
Deep Reinforcement Learning based Continuous
Control for Multicopter Systems

Anush Manukyan
University of Luxembourg, Luxembourg

Luxembourg, Luxembourg
anush.manukyan@uni.lu

Miguel A. Olivares-Mendez
University of Luxembourg, Luxembourg

Luxembourg, Luxembourg
miguel.olivaresmendez@uni.lu

Matthieu Geist
Université de Lorraine & CNRS, LIEC

Metz, F-57070 France
matthieu.geist@univ-lorraine.fr

Holger Voos
University of Luxembourg, Luxembourg

Luxembourg, Luxembourg
holger.voos@uni.lu

Abstract—In this paper we apply deep reinforcement learning
techniques on a multicopter for learning a stable hovering task in
a continuous action state environment. We present a framework
based on OpenAI GYM, Gazebo and RotorS MAV simulator,
utilized for successfully training different agents to perform
various tasks. The deep reinforcement learning method used for
the training is model-free, on-policy, actor-critic based algorithm
called Trust Region Policy Optimization (TRPO). Two neural
networks have been used as a nonlinear function approximators.
Our experiments showed that such learning approach achieves
successful results, and facilitates the process of controller design.

Index Terms—reinforcement learning, UAV, multicopter,
TRPO, neural network

I. INTRODUCTION

Unmanned aerial vehicles (UAV) are being increasingly
deployed in many civil applications owing to their high
flexibility, possibility to carry a wide range of sensors, inex-
pensive cost and hovering abilities. They are already being
used for tasks such as remote sensing and monitoring of
objects, search and rescue operations and even goods delivery.
However, providing an autonomous and stable navigation in
an unknown environment, remains a challenging problem.
At present, the control systems of the most industrial UAVs
are predominantly based on Proportional, Integral Derivative
(PID) controller. It has an advantage of having a simple
design, easily adaptive parameters and good robustness [1]. In
case of stable environments PID controller has close-to ideal
performance [4]. However, it requires a complete knowledge
of the environment and system dynamics. And even small
changes in the environment can lead to failure. Therefore,
having an intelligent control system, that can adapt to the
changes of the environmental dynamics is desirable.

In recent years Reinforcement Learning (RL) based control
systems became a subject undergoing intense study among
robotics researchers. RL is a framework that offers to the field
of robotics different goal-oriented tools, for designing hard-to-
engineer behaviors [2]. The general idea behind the RL is that
by autonomously interacting with its environment the agent

learns an optimal policy without having a prior knowledge
about its dynamics nor environment.

Fig. 1. The neural network architectures for policy and value function
approximations used in this work.

RL algorithms have already been deployed in various
robotic applications rainging from autonomous navigation to
object recognition and manipulation. Our investigations in
recent works showed that in many UAV applications RL
techniques outperform PID controllers [4]. In this work we will
focus on studies that apply RL methods on UAV applications.

For instance, Bou-Ammar et al [5] propose a nonlinear
autopilot for quadrotor UAVs based on feedback linearization
for precise and fast stabilization. Their approach is based on
reinforcement learning, where after each generated control
action the agent receives a feedback by a simple reward
function. Using a value iteration method, they achieve faster
convergence of the learning process. Pham et al. [6], [7]
provide a RL based framework for an UAV to navigate to
a target point in an unknown environment, where an exact
mathematical model of the environment may not be available.
The purposed framework is based on the combination of
Q-learning algorithm and a PID controller. By performing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/287734849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

experiments in the simulation and real world using a quadrotor
Parrot AR.Drone 2.0, they show that the UAV successfully
manages to find the least number of steps to navigate to the
goal position.

A several studies address the learning problem applied on
hovering tasks. For instance, Sugimoto et al. [8] use rein-
forcement learning for achieving stable hovering of an actual
quadrotor UAV. The main idea of their work is to use a marker
that the UAV should recognize and hover above it. First, an
image taken by the camera of a drone is sent to the PC, and
after velocity commands are calculated and send to the drone.
For the learning process they use Q-learning algorithm which
creates a matrix of states. The drone receives positive rewards
every time when it ends up in the state where the marker
is. By performing real world experiments using an AR.Drone
2.0, they show that the UAV successfully learns to hover over
a given marker. Another RL based method for controlling a
quadrotor UAV is presented by Hwangbo et al. [9], where
they propose a novel learning algorithm. They use neural
networks in order to train a quadrotor to stabilize itself in
the air even from manually thrown upside-down position. The
algorithm uses two different neural networks: value network
and policy network. The algorithm gets the elements of the
rotation matrix as an input, and outputs the rotor trust. They
demonstrate the successful performance of the trained policy
first in a simulation and after on a real quadrotor.

There is a considerable amount of literature that investi-
gate the advantages of utilizing reinforcement learning for
engineering intelligent controllers for the UAVs. Many stud-
ies apply on their tasks well known reinforcement learning
algorithms such as Q-Learning, SARSA or Deep Q Networks.
Despite the fact that these algorithms achieve successful robot
training, yet they can be applied only for tasks that operate
in a discrete and low-dimensional action space environments,
limiting the functionalities of the robot. However, the most
practical physical control tasks belong to high-dimensional
and continuous action space domain. Hence, in this work
we focus on reinforcement learning tasks, that observe con-
tinuous robotic control problems. First we combine OpenAI
GYM, Gazebo simulator and RotorS MAV Simulator into one
framework referred as RotorS Gym framework. We utilize a
model-free, on-policy, actor-critic based algorithm called Trust
Region Policy Optimization (TRPO) for training our agent to
perform a hovering task in RotorS Gym framework. TRPO
is an algorithm that aims to solve the classic reinforcement
learning problem of maximizing the cumulative return. Since
TRPO adopts the actor-critic architecture it uses two different
neural networks: one for policy function approximation and
another for value function approximation. To improve its
policy, TRPO tries to maximize the expectation of Q-values,
over the distribution of states and actions [12].

The remaining of the paper is organized as follows. Sec-
tion II provides details about the multicopter kinematics and
dynamics, and presents the basis of reinforcement learning
and TRPO algorithm. Section III introduces the structure
of our training framework in great detail. Secton IV gives

full description of the environmental setup, reward function,
hyperparameters and the network architecture, and presents the
obtained results. Some of our conclusions are drawn on the
final section V.

II. BACKGROUND

In this section we present a brief introduction of kinematics
and dynamics of a multicopter along with the learning algo-
rithm used for training the UAV.

A. Kinematics and Dynamics of Multicopter

The schematic representation of the hexicopter used in this
work is shown figure 2. We consider two frames: 1) the
world-fixed inertial frame, FI , and 2) the body fixed frame,
FB , which is attached to the hexicopter. The origin of the
body frame is in the center of mass of the hexicopter. The
hexicopter is actuated by changing the speeds of six rotors.
The coordinates of FI is denoted as XI , YI , ZI , and XB ,YB ,
ZB are the coordinates of FB , respectively. The position of the
center of mass of the hexicopter, expressed in the inertial frame
FI is represented by Ω = [x, y, z]. The attitude is described
by roll, pitch and yaw, which are the ZY X Euler angles.
Finally, the rotation of the body with respect to inertial frame
is presneted by rotation matrix R:

Fig. 2. The average reward obtained per policy iteration.

R =

cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsθ
sψcθ sψsθsφ− cψcφ sψsθcφ− cψsθ
−sθ cθsφ cθcφ

where cψ = cosψ, cθ = cosθ, cφ = cosφ, sψ = sinψ,

sθ = sinθ, sφ = sinφ, and φ, θ, ψ are the roll, pitch and
yaw angels respectively [10], [11].

More detailed description of mathematical models about
quadrotor dynamics are represented in [21]–[23].

B. Reinforcement learning

Using RL method an agent learns an optimal policy by trial-
and-error interactions with its environment without having
any prior knowledge about it. The agent receives a positive
or negative reward for each action taken. Having a goal of
maximizing the cumulative reward, the agent learns to take
the correct sequence of actions. Such task can be described
as a Markov decision process (MDP), which is defined using
(S,A, P, r, ρ0, γ) tuple, where S is the finite set of states,
A is the finite set of actions, P is the transition probability
distribution being at a state s ∈ S and taking an action a ∈ A
to transient to a new state s′ ∈ S, r is the reward function,
which maps the state-action-pair to the set of real numbers [5],
ρ0 is the distribution of the initial state s0 and γ ∈ (0, 1) is
the discount factor.

The idea behind the procedure of MDP is as follows: the
agent starts at an initial state s0 ∈ S, performs an action
a0 ∈ A which transfers it to a new state s1 by transition
probability distribution of Ps0a0 , and receives a reward of
r(s0). The process repeats until all states have been visited.
We will denote the stochastic policy by π : S × A → [0, 1],
and the expected discounted reward η(π). The main objective
of the agent is to choose a sequence of actions over time, that
maximizes the expected discounted reward η(π):

η(π) = Es0,a0,...
[∑∞

t=0 γ
tr(st)

]
,

where s0 ∼ ρ0(s0), at ∼ π(at|st), st+1 ∼ P (st+1|st, at)
[12]. Based on the standard definitions the value function Vπ ,
the state-action value function Qπ and the advantage function
Aπ are following:

Vπ(st) = Eat,st+1,...

[∑∞
l=0 γ

lr(st+l)
]
,

Qπ(st, at) = Est+1,at+1,...

[∑∞
l=0 γ

lr(st+l)
]
,

Aπ(s, a) = Qπ(s, a)− Vπ(s),

where at ∼ π(at|st), st+1 ∼ P (st+1|st, at) for t ≥ 0.

As was mentioned before, TRPO adopts the architecture
of the actor-critic method, but it modifies the way the policy
parameters of the actor are being updated.

The new policy will be denoted as π̃ and η(π̃) will be the
expected return of the new policy π̃.

η(π̃) = η(π) + Es0,a0,···∼π̃
[∑∞

t=0 γ
tAπ(st, at)

]
(1)

In (1) the advantage function is used which measurs how
good the new policy is with regard to the average performance
of the old policy. η(π̃) can be rewrite into the following form,
where instead of the sum over timesteps is the sum over
states [12]:

η(π̃) = η(π) +

∞∑
t=0

∑
s

P (st = s|π̃)
∑
a

π̃(a|s)γtAπ(s, a)

= η(π) +
∑
s

∞∑
t=0

γtP (st = s|π̃)
∑
a

π̃(a|s)Aπ(s, a)

= η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a),

(2)

where π is the old policy, π̃ is the new policy and ρ is
the discounted visitation frequencies: ρπ(s) = P (s0 = s) +
γP (s1 = s) + γ2P (s2 = s) +

However, (2) is hard to be optimized due to the strong
dependency of ρπ̃ to the new policy π̃. Therefore, a local
approximation to η is used:

Lπ(π̃) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(a|s)Aπ(s, a). (3)

In (3) Lπ uses the state visitation frequency ρπ instead of
ρπ̃ , assuming that the state visitation frequency of the new
policy is not too different from the old policy. Kakade and
Langford [12] proved that small steps that optimizes the
local approximation Lπθold also improves η. Hence, in order
to find an optimal step size, Kakade and Langford proposed a
conservative policy iteration update scheme:

πnew(a|s) = (1− α)πold(a|s) + απ′(a|s), (4)

where πold is the current policy, π′ = argmaxπ′Lπold(π′)
and πnew is the new policy.

After they obtained the following bound which constraints
the policy update to be within some trust region:

η(πnew) ≥ Lπold(πnew)− 2εγ

(1− γ)2
α2, (5)

where ε = max
s

∣∣Ea∼π′(a|s)
[
Aπ(s, a)

]∣∣.
By replacing α with a distance measure between π and π̃ the

policy improvement bound in (5) can be extended to general
stochastic policies.

Involving KL-divergence between the new policy and the
old policy the bound above can be written as follows:

η(π̃) ≥ Lπ(π̃)− CDmax
KL (π, π̃), (6)

where C = 4εγ
(1−γ)2 and represents the penalty coefficient,

Dmax
KL denotes the maximum KL divergence of the two

policies.
From (6) implies that the generated sequence of policies

are monotonically improving: η(π0) ≤ η(π1) ≤ η(π2) ≤
The right-hand-side of the equation (6) will be repalced with
Mi(π): Mi(π) = Lπi(π) − CDmax

KL (πi, π). Then from (6)
η(πi+1) ≥ Mi(πi+1), since the KL divergence between πi
and πi is 0, then η(πi+1) ≥ Mi(πi+1), therefore, η(πi+1) −
η(πi) ≥Mi(πi+1)−Mi(πi). This means that by maximizing

Mi at each iteration, the objective function η is always
improving.

Finally, the optimization problem that this algorithm solves
is the following:

maximize
θ

[Lθold(θ)− CDmax
KL (θold, θ)].

III. FRAMEWORK STRUCTURE

Training a real robot in a real world, using RL techniques,
can be expensive due to large number of explorations that the
agent performs, and many of which result in crashes damaging
the robot. Therefore, having a framework that provides close
to real-world dynamics is necessary. There, the training of the
robot can be performed safely and the optimal policy can be
learned efficiently, which can later be run on the real robot,
without any changes. Ideally, the agent should not be able
to differentiate between a simulated environment and the real
world.

In this work we designed such framework by combining
a few open source toolkits, such as: OpenAI Gym, Gazebo
simulator and RotorS Micro Aerial Vehicle (MAV) Simulator
Framework.
OpenAI Gym is a toolkit that provides several robotic

environments for developing and comparing reinforcement
learning algorithms [13]. Gazebo is a free and robust physics
engine for robot simulations. One of the main advantages of
Gazebo is that it gives possibility to not only run the simulation
using a high-quality graphical interface, but also allows to run
in a headless mode, which is crucial for faster training. The
combination of OpenAI Gym and Gazebo has been presented
by Zamora et al. [14] where they take the baseline structure
of OpenAI Gym and build a Gazebo environment on the
top of it. The aim of such toolkit is to facilitate the use of
the reinforcement learning algorithms for training robots in
a real world environments. RotorS is a modular, gazebo-
based MAV simulator, which includes a position controller
and a state estimator. The main motive behind the choice
of using the RotorS simulator is that the structure of the
simulator is analogous to the real system [15], and without
applying any changes to the model, all components used in
the simulated environment can be run on the real platform
[15]. In addition, the MAV models, simulated by the Gazebo
physics engine contain all the components that are found on
the real MAVs [15].

RotorS provides several UAV multirotor models. In this
work we have chosen to use AscTec Firefly as a learning agent.

By combining all these tree powerful tools together, we
obtained a new RotorS Gym framework, which provides
a real-world like environment for training our agents. The
communication between RotorS simulator and OpenAI Gym
is executed through Robot Operating System (ROS). The
architecture of RotorS Gym framework is shown on figure
3.

RotorS Gym framework provides an environment consist of
a continuous action space and an observation space. Similar
to OpenAI Gym, the learning process in RotorS Gym is being

Fig. 3. RotorS Gym framework architecture.

execute in an episodic settings, where the agent learns to
perform the given task through series of episodes. In each
episode, the agent interacts with its environment until the
environment reaches a terminal state. There are a few ways to
define the terminal states: (1) by defining constraints, (2) by
defining a timestep. In this work the agent can interact with
its environment until it breaks down the defined constraints
or if it overpasses 1000 steps, meaning that it performs 1000
actions during one episode.

IV. EXPERIMENTAL VALIDATION

In this section we discuss in great details about the contin-
uous action state, the reward function and the neural network
structure. We conclude the section with presenting the obtained
results.

A. Experimental Setup

1) Environmental details: This work focuses on reinforce-
ment learning tasks, that observe continuous robotic control
problems. As noted in section III, RotorS Gym framework,
used for training an agent to perform a hovering task, is
in continuous action space and observation space domain. It
inherits two environment-specific functions of OpenAI Gym,
which are reset and step. The reset function is called when
an episode starts in order to reset the environment and set up
the initial environmental conditions. The step function is used
for executing each simulation step. At each step it returns the
following three important values:
• observation is an environment-specific object, containing

information about the position and orientation of the
agent, along with the rotors velocities.

• reward is a floating point number that the agent gets after
each performed action. More details about the reward
function used in this work is given below.

• done is a boolean value that indicates whether it is time to
reset the environment. Done is True when the maximum
amount of steps have been accomplished or if the agent
overpasses the predefined constraints.

2) Workflow of the Controller: The process of the main
workflow of the controller, shown on figure 4, is as follows:
it receives the position and orientation of the UAV as an
input and outputs the next action which consists of six rotor
velocities. Since the action space is continuous at each step

six velocity values are being chosen from predefined bounds.
The bounds have been chosen by experimenting with different
velocity values in order to find a physically feasible constraints
that lead to a realistic performance of the UAV. For AscTech
Firefly we have chosen Ωmin = 535 and Ωmax = 615. It is
worth noting that for a task such as takeoff of Firefly drone,
the minimum velocity value in the RotorS simulator should
be Ωmin ≥ 545.

Fig. 4. The workflow of the controller developed in RotorS Gym framework.

3) Reward Function: Another challenging point in rein-
forcement learning is to design the reward function, since it is
the only parameter that indicates the agent’s performance. For
instance, sparse reward functions leads to a poor performance
of an agent, since it does not give sufficient information to
the agent about its behaviour. In case of sparse reward the
agent gets feedback only when it succeeds or fails the task.
Meaning that, while the agent is exploring its environment, it
does not receive any information if it is performing good or
worse. And only when it stumbles to the success condition
then it can learn the sequence of actions that brought it there.
In this work we focus on designing shaped reward function,
since it gives smooth, continuous gradual information using
the UAV’s position and orientation. Our experiments showed
that such reward function helps the agent to converge to an
optimal policy in a reasonable amount of time.

4) Hyperparameters: For the best results the choice and
tuning of the optimal hyperparameters is essential. Poor hy-
perparameter selection can cause weaker performance of the
algorithm. In this work the base values of the hyperparameters
originate from the following related literature [16]–[19]. More-
over, an optimization of the baseline hyperparameters has been
done to improve the performance of the presented approach.
Table I represents the hypermameter values used in this work.

5) Network Architecture: Function approximators are an-
other core component in reinforcement learning, which must
be chosen and designed carefully. They have significant impact
in finding the optimal policy. In this work the function
approximator is represented by a neural network. As stated
before TRPO employes an actor-critic architecture, where the
actor model is the policy function and the critic model is
the value function. Hence, two different neural networks have
been constructed representing the policy and value function
approximations. As shown on figure 1, first, the policy network

TABLE I
HYPERPARAMETERS

Hyperparameter Value
Discount (γ) 0.995
Learning Rate 0.0005
max KL 0.01
L2 regularization 0.001
Batch Size 64
Stepsize (DKL) 1e - 3
Random Seed 10
Timestep per episode 1000

gets the position and orientation of UAV and outputs a vector
of six rotor velocities. After the neural network representing
the value function returns a value which is the evaluation of
the behavior of the UAV based on its position and orientation.

B. Results

Both the learning and testing phases have been performed in
the RotorS Gym framework using AscTec Firefly drone. The
learning phase starts with the UAV being at a given starting
point, such as z = 1.5, with a goal of hovering around this
position. Several positional constraints have been predefined
in order to pinpoint a failure and reset the environment.

The UAV learns to perform the given task by training for
∼ 2100 policy iterations, which is approximately 2 million
simulation steps and equal to ∼ 15 hours of learning.

Our performance metric is the average reward obtained per
policy iteration, represented on figure 5. It is seen from the
figure that the UAV stably increases the cumulative reward
during the learning phase.

All experiments and training have been executed on a
machine, equipped with 16GB of RAM and a 2.6Ghz Intel
i7-6600U CPU with an Ubuntu16.04 operating system.

Fig. 5. The average reward obtained per policy iteration.

V. CONCLUSION

In this work we presented a learning approach that trains a
multicopter to hover in a continuous action space environment.
The algorithm used for solving such task is model-free,

on-policy method, called Trust Region Policy Optimisation
(TRPO). TRPO adopts the architecture of the actor-critic
method, using two neural networks as nonlinear function
approximators. The first neural network that is used for policy
function approximation gets the position and orientation of the
UAV as input, and outputs six continuous actions representing
six rotor velocities of the multicopter. After, the second neural
network used for value function approximation evaluates the
learnt policy. Such learning process is performed in the RotorS
Gym framework, which is a combination of OpenAI Gym,
Gazebo and RotorS MAV simulator. For the training an
AscTec Firefly drone is used in the RotorS Gym Framework.

The whole learning procedure is performed in about 2100
policy iterations which is about 2 million simulation step. Our
results showed that using such learning technique it is possible
to successfully train an agent to perform a stable hovering task
in a continuous action space domain.

As a future work the hovering task can be extended to
navigation or even more complex task. Another learning
approach, such as Proximal Policy Optimization [20] can be
used which may significantly increases the speed and stability
of convergence on various continuous control tasks.

REFERENCES

[1] Zulu, Andrew, and Samuel John. “A review of control algorithms for
autonomous quadrotors.” arXiv preprint arXiv:1602.02622(2016).

[2] Kober, Jens, J. Andrew Bagnell, and Jan Peters. “Reinforcement learning
in robotics: A survey.” The International Journal of Robotics Research
32.11 (2013): 1238-1274.

[3] Polvara, Riccardo, et al. “Autonomous Quadrotor Landing using Deep
Reinforcement Learning.” arXiv preprint arXiv:1709.03339 (2017).

[4] Koch, William, et al. “Reinforcement Learning for UAV Attitude Con-
trol.” arXiv preprint arXiv:1804.04154 (2018).

[5] Bou-Ammar, Haitham, Holger Voos, and Wolfgang Ertel. “Controller
design for quadrotor uavs using reinforcement learning.” Control Appli-
cations (CCA), 2010 IEEE International Conference on. IEEE, 2010.

[6] Pham, Huy Xuan, et al. “Reinforcement Learning for Autonomous UAV
Navigation Using Function Approximation.” 2018 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE,
2018.

[7] Pham, Huy X., et al. “Autonomous uav navigation using reinforcement
learning.” arXiv preprint arXiv:1801.05086 (2018).

[8] Sugimoto, Takuya, and Manabu Gouko. “Acquisition of hovering by
actual UAV using reinforcement learning.” Information Science and
Control Engineering (ICISCE), 2016 3rd International Conference on.
IEEE, 2016.

[9] Hwangbo, Jemin, et al. “Control of a quadrotor with reinforcement
learning.” IEEE Robotics and Automation Letters 2.4 (2017): 2096-
2103.

[10] Balasubramanian, E., and R. Vasantharaj. “Dynamic Modeling and
Control of Quad Rotor.” International Journal of Engineering and
Technology (IJET) 5 (2013): 63-69.

[11] Imanberdiyev, Nursultan, et al. “Autonomous navigation of UAV by
using real-time model-based reinforcement learning.” Control, Automa-
tion, Robotics and Vision (ICARCV), 2016 14th International Confer-
ence on. IEEE, 2016.

[12] Schulman, John, et al. ”Trust region policy optimization.” International
Conference on Machine Learning. 2015.

[13] Brockman, Greg, et al. “Openai gym.” arXiv preprint arXiv:1606.01540
(2016).

[14] Zamora, Iker, et al. “Extending the OpenAI Gym for robotics: a toolkit
for reinforcement learning using ROS and Gazebo.” arXiv preprint
arXiv:1608.05742 (2016).

[15] Furrer, Fadri, et al. “RotorsA modular gazebo mav simulator frame-
work.” Robot Operating System (ROS). Springer, Cham, 2016. 595-625.

[16] Henderson, Peter, et al. ”Deep reinforcement learning that matters.”
Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[17] Duan, Yan, et al. ”Benchmarking deep reinforcement learning for
continuous control.” International Conference on Machine Learning.
2016.

[18] Nachum, Ofir, et al. ”Trust-pcl: An off-policy trust region method for
continuous control.” arXiv preprint arXiv:1707.01891 (2017).

[19] Islam, Riashat, et al. ”Reproducibility of benchmarked deep re-
inforcement learning tasks for continuous control.” arXiv preprint
arXiv:1708.04133 (2017).

[20] Schulman, John, et al. ”Proximal policy optimization algorithms.” arXiv
preprint arXiv:1707.06347 (2017). APA

[21] Omidshafiei, Shayegan. ”Reinforcement learning-based quadcopter con-
trol.” (2013).

[22] Alaimo, A., et al. ”Mathematical modeling and control of a hexacopter.”
Unmanned Aircraft Systems (ICUAS), 2013 International Conference
on. IEEE, 2013.

[23] Lippiello, Vincenzo, and Fabio Ruggiero. ”Exploiting redundancy in
Cartesian impedance control of UAVs equipped with a robotic arm.”
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on. IEEE, 2012.

