, α-chymotrypsin and trypsin gave a stable, lower molecular 

weight fragment after longer incubation times, which contains presumably fewer 

disordered regions than the intact protein (Figure 16). The fragments and interfaces 

obtained by limited proteolysis can be identified by a mass spectrometry analysis. 

Other strategies to design new constructs include replacing flexible tails and 

interdomain regions and rational mutagenesis of surface residues, which could make 

proteins amenable for crystallization, were also not pursued for time reasons during 

this thesis. Finally, crystallization trials of isolated Ig-homology domains could be 

beneficial, although this strategy would fail to unravel the interplay between the ligand 

binding domains and membrane proximal domains. 

8.2. Role of VEGFR-2 ECD in receptor dimerization and activation 

It has been shown that VEGFR-2 forms dimers even in the absence of ligand when 

expressed at physiological levels, but complete phosphorylation in the kinase domain 

is only achieved upon ligand binding to the ECD (Sarabipour et al., 2016). ITC and 

MST studies presented here gave us insight into the distinct roles of individual 

extracellular subdomains in ligand-mediated dimerization of VEGFR-2 (Figures 18 and 

19). The biophysical studies confirmed the ability of complex formation between 
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VEGFR-2 ECD and VEGF-A in a 2:1 stoichiometry, considering the disulfide-linked 

ligand dimer as a single molecule. Thermodynamic analysis of receptor binding to 

VEGF, carried out by ITC, revealed the counterintutive finding that the Gibbs free 

energy of ligand binding to full length ECD is less negative by 1.12 kcal/mol compared 

to that of ligand binding with domains 1-3. The comparative data from the two 

biophysical studies also show that the presence of membrane proximal domains (4-7) 

attenuate the receptor affinity for the ligand by approximately 10 fold, although the 

precise value for ligand binding to VEGFR-2 domains 1-3 could not be determined by 

MST, due to reaching the detection limit of the technique,. The study shows that ligand 

interactions with domains 2-3 are thermodynamically highly favourable, whereas 

homotypic interactions in domains 4-7 occur with an enthalpic penalty. This result is in 

agreement with a previous study, which demonstrated that binding of VEGF to 

recombinantly produced ECD protein, encompassing Ig-homology domains 1-7 of 

VEGFR-2 is 1.0-1.7 kcal/mol less favourable than binding to Ig-homology domains 2-

3 (Brozzo et al., 2012). It is also in agreement with another system, fibroblast growth 

factor receptor 3, where the ECD prevents dimerization in the absence of ligand with 

a ΔG of 1 kcal/mol (Chen et al., 2010).  A previous study also shows that deletion of 

domains 4-7 of VEGFR-2 leads to constitutive ligand independent receptor activation 

(Tao et al., 2001). It can be postulated that the energetically unfavorable interactions 

in domains 4-7 are required for proofreading, to prevent ligand-independent self-

association of VEGFR-2 monomers, while properly positioning inactive dimers upon 

ligand activation. It is essential to prevent any erroneous signaling by VEGF that might 

disrupt homeostasis of blood and lymph vessels. 

On the other hand, ITC shows that the homologous VEGFR-1 ECD binds VEGF-A with 

10 fold higher affinity compared to VEGFR-2 ECD (Section 7.4). Moreover, the 

presence of the membrane proximal domains 4-7 in VEGFR-1 increases ligand binding 

affinity by 20 fold when compared with ligand binding affinity to domains 1-3. This is in 

contrast to VEGFR-2, where domains 4-7 significantly reduce ligand binding affinity. 

These studies show that membrane proximal Ig-homology domains enhance ligand 

binding to VEGFR-1 in line with the fact that VEGFR-1 acts as a strong decoy for 

VEGF-A. In addition, the soluble splice variant of VEGFR-1 (sVEGFR-1) comprising 

domains 1-6, has been shown to act as a strong VEGF binding antagonist  (Kendall et 

al., 1993). ITC analysis showed that the presence of the membrane proximal domains 
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4-7 in VEGFR-3 also enhance affinity for VEGF-C and the thermodynamic data 

suggest that ligand binding is both enthalpically and entropically favourable (Leppänen 

et al., 2013). Several knock out studies in mice showed that precisely regulated VEGF-

A concentrations are required for spatially and temporally tightly controlled vessel 

homeostasis (Fong et al., 1995; Fong et al., 1999; Hiratsuka et al., 2005). Thus, RTKs 

follow a strictly ordered sequence of receptor activation where ligand binding allows 

the exact positioning of the subdomains present in the ECD and consequently promote 

a stable thermodynamic state distinct from preformed inactive ligand-free dimers. 

8.3. Functional role of homotypic interactions in the VEGFR-1 ECD 

Structural characterization of the full-length VEGFR-1 ECD complexed with VEGF-A 

revealed for the first time the details of ligand binding and ligand-induced interactions 

between the receptor monomers at the molecular level (Section 7.4). The structure 

shows homotypic interactions taking place in domains 4 and 5 in the ligand bound 

receptor, which seem to be essential for maintaining the conformation of receptor 

dimers that are essential for activation. Our latest VEGFR-1 structure and the already 

existing structural data on other VEGFR homologues show that the interface of domain 

5 is large and the interactions involve fully conserved residues forming hydrogen bonds 

with residues in the adjacent receptor monomer (Brozzo et al., 2012; Leppänen et al., 

2013; Ruch et al., 2007). Therefore, we hypothesized that domain 5 interactions are 

indispensable for receptor function. In order to understand their role in receptor 

activation, we designed cell-based assays comparing the activity of mutant constructs 

that interfere with the homotypic contacts in VEGFR-1 domain 5. In order to perform 

these studies, we needed to optimize the cell expression system for VEGFR-1 to be 

able to detect ligand-induced receptor activation. Initially, we created stably expressing 

PAE cells using chemical transfections as well as lentiviral transductions (Figure 23). 

The advantage of stable transgene expression is that it permanently integrates the 

plasmid DNA into the genome of the host cells, leading to constitutive expression of 

the protein of interest. The PAE cell line was chosen as it is suitable for in vitro studies 

of EC function. Stable PAE cells expressing wild-type VEGFR-1 were used for 

identifying and optimizing the antibodies required for functional assays (Figure 21). 

Furthermore, these cells were used for carrying out time course studies of VEGFR-1 
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activation induced by various ligands (PlGF and VEGF-A165), which revealed very 

quick maximal activitation of VEGFR-1 upon binding to PlGF (Figure 22). It appears 

that the cells maintain a narrow window of receptor activation, which is crucial to 

prevent overstimulation and deregulation. Our findings are in agreement with those of 

another study, where VEGFR-1 expressed in human umbilical vein ECs, achieved 

maximal activation 5 min after PlGF-1 stimulation (the PlGF-1 used in this study was 

expressed in-house in HEK293 cells) (Hoffmann et al., 2013).  The weak kinase activity 

of VEGFR-1 in PAE cells led us to explore alternative ways to assess ligand-induced 

VEGFR-1 activation. One such approach was to co-immunoprecipitate (Co-IP) 

VEGFR-1 (using antibodies against VEGFR-1 or pan phosphoantibodies) and p85. 

p85 is the regulatory subunit of PI-3 KINASE, whose activity is required for the 

cytoskeletal changes occurring during migration of fibroblasts and epithelial cells, and 

is activated downstream of VEGFR-1 (Toker et al., 1997). However, PAE cell lysates 

co-immunoprecipitated with anti-VEGFR-1 did not show any PI-3 KINASE activity (data 

not shown). It is possible that the antibodies used for Co-IP might have interfered with 

the interaction site, preventing p85 binding. Successful pull-down experiments of 

VEGFR-1 have been performed on lysates of primary dermal microvascular ECs, 

which however, have usually high expression levels of VEGFR-1 and hence make 

detection easier (Anisimov et al., 2013). Since the results with PI-3 KINASE were 

inconclusive, we sought an alternative target for probing VEGFR-1 activity. The 

serine/threonine kinase Akt is known to be activated downstream of PI-3 KINASE by 

VEGFR-2 to mediate EC survival signals (Dayanir et al., 2001). It has been postulated 

that it may be one of the targets of VEGFR-1 activation as well (Hudson et al., 2014; 

Tchaikovski et al., 2008). However, we did not observe any Akt phosphorylation upon 

PlGF stimulation of PAE cells expressing wild-type VEGFR-1 (data not shown). Natalie 

Hudson and colleagues could only observe significant Akt phosphorylation in whole-

cell lysates of retinal tissues after a prolonged stimulation of 25 min (Hudson et al., 

2014). As these were primary cells with sufficiently high levels of endogenously 

expressed VEGFR-1, detection of Akt activation might have been easier in this study. 

As an alternative approach to study the role of domain 5 interactions in VEGFR-1 

activation, we also introduced these mutations in the juxtamembrane activated 

VEGFR-1 constructs. These either lacked the three serines or had a replacement with 

ANGG sequence from VEGFR-2, in the JMD for enhancing the receptor activity. These 
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constructs were made in accordance with an earlier study by Gille et al, which attributes 

the divergence in the juxtamembrane region for the strikingly different kinase activity 

of the two homologous receptors (Gille et al., 2000). We also made PAE stable cell 

lines expressing chimeric VEGFR-1/2 constructs comprising the ECD of VEGFR-1 and 

the intracellular domain of VEGFR-2, harbouring the K517A/E513K mutations in 

domain 5, which were expected to show disruption in the homotypic contacts identified 

in the high-resolution VEGFR-1 ECD structure. However, we could not use stable PAE 

cells for studying receptor kinase activity of the domain 5 mutants due to unequal 

expression levels of wild-type and mutant constructs of either VEGFR-1 or chimeric 

VEGFR-1/2 because of inconsistent genomic integration (Figure 23a and 24). Hence 

we shifted our system of study to transiently expressing HEK293 and NIH3T3 cells. 

Although transient transfections have their own limitations, including the requirement 

for new cell transfections for each experiment, the need for large amounts of 

recombinant DNA and the heterogeneity of expression between different DNA batches, 

they have the ability for rapid protein expression within days compared to several 

months, required for stable gene expression. Addressing the lower efficiency 

associated with transient transfection, we optimized two parameters: cell-seeding 

density and transfection reagents: Lipofectamine 2000 and Lipofectamine 3000 

showed improved transfection efficiency in HEK293 cells. However, VEGFR-1 

overexpression in transiently transfected HEK293 cells led to constitutive receptor 

activation and was therefore, unsuitable for ligand-induced functional assays. On the 

other hand, NIH3T3 cells transiently transfected using branched PEI (25kDa) gave 

sharper protein bands and expression levels that allowed the detection of ligand-

induced phosphorylation activity.  

Based on these results, we generated NIH3T3 cells expressing the chimeric VEGFR-

1/2 constructs. When stimulated by PlGF, these cells showed drastically reduced 

phosphorylation activity at Y1175 when compared to the wild-type receptor (Figure 25). 

The kinase activity of these chimeric constructs depends on domain 5 interactions in 

the VEGFR-1 ECD, as the kinase domains of VEGFR-1 and VEGFR-2 are highly 

conserved with 70.1% homology (Rahimi, 2006). Indeed, substitution of the C-terminal 

kinase domain present in VEGFR-1 with that of VEGFR-2 promotes VEGFR-1 

activation and EC proliferation (Meyer et al., 2006). We could further show that 

homologous mutations in domain 5 of VEGFR-2 severely reduced Y1175 
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autophosphorylation activity upon ligand stimulation (Figure 28). Interestingly, the triple 

mutants (T446E/E508A/K512A) did not show further reduction in phosphorylation 

activity when compared to the double VEGFR-2 mutants (T446E/K512A).  This 

suggests that disrupting the hydrogen bonds formed by residues T455 and K517 of 

VEGFR-1 and the corresponding residues T446 and K512 in VEGFR-2 are sufficient 

to destabilize the conformation of the ECD and prevent kinase activation. These in vitro 

kinase assays validate the molecular interactions suggested by the VEGFR-1 

ECD/VEGF-A structure and emphasize that domain 5 mediated homotypic interactions 

are crucial for the activation of VEGFRs. Our study is also in agreement with the work 

of Veli-Matti Leppanen and colleagues who showed the partial structure of another 

receptor homologue, VEGFR-3, as a homodimer of domains 4-5 (Leppänen et al., 

2013). Based on their data, residues T446 and K516 on domain 5 are essential for 

receptor activity. Taken together these data show that these homotypic interactions 

are very well conserved amongst all three VEGFRs. Similar homotypic interactions 

were also shown to be present in the membrane proximal Ig-homology domain 7 of 

VEGFR-2 ECD, and they were also shown to fulfill a regulatory function for receptor 

activation (Yang et al., 2010). Our group has also shown previously that mutating 

domain 4 in VEGFR-2 leads to complete receptor inhibition (Hyde et al., 2012). Similar 

activation mechanisms requiring formation of homotypic interactions are also observed 

in other type III RTKs, such as stem cell growth factor receptor (c-Kit) and PDGFR, 

where the ECD is comprised of five Ig-homology domains (Yang et al., 2008; Yuzawa 

et al., 2007). Crystallographic data for c-Kit showed that ligand binding to Ig-homology 

domains 1-3 does not lead to any significant conformational changes in this region. 

However, ligand binding induces conformational rearrangements in Ig-homology 

domains 4-5, leading to salt bridge formation by residues E386 and R381 located in 

Ig-homology domain 4. The functional relevance of these residues was proven by 

mutational analyses (Yuzawa et al., 2007). The only exception is the Fms-like tyrosine 

kinase 3, where  the crystal structure of the receptor ECD in complex with its ligand 

suggests a novel ligand binding mechanism where the receptor monomers are not 

involved in homotypic interactions (Verstraete et al., 2011).  

Several studies showed that receptor dimerization is essential but not sufficient for 

kinase activation (Bell et al., 2000; Dell'Era Dosch et al., 2010). The described 

homotypic interactions may represent a proofreading mechanism requiring distinct 
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orientation of receptor monomers in active, ligand-bound dimeric receptors. On the 

other hand, inhibition of receptor activity in the absence of ligand may also depend on 

domains 4-7. Correct dimerization of the ECD is further transmitted to the TMD to 

achieve the precise orientation of the two receptors required for full kinase activation 

(Manni et al., 2014b). A recent NMR and molecular dynamics simulation study showed 

that a specific TMD helix conformation is associated with receptor activity. The data 

revealed that TMDs in active constructs were rotated by 180° relative to the inactive 

state (Manni et al., 2014b). 

In conclusion, the structural and thermodynamic studies of VEGFR-2 and the 

biochemical studies on VEGFR-1 presented in this study show that ligand binding to 

Ig-homology domains 2-3 of two receptor protomers promotes further conformational 

changes in the membrane proximal Ig-homology domains 4, 5 and 7 (Figure 29). This 

leads to precise positioning of monomers in the active receptor kinase dimer. These 

findings open new possibilities for developing novel anti-angiogenic compounds 

specifically targeting the homotypic interactions described here. 

 

Figure 29: Schematic representation of VEGFR-1 and -2 dimerization and activation 
induced by ligand VEGF-A. 
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9. Conclusion 

VEGFRs and their ligands are among the most prominent regulators of angiogenic and 

lymphatic development. Disturbance of their tight and multi-level regulation of 

downstream signaling results in numerous pathological conditions and are relevant in 

cancer progression and in various ischemic and inflammatory diseases (Carmeliet et 

al., 2000). Biophysical and structure-function studies of this receptor system will 

contribute highly relevant information for elucidating the exact molecular mechanisms 

involved in receptor activation. Distinct Ig-homology domains are promising target sites 

for the development of highly specific compounds for future medical applications such 

as for instance therapies restricting aberrant angiogenesis. 

We could verify by two in solution native-like environment based biophysical methods 

that dimerization of the VEGFR-2 ECD upon ligand binding depends on two types of 

modules interacting with each other: ligand binding to Ig-homology domains 2-3 are 

highly favourable thermodynamic interactions while homotypic interactions arising in 

Ig-homology domains 4-7 comes with an unfavourable endothermic enthalpy. Hence 

we propose that the membrane proximal domains in the ECD play an important role in 

maintaining the receptor in an inactive state in the absence of ligand while being 

essential for receptor activation by VEGF. These findings document that dimerization 

per se is not sufficient for receptor activation. We assume that specific orientation of 

distinct subdomains is required to accomplish receptor interactions acting as 

checkpoints for kinase activation.  

The molecular details revealed by X-ray crystallography on VEGFR-1 were analyzed 

by carrying out functional experiments involving ligand binding and receptor activation. 

In vitro EC assays showed that VEGFR-1, upon binding to PlGF, leads to 

autophosphorylation of tyrosine residue 1213 present in the C-terminal domain. The 

introduction of mutations in the residues involved in the observed domain 5 interactions 

following ligand binding to VEGFR-1, resulted in reduced phosphorylation activity of 

VEGFR-1/2 chimeric constructs. In addition, similar mutations in the homologous 

residues in domain 5 of VEGFR-2 significantly decreased autophosphorylation activity. 

The above results suggest that Ig-homology domain 5 interactions are well conserved 

among the VEGFR family members. We propose that the hydrogen bonds and salt 
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bridges involved in homotypic interactions in domains 5 and 7 lead to local structural 

rigidity and alignment of the ECD thereby promoting TMD reorientation which then 

leads to VEGFR kinase activation. 

Based on the conformational and functional insights acquired in this thesis on VEGFR-

1 and 2, novel drugs either suppressing or activating vessel growth can be developed 

in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Doctoral thesis Mayanka Asthana 
 

133 
  
 

10. Acknowledgement 

First and foremost I would like to express my sincere gratitude to my advisor, Prof. Dr. 

Kurt Ballmer-Hofer for the opportunity he has given to me to pursue my Ph.D. under 

his able guidance, in his research group. His immense knowledge in the field motivated 

me to address new scientific questions and the challenges involved. 

I would like to thank my thesis committee members Dr. Philipp Berger and Prof. Dr. 

Timm Maier profusely for their insightful comments and words of encouragement. Their 

feedback helped me to widen my research from different perspectives. 

I am also grateful to Dr. Timothy Sharpe for permitting me to use the biophysics facility 

at Biozentrum and for his help in collection and assimilation of data.  His in-depth know-

how in the field and perpetual guidance helped me to work on difficult proteins. I convey 

my thanks to Dr. Richard Kammerer and Dr. Roger Benoit whose insight into molecular 

biology has resulted in designing and expressing many constructs used in the study. I 

would like to thank Dr. May Marsh Sharpe and Laura Vera for their assistance at SLS 

facility and also their direct involvement in crystallization trials of my proteins. 

My special thanks goes to my fellow lab mates - Dragana Avramovic, Nagjie 

Alijaj,  Milicia Bugarski, Dr. Caroline Hyde, Antonietta Gasperina, Dr. Petra Hillmann-

Wuellner, Dr. Kaisa Kisko, Julia Kostin, Sandro Leuscher, Dr. Sandro Manni, Dr. 

Sandra Markovic-Mueller, Dr. Maysam Mansouri, Dr. Maria Mitsi, Dr. Aurelien Rizk, 

Ulla Suter, Thomas Schleier, Lydia Schmitz, Katherine Thieltges, Cornelia Walther, 

Richard West and Ye Xie - for their enormous support extended to me in carrying out 

experiments and holding discussions at length during my trying times. 

I would like to extend my sincerest thanks to my parents and in-laws for boosting my 

morale throughout my writing of this thesis. My heartfelt thanks to my husband, Ashish, 

whose unconditional love, patience and continued support in my academic endeavours 

over the past several years has enabled me to complete this thesis. And finally the 

happiness and affection which I receive from my daughter has helped me in finishing, 

which at one point of time in my life seemed to be far-fetched. 

 

 



Doctoral thesis Mayanka Asthana 
 

134 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Doctoral thesis Mayanka Asthana 
 

135 
  
 

11. References 

Abedi,H., and Zachary,I. (1997). Vascular endothelial growth factor stimulates tyrosine 
phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin 
in endothelial cells. J. Biol. Chem. 272, 15442-15451. 

Albuquerque,R.J., Hayashi,T., Cho,W.G., Kleinman,M.E., Dridi,S., Takeda,A., Baffi,J.Z., 
Yamada,K., Kaneko,H., Green,M.G., Chappell,J., Wilting,J., Weich,H.A., Yamagami,S., 
Amano,S., Mizuki,N., Alexander,J.S., Peterson,M.L., Brekken,R.A., Hirashima,M., Capoor,S., 
Usui,T., Ambati,B.K., and Ambati,J. (2009). Alternatively spliced vascular endothelial growth 
factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med 15, 
1023-1030. 

Anisimov,A., Leppänen,V.M., Tvorogov,D., Zarkada,G., Jeltsch,M., Holopainen,T., 
Kaijalainen,S., and Alitalo,K. (2013). The basis for the distinct biological activities of vascular 
endothelial growth factor receptor-1 ligands. Sci. Signal. 6, ra52. 

Aricescu,A.R., Lu,W., and Jones,E.Y. (2006). A time- and cost-efficient system for high-level 
protein production in mammalian cells. Acta Crystallogr. D. Biol. Crystallogr. 62, 1243-1250. 

Autiero,M., Waltenberger,J., Communi,D., Kranz,A., Moons,L., Lambrechts,D., Kroll,J., 
Plaisance,S., De Mol,M., Bono,F., Kliche,S., Fellbrich,G., Ballmer-Hofer,K., Maglione,D., 
Mayr-Beyrle,U., Dewerchin,M., Dombrowski,S., Stanimirovic,D., Van Hummelen,P., Dehio,C., 
Hicklin,D.J., Persico,G., Herbert,J.M., Communi,D., Shibuya,M., Collen,D., Conway,E.M., and 
Carmeliet,P. (2003). Role of PlGF in the intra- and intermolecular cross talk between the VEGF 
receptors Flt1 and Flk1. Nat Med 9, 936-943. 

Baish,J.W., and Jain,R.K. (2000). Fractals and cancer. Cancer Res. 60, 3683-3688. 

Baldwin,M.E., Halford,M.M., Roufail,S., Williams,R.A., Hibbs,M.L., Grail,D., Kubo,H., 
Stacker,S.A., and Achen,M.G. (2005). Vascular endothelial growth factor D is dispensable for 
development of the lymphatic system. Mol. Cell Biol. 25, 2441-2449. 

Ballmer-Hofer,K., Hyde,A.C., Schleier,T., and Avramovic,D. (2018). ScFvs as Allosteric 
Inhibitors of VEGFR-2: Novel Tools to Harness VEGF Signaling. Int. J. Mol. Sci. 19, 1334. 

Bates,D.O., and Harper,S.J. (2002). Regulation of vascular permeability by vascular 
endothelial growth factors. Vascul. Pharmacol. 39, 225-237. 

Bell,C.A., Tynan,J.A., Hart,K.C., Meyer,A.N., Robertson,S.C., and Donoghue,D.J. (2000). 
Rotational coupling of the transmembrane and kinase domains of the neu receptor tyrosine 
kinase. Mol. Biol. Cell 11, 3589-3599. 

Bellomo,D., Headrick,J.P., Silins,G.U., Paterson,C.A., Thomas,P.S., Gartside,M., Mould,A., 
Cahill,M.M., Tonks,I.D., Grimmond,S.M., Townson,S., Wells,C., Little,M., Cummings,M.C., 
Hayward,N.K., and Kay,G.F. (2000). Mice lacking the vascular endothelial growth factor-B 
gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery 
from cardiac ischemia. Circ. Res. 86, E29-E35. 

Bergers,G., and Hanahan,D. (2008). Modes of resistance to anti-angiogenic therapy. Nat Rev 
Cancer 8, 592-603. 



Doctoral thesis Mayanka Asthana 
 

136 
  
 

Berger,I., Fitzgerald,D.J., and Richmond,T.J. (2004). Baculovirus expression system for 
heterologous multiprotein complexes. Nat. Biotechnol. 22, 1583-1587. 

Biswas, P., Sengupta, S., Choudhary, R., Home, S., Paul, A., and Sinha, S. (2011). Comparing 
ranibizumab with bevacizumab. Ophthalmology 118, 600. 
 
Brozzo,M.S., Bjelic,S., Kisko,K., Schleier,T., Leppänen,V.M., Alitalo,K., Winkler,F.K., and 
Ballmer-Hofer,K. (2012). Thermodynamic and structural description of allosterically regulated 
VEGF receptor 2 dimerization. Blood 119, 1781-1788. 

Bry,M., Kivela,R., Leppanen,V.M., and Alitalo,K. (2014). Vascular endothelial growth factor-B 
in physiology and disease. Physiol. Rev. 94, 779-794. 

Caldwell,R.B., Bartoli,M., Behzadian,M.A., El Remessy,A.E., Al Shabrawey,M., Platt,D.H., and 
Caldwell,R.W. (2003). Vascular endothelial growth factor and diabetic retinopathy: 
pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res. Rev. 19, 
442-455. 

Carmeliet,P. (2003). Angiogenesis in health and disease. Nat. Med. 9, 653-660. 

Carmeliet,P., Ferreira,V., Breier,G., Pollefeyt,S., Kieckens,L., Gertsenstein,M., Fahrig,M., 
Vandenhoeck,A., Harpal,K., Eberhardt,C., Declercq,C., Pawling,J., Moons,L., Collen,D., 
Risau,W., and Nagy,A. (1996). Abnormal blood vessel development and lethality in embryos 
lacking a single VEGF allele. Nature 380, 435-439. 

Carmeliet,P., and Jain,R.K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 
249-257. 

Carmeliet,P., and Jain,R.K. (2011). Molecular mechanisms and clinical applications of 
angiogenesis. Nature 473, 298-307. 

Carmeliet,P., Moons,L., Luttun,A., Vincenti,V., Compernolle,V., De Mol,M., Wu,Y., Bono,F., 
Devy,L., Beck,H., Scholz,D., Acker,T., DiPalma,T., Dewerchin,M., Noel,A., Stalmans,I., 
Barra,A., Blacher,S., Vandendriessche,T., Ponten,A., Eriksson,U., Plate,K.H., Foidart,J.M., 
Schaper,W., Charnock-Jones,D.S., Hicklin,D.J., Herbert,J.M., Collen,D., and Persico,M.G. 
(2001). Synergism between vascular endothelial growth factor and placental growth factor 
contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7, 
575-583. 

Carmeliet,P., Ng,Y.S., Nuyens,D., Theilmeier,G., Brusselmans,K., Cornelissen,I., Ehler,E., 
Kakkar,V., V, Stalmans,I., Mattot,V., Perriard,J., Dewerchin,M., Flameng,W., Nagy,A., Lupu,F., 
Moons,L., Collen,D., Amore,P.A., and Shima,D.T. (1999). Impaired myocardial angiogenesis 
and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms 
VEGF164 and VEGF188. Nat Med 5, 495-502. 

Carneiro,A.M., Silva,R.M., Veludo,M.J., Barbosa,A., Ruiz-Moreno,J.M., Falcao,M.S., 
Brandao,E.M., and Falcao-Reis,F.M. (2011). Ranibizumab treatment for choroidal 
neovascularization from causes other than age-related macular degeneration and pathological 
myopia. Ophthalmologica 225, 81-88. 

Chen,L., Placone,J., Novicky,L., and Hristova,K. (2010). The extracellular domain of fibroblast 
growth factor receptor 3 inhibits ligand-independent dimerization. Sci. Signal. 3, ra86. 



Doctoral thesis Mayanka Asthana 
 

137 
  
 

Cho,H.S., Mason,K., Ramyar,K.X., Stanley,A.M., Gabelli,S.B., Denney,D.W., Jr., and 
Leahy,D.J. (2003). Structure of the extracellular region of HER2 alone and in complex with the 
Herceptin Fab. Nature 421, 756-760. 

Christinger,H.W., Fuh,G., de Vos,A.M., and Wiesmann,C. (2004). The crystal structure of PlGF 
in complex with domain 2 of VEGFR1. J. Biol. Chem. 279, 10382-10388. 

Claesson-Welsh,L. (2016). VEGF receptor signal transduction - A brief update. Vascul. 
Pharmacol. 86, 14-17. 

Claffey,K.P., Senger,D.R., and Spiegelman,B.M. (1995). Structural requirements for 
dimerization, glycosylation, secretion, and biological function of VPF/VEGF. Biochim. Biophys. 
Acta 1246, 1-9. 

Cudmore,M.J., Hewett,P.W., Ahmad,S., Wang,K.Q., Cai,M., Al-Ani,B., Fujisawa,T., Ma,B., 
Sissaoui,S., Ramma,W., Miller,M.R., Newby,D.E., Gu,Y., Barleon,B., Weich,H., and Ahmed,A. 
(2012). The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of 
endothelial cell homeostasis. Nat. Commun. 3, 972. 

Cunningham,S.A., Arrate,M.P., Brock,T.A., and Waxham,M.N. (1997). Interactions of FLT-1 
and KDR with phospholipase C ã: identification of the phosphotyrosine binding sites. Biochem. 
Biophys. Res. Commun. 240, 635-639. 

Davydova,N., Harris,N.C., Roufail,S., Paquet-Fifield,S., Ishaq,M., Streltsov,V.A., 
Williams,S.P., Karnezis,T., Stacker,S.A., and Achen,M.G. (2016). Differential Receptor 
Binding and Regulatory Mechanisms for the Lymphangiogenic Growth Factors Vascular 
Endothelial Growth Factor (VEGF)-C and -D. J. Biol. Chem. 291, 27265-27278. 

Dayanir,V., Meyer,R.D., Lashkari,K., and Rahimi,N. (2001). Identification of tyrosine residues 
in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of 
phosphatidylinositol-3 kinase and cell proliferation. J. Biol. Chem. 276, 17686-17692. 

Dell'Era Dosch,D., and Ballmer-Hofer,K. (2010). Transmembrane domain-mediated 
orientation of receptor monomers in active VEGFR-2 dimers. FASEB J. 24, 32-38. 

Dewerchin,M., and Carmeliet,P. (2012). PlGF: a multitasking cytokine with disease-restricted 
activity. Cold Spring Harb. Perspect. Med. 2, a011056. 

Dhondt,J., Peeraer,E., Verheyen,A., Nuydens,R., Buysschaert,I., Poesen,K., VanGeyte,K., 
Beerens,M., Shibuya,M., Haigh,J.J., Meert,T., Carmeliet,P., and Lambrechts,D. (2011). 
Neuronal FLT1 receptor and its selective ligand VEGF-B protect against retrograde 
degeneration of sensory neurons. FASEB J. 25, 1461-1473. 

Dixelius,J., Makinen,T., Wirzenius,M., Karkkainen,M., Wernstedt,C., Alitalo,K., and Claesson-
Welsh,L. (2003). Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) 
heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine 
phosphorylation sites. J. Biol. Chem. 278, 40973-40979. 

Djonov,V.G., Kurz,H., and Burri,P.H. (2002). Optimality in the developing vascular system: 
branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev. 
Dyn. 224, 391-402. 



Doctoral thesis Mayanka Asthana 
 

138 
  
 

Dougher,M., and Terman,B.I. (1999). Autophosphorylation of KDR in the kinase domain is 
required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene 
18, 1619-1627. 

Dukkipati,A., Park,H.H., Waghray,D., Fischer,S., and Garcia,K.C. (2008). BacMam system for 
high-level expression of recombinant soluble and membrane glycoproteins for structural 
studies. Protein Expr. Purif. 62, 160-170. 

Dumont,D.J., Jussila,L., Taipale,J., Lymboussaki,A., Mustonen,T., Pajusola,K., Breitman,M., 
and Alitalo,K. (1998). Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. 
Science 282, 946-949. 

Ebos,J.M., Bocci,G., Man,S., Thorpe,P.E., Hicklin,D.J., Zhou,D., Jia,X., and Kerbel,R.S. 
(2004). A naturally occurring soluble form of vascular endothelial growth factor receptor 2 
detected in mouse and human plasma. Mol. Cancer Res. 2, 315-326. 

Eichmann,A., and Simons,M. (2012). VEGF signaling inside vascular endothelial cells and 
beyond. Curr. Opin. Cell Biol. 24, 188-193. 

Enholm,B., Paavonen,K., Ristimaki,A., Kumar,V., Gunji,Y., Klefstrom,J., Kivinen,L., Laiho,M., 
Olofsson,B., Joukov,V., Eriksson,U., and Alitalo,K. (1997). Comparison of VEGF, VEGF-B, 
VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. 
Oncogene 14, 2475-2483. 

Fan,X., Rai,A., Kambham,N., Sung,J.F., Singh,N., Petitt,M., Dhal,S., Agrawal,R., Sutton,R.E., 
Druzin,M.L., Gambhir,S.S., Ambati,B.K., Cross,J.C., and Nayak,N.R. (2014). Endometrial 
VEGF induces placental sFLT1 and leads to pregnancy complications. J Clin Invest 124, 4941-
4952. 

Ferrara,N., Carver Moore,K., Chen,H., Dowd,M., Lu,L., O Shea,K.S., Powell,B.L., Hillan,K.J., 
and Moore,M.W. (1996). Heterozygous embryonic lethality induced by targeted inactivation of 
the VEGF gene. Nature 380, 439-442. 

Fitzgerald,D.J., Berger,P., Schaffitzel,C., Yamada,K., Richmond,T.J., and Berger,I. (2006). 
Protein complex expression by using multigene baculoviral vectors. Nat. Methods 3, 1021-
1032. 

Folkman,J. (1971). Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182-
1186. 

Fong,G.H., Rossant,J., Gertsenstein,M., and Breitman,M.L. (1995). Role of the Flt-1 receptor 
tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66-70. 

Fong,G.H., Zhang,L., Bryce,D.M., and Peng,J. (1999). Increased hemangioblast commitment, 
not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126, 
3015-3025. 

Fournier,E., Dubreuil,P., Birnbaum,D., and Borg,J.P. (1995). Mutation at tyrosine residue 1337 
abrogates ligand-dependent transforming capacity of the FLT4 receptor. Oncogene 11, 921-
931. 

Galvagni,F., Pennacchini,S., Salameh,A., Rocchigiani,M., Neri,F., Orlandini,M., Petraglia,F., 
Gotta,S., Sardone,G.L., Matteucci,G., Terstappen,G.C., and Oliviero,S. (2010). Endothelial 



Doctoral thesis Mayanka Asthana 
 

139 
  
 

cell adhesion to the extracellular matrix induces c-Src-dependent VEGFR-3 phosphorylation 
without the activation of the receptor intrinsic kinase activity. Circ. Res. 106, 1839-1848. 

Gariano,R.F., and Gardner,T.W. (2005). Retinal angiogenesis in development and disease. 
Nature 438, 960-966. 

Geiser,M., Cébe,R., Drewello,D., and Schmitz,R. (2001). Integration of PCR fragments at any 
specific site within cloning vectors without the use of restriction enzymes and DNA ligase. 
Biotechniques 31, 88-90, 92. 

Gibson,D.G., Young,L., Chuang,R.Y., Venter,J.C., Hutchison,C.A., III, and Smith,H.O. (2009). 
Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343-
345. 

Gille,H., Kowalski,J., Yu,L., Chen,H., Pisabarro,M.T., Davis,S.T., and Ferrara,N. (2000). A 
repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits 
vascular endothelial growth factor-dependent phosphatidylinositol 3'-kinase activation and 
endothelial cell migration. EMBO J. 19, 4064-4073. 

Gluzman-Poltorak,Z., Cohen,T., Herzog,Y., and Neufeld,G. (2000). Neuropilin-2 and 
neuropilin-1 are receptors for the 165-amino acid form of vascular endothelial growth factor 
(VEGF) and of placenta growth factor-2, but only neuropilin-2 functions as a receptor for the 
145-amino acid form of VEGF. The Journal of biological chemistry 275, 18040-18045. 

Griffin,L., and Lawson,A. (2011). Antibody fragments as tools in crystallography. Clin. Exp. 
Immunol. 165, 285-291. 

Gu,F., Li,X., Kong,J., Pan,B., Sun,M., Zheng,L., and Yao,Y. (2013). VEGF111b, a new 
member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis. Biochem. 
Biophys. Res. Commun. 441, 18-24. 

Hagberg,C.E., Falkevall,A., Wang,X., Larsson,E., Huusko,J., Nilsson,I., van Meeteren,L.A., 
Samen,E., Lu,L., Vanwildemeersch,M., Klar,J., Genove,G., Pietras,K., Stone-Elander,S., 
Claesson-Welsh,L., Yla-Herttuala,S., Lindahl,P., and Eriksson,U. (2010). Vascular endothelial 
growth factor B controls endothelial fatty acid uptake. Nature 464, 917-921. 

Hattori,K., Heissig,B., Wu,Y., Dias,S., Tejada,R., Ferris,B., Hicklin,D.J., Zhu,Z., Bohlen,P., 
Witte,L., Hendrikx,J., Hackett,N.R., Crystal,R.G., Moore,M.A., Werb,Z., Lyden,D., and Rafii,S. 
(2002). Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem 
cells from bone-marrow microenvironment. Nat Med 8, 841-849. 

Hiratsuka,S., Minowa,O., Kuno,J., Noda,T., and Shibuya,M. (1998). Flt-1 lacking the tyrosine 
kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl. Acad. 
Sci. USA 95, 9349-9354. 

Hiratsuka,S., Nakao,K., Nakamura,K., Katsuki,M., Maru,Y., and Shibuya,M. (2005). 
Membrane fixation of vascular endothelial growth factor receptor 1 ligand-binding domain is 
important for vasculogenesis and angiogenesis in mice. Mol. Cell Biol. 25, 346-354. 

Hoffmann,D.C., Willenborg,S., Koch,M., Zwolanek,D., Mueller,S., Becker,A.K., Metzger,S., 
Ehrbar,M., Kurschat,P., Hellmich,M., Hubbell,J.A., and Eming,S.A. (2013). Proteolytic 
processing regulates Placental growth factor activities. J. Biol. Chem. 288, 17976-17989. 



Doctoral thesis Mayanka Asthana 
 

140 
  
 

Holash,J., Davis,S., Papadopoulos,N., Croll,S.D., Ho,L., Russell,M., Boland,P., Leidich,R., 
Hylton,D., Burova,E., Ioffe,E., Huang,T., Radziejewski,C., Bailey,K., Fandl,J.P., Daly,T., 
Wiegand,S.J., Yancopoulos,G.D., and Rudge,J.S. (2002). VEGF-Trap: A VEGF blocker with 
potent antitumor effects. Proc. Natl. Acad. Sci. USA 99, 11393-11398. 

Holash,J., Wiegand,S.J., and Yancopoulos,G.D. (1999). New model of tumor angiogenesis: 
dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. 
Oncogene 18, 5356-5362. 

Hollister,J., Grabenhorst,E., Nimtz,M., Conradt,H., and Jarvis,D.L. (2002). Engineering the 
protein N-glycosylation pathway in insect cells for production of biantennary, complex N-
glycans. Biochemistry 41, 15093-15104. 

Houck,K.A., Ferrara,N., Winer,J., Cachianes,G., Li,B., and Leung,D.W. (1991). The vascular 
endothelial growth factor family: identification of a fourth molecular species and 
characterization of alternative splicing of RNA. Mol. Endocrinol. 5, 1806-1814. 

Hudson,N., Powner,M.B., Sarker,M.H., Burgoyne,T., Campbell,M., Ockrim,Z.K., Martinelli,R., 
Futter,C.E., Grant,M.B., Fraser,P.A., Shima,D.T., Greenwood,J., and Turowski,P. (2014). 
Differential apicobasal VEGF signaling at vascular blood-neural barriers. Dev. Cell 30, 541-
552. 

Hyde,C.A., Giese,A., Stuttfeld,E., Abram,S.J., Villemagne,D., Schleier,T., Binz,H.K., and 
Ballmer-Hofer,K. (2012). Targeting the extracellular domains D4 and D7 of VEGFR-2 reveals 
allosteric receptor regulatory sites. Mol. Cell Biol. 32, 3802-3813. 

Igarashi,K., Isohara,T., Kato,T., Shigeta,K., Yamano,T., and Uno,I. (1998). Tyrosine 1213 of 
Flt-1 is a major binding site of Nck and SHP-2. Biochem. Biophys. Res. Commun. 246, 95-99. 

Iyer,S., Darley,P.I., and Acharya,K.R. (2010). Structural insights into the binding of VEGF-B by 
VEGFR-1D2: Recognition and specificity. J. Biol. Chem. 285, 23779-23789. 

Jakobsson,L., Bentley,K., and Gerhardt,H. (2009). VEGFRs and Notch: a dynamic 
collaboration in vascular patterning. Biochem Soc. Trans. 37, 1233-1236. 

Jeltsch,M., Karpanen,T., Strandin,T., Aho,K., Lankinen,H., and Alitalo,K. (2006). Vascular 
endothelial growth factor (VEGF)/VEGF-C mosaic molecules reveal specificity determinants 
and feature novel receptor binding patterns. J. Biol. Chem. 281, 12187-12195. 

Jerabek-Willemsen,M., Wienken,C.J., Braun,D., Baaske,P., and Duhr,S. (2011). Molecular 
interaction studies using microscale thermophoresis. Assay. Drug Dev. Technol. 9, 342-353. 

Joory,K.D., Levick,J.R., Mortimer,P.S., and Bates,D.O. (2006). Vascular endothelial growth 
factor-C (VEGF-C) expression in normal human tissues. Lymphat. Res. Biol. 4, 73-82. 

Joukov,V., Pajusola,K., Kaipainen,A., Chilov,D., Lahtinen,I., Kukk,E., Saksela,O., 
Kalkkinen,N., and Alitalo,K. (1996). A novel vascular endothelial growth factor, VEGF-C, is a 
ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 
290-298. 

Joukov,V., Sorsa,T., Kumar,V., Jeltsch,M., Claesson-Welsh,L., Cao,Y., Saksela,O., 
Kalkkinen,N., and Alitalo,K. (1997). Proteolytic processing regulates receptor specificity and 
activity of VEGF-C. EMBO J. 16, 3898-3911. 



Doctoral thesis Mayanka Asthana 
 

141 
  
 

Kabrun,N., Buhring,H.J., Choi,K., Ullrich,A., Risau,W., and Keller,G. (1997). Flk-1 expression 
defines a population of early embryonic hematopoietic precursors. Development 124, 2039-
2048. 

Karkkainen,M.J., Haiko,P., Sainio,K., Partanen,J., Taipale,J., Petrova,T.V., Jeltsch,M., 
Jackson,D.G., Talikka,M., Rauvala,H., Betsholtz,C., and Alitalo,K. (2003). Vascular endothelial 
growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. 
Nat Immunol 5, 74-80. 

Kendall,R.L., Rutledge,R.Z., Mao,X., Tebben,A.J., Hungate,R.W., and Thomas,K. (1999). 
Vascular endothelial growth factor receptor KDR tyrosine kinase activity is increased by 
autophosphorylation of two activation loop tyrosine residues. J. Biol. Chem. 274, 6453-6460. 

Kendall,R.L., and Thomas,K.A. (1993). Inhibition of vascular endothelial cell growth factor 
activity by an endogenously encoded soluble receptor. Proc. Natl. Acad. Sci. USA 90, 10705-
10709. 

Keyt,B.A., Berleau,L.T., Nguyen,H.V., Chen,H., Heinsohn,H., Vandlen,R., and Ferrara,N. 
(1996). The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical 
for its mitogenic potency. J. Biol. Chem. 271, 7788-7795. 

Kiba,A., Sagara,H., Hara,T., and Shibuya,M. (2003). VEGFR-2-specific ligand VEGF-E 
induces non-edematous hyper-vascularization in mice. Biochem. Biophys. Res. Commun. 301, 
371-377. 

Kim,L.A., and D'Amore,P.A. (2012). A Brief History of Anti-VEGF for the Treatment of Ocular 
Angiogenesis. Am. J. Pathol. 181, 376-379. 

Kisko,K., Brozzo,M.S., Missimer,J., Schleier,T., Menzel,A., Leppänen,V.M., Alitalo,K., 
Walzthoeni,T., Aebersold,R., and Ballmer-Hofer,K. (2011). Structural analysis of vascular 
endothelial growth factor receptor-2/ligand complexes by small-angle X-ray solution scattering. 
FASEB J. 25, 2980-2986. 

Kivela,R., Bry,M., Robciuc,M.R., Rasanen,M., Taavitsainen,M., Silvola,J.M., Saraste,A., 
Hulmi,J.J., Anisimov,A., Mayranpaa,M.I., Lindeman,J.H., Eklund,L., Hellberg,S., 
Hlushchuk,R., Zhuang,Z.W., Simons,M., Djonov,V., Knuuti,J., Mervaala,E., and Alitalo,K. 
(2014). VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia 
resistance in the heart. EMBO Mol. Med. 6, 307-321. 

Koch,S., and Claesson-Welsh,L. (2012). Signal transduction by vascular endothelial growth 
factor receptors. Cold Spring Harb. Perspect. Med. 2, a006502. 

Koch,S., Tugues,S., Li,X., Gualandi,L., and Claesson-Welsh,L. (2011). Signal transduction by 
vascular endothelial growth factor receptors. Biochem. J. 437, 169-183. 

Krupitskaya,Y., and Wakelee,H.A. (2009). Ramucirumab, a fully human mAb to the 
transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr. 
Opin. Investig. Drugs 10, 597-605. 

Lamalice,L., Houle,F., Jourdan,G., and Huot,J. (2004). Phosphorylation of tyrosine 1214 on 
VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. 
Oncogene 23, 434-445. 



Doctoral thesis Mayanka Asthana 
 

142 
  
 

Lanahan,A.A., Hermans,K., Claes,F., Kerley-Hamilton,J.S., Zhuang,Z.W., Giordano,F.J., 
Carmeliet,P., and Simons,M. (2010). VEGF Receptor 2 Endocytic Trafficking Regulates 
Arterial Morphogenesis. Dev Cell 18, 713-724. 

Lange,T., Gutman-Raviv,N., Baruch,L., Machluf,M., and Neufeld,G. (2003). VEGF162 : A new 
heparin binding VEGF splice form that is expressed in transformed human cells. J. Biol. Chem. 
278, 17164-17169. 

Lee,S., Chen,T.T., Barber,C.L., Jordan,M.C., Murdock,J., Desai,S., Ferrara,N., Nagy,A., 
Roos,K.P., and Iruela-Arispe,M.L. (2007). Autocrine VEGF signaling is required for vascular 
homeostasis. Cell 130, 691-703. 

Lee,S., Jilani,S.M., Nikolova,G.V., Carpizo,D., and Iruela-Arispe,M.L. (2005). Processing of 
VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in 
tumors. J. Cell Biol. 169, 681-691. 

Leppänen,V.M., Jeltsch,M., Anisimov,A., Tvorogov,D., Aho,K., Kalkkinen,N., Toivanen,P., Yla-
Herttuala,S., Ballmer-Hofer,K., and Alitalo,K. (2011). Structural determinants of vascular 
endothelial growth factor-D - receptor binding and specificity. Blood 117, 1507-1515. 

Leppänen,V.M., Tvorogov,D., Kisko,K., Prota,A.E., Jeltsch,M., Anisimov,A., Markovic-
Mueller,S., Stuttfeld,E., Goldie,K.N., Ballmer-Hofer,K., and Alitalo,K. (2013). Structural and 
mechanistic insights into VEGF receptor 3 ligand binding and activation. Proc. Natl. Acad. Sci. 
USA 110, 12960-12965. 

Lundkvist,A., Lee,S., Iruela-Arispe,L., Betsholtz,C., and Gerhardt,H. (2007). Growth factor 
gradients in vascular patterning. Novartis Found. Symp. 283, 194-201. 

Luttun,A., Tjwa,M., Moons,L., Wu,Y., Angelillo-Scherrer,A., Liao,F., Nagy,J.A., Hooper,A., 
Priller,J., De Klerck,B., Compernolle,V., Daci,E., Bohlen,P., Dewerchin,M., Herbert,J.M., 
Fava,R., Matthys,P., Carmeliet,G., Collen,D., Dvorak,H.F., Hicklin,D.J., and Carmeliet,P. 
(2002). Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor 
angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8, 831-840. 

Lyttle,D.J., Fraser,K.M., Fleming,S.B., Mercer,A.A., and Robinson,A.J. (1994). Homologs of 
vascular endothelial growth factor are encoded by the poxvirus orf virus. J. Virol. 68, 84-92. 

Maes,C., Stockmans,I., Moermans,K., Van Looveren,R., Smets,N., Carmeliet,P., Bouillon,R., 
and Carmeliet,G. (2004). Soluble VEGF isoforms are essential for establishing epiphyseal 
vascularization and regulating chondrocyte development and survival. J. Clin. Invest. 113, 188-
199. 

Maglione,D., Guerriero,V., Viglietto,G., Ferraro,M.G., Aprelikova,O., Alitalo,K., Del Vecchio,S., 
Lei,K.J., Chou,J.Y., and Persico,M.G. (1993). Two alternative mRNAs coding for the 
angiogenic factor, placenta growth factor (PlGF), are transcribed from a single gene of 
chromosome 14. Oncogene 8, 925-931. 

Makinen,T., Olofsson,B., Karpanen,T., Hellman,U., Soker,S., Klagsbrun,M., Eriksson,U., and 
Alitalo,K. (1999). Differential binding of vascular endothelial growth factor B splice and 
proteolytic isoforms to neuropilin-1. J. Biol. Chem. 274, 21217-21222. 

Makinen,T., Veikkola,T., Mustjoki,S., Karpanen,T., Catimel,B., Nice,E.C., Wise,L., Mercer,A., 
Kowalski,H., Kerjaschki,D., Stacker,S.A., Achen,M.G., and Alitalo,K. (2001). Isolated 



Doctoral thesis Mayanka Asthana 
 

143 
  
 

lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D 
receptor VEGFR-3. EMBO J. 20, 4762-4773. 

Manni,S., Kisko,K., Schleier,T., Missimer,J., and Ballmer-Hofer,K. (2014a). Functional and 
structural characterization of the kinase insert and the carboxy terminal domain in VEGF 
receptor 2 activation. FASEB J 28, 4914-4923. 

Manni,S., Mineev,K.S., Usmanova,D., Lyukmanova,E.N., Shulepko,M.A., Kirpichnikov,M.P., 
Winter,J., Matkovic,M., Deupi,X., Arseniev,A.S., and Ballmer-Hofer,K. (2014b). Structural and 
functional characterization of alternative transmembrane domain conformations in VEGF 
receptor 2 activation. Structure 22, 1077-1089. 

Mansouri,M., Bellon-Echeverria,I., Rizk,A., Ehsaei,Z., Cianciolo,C.C., Silva,C.S., Xie,Y., 
Boyce,F.M., Davis,M.W., Neuhauss,S.C., Taylor,V., Ballmer-Hofer,K., Berger,I., and Berger,P. 
(2016). Highly efficient baculovirus-mediated multigene delivery in primary cells. Nat. 
Commun. 7, 11529. 

Matsumoto,T., Bohman,S., Dixelius,J., Berge,T., Dimberg,A., Magnusson,P., Wang,L., 
Wikner,C., Qi,J.H., Wernstedt,C., Wu,J., Bruheim,S., Mugishima,H., Mukhopadhyay,D., 
Spurkland,A., and Claesson-Welsh,L. (2005). VEGF receptor-2 Y951 signaling and a role for 
the adapter molecule TSAd in tumor angiogenesis. EMBO J. 24, 2342-2353. 

Matsumoto,T., and Claesson-Welsh,L. (2001). VEGF Receptor Signal Transduction. Sci. 
STKE 2001, RE21. 

Maynard,S.E., Min,J.Y., Merchan,J., Lim,K.H., Li,J., Mondal,S., Libermann,T.A., Morgan,J.P., 
Sellke,F.W., Stillman,I.E., Epstein,F.H., Sukhatme,V.P., and Karumanchi,S.A. (2003). Excess 
placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, 
hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649-658. 

Meyer,M., Clauss,M., Lepple,W.A., Waltenberger,J., Augustin,H.G., Ziche,M., Lanz,C., 
Buttner,M., Rziha,H.J., and Dehio,C. (1999). A novel vascular endothelial growth factor 
encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) 
but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 18, 363-374. 

Meyer,R.D., Mohammadi,M., and Rahimi,N. (2006). A single amino acid substitution in the 
activation loop defines the decoy characteristic of VEGFR-1/FLT-1. J. Biol. Chem. 281, 867-
875. 

Motzer,R.J., Hutson,T.E., Glen,H., Michaelson,M.D., Molina,A., Eisen,T., Jassem,J., 
Zolnierek,J., Maroto,J.P., Mellado,B., Melichar,B., Tomasek,J., Kremer,A., Kim,H.J., Wood,K., 
Dutcus,C., and Larkin,J. (2015). Lenvatinib, everolimus, and the combination in patients with 
metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet 
Oncol. 16, 1473-1482. 

Nagy,J.A., Chang,S.H., Shih,S.C., Dvorak,A.M., and Dvorak,H.F. (2010). Heterogeneity of the 
tumor vasculature. Semin. Thromb. Hemost. 36, 321-331. 

Nilsson,I., Bahram,F., Li,X., Gualandi,L., Koch,S., Jarvius,M., Soderberg,O., Anisimov,A., 
Kholova,I., Pytowski,B., Baldwin,M., Yla-Herttuala,S., Alitalo,K., Kreuger,J., and Claesson-
Welsh,L. (2010). VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on 
angiogenic sprouts. EMBO J. 29, 1377-1388. 



Doctoral thesis Mayanka Asthana 
 

144 
  
 

O'Flynn,N.M., Patel,A., Kadlec,J., and Jones,I.M. (2012). Improving promiscuous mammalian 
cell entry by the baculovirus Autographa californica multiple nuclear polyhedrosis virus. Biosci. 
Rep. 33, 23-36. 

Ogawa,S., Oku,A., Sawano,A., Yamaguchi,S., Yazaki,Y., and Shibuya,M. (1998). A novel type 
of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 
receptor and carries a potent mitotic activity without heparin-binding domain. J. Biol. Chem. 
273, 31273-31282. 

Olofsson,B., Pajusola,K., Kaipainen,A., von Euler,G., Joukov,V., Saksela,O., Orpana,A., 
Pettersson,R.F., Alitalo,K., and Eriksson,U. (1996a). Vascular endothelial growth factor B, a 
novel growth factor for endothelial cells. Proc. Natl. Acad. Sci. USA 93, 2576-2581. 

Olofsson,B., Pajusola,K., von Euler,G., Chilov,D., Alitalo,K., and Eriksson,U. (1996b). 
Genomic organization of the mouse and human genes for vascular endothelial growth factor 
B (VEGF-B) and characterization of a second splice isoform. J. Biol. Chem. 271, 19310-19317. 

Pajusola,K., Aprelikova,O., Pelicci,G., Weich,H., Claesson-Welsh,L., and Alitalo,K. (1994). 
Signalling properties of FLT4, a proteolytically processed receptor tyrosine kinase related to 
two VEGF receptors. Oncogene 9, 3545-3555. 

Persico,M.G., Vincenti,V., and DiPalma,T. (1999). Structure, expression and receptor-binding 
properties of placenta growth factor (PlGF). Curr. Top. Microbiol. Immunol. 237, 31-40. 

Prilusky,J., Felder,C.E., Zeev-Ben-Mordehai,T., Rydberg,E.H., Man,O., Beckmann,J.S., 
Silman,I., and Sussman,J.L. (2005). FoldIndex: a simple tool to predict whether a given protein 
sequence is intrinsically unfolded. Bioinformatics. 21, 3435-3438. 

Rahimi,N. (2006). VEGFR-1 and VEGFR-2: two non-identical twins with a unique 
physiognomy. Front Biosci. 11, 818-829. 

Reeves,P.J., Callewaert,N., Contreras,R., and Khorana,H.G. (2002). Structure and function in 
rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-
glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S 
stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13419-13424. 

Risau,W. (1997). Mechanisms of angiogenesis. Nature 386, 671-674. 

Roskoski,R.Jr. (2007). Vascular endothelial growth factor (VEGF) signaling in tumor 
progression. Crit Rev. Oncol. Hematol. 62, 179-213. 

Rothlisberger,D., Honegger,A., and Pluckthun,A. (2005). Domain interactions in the Fab 
fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with 
variable domains of different stability. J. Mol. Biol. 347, 773-789. 

Ruch,C., Skiniotis,G., Steinmetz,M.O., Walz,T., and Ballmer-Hofer,K. (2007). Structure of a 
VEGF-VEGF receptor complex determined by electron microscopy. Nat. Struct. Mol. Biol. 14, 
249-250. 

Sakurai,Y., Ohgimoto,K., Kataoka,Y., Yoshida,N., and Shibuya,M. (2005). Essential role of Flk-
1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl. Acad. Sci. 
USA 102, 1076-1081. 



Doctoral thesis Mayanka Asthana 
 

145 
  
 

Sarabipour,S., Ballmer-Hofer,K., and Hristova,K. (2016). VEGFR-2 conformational switch in 
response to ligand binding. Elife 5, e13876. 

Sawano,A., Iwai,S., Sakurai,Y., Ito,M., Shitara,K., Nakahata,T., and Shibuya,M. (2001). Flt-1, 
vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of 
monocyte-macrophages in humans. Blood 97, 785-791. 

Sawano,A., Takahashi,T., Yamaguchi,S., and Shibuya,M. (1997). The phosphorylated 1169-
tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma. 
Biochem. Biophys. Res. Commun. 238, 487-491. 

Scheidegger,P., Weiglhofer,W., Suarez,S., Kaser-Hotz,B., Steiner,R., Ballmer-Hofer,K., and 
Jaussi,R. (1999). Vascular endothelial growth factor (VEGF) and its receptors in tumor-bearing 
dogs. Biol. Chem. 380, 1449-1454. 

Seetharam,L., Gotoh,N., Maru,Y., Neufeld,G., Yamaguchi,S., and Shibuya,M. (1995). A 
unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth 
factor VEGF. Oncogene 10, 135-147. 

Shalaby,F., Rossant,J., Yamaguchi,T.P., Gertsenstein,M., Wu,X.F., Breitman,M.L., and 
Schuh,A.C. (1995). Failure of blood-island formation and vasculogenesis in Flk-1- deficient 
mice. Nature 376, 62-66. 

Shibuya,M. (2003). Vascular endothelial growth factor receptor-2: Its unique signaling and 
specific ligand, VEGF-E. Cancer Sci. 94, 751-756. 

Shibuya,M. (2006). Vascular Endothelial Growth Factor (VEGF)-Receptor2: Its Biological 
Functions, Major Signaling Pathway, and Specific Ligand VEGF-E. Endothelium 13, 63-69. 

Shibuya,M. (2011). Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) 
Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes 
Cancer 2, 1097-1105. 

Shibuya,M. (2014). VEGF-VEGFR Signals in Health and Disease. Biomol. Ther. 22, 1-9. 

Shibuya,M., Yamaguchi,S., Yamane,A., Ikeda,T., Tojo,A., Matsushime,H., and Sato,M. 
(1990). Nucleotide sequence and expression of a novel human receptor- type tyrosine kinase 
gene (flt) closely related to the fms family. Oncogene 5, 519-524. 

Shim,A.H., Liu,H., Focia,P.J., Chen,X., Lin,P.C., and He,X. (2010). Structures of a platelet-
derived growth factor/propeptide complex and a platelet-derived growth factor/receptor 
complex. Proc. Natl. Acad. Sci. USA 107, 11307-11312. 

Shinkai,A., Ito,M., Anazawa,H., Yamaguchi,S., Shitara,K., and Shibuya,M. (1998). Mapping of 
the sites involved in ligand association and dissociation at the extracellular domain of the 
kinase insert domain-containing receptor for vascular endothelial growth factor. J. Biol. Chem. 
273, 31283-31288. 

Shiote,M., Nagano,I., Ilieva,H., Murakami,T., Narai,H., Ohta,Y., Nagata,T., Shoji,M., and 
Abe,K. (2005). Reduction of a vascular endothelial growth factor receptor, fetal liver kinase-1, 
by antisense oligonucleotides induces motor neuron death in rat spinal cord exposed to 
hypoxia. Neuroscience 132, 175-182. 



Doctoral thesis Mayanka Asthana 
 

146 
  
 

Shrimali,R.K., Yu,Z., Theoret,M.R., Chinnasamy,D., Restifo,N.P., and Rosenberg,S.A. (2010). 
Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the 
effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70, 6171-6180. 

Silacci,M., Brack,S., Schirru,G., Marlind,J., Ettorre,A., Merlo,A., Viti,F., and Neri,D. (2005). 
Design, construction, and characterization of a large synthetic human antibody phage display 
library. Proteomics 5, 2340-2350. 

Smith,G.A., Fearnley,G.W., Harrison,M.A., Tomlinson,D.C., Wheatcroft,S.B., and 
Ponnambalam,S. (2015). Vascular endothelial growth factors: multitasking functionality in 
metabolism, health and disease. J Inherit. Metab Dis. 38, 753-763. 

Stacker,S.A., Caesar,C., Baldwin,M.E., Thornton,G.E., Williams,R.A., Prevo,R., Jackson,D.G., 
Nishikawa,S., Kubo,H., and Achen,M.G. (2001). VEGF-D promotes the metastatic spread of 
tumor cells via the lymphatics. Nat Med 7, 186-191. 

Stalmans,I., Ng,Y.S., Rohan,R., Fruttiger,M., Bouche,A., Yuce,A., Fujisawa,H., Hermans,B., 
Shani,M., Jansen,S., Hicklin,D., Anderson,D.J., Gardiner,T., Hammes,H.P., Moons,L., 
Dewerchin,M., Collen,D., Carmeliet,P., and D'Amore,P.A. (2002). Arteriolar and venular 
patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest. 109, 327-
336. 

Stuttfeld, E 2011, ‘The structural and functional characterization of the extracellular domain of 
vascular endothelial growth factor receptors: Their role in receptor activation and use as 
therapeutic targets‘, PhD thesis, University of Basel. 

Takahashi,H., and Shibuya,M. (2005). The vascular endothelial growth factor (VEGF)/VEGF 
receptor system and its role under physiological and pathological conditions. Clin. Sci. (Lond) 
109, 227-241. 

Takahashi,T., Yamaguchi,S., Chida,K., and Shibuya,M. (2001). A single autophosphorylation 
site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA 
synthesis in vascular endothelial cells. EMBO J. 20, 2768-2778. 

Tao,Q., Backer,M.V., Backer,J.M., and Terman,B.I. (2001). Kinase insert domain receptor 
(kdr) extracellular immunoglobulin-like domains 4-7 contain structural features that block 
receptor dimerization and vascular endothelial growth factor-induced signaling. J. Biol. Chem. 
276, 21916-21923. 

Tchaikovski,V., Fellbrich,G., and Waltenberger,J. (2008). The molecular basis of VEGFR-1 
signal transduction pathways in primary human monocytes. Arterioscler. Thromb. Vasc. Biol. 
28, 322-328. 

Terman,B.I., Carrion,M.E., Kovacs,E., Rasmussen,B.A., Eddy,R.L., and Shows,T.B. (1991). 
Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6, 
1677-1683. 

Thieltges,K.M., Avramovic,D., Piscitelli,C.L., Markovic-Mueller,S., Binz,H.K., and Ballmer-
Hofer,K. (2018). Characterization of a drug-targetable allosteric site regulating vascular 
endothelial growth factor signaling. Angiogenesis. 21, 533-543. 

Tvorogov,D., Anisimov,A., Zheng,W., Leppänen,V.M., Tammela,T., Laurinavicius,S., 
Holnthoner,W., Helotera,H., Holopainen,T., Jeltsch,M., Kalkkinen,N., Lankinen,H., Ojala,P.M., 
and Alitalo,K. (2010). Effective Suppression of Vascular Network Formation by Combination of 



Doctoral thesis Mayanka Asthana 
 

147 
  
 

Antibodies Blocking VEGFR Ligand Binding and Receptor Dimerization. Cancer Cell 18, 630-
640. 

Verstraete,K., Vandriessche,G., Januar,M., Elegheert,J., Shkumatov,A.V., Desfosses,A., 
Svergun,D.I., Gutsche,I., Vergauwen,B., and Savvides,S.N. (2011). Structural insights into the 
extracellular assembly of the hematopoietic Flt3 signaling complex. Blood 118, 60-68. 

Waltenberger,J., Claesson-Welsh,L., Siegbahn,A., Shibuya,M., and Heldin,C.H. (1994). 
Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial 
growth factor. J. Biol. Chem. 269, 26988-26995. 

Wang,H.U., Chen,Z.F., and Anderson,D.J. (1998). Molecular Distinction and Angiogenic 
Interaction berween Embryonic Arteries and Veins Revealed by ephrin-B2 and Its Receptor 
Eph-B4. Cell 93, 741-753. 

Wiesmann,C., Fuh,G., Christinger,H.W., Eigenbrot,C., Wells,J.A., and de Vos,A.M. (1997). 
Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor. 
Cell 91, 695-704. 

Wise,L.M., Ueda,N., Dryden,N.H., Fleming,S.B., Caesar,C., Roufail,S., Achen,M.G., 
Stacker,S.A., and Mercer,A.A. (2003). Viral vascular endothelial growth factors vary 
extensively in amino acid sequence, receptor-binding specificities, and the ability to induce 
vascular permeability yet are uniformly active mitogens. J. Biol. Chem. 278, 38004-38014. 

Wise,L.M., Veikkola,T., Mercer,A.A., Savory,L.J., Fleming,S.B., Caesar,C., Vitali,A., 
Makinen,T., Alitalo,K., and Stacker,S.A. (1999). Vascular endothelial growth factor (VEGF)-
like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc. Natl. Acad. Sci. USA 
96, 3071-3076. 

Xia,P., Aiello,L.P., Ishii,H., Jiang,Z.Y., Park,D.J., Robinson,G.S., Takagi,H., Newsome,W.P., 
Jirousek,M.R., and King,G.L. (1996). Characterization of vascular endothelial growth factor's 
effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. 
Invest. 98, 2018-2026. 

Yamazaki,Y., Matsunaga,Y., Tokunaga,Y., Obayashi,S., Saito,M., and Morita,T. (2009). 
Snake venom vascular endothelial growth factors (VEGF-Fs) exclusively vary their structures 
and functions among species. J Biol Chem. 284, 9885-9891. 

Yang,K., and Cepko,C.L. (1996). Flk-1, a receptor for vascular endothelial growth factor 
(VEGF), is expressed by retinal progenitor cells. J. Neurosci. 16, 6089-6099. 

Yang,W., Ahn,H., Hinrichs,M., Torry,R.J., and Torry,D.S. (2003). Evidence of a novel isoform 
of placenta growth factor (PlGF-4) expressed in human trophoblast and endothelial cells. J. 
Reprod. Immunol. 60, 53-60. 

Yang,Y., Xie,P., Opatowsky,Y., and Schlessinger,J. (2010). Direct contacts between 
extracellular membrane-proximal domains are required for VEGF receptor activation and cell 
signaling. Proc. Natl. Acad. Sci. USA 107, 1906-1911. 

Yang,Y., Yuzawa,S., and Schlessinger,J. (2008). Contacts between membrane proximal 
regions of the PDGF receptor ectodomain are required for receptor activation but not for 
receptor dimerization. Proc. Natl. Acad. Sci. USA 105, 7681-7686. 



Doctoral thesis Mayanka Asthana 
 

148 
  
 

Yuzawa,S., Opatowsky,Y., Zhang,Z., Mandiyan,V., Lax,I., and Schlessinger,J. (2007). 
Structural Basis for Activation of the Receptor Tyrosine Kinase KIT by Stem Cell Factor. Cell 
130, 323-334. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Doctoral thesis Mayanka Asthana 
 

149 
  
 

Curriculum Vitae 

Personal Details 

Name     Mayanka Asthana 

Address    163 Addenbrookes Road, CB2 9BA Cambridge, UK 

 

Education 

09/11-present   PhD, Laboratory of Biomolecular Research, Paul Scherer Institute  

Thesis title: Structural and functional chracterization of ectracellular 
domains of vascular endothelial growth factor receptor 1 and 2 

Supervisor: Prof. Dr. Kurt Balmer-Hofer 

09/09-04/11     M.Sc., Biology (Major in Biochemistry), ETH Zurich 

Thesis title: Substrate Identification of Atg1 Kinase in Autophagy in Yeast 

Supervisor: Prof. Dr. Matthias Peter 

08/04-05/08     B.Tech., Biotechnology, Vellore Institute of Technology University, 

India 

Thesis title: Comparison of Manual and Automated Techniques for 

Antibiotic Sensitivity Testing of Mycobacterial Strains Isolated from 
Victims of Bhopal Gas Disaster 

 

Work Experience 

04/11-07/11     Post Diploma Work, Prof. Matthias Peters Lab, IBC, ETH Zurich 

 Project: Identifying native members of Atg1 complex in 
autophagy  

11/08-07/09     Internship, Department of Microbiology at Bhopal Memorial Hospital 

and Research Centre, Bhopal, India 

 Project: Prevelance of Tuberculosis-HIV Co-infection in 
Central India 



Doctoral thesis Mayanka Asthana 
 

150 
  
 

Publications 

 1.  Markovic-Mueller,S., Stuttfeld,E., Asthana,M., Weinert,T., Bliven,S., Goldie,K.N., 
Kisko,K., Capitani,G., and Ballmer-Hofer,K. (2017). Structure of the Full-length VEGFR-
1 Extracellular Domain in Complex with VEGF-A. Structure 25, 341-352. 

 2.  Kraft,C., Kijanska,M., Kalie,E., Siergiejuk,E., Lee,S.S., Semplicio,G., Stoffel,I., 
Brezovich,A., Verma,M., Hansmann,I., Ammerer,G., Hofmann,K., Tooze,S., and 
Peter,M. (2012). Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 
regulates autophagy. EMBO J. 31, 3691-3703. 

 3.  Desikan,P., De,S., Pai,N.P., Mishra,P.K., Kumar,K., Panwalkar,N., Verma,M., 
Hasan,Z.U., and Maudar,K.K. (2013). An HIV1/2 point of care test on sputum for 
screening TB/HIV co-infection in Central India - Will it work? Asian Pac. J. Trop. Med. 6, 
216-219. 

 4.  Desikan,P., De,S., Pai,N.P., Panwalkar,N., Verma,M., and Jain,A. (2011). A pilot cross-
sectional study to determine the utility of an oral HIV1/2 point of care test on sputum for 
screening TB/HIV co-infection in Central India. Indian J. Med. Microbiol. 29, 194-195. 

 5.  Desikan,P., Kumar,Y., Pande,H.K., Jain,A., Panwalkar,N., Verma,M., Bramhne,H.G., 
Yadav,A., and Mohapatra,S. (2009). Isolated ulcerative skin lesion caused by Salmonella 
Weltevreden. J. Infect. Dev. Ctries. 3, 569-571. 

 6.  Desikan,P., De,S., Mishra,P., Jain,A., Panwalkar,N., Verma,M., and Maudar,K.K. (2009). 
Comparison of performance characteristics of automated PCR systems with culture for 
detection of MTB complex from clinical samples in central India. Indian J. Med. Microbiol. 
27, 277-278. 

 

 

 


	Mayanka_title_page_FINAL_electronicsubmission.pdf
	PhD_Thesis_Mayanka_UniBasel_eSubmission_14122019

