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Abstract: Passive safety systems are an important feature of currently designed and constructed
nuclear power plants. They operate independent of external power supply and manual interventions
and are solely driven by thermal gradients and gravitational force. This brings up new needs for
performance and reliably assessment. This paper provides a review on fundamental approaches to
model and analyze the performance of passive heat removal systems exemplified for the passive heat
removal chain of the KERENA boiling water reactor concept developed by Framatome. We discuss
modelling concepts for one-dimensional system codes such as ATHLET, RELAP and TRACE and
furthermore for computational fluid dynamics codes. Part I deals with numerical and experimental
methods for modelling of condensation inside the emergency condensers and on the containment
cooling condenser while part II deals with boiling and two-phase flow instabilities.

Keywords: passive heat removal systems; condensation; 1D codes; CFD; emergency condensers;
containment cooling condensers

1. Introduction

Nuclear safety plays a central role in the design and operation of nuclear power plants. Hence,
industry and regulatory bodies have in the past continuously improved safety features and safety
regulations in this field [1]. Amongst others, this becomes apparent in the classification of nuclear
reactors into four generations, basing on safety, cost effectiveness, grid appropriateness (Figure 1) [2].
GEN I reactors were mainly developed and constructed between 1950-1970 as prototypes and power
reactors for the public electricity supply. With further development of safety and economical features,
GEN Il nuclear reactors were introduced. Such are e.g., Boiling Water Reactors (BWR), Pressurized Water
Reactors (PWR), CANada Deuterium Uranium reactors (CANDU) and Vodo-Vodyanoi Energetichesky
Reactors (VVER). GEN II reactors, which are mainly Light Water Reactors (LWR), are essentially
equipped with active safety functions which need electrical and mechanical supplies. Accidents in
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Three Miles Island in 1979, Chernobyl in 1986 and Fukushima Daiichi in 2011 raised questions of the
adequacy of having only active safety components, which led to the development of GEN III/GEN III+
reactors. These are fundamentally GEN II designs with improvements in thermal efficiency and safety
systems and with passive safety systems [2].
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Figure 1. Evolution of nuclear power plants by time [2].

The activation and operation of passive safety systems are independent of active components like
pumps or emergency electrical supplies as well as manual intervention. Instead, they rely on gravity,
natural convection, as well as condensation and boiling [2,3]. Further to the improvements in safety
aspects, passive systems have an impact on manufacturing cost reduction as they have fewer expensive
active components, such as pumps [3]. Substitution by or combination of active safety systems with
passive systems is supposed to reduce core damage probability by three orders of magnitude in
comparison to GEN II nuclear power plants [4,5]. Therefore, the AP1000, for instance, is specified with
a core damage frequency of about 2.4 x 1077 per year and with an attainable waiting period of 72 h [6].

Passive safety systems can be categorized by the driving forces and the initialization of their
activation. The International Atomic Energy Agency (IAEA) provides classified definitions in different
categories of passivity with respect to driving and initial forces as well as moving mechanical parts [3].
Passive systems in GEN III/GEN III+ reactors have two main functions: decay heat removal from the
reactor core after scram and heat removal and depressurization of the containment. The first one type
is classified as:

e  Pre-pressurized core flooding tanks

e Elevated tank natural circulation loops

e Elevated gravity drain tanks

e  Passively cooled steam generators or natural circulation
e Passive residual heat removal heat exchangers

e Passively cooled core isolation condensers

e  Sump natural circulation

For heat removal and depressurization of the containment advanced reactors dispose of e.g.,:

e  Containment pressure suppression pools
e Containment passive heat removal/pressure suppression systems

e DPassive containment spraying

An overview on the implemented passive safety systems in the available GEN III/GEN III+ nuclear
reactor designs is given in Table 1.
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Table 1. Summary of passive safety systems and their application in advanced reactor designs [3].

Passive Safety

Function System Reactor Design Reactor Type Power (MW.th)

AP1000 PWR 3415

WWER-640/V-407, WWER-1000/V-392 PWR 1800, 3000
Core decay heat Pre-pressurized core APWR+ PWR 5000
removal flooding tanks ESBWR BWR 4500
AHWR HWR 750
SMART PWR 330
AP1000 PWR 3415
Elevated tank natural WWER-1000/V-392 PWR 3000
circulation loops ACR1000 HWR 3180
SCWR-CANDU SCWR 2540
SWR1000 BWR 2778
AP1000 PWR 3415
WWER-640/V-407 PWR 1800

Elevated gravity drain SBWR, ESBWR BWR 2000, 4500
tanks LSBWR BWR 900
AHWR HWR 750
ACR1000 HWR 3180
SCWR-CANDU SCWR 2540
IRIS PWR 1000

WWER-640/V-407, WWER-1000/V-392 PWR 1800, 3000
. SMART PWR 330
Passively cooled steam PSRD PWR 100
gener'fltor or. natural IMR PWR 1000
circulation IRIS PWR 1000
APWR+ PWR 5000
Passive residual heat AP1000 PWR 3415
removal heat SCWR-CANDU SCWR 2540
exchanger SCOR PWR 2000

30f 34
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Passive Safety

Function System Reactor Design Reactor Type Power (MW.th)

SWR1000 BWR 2778

SBWR and ESBWR BWR 2000, 4500
Passive cooled core ABWR-II BWR 4960
isolation condensers RMWR BWR 3926
AHWR HWR 750
CAREM PWR 100
AP1000 PWR 3415
Sump natural WWER-640/V-407 PWR 1800
circulation MASLWR PWR 150
AP1000 PWR 3415

Containment . SBWR and ESBWR BWR 2000, 4500
. Containment pressure LSBWR BWR 900

cooling or pressure . )

suppression suppression pools CAREM PWR 100
SCOR PWR 2000
IRIS PWR 1000
SWR1000 BWR 2778
AHWR HWR 750
Containment passive WWER-640/V-407 PWR 1800
heat removal/pressure PSRD PWR 100

suppression systems SBWR and ESBWR BWR 2000, 4500
ABWR-II BWR 4960
RMWR BWR 3926
AP1000 PWR 3415
Passive containment LSBWR BWR 900
spray systems ACR1000 HWR 3180
SCWR-CANDU SCWR 2540
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KERENA (SWR 1000) Reactor

The KERENA (SWR 1000) nuclear reactor is a GEN III+ boiling water reactor developed by
Framatome. KERENA is specified for 1250 MWe electrical power and a life-time of 60 years. It comprises
of a number of innovative passive safety systems. The KERENA concept and the safety features are
depicted in Figure 2. In case of a failure of active systems four emergency condensers (EC) (Figure 1-Pos.
2) remove the decay heat from the reactor pressure vessel (RPV). They are hydraulically connected to
the RPV and become passively activated when the water level in the reactor increases to their geodetic
height. When activated they condense steam and thus transfer the decay heat into the flooding pool,
which acts as an intermediate heat sink. This system substitutes the high-pressure injection in the
high-pressure path of older designs [7]. In addition, the water in the flooding pool serves as coolant
for replenishing the RPV within the low-pressure path (Figure 1-Pos. 3). Another passive safety
component is the passive pulse pressure transmitter (PPPT) (Figure 1-Pos. 5/7/8). The PPPT is a heat
exchanger that acts as a diversity system for the activation of scram, the main steam line isolation
valves and the safety relief valve, which can now be activated without any electrical supply. When
the water level inside the RPV decreases, steam will flow through the shell side of the PPPT and will
condense on the cold tube surface. The heat flux evaporates the fluid inside the tubes, which leads to
an increasing pressure on the secondary side and this way activates safety related functions by control
valves. Experimental investigations on this component were published in [8,9]. The main parts of the
safety system of the KERENA reactor are summarized in Table 2.

Next in the passive heat transfer chain are the four containment cooling condensers (CCC), which
consist of slightly inclined horizontal tubes (Figure 1-Pos. 1). Their task is to transfer heat from the
containment into the storage and shielding pool. Possible causes for a containment temperature rise are
either opening of the safety relief valve and steam release from the reactor circuit into the containment
(Figure 1-Pos. 5.2/5.3) or the continuous heat-up of the flooding pool via the emergency condensers.
The pipes of the CCC are connected to the shielding/storage pool, which is a source of subcooled water.
The heat transfer drives a natural circulation flow that transports the heat from the containment to the
storage pool. The flow direction within the condensation tubes is determined by the slight inclination.

= Pos.
. I Passive systems
N@ 1 Containment cooling condensers
2 Emergency condensers
hvd 3 Passive flooding lines
= Emergenc 4 Passive pr. Pulse transmitters (PPPT)
@ 5  Safety-relief valves (SRV)
P Y 5.2 Diaphr lot valves for SRV
ower ,
5.3 Spring loaded pilot valves for SRV
6 Feedwater line isolation valves
Reactor 7 Main steam line isolation valves
protection (MSIV)
ﬂ system 7.2 Diaphragm pilot valves for MSIV
- B8 Scram system
8.2 Diaphragm pilot valves for scram sys.
9 Boron shut down system
11 Hydraulic control rod drives

Active systems

External signal for passive
systems
5.1 Solenoid pilot valves for SR
7.1 Solenoid pilot valves
8.1 Solenoid pilot valves for scram system
9.1 Solenoid pilot valves for Boron shut
down system

: ®
/ -
'.ﬁ% A J‘ @ PPPT *
0§ JmCn e A

10 Fine motion control rod drives
12 RHR and LPCI system

980079

Containment

13 Wetwell

Figure 2. The KERENA reactor and its safety feature [5].
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Table 2. Passive and active safety systems of the KERENA (formerly SWR1000) [3,9].

Safety Functions Passive Safety Systems Active Safety Systems
Decay heat removal from . . .
. Four containment cooling condensers Two residual decay heat
containment
removal and core
Core flooding (low pressure) Four core flooding lines flooding systems

Decay heat removal from

RPV (low pressure) Four emergency condensers

Decay heat removal from
RPV (high pressure)

Solenoid valve,

Limitation of reactor Spring loaded

pressure STX safety control valve
relief valves
. Diaphragm valve, Emergency
Relief of reactor pressure :
Solenoid valve condenser

Two intrinsic medium actuated quick-closing
Penetration isolation of main valves per line:
steam-line -diaphragm valve/PPPT (passive C)
-solenoid valve (passive D)

Gate valve

Scram-system (four accumulators)
Subcriticality -diaphragm valve/PPPT (passive C)
-solenoid valve (passive D)

137 electrical devices
Boron shut-down system

In order to investigate the behaviour and performance of the passive safety systems in different
accident scenarios, several test facilities were constructed worldwide. For the KERENA and AP1000
reactors the integral test facilities INKA [10] and APEX-1000 [11] have been set up. Next to integral
test facilities, which are dedicated to study accident scenarios on the system scale, many dedicated
small-scale test facilities, such as NOKO/TOPFLOW [7], PANDA [12], PUMA [13], SIRIUS [14],
CIRCUS [15], DANTON [9,16] and GENEVA [17] do exists, they have been or are being used for single
effect and component studies for passive heat removal systems. Juhn et al. [18] provided a detailed
overview of the research projects with respect to technical enhancement of safety systems.

For predicting the operational performance of thermal hydraulic circuits on the plant scale under
various accident scenarios several one-dimensional codes such as ATHLET, RELAP and TRACE are
widely used in nuclear community. However, these codes have been mainly qualified so far for active
hydraulic systems. Qualifying them for passive systems is still a challenging task. For instance, for
modelling the condensation process inside emergency condensers, there is a necessity to derive suitable
heat transfer models, do experimental validation [7,19] and code-to-code comparisons [20].

In this paper, we present a review on the current state of knowledge about phenomena governing
passive heat removal with reference to the KERENA concept. The considered phenomena are:
condensation inside and on the inclined tubes, boiling inside and on the inclined tubes and stability of
the natural circulation. Thereby, we review numerical studies and developed heat transfer correlations
for steam condensation used in one-dimensional system codes and in computational fluid dynamics
codes (CFD). Moreover, the experimental facilities, which have been used for single effect investigations
in this field during the last years, are introduced. In part II, a review of research activities on boiling
and stability is presented.

2. Condensation Inside Inclined Tubes

The first stage in the heat transfer chain of the KERENA reactor is the emergency condenser
(EC). It becomes operative when the water level in reactor pressure vessel drops. The primary circuit
is depressurized and cooled via steam condensation in four horizontal tube bundles. Modelling
of this component requires a profound understanding of high-pressure steam condensation inside
inclined tubes.
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2.1. Flow Characteristics

The condensation process inside inclined tubes is illustrated in Figure 3. Saturated or superheated
steam enters the pipe at the inlet. The steam is condensed on the cold wall at condensation sites, which
provide the necessary microscopic energy conditions. The steam condenses first into droplets when
the wall has a low wettability. The droplets grow and get mobilized due to interfacial shear and gravity.
Depending on the wettability and local flow conditions, droplets merge and generate a thin liquid film
that results in annular flow.

Stecam Condensate
Annular Transi- | Stratified Slug Plug
Flow tion flow flow flow
arca
Pr— < <
A B C
A-A ' B-B | C-C .

Figure 3. Two-phase flow patterns of the condensation process in a horizontal tube [7].

With further progressing condensation on the gas-liquid interface the liquid film growths and
changes into a turbulent and wavy annular flow. Due to action of gravity, the film is radially asymmetric
in horizontal and inclined pipes. Accumulation of a liquid flume on the lower part of the tube results
in generation of a stratified flow. After some distance the void fraction becomes small enough such
that the flow regime changes. By growth of the waves at the steam-liquid interface, liquid slugs and
large bubbles appear. For tubes with smaller diameter a developed slug flow forms, however, for
larger tubes the liquid-steam interface stays agitated which is called churn-turbulent flow [21].

Since different flow regimes result in different heat transfer coefficients and condensation rates,
prediction of the two-phase flow morphology is a critical point. The two-phase flow inside tubes
is commonly described by flow pattern maps. The first general flow pattern map for horizontal
two-phase gas-liquid flow goes back to the Baker map (1954) [22], which combines the superficial gas
with liquid velocities. Following the Baker map many other flow maps were developed (White and
Huntington, 1955 [23]; Govier and Omer, 1962 [24]).

Traviss and Rohsenow [25] studied in-tube condensation with R-12 in an 8 mm tube and found that
the flow well matched with the Baker map. However, some controversy has been raised concerning the
application of the Baker map for condensation. Initially, Soliman and Azer [26] found a non-conformity
to the Baker map for the wavy regime of R-12 in a 12.7 mm tube during condensation. The same
authors [27] later studied R-113 condensation in 4.75 mm, 12.7 mm and 16.15 mm tubes and found
the same inconsistency. Taitel, and Dukler [28] developed a flow pattern map, which is based on
mechanistic considerations. They defined five dimensionless groups corresponding to the fluid
dynamic parameters, the tube geometry and the tube inclination angle. The flow map includes annular,
stratified wavy, stratified smooth, intermittent and bubbly flow. This map is one of the most reliable
and frequently used flow maps and has been used as a basis to develop new flow pattern maps. Breber
et al. [29] stated that the Taitel and Dukler map is in good agreement with the condensation flow
pattern data for tube diameters ranging from 8 mm to 22 mm, while for a tube diameter of 4.8 mm
(Soliman’s [30] database) there is a large discrepancy due to negligence of surface tension effects. Later,
El Hajal et al. [31] developed a new flow pattern map according to the Kattan-Thome—-Favrat [32] map
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based on a logarithmic mean void fraction in order to span the entire range from low pressure up to
the critical point.
Xm

gDpg (P1-pg)
as ordinate and void fraction ratio (1 — &)/« as abscissa based on Soliman et al. [26]. The map was
validated for 662 experimental data points of R-12 and R-113 condensation in horizontal tubes with
diameters from 4.8 mm to 15.9 mm (see Figure 4). Recently, Zhuang et al. [34] proposed a flow pattern
map for R170 that considers effects of vapor inertia and liquid viscous as well as surface tension forces
on the transition regime.

Tandon et al. [33] suggested a flow regime map with dimensionless gas velocity j g =

10| Spray flow
Bubbly
Annular flow flow
P EE——— -
Transition region \
< Slug
i, 01] \\ flow
\
\
N\
AN
0.01 A
Plug
Stratified flow ug
(wavy) flow
0.001 , ‘ ' '
0.0001 0.001 0.01 01 051 10
x

Figure 4. Tandon et al. flow pattern map [33].
2.2. Heat Transfer Correlations

As heat transfer in two-phase flow conditions is strongly coupled to flow regime there are a
number of different heat transfer correlations. The most relevant ones are summarized in Table 3 and
will be briefly introduced in this section.

In 1962, Chato [35] investigated the influence of oil on condensation heat transfer for the refrigerant
R113. He reported a reduction in heat transfer coefficient due to the presence of oil and assumed
that condensation is different in two regions, Figure 5. In the upper pipe section, the heat transfer is
through the thin condensed oil film. He considered that the temperature variation of the wall along
the cross section has an insignificant effect. Therefore, he argued that the heat transport in the lower
area of the pipe is negligible. Based on this principle, he developed a correlation that is an extension of
the Nusselt theory [36]. It is only applicable if the shear stress of steam is low, that is, for Reynolds
numbers lower than 35,000.

Boyko et al. [37] predicted the heat transfer of the steam condensation inside a tube on the basis of
an analogy between heat transfer and hydraulic resistance in dependence on the Reynolds number.
Experiments were conducted with a tube of 18 mm diameter of 12 m lengths at pressures up to 90 bar.
The theoretical and the experimental results were in good agreement.

Kosky et al. [38] experimentally investigated annular condensation inside a tube and derived
correlations for calculation of thermal resistance of the falling film based on a modification of the
Martinelli analogy, which considers the dimensionless temperature and velocity between heat and
momentum transfer in turbulent flow.
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Thin liquid film

Liquid drain

Figure 5. Stratified condensation of the mixture of oil-refrigerant [35].

Chen et al. [39] proposed a film condensation model which considers the effects of interfacial
shear stress, interfacial waviness and turbulence transport in the liquid film. The correlation was
validated for different scenarios such as a vertical surface in both stationary and moving conditions as
well as vertical and horizontal concurrent pipe flows.

Dobson and Chato [40] performed an experiment with refrigerants in horizontal smooth tubes
with diameters ranging from 3.14 mm to 7.04 mm. On the basis of conducted experiments, a new flow
regime map and an improved version of Chato correlation were introduced.

Moser et al. [41] developed an equivalent heat transfer model that is based on the heat-momentum
diffusive transport equation. The model was applied to predict the experimental Nusselt number of
1197 data points from 18 sources with an average deviation of 13.64 percent for tube internal diameters
between 3.14 mm and 20 mm.

Sarma et al. [42] used a homogeneous approach to estimate friction velocity and derived a
correlation for heat transfer coefficient. They considered the frictional pressure drop by introducing a
friction multiplier. They got an average deviation of +5%, an absolute mean deviation of 12% and a
standard deviation of 19% for a total number of 5478 data points.

Cavallini et al. [43] developed a predictive method based on flow patterns occurring during
condensation. The model was validated with a wide range of refrigerants R-22, R-134a, R-125, R-32
and R-410A for an 8 mm diameter plain tube. Later on, Cavallini [44] found that condensation heat
transfer is not always dependent on temperature difference but other parameters like mass velocity,
saturation temperature, vapor quality and geometry. He introduced a more simplified and general
model for tubes with an internal diameter larger than 3 mm. The correlation has lower uncertainty
compared to the previous one.

Shah [45] proposed a simple dimensionless correlation which was validated on a wide set of
experimental data from highly turbulent flow to laminar flow conditions. The validation database
includes 22 different fluids including horizontal, vertical, and downward-inclined tubes. The range
of parameters is from 2 mm to 49 mm tube diameter, flow rates from 4 % to 820 %, and liquid
Reynolds numbers from 68 to 85,000.

The above correlations have been derived from various experimental data, often not for
water/steam. In order to assess their validity for nuclear applications, that is, high pressure steam
condensation, we tested them against experimental data obtained at the COSMEA facility (Section 4) [46].
Exemplarily, we show results for three experiments at 45 bar pressure (Figure 6). More detailed
information about boundary conditions and geometry of experiments can be found in [46]. The
comparison shows, that the Dobson model is in very good agreement with the experimental data,
while the other models do significantly underestimate the condensation rate.
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Figure 6. Heat flux versus inlet steam mass fraction, a comparison between experiment (COSMEA)

and calculated results with different heat transfer correlations.

Table 3. Heat transfer correlations for in-tube condensation.

Authors (Year) Reference Correlations
h = 0.728¢| 2UPL B ]0'25
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Boyko, L.D. (1967) [37] _ Mo 080043 (1 2525)
Y (1967) h = 0.024 4 Re08pr043 X vv )

Chen (1987) [39]

h =0018(& )0 39( kL )O "PRe 92 (Rer — Rey) "7 Pr{°

Dobson and Chato (1998) [40]
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0.25
CaPri ™™ 4 (1 - 2)0.0195Re%8 P04 ¢ (Xyt)

Sarma (2002) [42]

A 08 0.85/ Py, 10-565
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Cavallini (2002) [43]
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Table 3. Cont.

Authors (Year) Reference Correlations

J — G
VT gDy (p-p,)”°

-3
T _ 7.5 -3
= {[4-3X33”+1] +Cr

For hydrocarbons, Ct = 1.6; other refrigerants, Ct = 2.6
a) for ]3 <Jy, AT independent flow regime
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033211\ L[ A% py (o) — i 1025
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0.0058-+0.557P 0.76 (1 _\0-04
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Cavallini (2006) [44]
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2 . 1 ”"12

Shah (2008) [45] Inregimel: ], > 2_4210'73
h=h
In regime II: 0.89 — 0.93 exp(—0.087Z7"17) 2 J, 2 5L
h=h; +hy
For horizontal tubes, the equation is recommended only if Rep > 35,000
In regime II: J,, < 0.89 — 0.93 exp(—0.08727"17)
h=hy

2.3. In-Pipe Condensation Modelling with One-Dimensional Codes

One-dimensional thermal hydraulic system codes are widely used in nuclear safety assessment.
They are well developed for water-cooled but also other reactor types and are equipped with two-phase
flow models to calculate thermal hydraulic parameters of a reactor system during normal operation,
transients and accidents. Typical are two-fluid, five or six-equation models for mass, momentum
and energy balancing. The differential equations are coupled and solved with constitutive laws on
a set of connected blocks that model axial sections of system components. Compared to CFD codes
one-dimensional codes are faster in computation but less accurate for components with pronounced
3D features, such as e.g., larger vessels. In the following section the modelling of condensation is
exemplarily discussed for three widely used system codes ATHLET, RELAP and TRACE.

2.3.1. ATHLET

The code package AC? of the German Gesellschaft fiir Anlagen- und Reaktorsicherheit (GRS)
GmbH has been developed for simulation of all operational states, incidents, accidents and severe
accidents in a nuclear power plant and consists of the code modules ATHLET, ATHLET-CD and
COCOSYS. The module ATHLET (Analysis of Thermal-hydraulics of Leaks and Transients) has
been developed for the simulation of design basis and beyond design basis accidents (without core
degradation) in light water reactors (LWR), including VVER and RBMK reactors. The currently latest
release version of ATHLET within AC? is ATHLET 3.1A [47].

ATHLET is equipped with a heat transfer package comprising several heat transfer correlations.
Each heat transfer package activates under various modes on the basis of enthalpy quality xy
(Equation (1)) and void fraction ¢, as described in the following.
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Mode 1 (xg < —0.05) considers single phase convection and the heat transfer coefficient is
calculated from the Dittus-Boelter correlation [48](Equation (2)). Constants are C = 0.023, n = 0.4 for a
heating surface and n = 0.3 for a cooling surface:

Hiot — Hj
XH = —4——. 1
H Hevap 1)
h = C Re®8pyn, )
Dn

The McAdams [49] equation is applied for natural convection, based on the Grashof number Gr:

h = 0152 (GrPr)*®[1 4 (2pr)055]) %, 3)
Dy,
 p%gTy —T|Dy, 3
w2 '

The parameters 3, Dy, and Ty, represent coefficient of expansion, hydraulic diameter and wall
temperature, respectively.

Mode 2 (—0.05 < xpg < 0) is called the transition region and the heat transfer coefficient is derived
via a cosine shape interpolation between the heat transfer coefficients of Mode 1 and Mode 3.

Mode 3 (0 < xg and 0.995 < ¢) is for film condensation. For laminar film condensation there are
three different models, which are described in the following. From these, the maximum heat transfer
coefficient value is taken.

Nusselt correlation [50] dependent on the length of the heat transfer surface (L):

Gr

(4)

Al (Tsat - Ty )
h = - , 5
e\ Ty, - Ty ©®)
with:
e = max(el, ey, 10710 m), 6)
. Ty-Tw
p1(p1 - pv)gAllv(l + 068%)
e1 = 1.0606 ) @)
A L(Ty = Tw)
e = 0.5Dy(1- Ve). 8)
Nusselt correlation [50] determined by condensation flow rate:
2 _% T
h= 1.47>\1Re1—%[ H ] sat ~ T )
e —py)g]  Tv-Tw
with: GD
Rep =~ (10)
H
where:

Re; <10 — Re; =10,
Re; > 2.3 - Re; = 2.3-€%.

The correlation of Chato [35] is applied as explained in Table 3.
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In the case of turbulent film condensation, ATHLET uses the correlation of Carpenter and
Colburn [51], which bases on the analogy between interfacial momentum and heat transfer:

0.5

p Tgat = T
h = 0.065——Pr505) 22—

. 11
H Ty - Tw b

For modelling the turbulent film condensation inside horizontal and nearly horizontal tubes (as is
the case for EC tubes), the correlation of Dobson and Chato (DC) is applied [40] (Table 3).

2.3.2. RELAP5/Mod 3.3

The first version of the Reactor Excursion and Leak Analysis Program (RELAP) code was developed
in 1966 at Idaho National Laboratory (INL) and was called RELAPSE [52]. Subsequently, RELAP2,
RELAP 3 and RELAP 4 were released, which were all based on a homogenous equilibrium model
for two-phase flows. In 1982, RELAP5 was released which contains a two-fluid, non-equilibrium,
nonhomogeneous six-equation model. RELAP5/MOD3.3 was released in 2001 for analysis of all
transient accidents in LWRs including small and large break LOCA scenarios as well as loss of
feedwater, loss of offsite power and station black out [53].

RELAP assumes single-phase convection when void fraction is lower than 10% and applies the
Dittus-Boelter correlation, Equation (2) (as in ATHLET) for turbulent convection. In case of a laminar
single-phase convection an exact solution for fully developed laminar flow at Nu = 4.36 is used ([54]).

For higher void fractions, condensation models are applied. Turbulent film condensation is
modeled by the correlation of Shah, Table 3. The Nusselt equation [36] is used in RELAP for calculating
the laminar film condensation as a function of film thickness (8) and thermal conductivity (A;):

_ N
h_é, (12)
3G\

6:( ! 1)‘ (13)
gPAp

2.3.3. TRACE

TRAC/RELAP Advanced Computational Engine (TRACE) was released by the U.S. Nuclear
Regulatory Commission (NRC). It maintains all the capabilities of previous system codes RELAP 5,
RAMONA, TRAC-PWR and TRAC-BWR [55]. TRACE is a finite-volume based two-fluid model code
for compressible flows which is able to model large and small break LOCA scenarios and system
transients in both PWRs and BWRs. This code has the capability of modelling thermal hydraulic
phenomena in both one-dimensional and three-dimensional space.

Contrary to RELAP, in TRACE the film condensation model is applied when the void fraction is
higher than 90% while for void fractions lower than 80% a two-phase convection is assumed. The range
between 80% and 90% is assumed as a transition region and an interpolation is made.

For the two-phase convection, TRACE applies a multiplier to the single phase heat transfer models
accounting for the two-phase flow effects. For laminar convection, similar to RELAP, the Nusselt
number is set to Nu = 4.36. For turbulent convection, the heat transfer coefficient of Gnielinski [56] is
implemented (Equation (14)), following recommendations by Bhatti et al. [57] and Incropera et al. [58].
This correlation is valid for the transition region (1000 < Re < 3000):

_ f/2(Re — 100)Pr ( w2 )‘é 14)
1+12.7(£/2)*°(Pr?/3 - 1) Neo(or—0))

with the friction factor:
f = (1.58In(Re) — 3.28) 2. (15)
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In case of natural convection, a maximum value between the laminar and the turbulent heat
transfer coefficients is used [59]:

A0.1(GryPry) /8
b = 201CIP) (16)

1/4
hewp = ?\10.59((351131‘1) , 17)
where the parameter D is a characteristic length.

The film condensation model is specified according to the Reynolds number. If Re < 2, a smooth
laminar film condensation is assumed and the Nusselt number is set to unity. For Re > 20, occurrence of
waves on the film interface is assumed, which is modelled by the empirical correlation of Kuhn et al. [60]
for laminar-wavy falling film condensation:

2:A
h==(1+183e*Re)), (18)
5
the film thickness (3) is derived from the void fraction and hydraulic diameter (Dy,) as:

o Du(1- V)

> (19)

The turbulent condensation is modeled according to Gnielinski [56] (Equation (14)) with a
multiplying factor of %.

2.3.4. Application and Assessment of 1D Codes for Passive Safety Systems Analyses

A number of numerical investigations have been performed with respect to assessment of current
heat transfer packages in aforementioned 1D codes and subsequently proposing new correlations to
improve them. They will be briefly discussed in the following.

Schaffrath developed the KONWAR model in ATHLET on the basis of emergency condenser
experiments carried out at the NOKO test facility at Research Center Jiilich [61,62]. KONWAR is a
semi-empirical heat transfer package based on the flow pattern map of Tandon et al. [33]. Although
KONWAR was successfully validated against the NOKO experiments, it has to be considered that
the utilized flow pattern map of Tandon et al. is originally based on data obtained by experiments
with the refrigerants R-12 and R-133 in tubes with internal diameters ranging from 4.8 mm to 15.9
mm. Later on, Schaffrath et al. [63] validated the KONWAR model with data from the HORUS test
facility [64] and results showed good agreement.

Choi et al. [65] analyzed and improved the standard condensation models in RELAP5/MOD 3.2.
They concluded that the standard laminar film condensation model overestimates heat transfer in
regions with higher heat transfer while it underestimates in regions with lower heat transfer compared
to experimental data. They found that for turbulent film condensation modeling, the Shah correlation
results in good agreement with experimental data. Moreover, for both counter-current and co-current
experimental data, RELAPS overpredicts the heat transfer value. Later on, Choi et al. [66] improved
the model significantly by substituting the Dittus-Boelter correlation by a correlation from Kim [67]
and use of a multiplier factor.

The condensation models of RELAPS were assessed by Zhou et al. [68] by modelling condensation
in a single tube and a tube bundle similar to the one in the passive containment condenser system
(PCCS). Their results showed a high discrepancy compared to data from experiments conducted at
Purdue University. Macedo et al. [69] performed experimental and numerical investigations on the
effect of non-condensable gases during steam condensation in horizontal tubes for pressure values
between 200 to 400 kPa. The comparison revealed an overestimation of the heat transfer for higher
pressures. Later on, Aglar [70] further analyzed the effects of non-condensable gases on in-tube
condensation and compared simulations with three experimental test facilities data. They found
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that RELAP5 has a deviation in the range of 50% to 150% for the heat transfer coefficient. Another
finding was that the simulation accuracy decreases significantly with increasing air-steam mixture
Reynolds number.

Szijarto et al. [71] performed simulations of a fast transient condensation process in slightly
inclined tubes with the original RELAP5 code and compared the results with data from the INVEP [72]
experiment. They found high overestimation of calculated pressure, temperature and void fraction
compared to the INVEP data. Later on, Szijarto et al. [73] proposed a new mechanistic model that
considers the flow regime in three regions: laminar film condensation on the upper part, turbulent
condensation on the bottom part and steam in the core of the tube. This new model does predict the
heat transfer coefficient significantly better.

Lee et al. [74] assessed the applicability of the TRACE code for modelling of condensation
inside nearly horizontal tubes and compared the result with the one of the KAERI PASCAL test
facility. They concluded that the TRACE code approximately 30% overestimates the heat flux values.
Moreover, Pollman et al. [75] performed TRACE simulations of rapid condensation transient at the
MANTOTEA facility and found that simulations overestimate the pressure and the temperature in the
condenser tubes.

2.4. CFD Modelling

As introduced in Section 2.3, system codes use section-averaged values for prediction of flow
characteristics and heat transfer. For this reason, they have limitations for flows with pronounces 3D
effects, that is, in components with complex geometry or in cases with a complex two-phase flow
structure. In principle, CFD codes are able to account for more complex flow characteristics and
heat transfer by solving the governing mass, momentum and energy equations in 3D. However, the
state of the art in CFD is not yet mature for two-phase flows due to the complex gas-liquid interface
and complex interactions between the phases. In the following, we give a review of heat transfer
correlations that are being used with CFD codes in different multiphase flow approaches such as the
one-fluid volume of fluid model (VOF), level set, and the Euler-Euler two-fluid approach.

To consider phase change in two-phase flows source terms have to be defined in the balance
equations. The energy source term results from the mass transfer rate G and the latent heat Aiy:

q’ = G-Aly. (20)

One of the first attempts to model the mass transfer rate was made by Lee et al. [76]. He considered
the interface between liquid and steam at saturation temperature and introduced an iterative technique
to reach this condition. If a cell at the liquid-steam interface has a temperature that is not equal to
saturation temperature, mass transfer is activated. The transfer rate is calculated as:

(21)

o _ | rae i if T(Terand [Ved)o,
—reypy Tﬁra:;T if T(Tsat and |Vey|)0.

The mass transfer rate depends on a relaxation factor r that needs to be tuned. The tuning
requires many trial and error simulations, which is time-consuming and must be done for each case
separately. Several groups, such as Da Riva et al. [77], applied the Lee model (Equation (21)) for
simulation of laminar liquid film condensation in a horizontal circular microchannel with the VOF
method. Qiu et al. [78] conducted a transient VOF simulation of the condensation in an upward flow of
wet steam. Liu et al. [79] investigated the laminar liquid film generation and its effect on heat transfer
with the VOF model. Szijarto et al. [80] used the VOF model to simulate direct contact condensation
at steam-liquid interface for the LAOKOON experiment facility [81]. The main conclusion from all
these investigations is that lower values of the parameter r lead to a significant underestimation of the
calculated heat transfer while too high values results in numerical convergence problems. Therefore,
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the optimal value for r depends mainly on the specific case and can vary as much as between 100 s~
and 750,000 s~*.

Due to the neglect of the phase change in the original VOF two-phase flow [82,83], Welch et al. [84]
introduced a numerical method to determine heat flux vectors ?]) on each side of the interface in
conjunction with VOE. The mass flux source term q” / Aijy is derived from the difference between the
components of the velocity vectors, which are normal to the interface:

—

(B —T1)1 = (Gy — )1 = (l—l)q—". 22)

Zhaohui et al. [85] calculated condensation induced water-hammers caused by cavity collapse
using the VOF model. They used a phase change model derived from the kinetic theory of gases by
Collier et al. [50]. There, phase change mass flow rate is given as:

1
r—( M, )2 P, Pi|2

2mRg) |3 Li|2-b @)

1 1
T, Tf
where M is the relative molecular mass, R is the universal gas constant and the condensation coefficient
b is assumed between 0.03 and 0.05.

For modelling of direct contact condensation (DCC) on the liquid-steam interface several
correlations have been developed. Strubelj et al. [86] simulated condensation-induced water hammer
in a steam-filled horizontal pipe that was gradually filled with subcooled water using the two-fluid
approach within NEPTUNE_CEFD [87] and ANSYS CFX code. They assumed the steam at saturation
temperature, which gives the interphase mass flow rate per unit interfacial area as:

hy (Tsat - Tl)
G= A (24)

Several authors proposed empirical correlations for the liquid heat transfer coefficient for DCC as
a function of Reynolds and Prandtl number. Hughes et al. [88] developed a heat transfer correlation
on the basis of surface renewal theory (SRT) and Kolmogorov turbulent length scale. In the surface
renewal theory, mass transfer is defined as a function of renewal period of eddies which is related to
turbulence parameters. The bulk liquid, which is below the saturation temperature, is transported to
the surface by turbulent eddies and the saturated condensate flow is taken away from the interface.
The Hughes model assumes that the removal of heat from the liquid-steam interface is determined by
the smallest turbulence scales in the flow. In this model, the heat transfer coefficient of liquid is:

hl = —AlPr;(—) . (25)

Egorov et al. [89] used the Hughes correlation for validation of CFD codes with PTS-relevant test
cases. Apanasevich et al. [90] simulated heat and mass transfer at the interface of stratified two-phase
flow using a two-fluid model and Hughes correlation and validated the model with TOPFLOW-PTS
steam/water experiments.

Shen et al. [91] developed a correlation based on SRT in a similar way to the one from Hughes
(Equation (25)). However, it considers that larger eddies are responsible for heat transport from the
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liquid surface. This model leads to a longer surface renewal period and respectively a slower heat
removal from the interface. In this model the liquid heat transfer coefficient is calculated as:

2
3

h =

_1 1 1

1\73 1

407 1 C k2 C2(vie)t
1.40 A 1'12[ 1 ] u( 1 ) (26)

\r Vi

Ceuca et al. [92] applied both correlations (Equations (25) and (26)) to simulate DCC with ANSYS
CFX using the VOF model. A comparison of calculated temperature profiles with experimental data of
the LAOKOON facility [81] is depicted in Figure 7. It shows that both models provide good results
for the horizontal stratified quasi-steady state, however, the Hughes model overestimates the water
temperature away from the interface.
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Figure 7. Comparison of temperature profiles of the SRT based models (Shen and Hughes) with
LAOKOON experimental data [92].

Banerjee et al. [93] introduced the so-called surface divergence (SD) theory for mass transfer when
no gas shear at the interface exists. They used the blocking theory of Hunt et al. [94] to implement
the turbulence properties. Later on, Banerjee et al. [95] assessed the SD model for sheared interfaces
and compared it with direct numerical simulation (DNS) results. They stated that the SD theory can
also be applied for the sheared interfaces. From that, a correlation for the heat transfer rate has been

derived as:

K6 _ CPrNf[Re|ReM, (27)
Ut p-ut

where K and u; denote the transfer velocity and the turbulent velocity scale. The surface divergence

function f is: .

3 2
f[Rey] = [0.3(2.83Ret4 — 2.14Re] )]4 (28)

The parameter C in Equation (28) is a model constant and depends on liquid properties, Schmidt
number and Prandtl number. Exponents N and M depend on the surface conditions and turbulence
intensity. The model was further applied by Lakehal et al. [96] for condensing stratified flows and
provided good predictions for low and mild interfacial shear.

Zschaeck et al. [97] introduced and validated a model for wall condensation. The fluid is assumed
to be a multi-component gaseous mixture with one condensable and at least one non-condensable
component. The model neglects the details of the liquid film due to single-phase simulation and the
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mass of the liquid phase, which is generated during the condensation and removed from the system
(Figure 8).

I
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|
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Figure 8. (a) Condensation process and temperature distribution near the wall region, (b) ANSYS CFX
wall condensation model concept [97].

The wall condensation model considers different mass flux values for laminar and turbulent
boundary layers. This simple condensation model is implemented in ANSYS CFX and has been
validated with different experimental test cases such as from the CONAN test facility [98] and
experiments from Kuhn et al. [99,100]. Lehmkubhl et al. [101] and Miiller et al. [102] used this model and
implemented a new wall function for momentum equations to improve computational efficiency for
containment applications. Punetha et al. [103] verified it for cases with more than one non-condensable
gas such as helium-air mixtures.

3. Condensation on the Outside of Inclined Tubes

Further to the condensation inside ECs, which has been discussed in Section 2, the second essential
stage in the heat transfer chain of the passive heat removal system of KERENA is the condensation
heat transfer at the containment cooling condensers (CCC). For that, two types of wall condensation
on inclined tubes have to be distinguished: film condensation and dropwise condensation. Dropwise
condensation benefits from higher heat transfer coefficients, however, film condensation occurs more
often in industrial applications. Therefore, models concerning dropwise condensation are rarely
developed. In the following, film and dropwise condensation models on inclined tubes are presented.
Similar to Section 2, a review of models developed on the basis of experimental data is presented
first. Afterwards, numerical models for system codes are discussed. As CFD models are geometry
independent and local the same models as discussed in Section 2.4 can be applied.

3.1. Correlations Obtained from Experiments

One of the first proposed correlations for dropwise condensation is from Le Fevre and
Rose [104,105]. They assumed hemispherical drops with a constant temperature. According to
the experimental data and considering the effects of surface curvature, they approximated the mean
heat flux q”}, through a hemispherical drop with radius r as:

Z-1.09
q”b:ﬂAT—%m 1+af1.094+ 22—}, (29)
T rpg Al 57—
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where parameters V4 and o represent the specific volume of the condensate drop and the surface
tension, respectively. The parameter « is defined as:

. hir

A (30)

The interfacial heat transfer coefficient h; is derived from the kinetic theory as a function of heat
capacity ratio k and gas constant Rg:

i =

( k-1 )Ailvzpv( o )0'5' 1)

k+1) Ty \RgTy

Finally, the mean heat flux for dropwise condensation is calculated by integrating Equation (29)
weighted by the drop size distribution A(r) between the minimum drop radius r; and the maximum
radius f:

q = f q", A(r)dr, (32)

Tt
0.5 2
Alr) = %[0.871(%) - 1.39(%) + 1.296(%) ] (33)
20V4T,y

The minimum drop radius is defined as r; = an AT and the maximum drop radius is assumed
as 1 mm (as found in experimental observations). Rose compared his theory with experimental data,

Figure 9. Line (a) shows the results from the original Rose model, Equation (33). Since the agreement is
not satisfying, Rose made several modifications. For line (b), the minimum droplet radius in the drop
size distribution (Equation (32)) has been set to 10r;. The model line (c) stand for a model derivative
with AT in Equation (29) being replaced by AT — q” Ry, where R, = 8, /A, accounts for a promoter
layer resistance (8p and Ap, represent thickness and thermal conductivity of the promoter layer). Line
(d) represents again a modification regarding the drop size distribution, where the maximum droplet
size is set to T = 1.75 mm [105]. For this analysis Rose used numerous experimental databases from
different investigations [105].
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Figure 9. Comparison of the correlation by Rose with experimental data (line a) and modification of
the correlation (line b, ¢ and d) [105].

Bonner [106] applied the theory of Rose to develop advanced models for dropwise condensation.
He introduced a model that is independent from heat flux:

A sin
h=33 ( ), 34
r4?/3r;1/3\1 —cos 9 (34)
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and one that depends on it:

A sin 9
h =27 /4(1 N s)' (35)
d i t

Parameters are the contact angle 9, the radius of a departing droplet rq, the effective length
between the interfacial resistance (caused by mass transfer) and droplet conduction resistance r;, and
the minimum droplet size r;. Furthermore, both models take the inclination angle y into account
(Equation (36)). These parameters are defined as follows:

- 1/2

7 ( i ) ' (36)

pgsmy

1
o= A Tsat ( sin 9 )( kK+1 )(RgTSat)Z (37)
' vailzv 1-cosd9/\k—-1 2m ’

. 20Tgat

S CALAT (38)

Bonner compared the heat flux dependent and independent model with experimental data
provided by Stylianou, which also served for Rose’s model, [106] Figure 10. Both of the correlations
are in a good agreement with experimental data, however, the heat flux dependent one can predict the
trend of experimental results better than the other.

10
= Stylianou Data

Heat Flux Dependent Bonner Model
Non-Heat Flux Dependent Bonner Model

8

Temperature difference in K

Heat flux in MW/m?2

Figure 10. Comparison of the heat flux dependent (Bonner I) and heat flux independent (Bonner II)
model with experimental data provided by Stylianou [106].

Browne et al. [107] assessed Nusselt equations for film condensation on inclined tubes and stated
that they result in satisfying agreement for smooth tubes compared to experimental data. The Nusselt
equations for laminar (Equation (39)) and turbulent (Equation (40)) film condensation [50] are derived as

Nusselt-laminar film condensation:

' cp, (Teat=T) 0.25
pl(pl - pv)gAllv(l +0.68 = Aile )7\?

h =0.725 39
Dhl»ll(Tsat - Tw) ( )
Nusselt-turbulent film condensation:
1
0.2 _ 3
. p1(P1—py)ge,1)° 2
h— 0.056(%) [fvpl] AL (40)
1 1
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3.2. Outside Condensation Modelling with One-Dimensional Codes

The 1D system codes ATHLET, RELAP and TRACE apply models for film condensation while
only in TRACE, a model for dropwise condensation is implemented [47,108,109]. ATHLET applies
the same correlations (as discussed in Section 2.3.1) for condensation inside and outside of inclined
tubes. The heat transfer correlations in RELAP are selected based on the particular geometry and
heat transfer phenomena. The geometries are “inclined surface condensation” and “horizontal bundle
with in-line tubes”, see Figure 11. The heat transfer for film condensation on an inclined surface (is
calculated with the Nusselt equation for a laminar film and with the Shah correlation for a turbulent
film [108]. The transition between the flow types is defined at Re = 1800.

RELAP-film condensation on an inclined surface:

h = max(hNusselt/ hShah)r (41)
(o-00))'
A P1(P1— Py
h = 42
Nusselt 0.9086[ H]zRel ’ ( )
A .

hepan = 0.023(—1)Re?~8Pr?~4(1 —x)"81+ 38 . (43)

Dh . 0.8 . 0.4 0.95

((; - 1) (pcrit) )
For film condensation on a horizontal tube bundle a correlation by Chen [108] is used
3 xs 0.25

h = 0728 [1.0 1+ 0222 (MAX(1, oin) 1) 50101~ PON?(Bi +03756p10T) 44
- TV AL /it MAX(1, @in) Dy AT 44

Figure 11. Film condensation on a tube bundle as implemented in RELAP [108].

TRACE also applies the same film condensation models for condensation inside and outside
inclined tubes, which were presented in Section 2.3.3. In TRACE only a simple model for dropwise
condensation is implemented. The heat transfer (Equation (45)) consists of the heat transfer from
the wall to the vapor (Equation (46)) and the heat transfer from the wall to the liquid (Equation (47))
and uses the amount of the wetted surface (Equation (48)) which is based on contact angle (min) and
hydraulic diameter (Dy) [109]. hgp, is derived from film condensation models:

h= hWV + hwl/ (45)
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H1

hwv = (1 - fwet)r/ (46)
min
hwl = fwethfilm/ (47)
(1-¢)Dy

(48)

fwet =

48 min
4. Experimental Test Facilities

In the last years, several experimental investigations have been conducted to analyse the integral
and local performance of the passive heat removal system components of the BWR KERENA reactor.
The INtegral test facility KArlstein (INKA) at Framatome GmbH [10] was designed and implemented
by Framatome GmbH to investigate the integral performance of passive safety systems of the KERENA
(Figure 12). The INKA facility was constructed with a 1:1 height and a 1:24 volumetric scaling relative
to the plant scale. It includes large vessels simulating the KERENA containment and the large water
volumes of the storage pool, the core flooding pool, the pressure suppression chamber and one of the
four emergency condensers and containment cooling condensers. More than 300 sensors are installed
for measuring temperature, mass flow rate, absolute and differential pressure and two-phase flow
distribution. The INKA facility is able to conduct the integral and single components studies for
different accident scenarios such as breaks in steam-line, RPV bottom leaks as well as station black-out.
Furthermore, single effect investigations such as steam flow and condensate level in EC single tubes,
influence of non-condensable gases on the heat transfer inside the EC and two-phase instabilities in
the CCC, are also possible to conduct. However, the moderate local instrumentation of the larger
components does allow a detailed thermal hydraulic analysis of local flow and heat transfer. Therefore,
several single component facilities for detailed investigations of the KERENA passive safety systems
components have been constructed. In the following some of the most important ones accounting for
condensation studies are introduced.

INKA Test Facility KERENA

Shielding/storage pool

o
i | I

flooding
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PUUI

Drywell
lm.m.&,ﬁ; J | H i
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»n |

Pressure
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Figure 12. INKA test facility regarding the KERENA reactor concept [10].
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The NOKO facility (Ger.: NOtKOndensator) was set up at Forschungszentrum Jiilich. It models
the emergency condensers with a reduced number of eight tubes Figure 13. The NOKO test facility
had an operating pressure of up to 100 bar and a maximum of 4 MW steam supply. The emergency
condenser bundle was fabricated with the planned geometry and material of the KERENA EC. The
NOKO was equipped with several thermocouples and void probes to perform transient measurements
of liquid distribution and condensation heat transfer for different experimental conditions, including
studies with non-condensable gases. In 2001, it was disassembled and some parts of it transferred
to the Transient TwO Phase FLOW Test Facility (TOPFLOW) facility [110] at Forschungszentrum
Rossendorf (now Helmholtz-Zentrum Dresden-Rossendorf) for the further studies of phenomena on
the secondary (cooling) side.

Condenser tank

Inlet
Inspection
Inspection glass
glass

Outlet

Figure 13. Sketch of the NOKO test facility [111].

The COndenSation test rig for flow Morphology and hEAt transfer studies (COSMEA) thermal
hydraulic test facility is embedded in TOPFLOW facility at Helmholtz-Zentrum Dresden-Rossendorf
(HZDR), Figure 14 [46]. This facility is being used to investigate condensation of high-pressure steam
inside inclined tubes corresponding to the condition of emergency condensers in passive heat removal
system of the KERENA reactor. It consists of two coaxially arranged annular tubes with a stainless-steel
inner (condenser) and titanium alloy outer tube (cooling side). The COSMEA facility is equipped with
two novel measurement techniques. First, a set of heat flux probes installed to measure inner and
outer wall temperatures in five different azimuthal positions via thermocouples resulting in calculation
of the local heat flux. Second, X-ray computed tomography (CT) is applied to obtain contactless
cross-sectional images of the flow morphology inside the condenser tube at five various cross sections
along the tube without interfering the flow stream.

cooling water feed line

I T steam blow off line

cooling water pump

saturated water feed line condensate drain line

Figure 14. Sketch of the COSMEA test facility [46].

The PANDA multi-purpose facility was set up at Paul Scherrer Institute (PSI) as a scaled
thermal-hydraulic test facility for investigating passive decay heat removal systems for the new
generation of light water reactors (LWR) [112]. As shown in Figure 15, LWR containment volumes are
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simulated by six cylindrical pressure vessels representing the reactor, RPV, drywell, the suppression
chamber (SC) and the gravity driven cooling system (GDCS) pool. The multi-purpose test facility
can be applied for integral containment response tests and separate effect tests. The PANDA facility
is designed for up to 10 bar pressure and 180 °C operating conditions. It’s being mainly used for
testing the containment features of the Economic Simplified Boiling Water Reactor (ESBWR) reactor
designs in LOCA scenarios due to main steam line breaks. PANDA has been part of several research
projects, among them such with investigations on the operation of building condensers of SWR 1000
(KERENA) reactor and the effect of non-condensable gases (hydrogen) on the passive containment

cooling systems performance.
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Figure 15. Sketch of the PANDA test facility [112].

The LAOKOON test facility was constructed by Goldbrunner et al. [81] at Technische Universitét
Miinchen to study direct contact condensation (DCC) on a subcooled water surface considering the
effect of non-condensable gases at pressure levels up to 60 bar (Figure 16). Condensation in the
presence of non-condensable gases occurs in the primary system of PWRs during LOCA scenarios.
In the LAOKOON, nitrogen is being used as the non-condensable gas. LAOKOON equipped with a
thermocouple line consisting of 12 thermocouples to measure the temperature along a vertical line as
well as a laser measurement to asses concentration profiles of two-phase flow. Therefore, experiments
are able to provide detailed data about temperature measurements, the water height as well as the
pressure level.
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Figure 16. Sketch of the LAOKOON test facility [81].

Transient condensation experiments were done by Prasser et al. [72] for the Invert Edward Pipe
(INVEP). The INVEP facility contains a condensation tube (44.3 mm diameter and 5.6 m length) which
is immersed in a tank of subcooled water (Figure 17). The test facility is equipped with novel local void
probes and several micro-thermocouples along the condensation tubes. During the experiment, hot
steam is produced from a pressurizer filled with a high-pressure saturated water-steam mixture. This
mixture entered the nearly horizontal pipe (slight inclination approximately 1.56°) with a closed end
and due to the high heat flux to the subcooled water of the tank, the phase change occurs immediately
on the cold pipe of the wall.

T8 T7 I ,
| 52 V8 vz T3 v :
V5 .
S1
Valve
3z T9 T6 T2
T4 T
Pressurizer
Condensation pipe Cooling water tank

Figure 17. Sketch of the INVEP test facility; S: ordinary local void probes, T: thermocouples, V:
combined thermocouple/local void probes, P: pressure measurement probes [72].

The Separate Effect Test for Condensation Modelling (SETCOM) facility at Forschungzentrum
Julich was designed with the main goal of providing data for wall condensation models development
(Figure 18). This facility comprises a closed loop, which has a rectangular channel with three adiabatic
walls and one cooling wall. It is capable of operating at different inclination angles from horizontal to
vertical. Further to local wall heat flux measurements, it is equipped with particle image velocimetry
(PIV) and a laser Doppler anemometry (LDA) instrument to provide detailed data of transport
phenomena in the boundary layer [113,114].
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Figure 18. Sketch of SETCOM test facility [114].

The test facility GENEVA at Technische Universitdt Dresden was built to investigate the system and
stability behavior of the CCC. Within the last years, GENEVA was enhanced to provide experimental
data concerning the heat transfer behavior of the CCC. The test facility consists of three circuits: heat
source circuit, test circuit, cooling circuit. In Figure 19, the test facility with the four main components
is presented.

Figure 19. Schematic illustration of the test facility GENEVA [17].

Steam, which is generated by two external steam generators with a maximum electrical power of
120 kW, is led into the steam chamber through eight nozzles (heat source circuit). Inside the steam
chamber, a heat exchanger bundle of one to four tubes is arranged. This tube bundle is filled with cold
deionized water and provides a circuit through the connection with the riser, heat sink and downcomer
(test circuit).

Due to the colder fluid inside the tube bundle, the steam condenses at the outside. The condensation
can be observed through eight windows alongside the steam chamber. The heat introduction into the
fluid inside the tubes heats up and starts boiling. Since the density of water decreases with rising
temperature, the fluid flows upwards the riser into the heat sink and colder fluid flows backwards
via the downcomer into the tube bundle. The heat sink is connected to an external heat exchanger
to provide constant conditions for the experiments [17]. The condensation process is investigated by
measuring the axial and azimuthal temperature profiles on the tubes as well as the condensate mass
flow and the droplet size and distribution.
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5. Conclusions

In this paper, the innovative passive heat removal system of BWR nuclear power plant KERENA
developed by Framatome, was introduced. The essential thermal hydraulic process is based on: (1)
heat removal from reactor pressure vessel to the flooding pool via four emergency condensers (EC),
(2) heat removal via four containment cooling condensers (CCC) to the storage pool and shielding
pool. The main phenomena can be categorized as: steam condensation inside incline tubes (EC),
steam condensation on inclined tubes (CCC), boiling on inclined tubes (EC), boiling inside inclined
tubes (CCC) and the natural circulation as a driving force. Part I of this review was focused on
the first two categories. Commonly used models for heat transfer coefficients were introduced and
assessed by comparing with COSMEA experiment data. Three different one-dimensional system
codes, ATHLET, TRACE and RELAP and corresponding heat transfer correlations were introduced in
detail. Furthermore, studies concerning the CFD simulations of in-tube condensation similar to the one
from emergency condensers were presented. Eventually, integral and single component experimental
facilities for investigation of condensation were briefly introduced. Part II of the paper is focusing on
other phenomena in the passive heat removal systems such as boiling and two phase instabilities.
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Abbreviations
Nomenclature
A Area (m?), Distribution
Cu = 0.09 (Constant)
p Specific heat at constant pressure (J/(kg K))
D Diameter (m)
Dy, Hydraulic diameter (m)
b Condensation coefficient
Fr Froude number
f Fanning friction factor
fwet Fraction of the surface covered by a liquid film
G Mass flux (kg/ (m2s))
Ga Galilei number
Gr Grashof number
Gt Shear velocity (m/s)
g Gravitational acceleration (9.81 m/s?)
H Enthalpy (J/kg)
h Heat transfer coefficient (W/(m?K))
Ailv Latent heat (J/kg)
hgs Superficial heat transfer coefficient (W/(m?K))
Ja Jakob number
Jg Dimensionless gas velocity

k Turbulent kinetic energy (J/kg)
K Transfer velocity (m/s)
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L Length (m)

Nu Nusselt number

n Number of tubes

N,M Exponent

n Normal vector

M; Relative molar mass

m Mass (kg)

m Mass flow (kg/s)

dp/dz Pressure drop (Pa/m)

Pr Prandtl number

P Pressure

q Rate of heat flow (kW)

q” Heat flux (kW/m?)

t Effective maximum drop radius (m)
rq Radius of a departing droplet (m)

T Effective length (between conduction and interface resistance) (m)
r Minimal droplet radius (m)

T Temperature (K)

Rg Gas constant

Uef = max(|g_¥ S wy — Wl|)

ut Turbulent velocity scale (m/s)

u Velocity (m/s)

X Quality

Xit Martinelli number

V4 Factor

Re Reynolds number

r Radius (m), Relaxation time (1/s)
Ra Rayleigh number

Greek

€ Void fraction

T Interphase volumetric mass exchange (kg/(m3s))
5 Film thickness (m)

5+ _ ( % )0.5

e* Modified void factor

n Kinematic viscosity (m2/s)

Y Inclination angle (°)

9 Contact angle (°)

K Heat capacity ratio

A Thermal conductivity (W/(mK))

v Dynamic viscosity (kg/(ms))

p Density (kg/m3)

o Surface tension (N/m), Heat surface length (m)
T Shear stress (N/ m?)

©; Lockhart-Martinelli two-phase parameter
€ Turbulent dissipation rate (J/kgs)
Subscript

crit Critical

DC Dobson and Chato

eq Equal

evap Evaporation

F Fluid
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film Film condensation
g Gas
i Interface
lam Laminar
1 Liquid
min Minimum value
NC Natural convection
o Outside
strat Stratified
s at Saturation condition
TP Two-phase
tot Total
turb Turbulent
v Vapor
w Wall
Abbreviations
ATHLET Analysis of thermal-hydraulics of leaks and transients
BWR Boiling water reactor
CcccC Containment cooling condenser
CFD Computational fluid dynamics
CMT Core makeup tank
DCC Direct contact condensation
DNS Direct numerical simulation
DW Drywell
ESBWR Economic simplified boiling water reactor
EC Emergency condenser
GDCS Gravity driven cooling system
GRS Gesellschaft fiir Anlagen- und Reaktorsicherheit
HZDR Helmholtz-Zentrum Dresden-Rossendorf
HWR Heavy water reactor
INKA Integral Test Stand Karlstein
INVEP Invert Edward pipe
LWR Light water reactor
PCCS Passive containment cooling system
PWR Pressurized water reactor
PPPT Passive pressure pulse transmitter
PSI Paul Scherrer Institute
PTS Pressurized thermal shock
RELAP Reactor excursion and leak analysis program
RPV Reactor pressure vessel
SC Suppression chamber
SCWR Supercritical water reactor
SD Surface divergence
SETCOM Separate effect test for condensation modelling
SRT Surface renewal theory
TRACE TRAC/RELAP advanced computational engine
TransAt Transport phenomena analysis tool
USNRC U.S. Nuclear Regulatory Commission
VOF Volume of fluid
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