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I. Introduction 

Human skeletal elements are grossly divided into three main tissue categories: 

bone, cartilage and muscle. While skeletal muscle is closely associated and interacts 

with the bony element, this thesis focuses specifically on the repair mechanisms 

involved in bone and cartilage and how to better mediate these mechanisms from a 

regenerative medicine perspective; muscle will not be treated hereafter and any 

reference to skeletal tissue refers either to bone or cartilage. To begin, I will first define 

key concepts in skeletal tissue repair that give background to the regenerative 

strategies chosen during this thesis. Following this, I will introduce the concept of t issue 

engineering and the parameters that are necessary to take into account when 

preparing a living tissue graft. After this brief introduction, I will present the experimental 

work performed during this thesis in which the specific strategies employed towards 

skeletal tissue engineering are presented. Finally, I conclude with a summary of 

accomplishments and suggest further work that could be performed to help advance 

the presented topics towards a translational technology. 

1) Bone and cartilage gross anatomy 

a. Bone tissue 

Bone is the densest tissue found in the human body, serving principally as support for 

the body’s soft tissues and giving them a template upon which to attach or grow. Due 

to bone’s remarkable mechanical properties (resistant to loads and strains), it serves as 

a protective organ, for example encasing the brain and spinal cord or resist ing under 

the immense loads subjected to the human body under normal daily movements. 

Depending on its function and anatomical location, bone has evolved into two major 

tissue types: long and flat bones. While both bone types are characterized by their 

hard, ceramic surface composition, both harbor varying amounts of bone marrow, 

which is comprised of a loose connective tissue and various cell types. Indeed, these 

bone marrow spaces represent the second critical role of the bone organ: 

hematopoiesis (formation of the cellular components of blood). There are two types of 

bone marrow: red and yellow. While their relative quantities change throughout the 

lifespan of an individual, their roles remain constant. Red bone marrow, found 

principally in flat bones and the epiphyseal ends of long bone, is the center of 
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hematopoiesis. Yellow bone marrow, principally constituted of fat cells, makes up the 

medullary cavities of long bones. Bone marrow is a compartmentalized organ; different 

cell types are typically grouped together at their sites of production. Consistent with this 

idea of compartmentalization, the theory of bone marrow niches is generally accepted 

as being the sites that contain specific cell types with distinct functions, including the 

stem cell components of the marrow, i.e. hematopoietic stem (HSC) and mesenchymal 

stromal cells (MSC) (Figure 1). For the purposes of this thesis, only MSC will be discussed, 

due to their importance in bone repair. 

 

Figure 1: The compartmentalized aspect of bone marrow within which different niches can be found. Figure source: 1 

2) Skeletal tissue – Repair  

To better understand skeletal tissue repair, one must first understand that bone 

and cartilage tissues, while both derived from the same progenitor cell source, differ 

drastically in their biology, biomechanics and function. It stands to reason that they also 

differ in their repair mechanisms and potentials. Bone repair, typically considered a 

relatively robust process, is in direct contrast to cartilage tissue repair, which is virtually 

nonexistent under physiological circumstances. While not all the reasons for this are yet 

understood, the most obvious factors that are thought to directly affect skeletal t issue 

repair (or the lack thereof) are tissue cellularity, vascularization and the presence of a 

progenitor cell source that can be mobilized to the repair site in the event of tissue 
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damage. Considering only these three factors is enough to establish the clear 

dichotomy between bone and cartilage tissue repair.  

Bone is a heterogeneous organ composed of many different tissues and cell 

types, including the osseous, marrow, periostium, endostium, nerves and blood vessels 

(Table 1). In fact cartilage, being a tissue and not an organ, is also considered a part of 

the bone organ complex. Due to the complexity involved in the bone organ, it is 

common to employ semantic simplifications when referring to tissue components and 

this thesis will do the same. Therefore, when bone is mentioned, this specifically refers 

(unless otherwise stated) to the osseous tissue structure that is classically thought of as 

“bone tissue”, being the extremely dense mineralized tissue that characterizes the hard 

endoskeleton of animals and, therefore, humans. The number and types of cells present 

in the bone organ is relatively high (when compared to cartilage). Common cell types 

that are critical to the homeostasis of bone are summarized in Table 1 and the relative 

distribution of these cells a schematized in Figure 1. Included in the bone tissues, as 

previously mentioned, are vessels, which constitute the second element critical to tissue 

repair. The bone organ is irrigated with a dense, ramified vasculature which reaches 

throughout the majority of the organ (excluding cartilage tissue), never leaving more 

than ~300 µm of space between an individual cell and a vessel wall. The density of the 

vascularization ensures nutrient delivery to and waste removal from the cells 

constituting the various tissues. Present in the bone marrow and, when mobilized into 

action, travel either through the blood or along the outside of the vessels themselves, 

are bone marrow-derived mesenchymal stromal cells (bMSC). Intimately associated 

with the vascular system, bMSC (the progenitor cell source for the bone organ) 

represent the third element associated with tissue repair. As BMSC rely on the 

vasculature for transport to the repair site, bone has an obvious advantage over 

cartilage tissue, which is avascular under physiological conditions.  

Having considered these three elements critical to skeletal tissue repair 

(cellularity, vascularization and progenitor cell source), the mechanisms of tissue repair 

can now be better understood. 
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skeletal tissues cell type role 

osseuse tissue 

osteoblast 

Responsible for bone building through the secretion of a bone 

matrix  (osteoid) that w ill subsequently be mineralized and form 

bone. Bone lining cells are also osteoblasts but in their resting state.  

osteoclast 

Responsible for the breakdown (resorption) of bone. Der iv e d fro m 

monocytes, they are specialized macrophages that excrete 

catalytic enzymes onto the surface of bone tissue. 

osteocyte 

These are mature bone cells. Originating from osteoblasts, they 

have become surrounded by the osteoid matrix they secreted. They 

function in bone formation, calcium homeostasis and matrix  

maintenance. 

bone marrow 

stroma 

bone marrow -derived 

mesenchymal stromal 

cells (BM SC) 

Osteo- and chondroprogenitor cells found in the bone marrow  

niche that are capable of differentiating into a variety of cell ty pe s 

including osteoblasts and chondrocytes. 

adipocytes & adipose-

derived mesenchymal 

stromal cells (ASC) 

the most abundant stromal cell phenotype in adult human bone 

marrow , adipocytes may share common functions w ith stromal 

stem cells, osteoblasts, and hematopoietic supportive cells 2,3. 

fibroblasts Regulate hematopoiesis in the bone marrow niche 4.  

immune cells 
leukocytes involved in host defense against infectious diseases and 

foreign materials. 

hematopoietic stem 

cells (and progeny) 

maintain hematopoiesis. For further information, refer to the 

follow ing review 5. 

vessels 

endothelial cell 

Lining the inner surface of vessels, endothelial cells constitute the 

direct contact barrier betw een the circulating blood and the 

surrounding tissue. Responsible for barrier properties, blood clot t ing  

and angiogenesis.  

pericyte 

Support cells found w rapped around endothelial netw orks 

(capillaries). Responsible for the upkeep of endothelial cell 

maintenance and proliferation as w ell as the direct differe nt iatio n 

into mesenchymal stem cells upon tissue damage.6 

cartilage tissue chondrocyte 
The only cell found in cartilage, it is responsible for the production 

and maintenance of a cartilage tissue.  

3) Table 1: Tissue composition of the bone organ 

a) Bone repair 

Bone repair proceeds by the same formation patterns as bone development, but the 

specific mechanism of repair is determined by the biomechanical environment 

provided 7. The repair of a bone organ (minus the cartilage tissue component) is a 

complex but relatively well understood process. As with its formation during 
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embryogenesis, bone repair proceeds through two archetypical routes: endochondral 

and intramembranous ossification. Typically, endochondral ossification occurs in long 

bones and intramembranous ossification occurs in flat bones, including the cranium 

and the scapulae. While both routes begin with mesenchymal progenitors, the 

differentiation process that these cells undergo will define what type of bone formation 

occurs. 

i. Endochondral ossification 
For endochondral ossification, mesenchymal progenitors first differentiate into 

chondrocytes and form a stratified cartilaginous template, with resting chondrocytes 

towards the epiphyseal plate and hypertrophic chondrocytes towards the bone 

marrow space (Figure 2) 8,9. This latter tissue is particularly important for bone formation 

and is the current focus of tissue engineering strategies aiming to recapitulate this 

process in vitro. Indeed, commonly used for histological identification purposes, the 

most abundant protein present in cartilage matrix is collagen type II. But, upon 

hypertrophic differentiation of chondrocytes, the matrix becomes calcified and begins 

to be remodeled through the excretion of matrix metallopeptidases, principally  matrix 

metallopeptidase 13 (MMP13). Collagen type II is thus broken down and replaced by 

collagen type X (Col-X), a specific type of matrix specific to hypertrophic cart i lage 10. 

Col-X in histological and biochemical analyses represents the key factor whose 

presence marks hypertrophic tissue.  

As the cartilage remodeling progresses, factors embedded in the matrix become 

available, the most important being vascular growth factor-1 (VEGF) 11,12. This factor 

promotes the ingrowth of vessels from neighboring tissues, thereby supplying a conduit 

for the recruitment of cells involved in bone deposition: BMSC 13. In fact, it is believed 

that vascular invasion is a prerequisite for bone formation, with osteoblasts and 

osteoprogenitor cells developing with endothelial cells in the newly formed blood 

vessels at sites where new bone is formed 14,15.  
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Figure 2: Schematic of endochondral ossification. Figure source: 16 

ii. Intramembranous ossification 
Intramembranous ossification occurs only in flat bones and is thus limited to a specific 

subset of bones within the body including, and importantly for this thesis, craniofacial 

bones such as the calvaria, maxilla and palate. Contrary to endochondral ossification, 

intramembranous ossification does not proceed through a cartilaginous phase but is 

rather characterized by BMSC differentiating directly into osteoblasts 17,18. 

Intramembranous bone are classified into three categories: 1) the sesamoid, 2) 

periosteal and 3) dermal bones. For the interests of this thesis, we will only consider 

dermal bones as these include the craniofacial bones. Dermal bones are called thus 

because they result from mesenchymal condensations within the dermis of the skin, a 

process which is schematized below (Figure 3) 19.  

Considerably more is known about endochondral ossification than dermal bone 

formation and several studies have demonstrated that while there are molecular 

similarities between the two bone formation routes, there are also events that seem to 

be unique to intramembranous ossification 20. Combined with these molecular 

discrepancies are the differences in the bone tissue themselves as well as the 

ontogenetic differences. Together, they represent an evidence-based set of 

parameters that suggest dermal bone development and repair must be considered as 

unique biological events. While the specific molecular factors involved in 

intramembranous (and endochondral) ossification will be treated in the next section, 

one specific intermediate cell type that is characteristic to intramembranous 
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differentiation should be mentioned here: the chondrocyte-like osteoblast (CLO). This 

particular cell type is characterized by the co-expression of both osteogenic and 

chondrogenic markers 20.    

 

Figure 3: Schematization of intramembraous ossification. Figure source: 21 

iii. Molecular regulation of osteoblastic differentiation 
The molecular regulation of osteoblastic differentiation is a complex interplay of 

signaling pathways resulting in the gradual activation or suppression of specific 

transcription factors. Some of the most important pathways to date that have been 

shown to be critical in osteoblastic differentiation include Hedgehog, Notch, WNT, bone 

morphogenic protein (BMP) and fibroblast growth factor (FGF) signaling (Figure 4) 22. 

This list does not however give a complete picture; the story complicates when 

considering the differences between endochondral and intramembranous ossification. 

Crossover does exist between pathways and markers, but certain pathways such as the 

Hedgehog pathway have been shown to have an opposite role in intramembranous 

bone formation from endochondral. For example, in long bones, indian hedgehog (IHH) 

and parathyroid hormone-related protein (PTHrP) form a feedback loop which serves to 
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regulate the onset of hypertrophic differentiation of chondrocytes 23. However, in 

dermal bone formation, the IHH/PTHrP loop acts to negatively regulate the formation of 

osteoblasts from osteoprogenitor 20. Also, whereas BMPs function in the later stages of 

endochondral bone formation, they play a fundamental role in regulating the earl iest 

cell differentiation decisions in intramembranous differentiation 20.  

Regardless the differences between the two bone formation routes, there are common 

factors that can be analyzed to determine if and to what extent osteoblastic and/or 

hypertrophic differentiation has occurred in a given cell type. Factors mentioned 

throughout this thesis are summarized in the table below (Table 2). 

 

 

Figure 4: Developmental signals regulating key steps of osteoblastic differentiation. Figure source: 22 

factors role localization 

Runt-related transcription 

factor-2 (RUNX2) 

considered the master organizer of gene 

transcription in osteoblastic differentiation 24 
nuclear 

Osterix (OSX) a zinc finger–containing transcription factor 

expressed in the osteoblasts of all endochondral 

and membranous bones 25 

cytoplasmic in progenitors and 

nuclear upon osteoblastic 

commitment 

Collagen type X (Col-X) regulates matrix mineralization and 

compartmentalizes matrix components. 

expressed exclusively by hypertrophic 

chondrocytes and is thus used as a marker for 

hypertrophic cartilage 26.  

matrix  protein 

Collagen type II (Col-II) most abundant type of collagen in cartilage 

extracellular matrix. allows cartilage to entrap 
matrix  protein 
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the proteoglycan aggregate as w ell as provide 

tensile strength to the tissue 27. 

Collagen type I (Col-I) most abundant type of collagen in bone 

extracellular matrix. strengthens and supports 

many tissues in the body, including bone. 

matrix  protein 

bone sialoprotein (BSP) large component of bone extracellular matrix 28. 

Thought to serve as a nucleation site for 

hydroxyapatite, thus initializing mineralization 29. 

matrix  protein 

Vascular growth factor 

receptor-2 (VEGF) 

involved in both vasculogenesis and 

angiogenesis, the latter being critical for bone 

formation and repair. 

membrane-bound and soluble 

ligand 

Indian hedgehog (IHH) involved in chondrocyte differentiation, 

proliferation and maturation especially during 

endochondral ossification 23. regulates 

endochondral bone development through a 

negative feedback loop with PTHrP. 

soluble ligand 

Parathyroid-related 

protein-1 (PTHrP) 

involved in chondrocyte differentiation, 

proliferation and maturation especially during 

endochondral ossification 23. regulates 

endochondral bone development through a 

negative feedback loop with IHH 

secreted hormone 

matrix metallopeptidase 

13 (MMP13) 

restructuring the collagen matrix  for bone 

mineralization during endochondral ossification 
30. 

matrix  protein 

Bone morphogenic 

protein-4 (BMP-4) 

Essential for early stages of BM SC condensation 

and commitment to osteogenic fate during 

dermal bone ossification 20.  

matrix  protein 

Bone morphogenic 

protein-2 (BMP-2) 

stimulates the production of bone through 

autoinduction 31. Upregulated during 

endochondral, but not intramembranous 

ossification 20. 

matrix  protein 

osteocalcin (OC) osteoblast-specific protein thought to be 

involved in bone mineral homeostasis. Used as a 

biomarker for differentiated osteoblasts 32. 

matrix  protein 

osteopontin (OP) a linking protein responsible for the binding 

calcium-based biominerals and is a a 

transcriptional activator of osteoblast 

differentiation 33.  

matrix  protein 

alkaline phosphatase 

(ALP) 

hydrolase enzyme responsible for removing 

phosphate groups. Responsible for the 

elaboration of a bone matrix  that is chemically 

calcifiable 34. 

excreted enzyme 

Table 2: Selected factors involved in endochondral and intramembranous ossification 
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b. Cartilage repair 
Contrary to bone tissue, articular cartilage tissue does not undergo restoration after 

injury. Cartilage damage results in cellular infiltration of the defect site. Included in these 

cells are macrophages and fibroblasts, the latter of which secretes a new extracellu lar 

matrix to “close the gap”. Unfortunately, because this patch is not secreted by 

chondrocytes, it is lacking in key properties that define a healthy cartilage tissue: a 

matrix composed principally of Collagen type II and the presence of 

glycosaminoglycans (GAG). Without GAG, water molecules are not bound to the 

matrix and resistance to future loads is therefore diminished, leaving place for further 

articular tissue damage. One of the most important limiting factors to cartilage repair is 

its lack of vascularity. As an avascular tissue, BMSC recruitment to the injured joint 

surface is impossible. This is an important concept and forms the logic behind one of the 

current gold standards in surgical treatment for articular cartilage defects: 

microfacturing (a surgical technique that involves perforating the subchondral bone 

layer that underlies articular cartilage to allow BMSC infiltration into the cartilage defect 

site) 35. Indeed, as cartilage restoration following injury is impossible, the development of 

surgical repair techniques has been the 

main research focus over the last 

decades, an overview of which can be 

found in (Figure 5). Included in these 

techniques are tissue engineering 

approaches either with or without the 

presence of cells. These techniques will 

be more thoroughly explained in section 

2 of the introduction entitled “Tissue 

Engineering”.   

c. Embryological origin of tissues 
Craniofacial skeletal tissues are derived 

from the neuroectoderm, whereas the 

remaining appendicular skeleton is derived from the mesoderm. Not only do these two 

skeletal tissues derive from different germ layers during embryological development, 

Figure 5: Surgical technique treatment algorithm. Figure 
source: Mayo clinic, USA. 
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but they also undergo disparate repair mechanisms upon injury (endochondral versus 

intramembranous for apical and craniofacial skeleton, respectively).  These underl ined 

differences necessitate alternative regenerative medicine strategies when considering 

the use of a living graft material in craniofacial bone repair applications. For example, 

direct experimental comparison of progenitor cells derived from craniofacial versus 

long bone shows in vitro differences between these two cell types in terms of cell 

proliferation and differentiation 36–38. In vivo, heterotopic transplantation experiments 

show tibial progenitor cells (mesodermal origin) tend towards chondro- rather than 

osteoblastogenesis upon mandibular implantation (neurectodermal environment), a 

phenomenon shown to be explicable on the genetic level by mismatched Hox 

signatures 39. Furthermore, mesodermal-derived progenitor cells have been shown to 

have little to no effect during the first month of calvarian implantation, highlighting the 

importance of an appropriate donor cell source for facial bone tissue engineering 40. A 

final complication resides in the limited number of progenitor cells able to be harvested 

from the facial region, stemming principally from the fact that craniofacial bones are 

mainly flat bones. Therefore, common cell-based strategies to craniofacial bone repair 

continue to rely on bone marrow-derived stromal cells (BMSC) or apical bone-derived 

osteoblasts, both of which display limited repair capacities 41. 

The established differences between mesodermally- and ectodermally-derived cells’ in  

vitro behavior and eventual regenerative capacity can perhaps also extend to 

chondrocytes. Given the lack of repair capacity exhibited by articular cartilage 

(mesoderm), cellular-based treatments could also be a possibility if the appropriate cell 

source was found. Recently, cells deriving from the adult nasal septum (nasal 

chondrocytes, hNC) have begun to gain attention due not only to the relative ease of 

obtaining a septal tissue biopsy 42, but also the fact that they derive from the same 

astonishingly multipotent embryological segment that gives rise to the majority of the 

bone and cartilage of the head and face (neural crest/neuroectoderm) 43. Human 

septal cartilage has long been considered the pacemaker for the growth of the face 

and skull, with growth potential equivalent to that of the epiphyseal growth cartilage of 

long bones 44. While hNC form in situ a hyaline cartilage tissue biomechanically and 

histologically identical to that of articular cartilage 45, they also retain the capacity to 
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differentiate towards neuronal and osteoblastic phenotypes in vitro 46, suggesting that 

these cells can dedifferentiate in in vitro culture and then be pushed towards a 

different phenotype of interest upon appropriate morphogenic priming. However, th is 

in vitro phenomenon of phenotypical plasticity has never been shown to result in a 

correlated in vivo tissue formation or repair.  

A final concept associated with ectoderm/mesoderm germ layer differences resides in 

a group of homeobox (Hox) genes that are spatiotemporally differentially expressed 

during development to establish the anterio-posterio axis. As mesodermal and 

ectoderm tissues develop in separate regions along the anterio-posterio axis, their Hox 

genes status is also differentially regulated and expressed during development (Figure 

6) 47. Transplantation experiments in developing embryos demonstrate that the ability of 

implanted cells to be reprogrammed by environmental conditions is progressively 

restricted with the activation of Hox genes 48–51. This principle was recently extended to 

Hox-negative neural crest-derived skeletal stem cells in an adult murine model, where it 

was shown that mesectoderm- but not mesoderm-derived skeletal stem cells can 

adopt the Hox-expression status of heterotopic transplantation sites, thereby leading to 

robust tissue repair 39. A Hox-negative status was also proposed to reflect a higher level 

of self-renewal capacity in totipotent embryonic stem cells 52 and functionally dist inct 

human stem cell populations derived from cord blood 53. 

 

Figure 6: Hox genes are highly conserved genes encoding transcription factors that determine the course of embryonic 

development in animals. In vertebrates, the genes have been duplicated into four clusters: Hox-A, Hox-B, Hox-C, and Hox-D. 

Genes within these clu sters are expressed in certain body segments at certain stages of development. Shown here is the 
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homology between Hox genes in mice and humans. Note how Hox gene expression, as indicated with orange, pink, blue and 

green shading, occurs in the same body segments in both the mouse and the human. Figure and caption source: 54 

1) Tissue Engineering 
“The emerging discipline of tissue engineering has the grand aim of understanding the 

principles of tissue growth, and applying this to produce functional replacement t issue 

for clinical use.”55 From lab grown organs to biomaterial tissue replacements to stem cell 

therapies, tissue engineering combines a vast array of scientific disciplines and much 

progress has been made in recent years towards real clinically-relevant treatment 

techniques.   

a. State-of-the-Art 
Successful tissue repair is the key endpoint parameter for any tissue engineered system, 

whether it be cell injection, gene therapy or material-based. In order for successful 

tissue repair to occur, it is typically necessary to bring a bioactive signal to the defect 

site that would induce a repair mechanism and/or replace the damaged tissue 

completely. Delivery of this bioactive signal is one of the most studied subjects in 

regenerative medicine, with ideas ranging from bioactive materials to cell homing 56, 57. 

A common component of many tissue engineering strategies is that of the cell, and 

one of the most promising cell sources in skeletal repair is BMSC.  For example, several 

recent early-stage clinical trials are testing the delivery of BMSCs as an intra-articular 

injection into the knee, but optimal dose and vehicle are yet to be established 58. The 

importance of reliable and clinically relevant tissue repair approaches is evidenced in a 

recent European survey presenting novel cellular and engineered tissue therapies for 

the previous year (2011) and the results illustrate the various manners that research uses 

to deliver a regenerative signal to a defect site (Table 3) 59.  

 
Cell delivery mode 

Indications Intravenous Intra-organ Membrane/gel 3D scaffold 

Cardiovascular 

Peripheral artery disease 7 69     

Cardiomyopathy 1 52     

Heart failure 20 31     

Myocardial ischemia 11 84     

Decubitus+leg ulcers       58 

Other 10 5   20 
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Musculoskeletal/rheumatological 

Bone repair (maxillofacial)       24 

Bone repair (orthopaedics) 14 34   12 

Osteogenesis imperfecta   2   2 

Cartilage repair (orthopaedics)   47 120 80 

Muscle repair   9     

Tendon/ligament     8   

Reconstructive surgery/ tissue enhancement   268 118 6 

Scleroderma 3   3 1 

Arthritis   38     

Other     13   

Neurological 

Multiple sclerosis 13       

Parkinson's   1     

Peripheral nerve regeneration (trauma)         

Other 4 23     

Gastrointestinal 

Crohn's disease 7 8     

Liver insufficiency 3 1     

Hematology/oncology 

GvHD prevention or treatment 265       

HSC graft enhancement 55       

Miscellaneous 

Skin reconstruction   29   67 

Cornea repair     4   

Diabetes   4     

Solid tumor 14 24     

Other 25   21 12 

Total 452 729 287 282 

3D, t hree-dimensional.         

Table 3: Number of Reported Novel Cellular Therapy Treatments in Europe in 2011 Sorted by Delivery Mode. Table adapted 

from: 59 

For the purposes of this thesis, I will discuss tissue engineering techniques that rely on a 

material as the delivery agent (scaffold) and then broadly divide these grafts into two 

main categories: living and extracellular matrix-based grafts. As before, the tissues of 
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interest remain bone and cartilage. But, overall, the common strategy applied in this 

thesis can be summarized in the following figure (Figure 7). 

 

 

 

 

 

 

 

 

 

 

b. “Living grafts” for tissue repair 
The concept of living grafts is based upon the combination of a scaffolding material 

(whether it be synthetic- or native ECM-based) with a living cell source to induce tissue 

repair at a defect site. Typically, this approach has relied upon internal signals (e.g. 

bioactive signals from the material itself 60) or external signals (e.g. growth factors in the 

culture medium 61) to push the seeded cells towards the desired differentiation status so 

that upon implantation, chances for engraftment and tissue repair are augmented. 

Indeed, the idea that a material itself could be capable of determining the 

differentiation status of a cell offers the possibility of “control” over an otherwise 

complicated biological system for regenerative medicine applications 62–64.  A logical 

extension to this has more often than not been the use of stem cells as seeder cells, 

based upon their ability to differentiate towards multiple phenotypes and therefore 

potentially recapitulate what occurs in vivo during development and repair of normal 

tissues 60,65. There are three different types of stem cells (embryonic, induced-pluripotent 

Cells on a 
3D scaffold 

Figure 7: Traditional tissue engineering paradigm of a closed-loop system in which cells are 
taken from a patient, engineerd into a graft and then reimplanted into the same patient. 
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and adult stem cells), each obtained from different sources and each having different 

advantages and disadvantages (Figure 8). Regardless the attractiveness of stem cells, 

the underlined disadvantages represent hurdles that must be cleared before any 

translation into the clinic is possible 66.  

 

Figure 8: Current promises and limitations of stem-cell populations. Figure source: 60 

An alternative to stem cells are somatic cells, or simply put, any other cell  that is not a 

gamete or stem cell. For living graft production, the concept relies on the cell itself 

already being capable to produce an instructive ECM and/or communicate directly 

with the implant site for robust repair to occur. Several attractive benefits are 

associated with somatic cell use: 1) they are relatively easier to isolate from tissues in 

higher amounts, 2) they are not associated with any ethical or biological dilemmas 

such as embryonic tampering or teratoma formation, respectively and, 3) they are 

already molecularly matched to the tissue which they should repair. This last 

consideration helps explain what cells would be used where. For bone and cartilage 

applications for example, isolation of osteoblasts and chondrocytes, respectively, 

would allow one to create a bone or cartilage graft with cells already committed to this 

direction. This is precisely the topic of many studies, for both bone and cartilage, which 

aim to circumvent the drawbacks associated with stem cells and attempt to create 

autologous grafts based on somatic cells 67–70. But, there are also certain drawbacks to 

the use of somatic cells that are evident in their long-term use with litt le to no durable 

treatment option having yet emerged. Damaged tissues result from either pathological 

processes or traumatic events. The cells that are isolated often come from these same 

damaged tissues and could therefore not be appropriate for a repair strategy 71. Also, 

chondrocytes, upon isolation from their native tissue, must be expanded before a graft 
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can be prepared. During this expansion phase, the cells have been shown to 

dedifferentiate away from their original phenotype 72,73.     

c.  “Extracellular matrix-based grafts” for tissue repair 
i. Extracellular matrix 

The extracellular matrix (ECM) is a combination of structural and functional proteins, 

proteoglycans, lipids and crystals that has a unique composition and physical 

properties for every tissue and organ in the body. Acting as a reservoir for morphogens 

while providing mechanical support for resident cells, ECM participates in cell 

communication as well as in defining the shape and stability of tissues 74. ECM cues 

have been demonstrated to specifically promote cell recruitment, adhesion, migration, 

proliferation and differentiation in a way that reflects the functional needs and 

biological identity of tissues 75. 

Cellular interactions with the extracellular matrix (ECM) are known to play a critical role 

in directing cell function and regulating development, homeostasis and repair of a 

variety of tissues, including bone and cartilage 76–78. This recognition has fostered the 

design of biomimetic substrates for bone and cartilage regeneration aiming to provide, 

along with the structural support, bioactive signals mimicking some aspects of the 

native bone and cartilage ECM 79–82. The hypothesis is based on the idea that such 

instructive elements may retain at least in part their functionality even in the absence of 

the living cellular component. Based on this rationale, decellularization of native and 

engineered tissues and organs has received increased attention in the field of 

regenerative medicine. 

ii. Decelluarization 
Decellularization concerns the removal of all living components from a t issue or organ 

with minimal disruption of the ECM component, offering the potential of an off-the-shelf 

and immune-compatible alternative to living grafts for tissue and organ repair (Figure 

9). Decellularized ECM is expected to induce regenerative processes not only through 

specific “organomorphic” structures 83, but also by the physiological presentation of 

different cocktails of regulatory molecules in a mechanically suitable environment. The 

instructive scaffold materials derived from decellularized ECM could be activated by 
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living cells prior to implantation, with the assumption that ECM is capable of directing 

the differentiation fate of the seeded cells 61,84–86. In an even more attractive paradigm, 

the decellularized ECM could be directly used to instruct resident cells towards 

endogenous tissue repair by leveraging principles of morphogenesis. Starting from 

decellularized bone as a prototype ECM graft 87, the field has received convincing 

proof-of-principle evidences of the latter approach for epithelial 88, musculoskeletal 89 

and vascular 90 tissue regeneration, as well as for the engineering of myocardial 91, 

pulmonary 92, renal 93,94 and pancreatic implants 95. More recently, thanks to the 

progress in guiding cell differentiation towards specific lineages, in vitro-engineered 

tissues are also being considered as a substrate for decellularization. This approach 

opens the perspective to the generation of large quantities of standardized, 

customized grafts. 

Looking more specifically into osteoblastic differentiation, decellularized ECM 

synthesized by undifferentiated mesenchymal stromal cells (MSCs) in vitro has been 

shown to facilitate cell proliferation, prevent spontaneous differentiation and enhance 

the osteogenic capacity of freshly reseeded MSCs 96,97. In similar studies, decellu larized 

ECM, generated by osteogenically differentiating MSCs onto 3D porous scaffolds, 

enhanced and accelerated in vitro osteoblastic differentiation of newly cultured MSCs 
98,99. Decellularized bone-like ECM was also shown in rat models to enhance critical 

features for bone repair, namely implant vascularization and engraftment, yet no 

evidence of bone tissue formation could be provided 100. 

A principle limiting factor of the successful translation of decellularized tissues and 

organs into the clinic is the decellularization method used. A variety of chemical, 

enzymatic and physical procedures have been developed to eliminate the cellular 

component of both native and engineered tissues while minimally disrupting the ECM. 

Protocols described in literature tend to combine several of these principal methods in 

order to increase the efficiency of decellularization and at the same time reduce 

damage to the ECM by using less destructive conditions. All of these typical methods, 

which have been subject of several review assays 75,101,102, can reach variable degrees 

of decellularization efficiency, but some problems remain common to all. First, all 

existing techniques rely on cell lysis. The resulting cell debris can then freely adsorb to 
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the remaining matrix, leading to a paradoxical increase in immunogenicity 103. Second, 

existing techniques have been demonstrated to alter the ECM, leading to the 

degradation of some of its components 75. Therefore, typical procedures used 

necessarily imply an impairment of the ECM integrity.  

 

Figure 9: Concept of tissue decellularization. Cell-free tissue can be generated by decellularization of native or engineered tissue. 

The resulting ECM can be directly transplanted into a patient (1), entirely relying on the capacity to instruct resident cells 

towards endogenous tissue repair (2). Alternatively, prior to implantation the ECM can be seeded with cells that “prime” the 

material (e.g., to enhance its remodeling or vascularization) and/or “get primed” toward a specific function (e.g., to proliferate 

or differentiate) (3). The latter implants could induce regeneration by the combined action of the seeded and recruited cells. 

d. Standardization of graft production 
One of the greatest hurdles to overcome in translating a biological into a marketable 

product is standardization of the production process. Unlike mechanical- or electrical-

based products, the engineering of a biological system is reliant on a living source 

material (cells). Therein is where the problem lies: cells 104. Regardless of the tissue 

source, interdonor variability is known to be so large, that using the same production 

process for two different donor cell sources can result in two very different grafts. It is 

such a problem that entire research projects concentrate on gaining a better 

understanding of the principles that underlie this concept as well as how to better 

control it. Complicating to matter, intradonor variability also contributes to production 

variability. Either resulting from a heterogeneous cell population or uncontrollable 

changes that occur within the cell source during expansion, intradonor variability often 
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limits graft yield. Limited source material and/or temporal changes in the l iving source 

system oblige both customized, single patient grafts and/or strongly reduced number of 

grafts capable of being produced. The problem of limited source material underlines 

another problem associated with standardization of biological graft production: current 

grafts are patient specific, making scaling-up of the production process impossible and 

dramatically increasing costs. Indeed, living grafts are typically based on the patient’s 

own cells being first extracted, engineered into a usable graft and reimplanted into the 

defect site. This process intrinsically restricts the graft production process to patient-

specific approach due to immune reaction considerations. This point introduces a final 

parameter that currently frustrates the standardization process: the support (scaffold) 

material associated with the biological component. Clearly not a problem for direct 

cellular therapy, tissue engineered grafts however must have a structure that can be 

manipulated by surgeons for implantation. While much work has gone and is currently  

going into the development of “bioactive” materials that can elicit a desired response 

in vivo, biological based materials rely on the biological component to impart 

bioactivity to the implant. This is an attractive alternative to material-alone options 

because it utilizes a “natural” biological input to evoke a regenerative response. The 

idea is that cells from a given tissue intrinsically know how to communicate with their 

own environment and can produce the signals necessary to initiate the natural 

regenerative process, thereby avoiding the pathological inflammation often 

associated with synthetic materials during biodegradation or lack of biocompatibi l ity . 

Furthermore, it is poorly understood which quantities of any given bioactive factor can 

reliably elicit which given response.  

While the material science field expands our understanding of the 

material/regenerative response domain, biological-based tissue engineered grafts 

continue to develop innovative techniques to combine biological components with 

support materials. Having said this (and taking into consideration the previous discussion 

on materials), it should be said that an ideal support material for a biological implant 

would therefore be one which is itself inert, biodegradable (with the biodegradation 

byproducts being inert as well), biocompatible and able to be handled by surgeons for 

implantation. For bone tissue engineering purposes, ceramics have quite often been 
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used in combination with cells to boost the osteogenic signals already present in the 

ceramic material. But, from a practical standpoint, ceramics are brittle and tend to 

break-up, making them inappropriate for load bearing implant sites. As the field of 

polymer science has evolved, several materials have made their way to the forefront 

because of their remarkable capacities to be shaped into almost any form needed, 

their biocompatibility and their capacity to support loads upon implantation. While 

there already exist many applications for polymers in the regenerative medicine field 

(artificial heart valves, breast implants and bone prostheses, for example) 105–107, no 

material combined with cells has yet made it to the market. As mentioned before, the 

main reason for this is the difficulty a biological system presents in terms of 

standardization.  

To streamline the production of biological material-based grafts, two particular 

approaches were developed in this thesis: bioreactor-based graft production and 

extracellular matrix engineering. The first relies on a closed system in which the cell 

medium is forced through the cell-containing graft scaffold. Cells that are seeded onto 

the scaffold in the bioreactor system are then cultured under defined and control lable 

conditions (Figure 10). This results not only in a more uniform distribution of the cells (and 

therefore a more uniform distribution of the produced ECM), but also a controlled 

environment to reduce external stimulate from affecting the culture period. Bioreactor-

based graft production was developed and used in chapters 3 and 4 of the 

experimental work section. 
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Figure 10: 3D perfusion bioreactor system developed in the Tissue Engineering group of the ICFS. Medium and/or cell suspension 

is forced up and down through the porous scaffolding material, resulting in a 3D cell culture condition more reminiscent of the 

physiological cell environment 108. 

The second approach to aid in graft production standardization consists of the 

engineering of a cell-laid ECM onto the scaffolding material within the bioreactor 

system by using an engineered cell line. The idea consists of containing the graft 

production inside a bioreactor system and stimulating ECM production by the seeded 

cells directly onto the scaffolding material. The cells (bone marrow derived 

mesenchymal stromal cells in this case) are immortalized prior to graft production, 

allowing for a standardized cell source that is capable of producing and osteogenic 

ECM consistently in both quantity and quality. Both approaches are treated in more 

detail in the experimental work section. 

2) Aims of this thesis 
Living and/or biological material-derived grafts for regenerative medicine purposes 

would benefit greatly if: 1) an appropriate cell source for site-specific graft production 

were used and, 2) if the production process of individual, biological material-based 

grafts could be standardized to reduce variability. This thesis addresses possible solutions 

for biological-based graft materials to better incorporate into an appropriate implant 

environment and explores possible modes to standardize the production of these grafts. 

Four chapters are included in the experimental work section: 

Chapter 1 focuses on a novel cell source for cartilage tissue engineering (nasal septum-

derived chondrocytes). This study hypothesizes that these cells, as compared to 

articular chondrocytes, are more plastic in nature and maintain a self-renewal 

capacity. These phenomena are linked to a specific genetic expression profile 

associated with these cells (Hox genes), due to their unique embryological origin 

(neuroetodermal). The cells are further characterized for their various differentiation 

capacities (chondrogenic, osteogenic and adipogenic) and then used to demonstrate 

their regenerative capacities in both small and large animal models. 

Chapter 2 extends the findings from the previous study by testing nasal chondrocytes’ 

osteogenic capacity. We assessed the capacity of adult human nasal septum-derived 
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chondrocytes, appropriately primed in vitro through hypertrophic and osteoblastic 

differentiation, to form bone tissue in vivo. We first cultured hNC at multiclonal and 

clonal levels under osteoblastic differentiation conditions to both determine the extent 

of heterogeneity of the whole population and to test their in vitro osteogenic potential. 

Exploiting both subcutaneous and orthotopic cranial in vivo environments, we next 

assessed whether human nasal chondrocytes could be phenotypically converted to 

osteoblasts and actively participate in the formation of frank bone tissue. The 

availability of a craniofacial-derived somatic cell source capable of active 

participation in homotopic bone repair without pre-implantation genetic manipulation 

would provide a significant and clinically relevant advancement in the field of 

craniofacial bone repair. 

Chapter 3 represents a preliminary study to test the feasibility of using a 3D perfusion 

bioreactor system in the development of streamlined and standardized approach to 

graft production. We decorated tailored synthetic substrates with decellularized ECM, 

in order to generate bone substitute materials with enhanced biological functionality. 

The developed hybrid ECM-polymer materials were shown to regulate cell osteogenic 

commitment while maintaining a progenitor cell pool. From this, we propose the use of 

bioreactors could streamline the manufacturing process and provide standardized, 

clinically compliant and cost-effective products. Furthermore, polymeric scaffolds 

decorated with decellularized matrices can also be used as models of engineered 

niches physiologically presenting customized signals to cells. 

Chapter 4 extends the work presented in chapter 3 to include a novel, non-invasive 

decellularization technique to the bioreactor graft production process. Aiming at 

avoiding the side effects inherent to current decellularization strategies (e.g. latent 

immunogenicity and ECM alteration), we propose here an alternative approach to 

tissue decellularization based on the controlled activation of programmed cell death. 

The use of apoptosis as decellularization technique goes beyond the generation of 

grafts with enhanced performance. The concept would also offer the unprecedented 

possibility to investigate the properties of decellularized but theoretically intact ECM 

and (by correlating an observed regenerative capacity with a specific composition) to 

identify a set of cues critical to elicit certain functions.  
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ABSTRACT 

In embryonic models and stem-cell systems, mesenchymal cells derived from the 
neural crest (‘mesectoderm’) can be distinguished from mesoderm-derived cells by 
their ‘Hox-negative’ profile, a phenotype associated with enhanced capacity of t issue 
regeneration (1,2,3,4). We investigated whether developmental origin and Hox-
negativity are related with self-renewal and environmental plasticity also in 
differentiated cells from adult individuals. Using hyaline cartilage as a model we show 
that adult human mesectoderm-derived nasal chondrocytes (NC) can be constitutively 
distinguished from mesoderm-derived articular chondrocytes (AC) by lack of expression 
of specific HOX genes (e.g., HOXC4, HOXD8). In contrast to AC, serially cloned NC can 
continuously revert from differentiated to de-differentiated states, conserving the ability  
to form cartilage tissue in vitro and in vivo. NC can also be reprogrammed to stably 
express HOX genes typical of AC upon implantation into articular cartilage defects, 
directly contributing to their repair. Our findings identify previously unrecognized 
regenerative properties of HOX negative differentiated mesectoderm cells in adults 
and imply a role for NC in the yet unsolved clinical challenge of articular cartilage 
repair. 
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ABSTRACT 

Nasal chondrocytes (NC) derive from the same multipotent embryological segment 
that gives rise to the majority of the maxillofacial bone and have been reported to 
differentiate into osteoblast-like cells in vitro. In this study, we assessed the capacity of 
adult human NC, appropriately primed towards hypertrophic or osteoblastic 
differentiation, to form bone tissue in vivo. Hypertrophic induction of NC-based 
micromass pellets formed mineralized cartilaginous tissues rich in type X collagen, but 
upon implantation into subcutaneous pockets of nude mice remained avascular and 
reverted to stable hyaline-cartilage. In the same ectopic environment, NC embedded 
into ceramic scaffolds and primed with osteogenic medium only sporadically formed 
intramembranous bone tissue. A clonal study could not demonstrate that the low bone 
formation efficiency was related to a possibly small proportion of cells competent to 
become fully functional osteoblasts. We next tested whether the cues present in an 
orthotopic environment could induce a more efficient direct osteoblastic 
transformation of NC. Using a nude rat calvarial defect model, we demonstrated that 
(i) NC directly participated in frank bone formation and (ii) the efficiency of survival and 
bone formation by NC was significantly higher than that of reference osteogenic cells, 
namely bone marrow-derived mesenchymal stromal cells. This study provides a proof-
of-principle that NC have the plasticity to convert into bone cells and thereby represent 
an easily available cell source to be further investigated for craniofacial bone 
regeneration. 
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ABSTRACT 

Materials based on synthetic polymers can be extensively tailored in their physical 
properties but often suffer from limited biological functionality. Here we tested the 
hypothesis that the biological performance of 3D synthetic polymer-based scaffolds 
can be enhanced by extracellular matrix (ECM) deposited by cells in vitro and 
subsequently decellularized. The hypothesis was tested in the context of bone graft 
substitutes, using polyesterurethane (PEU) foams and mineralized ECM laid by human 
mesenchymal stromal cells (hMSC). A perfusion-based bioreactor system was crit ically 
employed to uniformly seed and culture hMSC in the scaffolds and to efficiently 
decellularize (94% DNA reduction) the resulting ECM while preserving its main organic 
and inorganic components. As compared to plain PEU, the decellularized ECM-polymer 
hybrids supported the osteoblastic differentiation of newly seeded hMSC by up-
regulating the mRNA expression of typical osteoblastic genes (6-fold higher bone 
sialoprotein; 4-fold higher osteocalcin and osteopontin) and increasing calcium 
deposition (6-fold higher), approaching the performance of ceramic-based materials. 
After ectopic implantation in nude mice, the decellularized hybrids induced the 
formation of a mineralized matrix positively immunostained for bone sialoprotein and 
resembling an immature osteoid tissue. Our findings consolidate the perspective of 
bioreactor-based production of ECM-decorated polymeric scaffolds as off-the-shelf 
materials combining tunable physical properties with the physiological presentation of 
instructive biological signals. 
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Supplementary data 

 

Supplementary Data 1.  

PEU scaffold characterization. (A) SEM images of the scaffold showing an open interconnected 

pore structure with average pore dimensions of 153 ± 44 μm (B) permeability evaluation at 

different working pressures. (C) Cytotoxicity tests show a viability similar to those of ceramic 

(HA) and tissue culture polystyrene (PS) controls. 
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Supplementary Data 2.  

List of the adopted primers and probes. 
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Supplementary Data 3.  

Histological analyses of explanted PEU w/ECM. Constructs were negative for human alu 

hybridization confirming the absence of cells of human origin (A). The pores of cell-free 

implants of control HA samples were negative for Von Kossa staining (B) and BSP (C). The HA 

samples embedded in MMA (without undergoing decalcification treatment), the scaffold itself 

was positive to Von Kossa due to the phosphate present in the substrate material. (Scale 
bars = 200 μm). 
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Table 1.  

hMSC expression levels for STRO-1 osteogenic precursor marker after 8 and 16 days culture on 

HA, PEU and PEU w/ECM. Positive expression was defined as the level of fluorescence greater 

than 99% of corresponding control. 
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ABSTRACT 

Decellularized tissues, native or engineered, are receiving increasing interest in the 
field of regenerative medicine as scaffolds or implants for tissue and organ repair. The 
approach, which offers the opportunity to deliver off-the-shelf bioactive materials 
without immuno-matching requirements, is based on the rationale that extracellular 
matrix (ECM)-presented cues can be potently instructive towards regeneration. 
However, existing decellularization protocols typically result in damage to the source 
ECM and do not allow the controlled preservation of its structural, biochemical and/or 
biomechanical features. Here we propose the deliberate activation of programmed 
cell death as a method to selectively target the cellular component of a tissue and 
thereby to preserve the integrity of the decellularized ECM. In the case of engineered 
tissues, the approach could be complemented by the use of (i) an immortalized cell 
line, engineered to undergo apoptosis upon exposure to a chemical inducer, and (ii) a 
perfusion bioreactor system, supporting efficient removal of cellular material. The 
combination of these tools may lead to the streamlined development of more 
appropriate materials, based on engineered and decellularized ECM and including a 
customized set of signals specifically designed to activate endogenous regenerative 
processes. 
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III. Conclusions and Perspectives 

Biology remains a finicky system, prone to auto-regulation/transformation 

independent of the engineered input and remarkably resistant to current protocol-

based control methods. Based on this lack of control, the implementation of biologicals 

in humans is a difficult process that requires years of development and regulatory 

procedures, after which, results often demonstrate a lack of reproducibility and/or 

clinically-relevant outcomes. This is evident in the fact that 90% of clinical trials for t issue 

engineering products stop after phase I, never reaching the market 109. Despite the 

technical and regulatory challenges associated with tissue engineered products, their 

perspective as a reliable treatment option is quite good 110. Replacement/repair 

solutions to less complex tissues have met with overwhelming success and recent 

developments in material science and 3D culture systems have offered a slow evolution 

to more and more complex tissue replacements 111–114. So far, the uniting element for al l  

aforementioned implant technologies is based on the autologous use of cells to render 

a scaffolding material more receptive and prone to a regenerative response in vivo. 

This type of personalized medicine relies on many parameters for a successful clinical 

outcome, but this thesis treats the subject of optimizing two of these parameters in 

particular: the cell source and standardization of implant production. 

The first two chapters dealt with cartilage and bone tissue engineering, respectively, 

investigating a novel cell source specifically chosen for its hypothetical capacity to 

integrate and communicate with the chosen implant sites. Adult human nasal 

chondrocytes, being derived from an embryological layer known for its remarkable 

capacity to differentiate into a variety of tissue types, were shown to not only maintain 

their capacity to differentiate into different cell types, but also to be capable of 

integrating into heterotopic sites, eventually participating in tissue repair. In Chapter 1, 

the adaptive capacity of nasal chondrocytes was investigated via their cartilage repair 

capabilities in an articular cartilage defect site. We demonstrated their latent self-

renewal and progenitor capacity and correlated their tissue repair abilities to their 

specific Hox genetic signature. In Chapter 2, the multi-differentiation potential of nasal 

chondrocytes was explored by testing their capacity to differentiate into a bone 

forming osteoblast capable of orchestrating frank bone formation upon orthotopic 
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implantation. Interestingly, while nasal chondrocytes have now been shown to be 

capable of forming and repairing both cartilage and bone tissue types, it appears their 

capacity to do so is governed by the implant site itself. For regenerative medicine 

purposes, this is not only extremely clinically relevant, but highlights an important factor 

to be considered when choosing an appropriate cell source for graft production.  

Indeed, currently successful autologous cell-based approaches to graft production rely 

on using either multipotent stromal or fully-differentiated cells from the defective t issue 

itself for the engineering of a replacement graft. Interestingly and demonstrated in th is 

thesis, nasal chondrocytes alone seem to fill both criteria for cartilage and bone 

applications: the demonstration of multipotent capacities and being derived from 

either a cartilage layer or from a craniofacial tissue. The clinical impact of these findings 

are therefore beyond our initial hopes. An adult chondrocyte cell source capable of 

articular cartilage repair already represents a significant step forward for regenerative 

medicine in cartilage applications. Nasal chondrocytes’ ability to form a stable 

cartilage, even in long term implant experiments (up to 1 year) combined with their 

apparent resistance to endochondral ossification stimulation suggests this cell type 

helps to fills the gap present in articular cartilage tissue engineering. Indeed, the phase 

1 clinical trials currently underway in Basel using autologous nasal chondrocytes to treat 

both homo- and heterotopic cartilage defects demonstrates their promise of versati l i ty  

and safety in cartilage applications. While at an earlier stage of development, nasal 

chondrocytes’ demonstrated ability to contribute to cranial bone repair broadens their 

clinical application to potentially include homotopic bone defects, possibly 

representing a unique cell source to repair craniofacial defects involving both cartilage 

and bone tissues. Autologous cell-based graft production represents a promising field in 

regenerative medicine and nasal chondrocytes seem to have their place in this 

emerging technology. Awaiting the final results from the clinical studies currently 

underway, nasal chondrocytes already present convincing preliminary results in humans 

that they do indeed have the capacity to reproducibly form a stable repair cartilage in 

defects. Further optimization of nasal chondrocyte-based bone grafts could also lead 

to similar positive findings in craniofacial bone applications. 
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The second parameter treated by this thesis for the optimization of clinically relevant 

graft production is standardization. As previously mentioned, cell-based systems 

demonstrate inherent adaptability to user input which tends to reduce the 

reproducibility of the constructed graft. One approach to minimize this effect but which 

continues to profit from the positive biological response presented by cells is based on 

the activation of a graft material using a cell-laid extracellular matrix (ECM). While the 

presence of cells on a graft material represents several problems for implant production 

standardization (reproducibility, donor variability, expensive and time consuming graft 

production costs and limited to one-off personalized grafts), ECM-based grafts 

produced in a perfusion bioreactor system promises to address these drawbacks.  

Steps are currently underway to optimize both graft production strategies detailed in 

this thesis. While both technologies (living- and ECM-based graft production) are still 

hindered by the large amount of parameters to control throughout the production 

process, emerging technologies are helping to minimize and control the variable 

effects present in any biological system. 3D perfusion bioreactor systems are helping to 

reduce user manipulation of the graft material and standardize the biomechanical 

signals given to the cells during graft production. This technology theoretically allows for 

the use of any cell, as long as it is combined with an appropriate material for seeding 

and culture. For nasal chondrocytes, future work should first test if the biological signals 

present in the ECM produced during culture is enough to elicit a cartilage and bone 

repair response in vivo similar to the cell containing grafts demonstrated in this thesis. 

Production of ECM-based grafts could then be transferred to a 3D perfusion-based 

bioreactor system. Concurrently, current work is underway to test the feasibility to enrich 

the cell-laid ECM in chosen growth factors to augment to regenerative response upon 

implantation 115,116. The power of this work resides in its potential to be transferred to 

other cell systems for targeted implant site graft production. ECM-based grafts with 

controlled repair signals combined with bioreactor production represent exciting new 

tools for tissue engineering, offering the possibility to tailor grafts to a specified 

regenerative and clinical need.    
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