
Dual-Use Research In Ransomware Attacks:
A Discussion on Ransomware Defence Intelligence

Ziya Alper Genç1 a and Gabriele Lenzini1 b

1Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg
{ziya.genc, gabriele.lenzini}@uni.lu

Keywords:
Ransomware, Double Use Research in Cryptography, Threat Intelligence and Counter-Intelligence.

Abstract:
Previous research has shown that developers rely on public platforms and repositories to produce
functional but insecure code. We looked into the matter for ransomware, enquiring whether also
ransomware engineers re-use the work of others and produce insecure code. By methodically
reverse-engineering 128 malware executables, we have found that, out of 21 ransomware samples,
9 contain copy-paste code from public resources. Thanks to this finding, we managed to retrieve the
decryption keys with which to nullify the ransomware attacks. From this fact, we recall critical
cases of code disclosure in the recent history of ransomware and, arguing that ransomware are
components in cyber-weapons, reflect on the dual-use nature of this research. We further discuss
benefits and limits of using cyber-intelligence and counter-intelligence strategies that could be used
against this threat.

1 INTRODUCTION

In anti-ransomware research, ransomware
samples are routinely analyzed. The goal is to
understand how they generate or retrieve the en-
cryption keys; how they search, sort and prior-
itize which files to target first; and which files
they encrypt first and by using which encryption
algorithm. In this quite methodical work, it is
routine to reverse engineer ransomware samples
and analyze their source codes. While perform-
ing this task, we found that some piece of code
was not original but copy-and-pasted from well-
known public repositories or developpers commu-
nities. From this discovery, with some additional
work, we managed to build a decryptor for those
ransomware samples.

Although our discovery is not surprising—
researchers have already commented on how
codes from public repositories is re-used and how
this impacts security (e.g., see (Fischer et al.,
2017))—realizing that also ransomware’s secu-
rity depends on public code has captured our
attention. We started wondering whether there

a https://orcid.org/0000-0001-7198-7437
b https://orcid.org/0000-0001-8229-3270

were other cases of copy-and-pasted code in ran-
somware. And we started reflecting on which con-
sequences such re-use of code may bring into the
fight against ransomware attacks. This articles
report on our insights on the subject.

Although motivated by some experimental
findings, our contribution is purely argumenta-
tive. But, by developing our argument rigorously,
we hope to contribute to a scientific discussions
on “the matter”. And being “the matter” related
to dual-use of concern in ransomware research,
we intend to embark on other questions as well:
What famous precedents exist in the recent his-
tory of ransomware that could enlighten us on
the pros and cons of dual-use research? Should
ransomware be considered components of a cyber-
weapon? And, as such, are there reasons to clas-
sify ransomware as having military use? Thus,
would it be reasonable to resort to intelligence
and counter-intelligence strategies, such as those
suggesting to contain information spreading in
case of an attack or to control public information,
to mitigate the threat? We restrict our argument
to cryptographic ransomware, those which rely
on cryptography. Other kind of ransomware, e.g.,
those which aim to distress victims to pay up but,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/287735008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

like the scareware, only pretend to use encryption
but do not, are excluded from the discussion.

2 PRELIMINARIES

Is copy-and-paste from public repositories a
practice in ransomware engineering? To investi-
gate the question we have first to collect and ob-
tain the code of real-world ransomware samples
and reverse engineer it.

The most accurate way to accomplish this lat-
ter is to decompile the malicious binaries. The
task becomes quite practical if the malware is
implemented using the .NET framework. Look-
ing into malicious .NET assemblies downloaded
from “Hybrid Analysis”, an automated malware
analysis platform (Hybrid Analysis, 2019). Hy-
brid Analysis utilize sandboxing technique to de-
termine if an executable exhibits malicious be-
haviour or poses no specific threat. From it, we
collected ransomware samples by searching on re-
port database with the following settings: (i) Ex-
act Filetype Description as Mono/.Net assembly,
for MS Windows; (ii) Verdict field as Malicious;
and (iii) Hashtag field as #ransomware.

On a initial set of 128 executable, we ap-
plied dnSpy (dnSpy, 2019), a tool to obtain source
codes. 39 samples, obfuscated, precluded any
analysis. Of the remaining 89, we manually pe-
rused the source code, searching for key genera-
tion and encryption routines. 68 samples turned
out to be non-cryptographic ransomware, with no
such routines in their program body. The remain-
ing 21 cryptographic ransomware samples were
our final data set.

Using the found crypto-related code lines
(e.g., key derivation, encryption) as keywords, we
searched for those lines in public developer plat-
forms. When analyzing the hits, we compared the
semantics of code snippets, naming of constants
and variables, function signatures, strings, and
error messages. From this searching and match-
ing we discovered that some code was a verbatim
copy-paste. Other code resulted, at least appar-
ently, a plagiarism of some public available code.

Were we witnessing code-reuse (i.e., dual-use)
in ransomware? Before claiming code-reuse, we
had to verify whether the code had been pub-
lished before the first appearance of it in the mal-
ware. There should also be a reasonable time
frame between the two events. The date of the
first appearance of a ransomware, checked by us-
ing VirusTotal (VirusTotal Threat Intelligence,

2019), has been compared with the date on which
the knowledge was first shared on online. A
double-checked on the integrity of the pieces of
information available on the executable was also
performed. According to our findings, at least 9
out of 21 ransomware samples resulted to contain
snippets bearing a marked resemblance to codes
at online resources, this leading us to conclude
that they are in fact a copy-paste.

In the following, we can comment on an ex-
cerpt from the ransomware samples (see Table1)
that we have found being a copy-paste from (i) a
public repository of fully functional ransomware
prototypes; (ii) tutorials and posts at developer
communities. We also elaborate, where possible,
about where the original code comes from, and
about its cryptographic qualities.

Ransomware from repositories of fully
functional prototypes. Tiggre, see Table 1,
is a sample of cryptographic ransomware that
uses a key generation function that is copy of a
piece of public code known as HiddenTear (Şen,
2015b) (see Fig. 2 and Fig. 1). From it, Tiggre
inherits a weakness: the password is generated
using the outputs of a cryptographically weak al-
gorithm. In fact, the same author of HiddenTear
had developed a decryptor by using this weak-
ness (Şen, 2015a). We tell the full story later,
but what counts for now is that the open-source
ransomware HiddenTear is a very famous ran-
somware code, which was posted publicly in 2015
allegedly for educational purpose. Since then,
cyber-criminals have been using it as a source of
inspiration for their ransomware variants (van der
Wiel, 2016). This was also the case for Tiggre.

The original HiddenTear works as follows: it
generates a password by calling CreatePassword
which is shown in Fig. 1. The password, from
which the encryption keys are derived, is sent to
Command and Control (C&C) server. Next, be-
fore notifying the user, the ransomware attempts
to encrypt all the files in test folder under the
user’s Desktop directory.

Ransomware authors that copy from
HiddenTear had to implement their own
back-ends before having a working ransomware,
but HiddenTear remains their point of reference.
We have found that basic functionalities such
as password generation and encryption blocks
have been replicated from HiddenTear: for
each file, the encryption key is derived from
the same master secret, the password; this
latter is generated using System.Random, a class

Table 1: SHA256 digests and family names of the samples. To determine the family name, we applied AVclass
tool on the labels provided by AV vendors which we obtained from VirusTotal. SINGLETON denotes that the tool
could not find any plurality among the labels for that sample, i.e., no vendor agreed on the family name.

SHA256 Digest Family Reuse From

1 0e5a696773b0c9ac48310f2cda53b1742a121948df5bcb822f841d387f0f5f68 Jigsaw
2 1d57564398057df99d73cca27015af24142c25828287837c73d2daf0b3c3af5b Mimikatz
3 1ebdbfea6ab13f258a7d00dea47de48261cfb84d52ebbb6f282498c3ab1b1b39 Occamy
4 3b4aaf37510c0f255e238c81b7e1a446bfa925bd54f93969c3155d988fbb6501 HiddenTear (Şen, 2015b)
5 41ee4623d60544dd0ca16f6177565d99825afb38b932ccecc305ef2fc20e03f4 HiddenTear (Şen, 2015b)
6 58d11ef74b062e9996e75d238501a3f4d23691b101997d898d478696795ae3ff CloudSword (den Bosch, 2005)
7 662d0f034f2852e4e43d22a3625c1c8600c3d36660b596db1d6bad5c4980d9df Ryzerlo (Şen, 2015b)
8 66a3172e0f46d4139cc554c5e2a3a5b6e2179c4a14aff7e788bb9cc98a2219d5 Tiggre
9 7cdd7e30c7091fd2fa3e879dd70087517412a165bf14c4ea4fd354337f22c415 HiddenTear (Şen, 2015b)

10 87ce0b2e22b02572146676277cd6e9d89225e75361d1b696555cfe695c2e1f45 SINGLETON
11 894aa842c129b39c0b9a7d575133d68b25de2ecd4e777f29e58481d30dfb6f4e Omegax
12 950be5b5501ee84b1641c3a9a780242a57cdd412892c781eac8781498bf11f3e Bobik
13 951d78dd92eba7daa3ef009ce08bba91a308e13bdeb8325af35bc8202bd76e9b Tiggre
14 b5f3a090556ea30210a23fc90b69c85c68e8e08c89fbe58eb6a829e356dcc42e Occamy
15 ce53233a435923a68a9ca6987f0d6333bb97d5a435b942d20944356ac29df598 Crypren (Lydford, 2008) & (Johnson, 2008)
16 d36e6282363c0f9c05b7b04412d10249323d8b0000f2c25f96c6f9de207eedf8 HiddenTear (Şen, 2015b)
17 def09368d22c7b3f6a046ef206a57987095b2f4ddae1d26c6ef2594d6be09bfc Diztakun
18 e2ac9692c0816ccd59d1844048c6238dc5d105b0477620eeb1cdb0909804a787 WhiteRose (Şen, 2015b)
19 f37080ee4cc445919cae0b1eb40eff46571f7ce0d85b189321d80a41c8752212 SINGLETON
20 f535879cf05a099bf0f6d2a7fa182d399ec9568f131abb23d9fb98418f45789d Perseus (den Bosch, 2005)
21 fd99bfeac78c087a9dc9d4c0c1d26a7ea9780a330f88ba0d803f3464221b4723 SINGLETON

that provides (cryptographically weak) pseudo
random numbers.

From a cryptographic point of view, the out-
puts of System.Random is reproducible when us-
ing the same seed and its secrets are vulnera-
ble to a forensics analysis. But other variants
of HiddenTear eliminate this weakness: the weak
key generation method is not seen in those sam-
ples.

Ransomware from community platform.
Confidentiality of data is a highly demanded and
legitimate need in the digital world. While cryp-
tographic techniques can be used to protect the
secrecy of data, developing a security application
is an error-prone process. Therefore, developers
who recently entered in the field of cybersecurity
might need to use the help of online tutorials.
For example, Fig. 3 shows a post on CodeProject
website (Lydford, 2008) which explains a simple
way to encrypt a file using a key derived from a
password in C# language (see Fig. 3). The func-
tion, EncryptFile, is poorly written from a crypto-
graphic point of view. There are weaknesses, such
as (i) presence of a hard-coded secret in the code;
and (ii) improper key derivation, to name a few.
That said, we found a Crypren ransomware variant
(see Table 1) which copies the file encryption and
decryption functions from (Lydford, 2008). Fig. 4
shows the function modified by the ransomware
author, who disdained to write a password gen-
eration method and even used almost the same
hard-coded secret.

Furthermore, the same Crypren sample con-
tains the exact code snippet shared at another de-
veloper community (Johnson, 2008). That piece
of code, is meant to impersonate another user,
i.e., to launch a process under that user’s ac-
count. However, the said code portion is not
used/referenced by the program.

In another case, we observed that an online tu-
torial published in 2005 inspired two ransomware
samples: Perseus and CloudSword (see Table 1).
The post, available at (den Bosch, 2005), explains
how to encrypt files with a user-supplied pass-
word in VB.NET programming language. Many
portions of the code is reused by the ransomware
samples, bar the part which takes input (i.e.,
the password) from the user. Alternatively, the
Perseus variant uses an embedded password to
derive key, while the CloudSword variant uses
the System.Random to generate a password from
which the key is derived. The CloudSword sam-
ple even contains the exact error messages as in
the full project at (den Bosch, 2005); the Perseus
sample uses the same code portions as in the tu-
torial, that without error messages.

Discussion. From our findings, we can con-
clude that certain ransomware engineers do copy-
and-paste code from public sites. Surely, this
conclusion cannot be representative of how all
ransomware variants are coded. We do not even
know whether who took advantage the public re-
sources are professionals or amateurs, and it may
be inherently hard to investigate for an answer

public string CreatePassword(int length)
{const string valid =

"a..zA..Z1234567890*!=&?&/";↪→
StringBuilder res = new StringBuilder();
Random rnd = new Random();

while (0 < length--)
res.Append(valid[rnd.Next(valid.Length)]);

return res.ToString();}

Figure 1: Password generation method of HiddenTear.
This password will later be used as the master secret
to derive encryption keys.

private static string RandomString(int length)
{string chars = "a..zA..Z0123456789";

StringBuilder stringBuilder = new
StringBuilder();↪→

Random random = new Random();

while (0 < length--)
stringBuilder.
Append(chars[random.Next(chars.Length)]);

return stringBuilder.ToString();}

Figure 2: Password generation method used by
Tiggre. The set of valid characters is shortened, most
probably, to ease the typing of the password when
asked for recovery.

on this matter due to the difficulty to reach out
ransomware developers. However, we speculate,
ransomware engineers are likely not in a differ-
ent position than security developers. In (Acar
et al., 2017), it is reported that in a population
of three hundreds developers among which also
professionals, only a quarter relied on the official
documentation, while the rest consulted “the In-
ternet”, inevitably relaying in their code errors
näıvities “out there”, cause them to introduce se-
curity vulnerabilities in their code.

This seems to remain valid in our case: the
security of some ransomware depends, at least in
part, on the security reliability of the unofficial
sources. A question remains open. Has the code-
use helped ransomware criminals? The question
is intertwined with the practice of dual-use of re-
search in the field and, for this reason, we looked
into the recent history of ransomware attacks in
search for episodes of code re-use.

3 DUAL-USE & RANSOMWARE

Article 2 of Council Regulation (EC) No
428/2009 defines ‘dual-use items’ as items which
can be used for both civil and military purposes.
The article includes “Computers” and “Telecom-
munications and Information security” as cate-
gories to be screened for potential dual-use.

When it comes to cryptography, dual-use is a
serious matter. In response to the US Munitions
List, Category XIII, Materials and Miscellaneous
Articles, which mentions “cryptographic devices,
software and components”, in a T-shirt shown at
a DEFCON conference it was reported provoca-
tively a piece of (encryption) code with the com-
ment “this [code] can also be a munition” (Herr

and Rosenzweig, 2015).

Within the cryptography community there is
awareness that dual-use comes with a moral bur-
den. Rogaway wrote that “cryptography is an
inherently political tool, and it confers on the
field an intrinsically moral dimension” (Rogaway,
2016). Rogaway’s argument is scoped in the con-
tention between privacy on one side and mass
surveillance on the other, but the message on
that DEFCON T-shirt extends, even reverses, the
matter. It raises the stake by pointing out that
cryptographic code can be misused as a weapon.
This is still the vision in certain countries, for in-
stance the US, where non-military cryptography
exports are if not forbidden at least controlled.

Being the subject of this paper ‘ransomware’,
the matter must be contextualized: what about
dual-use for cryptographic ransomware? And are
ransomware and their cryptographic components
weapons? To answer this question we look into
cases of dual-use in ransomware. The most con-
troversial is that of HiddenTear and its clones.

HiddenTear and its Clones. In 2015,
a Turkish programmer Utku Şen published
the first fully-fledged, open-source ransomware
HiddenTear. This is the sample we commented
in the previous section and whose code to gener-
ate a password is shown in Fig. 1.

From the early days, the release of HiddenTear
prototype received criticisms from the security
community (Kovacs, 2016). The main concern of
the researchers is that even novice programmers
can also make use of the published ransomware
code while developing new variants. Time showed
that they were right. A McAfee researcher stated
that “in June (2017) almost 30% of the ‘new’ ran-
somware species we discovered was based on the

private void EncryptFile(string inputFile,
string outputFile)↪→

try
{

// Your Key Here
string password = @"myKey123";
UnicodeEncoding UE = new

UnicodeEncoding();↪→
byte[] key = UE.GetBytes(password);

string cryptFile = outputFile;
FileStream fsCrypt = new

FileStream(cryptFile,
FileMode.Create);

↪→
↪→

RijndaelManaged RMCrypto = new
RijndaelManaged();↪→

CryptoStream cs = new
CryptoStream(fsCrypt,
RMCrypto.CreateEncryptor(key,
key), CryptoStreamMode.Write);

↪→
↪→
↪→
FileStream fsIn = new

FileStream(inputFile,
FileMode.Open);

↪→
↪→

int data;
while ((data = fsIn.ReadByte()) != -1)

cs.WriteByte((byte)data);

fsIn.Close();
cs.Close();
fsCrypt.Close();

}
catch
{

MessageBox.Show("Encryption failed!",
"Error");↪→

}}

Figure 3: A simple function to encrypt files with a
password, published at CodeProject. Contrary to the
common practices, e.g., PBKDF2 (Kaliski, 2000), en-
cryption key is derived directly using UTF-16 char-
acter encoding. In addition, instead of generating a
unique value, encryption key is used as IV.

private static string GetEncKey()
{try

{
using (WebClient webClient = new

WebClient())↪→
return webClient.DownloadString(

@"http://ohad.000webhostapp.
com/cnc.php?txt=saveme")
.Trim();

↪→
↪→
↪→

}
catch
{

return "myke123!";
}}

private static void EncryptFile(string
inputFile, string outputFile, string
password)

↪→
↪→
{try

{
byte[] bytes = new UnicodeEncoding()

.GetBytes(password);↪→
FileStream fileStream1 = new

FileStream(outputFile,
FileMode.Create);

↪→
↪→
RijndaelManaged rijndaelManaged = new

RijndaelManaged();↪→

// [...]

fileStream1.Close();
System.IO.File.Delete(inputFile);

}
catch
{

Console.WriteLine("Error: Encryption
failed!");↪→

}}

Figure 4: File encryption function of the Crypren
sample. If C&C server is not reachable, which is shut
down at the time of this writing, the embedded pass-
word is used to derive keys. The resemblances be-
tween hard-coded passwords, key derivation methods
and error messages are remarkable.

HiddenTear code” (bee,).

Three months after the first release, Şen
claimed that he wished (i) to provide an exam-
ple of ransomware for beginners (ii) to build a
honeypot for script kiddies (Şen, 2015a). It was
partly true that the first variants of HiddenTear
contained the same critical bugs that enabled the
recovery of files (van der Wiel, 2016). However,
one real thing in the malware history is evolution.
The bugs in the original HiddenTear was fixed,
and HiddenTear variant replaced the crypto-
graphically insecure key generation method with
a new one (Trend Micro Blog, 2017) which evades
the state-of-the-art key-oriented anti-ransomware
defenses. Later, Şen admitted that his experi-
ment was a total failure.

Another criticism to publishing the full source
codes of a ransomware regards the principle
of responsible disclosure. Prior to sharing the
sources, Şen did not informed the anti-virus ven-
dors. It should be noted that, when HiddenTear
was released, on August 2015, only a few anti-
ransomware systems existed: signature-based de-
tection was the main technique to stop ran-
somware, just as the other malware types. Since
HiddenTear and its variants were previously un-
seen, they were not recognized by AVs and there-
fore could run undetected for a while. The only
precaution Şen took was putting a warning mes-
sage in HiddenTear source code, which cyber-
criminals could easily ignore.

Further Public Prototypes. Şen is not the
only person that published a full ransomware pro-
totype. There are several ransomware projects
in different programming languages, publicly
available on the Internet. For instance, Are-
scrypt is another open source ransomware im-
plemented in C# (Fox, 2017). GonnaCry is
a Linux ransomware, implemented in both C
and Python (Marinho, 2017). Aiming at web
servers, a ransomware script written in PHP is
also available at (Šincek, 2019). There is even an
“academic” ransomware prototype implemented
in Go language (de Souza Nunes, 2016). All
these projects are publicly available at GitHub,
a well-known platform among software devel-
opers. Moreover, although Şen abandoned the
HiddenTear project, there are still several clones
of the original repository and even some improved
versions of HiddenTear on GitHub website, for ex-
ample (Rosa, 2017).

Zaitsev followed a different strategy when
publishing CryptoTrooper (Zaitsev, 2016). He
shared the core part of the prototype as a closed
source binary. The encryption algorithm, whose
code was not shared, contained a cryptographic
flaw which enabled the recovery. Being closed
source, the flaw in the encryption module of Cryp-
toTrooper could not be fixed by the script-kiddies.
Still, the community was divided: some found
the idea useful, others did not (Cimpanu, 2016).
In the end, Zaitsev removed the project from
GitHub but, as in the case of HiddenTear, Cryp-
toTrooper was forked by other developers. It is
still accessible via various repositories.

All the developers of the publicly available
ransomware prototypes states that their main
motivation was educational. However, a well doc-
umented ransomware code would also help to-be-
cyber-criminals to enter the ransomware business.
Since ransomware prototypes remain available on
the Internet, the ethical question here is whether
security researchers need to publish and share full
ransomware codes without feeling accountable of
the consequences, a recognized ethical issue.

4 RANSOMWARE
INTELLIGENCE

Herr and Rosenzweig suggest that a piece of
code is cyber-weapon when it combines “prop-
agation, exploitation, and payload [i.e., damag-
ing] capabilities” (Herr and Rosenzweig, 2015).
Each components, despite innocuous in separa-

tion, carry the potentiality to be combined with
the missing others into a weapon. However, to
have a military use, a software ‘ must create or
tangibly support the deployment of destructive
effects. These could be short term, where deleted
data is restored from backup, or near permanent,
where a payload is designed to damage a device’s
firmware” (Herr and Rosenzweig, 2015).

Ransomware may have such a destructive ef-
fect. For sake of an example, at the time of the
writing, June 2019, the major electricity supplier
in South Africa’s city of Johannesburg was at-
tached, leaving more than a quarter of a million
people in the dark. Another attack forced a shut-
down of its websites and billing systems as a pre-
cautionary measure.

Ransomware variants, called wipeware, can
wipe data clean. Allegedly deployed to attack
Saudi energy companies and Iranian oil compa-
nies, they had destructive consequences. One
variant of it, Shamoon wiper, has been released
to attack Sony Pictures Entertainment, succeed-
ing to avoid the outing of ‘The Interview’, a doc-
umentary mocking the North Korean dictator,
Kim Jong-un. If we adhere to Schmid’s claims
that “terrorist violence is predominantly politi-
cal” (Schmid, 2011), such events can be consid-
ered also “terrorist attack” .

If ransomware are to be regarded as cyber-
weapons, as we claim, could it be conceivable to
apply intelligence and counter-intelligence strate-
gies to mitigate the threats and control the con-
sequences of an attack? And, if yes, how?

Cyber-Intelligence has been defined as “the
process by which specific types of information im-
portant to national security are requested, col-
lected, analyzed, and provided to policymakers,
the products of that process”(Lowenthal, 2016).
Duvenage et al. (Duvenage et al., 2015), call
this positive intelligence, to distinguish it from
counter-intelligence, which is the countering of an
hostile intelligence activity.

Ransomware Positive Intelligence For ran-
somware threat, positive intelligence could con-
sist in gathering information about modalities
of working. It should be about how the ran-
somware propagates, exploits vulnerabilities, and
executes it payload. In the Open Source In-
telligence (OSINT), several initiatives exist aim-
ing to collect and analyse information gathered
from public or open sources. An example is the
NoMoreRansom project1. It aims to inform the

1https://www.nomoreransom.org/en/

public and to collect incidents reports, including
to gather the information from public platforms
that can be potentially utilized by ransomware
authors. Other platforms, although not specifi-
cally dedicated to ransomware, such as the Mal-
ware Information Sharing Platform (MISP)2—
a free and open source software helping infor-
mation sharing of threat intelligence, including
cyber-security indicators—can offer tools that en-
able intelligence analysis. Such platforms can be
employed to control the information flow during
an attack, spreading alerts following a Warning
and Coordination action, and to help potential
victims “raise their shields” as soon as possible.

Ransomware Counter-Intelligence Accord-
ing to (Coleman, 2009), Counter Cyber Intelli-
gence (CCI) is the ensemble of “all efforts made
by one intelligence organization to prevent adver-
saries, enemy intelligence organizations or crim-
inal organizations from gathering and collect-
ing sensitive digital information or intelligence
about them via computers, networks and asso-
ciated equipment”. It can be implemented us-
ing strategies that, according to Panda Secu-
rity, a cyber-security company, either consists of
“leaving doors open” (i.e., left access points un-
protected on purpose), “inject fake information”
(i.e., fake confidential information), and “keep-
ing them busy while stealing” (i.e., watching and
obtaining information about the attacker).

Looking into the internet and searching for
“counter-intelligence for ransomware”, we have
found that the majority of the initiatives to pro-
tect from ransomware attacks focuses on rais-
ing awareness. For instance, the US National
Counter-intelligence and Security Center (NCSC)
has launched in January 2019 a campaign “Know
the Risk, Raise Your Shield”. The Cybersecu-
rity and Infrastructure Security Agency (CISA)
addresses ransomware specifically, but it is all
about knowing the threat and apply general secu-
rity best practices such as backing-up data. We
have found, within the scope of cryptrographic
ransomware and limitedly to this on-going work,
nothing about “leaving the door open”, “inject
fake information”, or ‘’keep them busy”.

The second measure (i.e., “inject fake infor-
mation”) may not be fully applicable at least if
that means to avoid to spread knowledge about
how to build the ransomware weapon: the in-
struments of cryptography are nowadays already
known and public. However, at the light of what

2https://www.misp-project.org/.

we have discussed in the previous sections, it may
be a strategy to post the code of variants whose
decryptors already exist.

For what concerns the “keep them busy”
paradigm, as discussed in (Genç et al., 2019),
it may be possible the use decoy files to deflect
a ransomware attack against irrelevant (for the
victim) files, so gaining that amount of time re-
quired to stop the attack’s development. Using
decoy files could be paired with strategies that
downgrade the efficiency of encryption for appli-
cations that are not trustworthy or whitelisted.
We have not investigated in this direction, but
this option seems preferable to that of running
untrusted application in sandbox. This can be
less effective, since certain ransomware sample
recognize the presence of a virtual environment
and remain dormant. A few articles suggest the
use of Artificial Intelligence (e.g., (Huang et al.,
2018)), but we did not look into this direction.

5 CONCLUSION

Ransomware are emerging as cyber-weapons.
They have been used in attacks that resemble ac-
tions of cyber-war, and are far more dangerous
and disruptive than traditional malware. Conse-
quently, the research community should reflect on
coordinated actions to address the threat under
an appropriate code of ethical conduct.

Having discovered that a few ransomware con-
tain a copy-paste from cryptographic code avail-
able in public sources, we debated the matter of
dual-use in cryptographic research and recalled
(in)famous antecedents in the recent ransomware
history. Since we managed to build decryptors for
those ransomware, the dual use turned out to be
a double-edge for the criminals, but generally it
is not. After having build a case for ransomware
as cyber-weapon, we briefly reviewed intelligence
and counter-intelligent strategies that could be
used in the fight against ransomware.

We did not backed our speculations with field
studies or interviews. Ours is an educated argu-
mentation, but its purpose is to invite the anti-
ransomware community to be more proactive in
the cyberwar against ransomware. Even the ex-
cellent NoMoreRansom project, which offers de-
cryptors when they are available (as did in June
2019, with the latest version of Gandcrab3), at
the end of the day praises for keeping back-up,
within a “Better Safe Than Sorry” advice.

3https://www.malwarebytes.com/gandcrab/

REFERENCES

Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek,
M. L., and Stransky, C. (2017). How Internet
Resources Might Be Helping You Develop Faster
but Less Securely. IEEE Security and Privacy,
15(2):50–60.

Cimpanu, C. (2016). New Open Source Linux
Ransomware Shows Infosec Community Di-
vide. https://news.softpedia.com/news/
new-open-source-linux-ransomware-shows\
-infosec-community-divide-508669.shtml.
[20-Jul-2019].

Coleman, K. (2009). Counter Cyber Intelligence.
https://www.military.com/defensetech/2009/
03/09/counter-cyber-intelligence. [20-Jul-
2019].

Şen, U. (2015a). Destroying The En-
cryption of Hidden Tear Ransomware.
https://utkusen.com/blog/destroying\
-the-encryption-of-hidden-tear-ransomware.
html. [21-Jul-201].

Şen, U. (2015b). Hiddentear: an open source
ransomware-like file crypter kit. https://
github.com/utkusen/hidden-tear.

de Souza Nunes, M. (2016). Ransomware: A
POC Windows crypto-ransomware (Academic).
https://github.com/mauri870/ransomware. [20-
Jul-2019].

den Bosch, T. V. (2005). Encrypt/Decrypt
Files in VB.NET (Using Rijndael).
https://www.codeproject.com/Articles/
12092/Encrypt-Decrypt-Files-in-VB\
-NET-Using-Rijndael. [20-Jul-2019].

dnSpy (2019). .NET debugger and assembly editor.
https://github.com/0xd4d/dnSpy. [2019].

Duvenage, P., von Solms, S., and Corregedor, M.
(2015). The Cyber Counterintelligence Process:
A Conceptual Overview and Theoretical Propo-
sition. In Proc. of the 14th ECCWS, pages 42–
52. ACPI.

Fischer, F., Böttinger, K., Xiao, H., Stransky, C.,
Acar, Y., Backes, M., and Fahl, S. (2017). Stack
Overflow Considered Harmful? The Impact of
Copy Paste on Android Application Security. In
2017 IEEE SP, pages 121–136.

Fox, W. (2017). Arescrypt: Experimental ran-
somware for windows 7+ with aes-256 sup-
port. https://github.com/BlackVikingPro/
arescrypt. [20-Jul-2019].

Genç, Z. A., Lenzini, G., and Sgandurra, D. (2019).
On deception-based protection against crypto-
graphic ransomware. In Detection of Intru-
sions and Malware, and Vulnerability Assess-
ment, pages 219–239. Springer.

Herr, T. and Rosenzweig, P. (2015). Cyber Weapons
& Export Control: Incorporating Dual Use with
the PrEP Model. J. National Security Law and
Policy, 8(2).

Huang, D. Y., Aliapoulios, M. M., Li, V. G., Inv-
ernizzi, L., Bursztein, E., McRoberts, K., Levin,
J., Levchenko, K., Snoeren, A. C., and McCoy,
D. (2018). Tracking ransomware end-to-end.
In IEEE Security and Privacy, pages 618–631.
IEEE.

Hybrid Analysis (2019). Free Automated
Malware Analysis Service. https:
//www.hybrid-analysis.com/. [2019].

Johnson, M. (2008). How do you do Impersonation
in .NET? (rev. 2). https://stackoverflow.com/
revisions/7250145/2. [20-Jul-2019].

Kaliski, B. (2000). PKCS #5: Password-Based Cryp-
tography Specification Version 2.0. RFC 2898.

Kovacs, E. (2016). Educational Ransom-
ware Abused by Cybercriminals. https:
//www.securityweek.com\/educational\
-ransomware-abused-cybercriminals. [20-
Jul-2019].

Lowenthal, M. M. (2016). Intelligence: From Secrets
to Policy. CQ Press, Los Angeles, 7 edition.

Lydford, S. (2008). File Encryption and Decryption in
C#. https://www.codeproject.com/Articles/
26085/File-Encryption-and-Decryption-in-C.
[20-Jul-2019].

Marinho, T. (2017). GonnaCry: A Linux
Ransomware. https://github.com/
tarcisio-marinho/GonnaCry. [20-Jul-2019].

Rogaway, P. (2016). The Moral Character of Cryp-
tographic Work. Austin, TX. USENIX Associa-
tion.

Rosa, A. (2017). Hiddentear (forked). https:
//github.com/Virgula0/hidden-tear. [20-Jul-
2019].

Schmid, A. P. (2011). The Definition of Terrorism. In
The Routledge Handbook of Terrorism Research,
chapter 2, pages 39–157. Routledge, Oxon, UK.

Trend Micro Blog (2017). Ransomware
Recap: The Ongoing Development
of Hidden Tear Variants. https:
//www.trendmicro.com/vinfo/us/security/
news/cybercrime-and-digital-threats/
the-ongoing-development-of-hidden\
-tear-variants. [20-Jul-2019].

van der Wiel, J. (2016). Hidden tear and
its spin offs. https://securelist.com/
hidden-tear-and-its-spin-offs/73565/.
[20-Jul-2019].

VirusTotal Threat Intelligence (2019). Virustotal.
https://www.virustotal.com/.

Šincek, I. (2019). Ransomware: PHP ransomware
that encrypts your files as well as file and direc-
tory names. https://github.com/ivan-sincek/
ransomware. [20-Jul-2019].

Zaitsev, M. (2016). CryptoTrooper: The world’s first
Linux white-box ransomware. https://github.
com/cryptolok/CryptoTrooper. [20-Jul-2019].

