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Abstract—Avionics are highly critical systems that require
extensive testing governed by international safety standards.
Cockpit Display Systems (CDS) are an essential component of
modern aircraft cockpits and display information from the user
application (UA) using various widgets. A significant step in the
testing of avionics is to evaluate whether these CDS are displaying
the correct information. A common industrial practice is to
manually test the information on these CDS by taking the aircraft
into different scenarios during the simulation. Such testing is
required very frequently and at various changes in the avionics.
Given the large number of scenarios to test, manual testing of
such behavior is a laborious activity. In this paper, we propose
a model-based strategy for automated testing of the information
displayed on CDS. Our testing approach focuses on evaluating
that the information from the user applications is being displayed
correctly on the CDS. For this purpose, we develop a profile for
capturing the details of different widgets of the display screens
using models. The profile is based on the ARINC 661 standard
for Cockpit Display Systems. The expected behavior of the CDS
visible on the screens of the aircraft is captured using constraints
written in Object Constraint Language. We apply our approach
on an industrial case study of a Primary Flight Display (PFD)
developed for an aircraft. Our results showed that the proposed
approach is able to automatically identify faults in the simulation
of PFD. Based on the results, it is concluded that the proposed
approach is useful in finding display faults on avionics CDS.

Index Terms—Model-based Testing; Cockpit Display Systems;
Safety-critical Systems; ARINC 661; Object Constraint Language
(OCL);

I. INTRODUCTION

Avionics software systems need to meet the quality require-

ments set by various international safety standards [1]. To

meet the safety requirements of the standard, the testing and

verification of avionics software require an extensive amount

of efforts and costs [2]. A significant enhancement to the

modern-day aircrafts is the introduction of a glass cockpit that

comprises of a Cockpit Display Systems (CDS). These CDS

are a replacement of a number of dials and gauges in the

traditional aircrafts [3].

These CDS display information that is vital for the safe

operation of an aircraft. This may include information coming

from different user applications, the flight management system,

flight control unit and the warnings generated by different

hardware components. Testing that the information displayed

on the CDS is correct is an important part of the overall testing

activities of an aircraft. One major challenge in testing CDS

is that the information displayed on CDS heavily relies on

the flight behavior of an aircraft. Another important challenge

is the classification of correct and incorrect information. The

information of CDS that is made visible to the pilots may vary

significantly from scenario to scenario. For example, during

the taxi before takeoff, a Takeoff Memo appears on the screen

that shows various instructions for the pilot. After the takeoff,

the screen disappears. Similarly, when the aircraft turns into

a 45◦ angle (a steep turns), the bank pointer shows a warning

by changing the color to amber.

A common practice by the aircraft vendors is to test the

information displayed on CDS by manually executing different

aircraft scenarios and manually verifying that correct informa-

tion is displayed according to these scenarios [4]. The scenar-

ios are typically executed with the help of simulators. This

step has to be performed repeatedly whenever the required

information to be displayed is changed, for example, due to

an upgraded sensor being used. Testing in this way (manual

execution and manual verification of results) is a very time

consuming and laborious task.

In this paper, we propose a model-based automated ap-

proach to test the functionality of CDS by evaluating the

information displayed on CDS. Our testing focuses on ver-

ifying that the information from the user applications is being

displayed correctly on the CDS. For this purpose, we develop a

UML profile for the international standard of cockpit displays,

the ARINC 661 standard [5], to capture the various elements

of a CDS. The CDS under test is modeled using the proposed

UML profile. The instance model corresponding to the CDS

is automatically populated from the existing CDS modeling
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tools, such as VAPS XT [6]. The test engineer is required to

model the different aircraft flight states that have an impact

on the CDS elements by using a state machine. The expected

properties of the various CDS elements during the aircraft

flight are modeled as constraints, written in Object Constraint

Language (OCL) [7]. The approach utilizes the developed

state machine to generate the test paths. The OCL constraints

contain the expected values and are used as an oracle. The test

execution is also automated with the help of flight simulators.

The actual values displayed on the widgets of a CDS are

identified using our image processing and optical character

recognition (OCR) tool. Based on the inputs from the OCR

tool during different stages of flight, a number of instance

models are populated. We use an OCL Evaluator to evaluate

the constraints on each of the instance models. Any instance

model that does not satisfy the specified OCL constraints

represents a failed test case.

We apply our approach on an industrial case study of a

Primary Flight Display (PFD) developed for an aircraft. We

use JSBSim [8] for simulating the behavior of actual aircraft

during testing. Results indicate that our approach is viable and

is able to successfully detect 18 faults in the implementation

of PFD.

To summarize, the main contributions of this paper are:

1) We propose a model-based approach for functional test-

ing of the cockpit display system (CDS) of an aircraft.

2) We develop a UML profile to capture the information

displayed on CDS. The models developed using the

profile are then use for specifying oracle (expected

values), guiding the test execution tool, and generating

instances during test generation.

3) We develop a tool to automate our approach for testing

CDS.

4) We apply the proposed strategy on an industrial case

study of a Primary Flight Display (PFD) of an aircraft.

The remaining part of the paper is organized as follows. Sec-

tion II presents a background of model-based testing (MBT),

cockpit display system (CDS), and ARINC 661 standard. Sec-

tion III describes our proposed model-based testing strategy

for cockpit display system (CDS) of avionics. Section IV

provides a discussion on tool support. Section V presents the

evaluation of the proposed approach. Section VI discusses the

limitations of the proposed approach. Section VII provides

related work. Finally, Section VIII concludes the paper.

II. BACKGROUND

In this section, we provide the background for model-based

testing (MBT), cockpit display system (CDS), and the ARINC

661 standard.

A. Model-based Testing

Model-based testing (MBT) provides a systematic way to

automate testing activities [9], [10]. In MBT, the system

specifications are modeled using a modeling language such

as Unified Modeling Langauge (UML) [11]. To model various

Fig. 1. A primary flight display (PFD) of Airbus A320

aspects of the system, UML provides a number of modeling ar-

tifacts for different purposes. The modeling artifacts provided

by UML are broadly categorized as structural models (e.g.,

class diagram and profile diagram) and behavioral models

(e.g., state machine). The models developed in UML are

augmented using a constraints specification language, i.e., Ob-

ject Constraint Language (OCL) [7]. Different UML models

support the automation of a number of testing activities. For

example, the UML state machine can be used to generate test

sequences [12]. Similarly, the UML class diagram along with

OCL can be used to automatically generate the test data [13].

B. Cockpit Display System (CDS)

The cockpit of an aircraft typically consists of a number of

display elements to show various types of information (e.g.,

altitude) graphically. The display elements consist of primary

flight display (PFD), navigation display, altimeter, speed in-

dicator, heading indicator, etc. For example, Fig. 1 shows a

primary flight display (PFD) used in Airbus A3201. On the

left-hand side of the PFD shown in Fig. 1, the information

displayed consists of altitude, airspeed, vertical speed, and

heading indicator. On the right-hand side of the PFD, the

navigation information containing waypoints, direction, and

distance is displayed.

C. ARINC 661

ARINC 661 [5] is an aviation standard that defines a

method to design the interactive displays for the Cockpit

Display System (CDS) of an aircraft. This standard emphasizes

separating the user interface (UI) from the application logic.

For this purpose, the standard provides a widgets library to

design UI of CDS. The standard also defines the protocol

to perform communication between UI and the application.

The user application receives data from different hardware

components (e.g., sensors) and sends data to display system.

Moreover, the user application receives commands generated

for each interaction of a user on CDS and transfer those

commands to the appropriate component.

1https://cockpitsonic.de/a320-table-trainer/attachment/a320-pfd
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Fig. 2. An overview of the proposed approach

III. CDS TESTING APPROACH

In this section, we present the proposed model-based ap-

proach for automated testing of the information presented on

the Multifunction displays in aircraft cockpits. For automated

testing, a multi-step approach is proposed. First, we provide an

overview of the complete approach followed by the discussion

on each step of the proposed approach.

A. Approach Overview

As shown in Fig. 2, as a first step, the CDS modeled

in a graphical modeling tool (such as VAPS XT [6], or

SCADE [14]) are converted to an instance of CDS model

that conforms our proposed CDS modeling profile. The next

step is to model the behavior specification (state machine) of

the possible states of an aircraft during the flight that has an

impact on the information being displayed on CDS. The third

step is to model the constraints on the CDS models. These

constraints behave like the test oracle and must be true during

some specific states of the aircraft. The state machine is used

for the automated generation of test cases (flight test paths).

According to each flight path, the behavior of an aircraft flight

is simulated. During simulation, the information displayed on

CDS is recorded in the form of images. The data from images

is extracted to populate the CDS instance models. Lastly, OCL

constraints are evaluated on CDS instance models and results

are reported. Following we discuss the approach in more detail.

B. A UML Profile for Cockpit Display Systems (CDS)

Our profile is based on the well-established standards for

CDS, referred to as the ARINC 661 (or A661) [5]. The A661

standard defines a set of standard widgets and constraints

for the development of CDS. The profile defines different

concepts and attributes using the A661 Widget Library [15].

The purpose of the profile is to capture the details of the CDS,

including the various components that are rendered on the

CDS including the widgets and possible values (for example,

alignment value, color, position).

Fig. 3 shows an excerpt of the UML profile that we

developed for modeling the cockpit display system. The core

stereotype of the profile is a Widget that can be applied to the

TABLE I
PROFILE STEREOTYPE DESCRIPTION

Stereotype Description
«Label» It defines a non-editable text field at a specific

location.

«GPDiamond» It defines a small diamond that is used to display
heading information of the Aircraft.

«Altimeter» It is used to define the concept of Altitude tape that
displays the altitude of the aircraft above mean sea
level.

«AttitudeIndicator-
Display»

Attitude indicator display presents information re-
lated to aircraft pitch, roll, and positioning of the
aircraft with respect to the horizon.

«AirspeedIndicator» It represents the indication of the aircraft speed in
knots.

UML meta-class, Class. The widgets can be broadly divided

into four categories: (i) Container Widgets, (ii) Composite

Widgets, (iii) Basic Widgets, and (iv) Interactive Widgets.

The container widgets, as the name suggests, can contain

other widgets. This includes, for example, the Basic Container,

Blinking Container, Mask Container, and Rotation Container.

The profile also contains certain composite widgets, repre-

senting the widely used standard components, for example,

the Altimeter, Air Speed Indicator, and Variometer. We added

these composites in the profile to assist the modelers with the

most commonly used widgets. These are not directly part of

the A661 standard, which deals with the basic, container, and

interactive widgets only. Other than these widgets, the profile

also contains certain basic widgets (e.g., Line, Diamond,

Arrow, and Label) that the modelers can use to model new

types of displays. The fourth category of widgets are the

interactive widgets with which the pilot can interact. For

example, this includes, EditBox, ComboBox, ToggleButton,

and CheckButton. Table I presents a few of the concepts that

are defined in the profile. The complete profile is downloadable

from an open-source repository2.

C. Profile Instance Model corresponding to CDS

The CDS screens are typically developed in graphical mod-

eling tools, such as VAPS XT and SCADE, that are compatible

with the A661 standards. These tools allow exporting of the

screen models in XML formats with the details of various

widgets.

In the first step of our approach, we model the CDS under

test by applying stereotypes of the CDS profile. The CDS

model is used to populate an instance model automatically

from these screen models. For some cases, the mapping

between our profile model and the screen models in XML,

especially the composite widgets, is not one-on-one, because

the models in XML are typically exported with much finer

details than required for our purpose. For such cases, we define

a mapping based on the name of the widgets in the screen

models. For example, first, the object is identified using the

name AltitudeTape in the XML model that corresponds to the

2https://github.com/hassansartaj/models19
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Fig. 3. An excerpt of CDS profile

Altimeter concept of profile. After that, the properties (e.g.,

position (PosX and PosY), type, size (SizeX and SizeY), and

visibility) related to the identified concept are located from the

XML model. Finally, the values obtained for all properties of

the identified concept are populated in an instance model.

D. Behavioral Modeling of Aircraft
During its flight, an aircraft goes through different states

to complete its mission. The information displayed on the

CDS screen varies during the flight operations. Similarly, the

values of various properties visible on the screens also vary

with flight operations. As part of our proposed approach, we

require the test engineer to model the behavior of an aircraft

that has a direct impact on the CDS. For example, the states

that an aircraft may go through, including Taxiing, Landing,

TakeOff, and Cruise. We use UML state machine diagrams that

are defined as part of Unified Modeling Language (UML) for

describing the event-driven behavior of software systems [16].
Fig. 4 shows a reference state machine of an aircraft flight

phases. The state machine covers the states of the aircraft

flight. The state Standing refers to the state of the aircraft

in which it is not moving. It consists of two sub-states. First

is the Idle in which the aircraft is standing idle and all engines

are powered off. The second sub-state is Running during

which the engines are powered on. ParkingBreakOff() and

IncreaseThrottle() are the main events on the transition that

allows the aircraft to go into the Taxiing state. Pushback is a

state in which the aircraft needs to be pushed back to move

away from the parking stand. Taxiing refers to the movement

of the aircraft on the runway before takeoff or after landing.

It has a sub-state machine for three different turning states

(i.e., Straight, TurningLeft, and TurningRight) as shown in Fig.

5. The transition IncreaseElevation() takes the aircraft from

Taxiing to TakeOff. TakeOff refers to the phase of flight that

allows the aircraft to go through a transition from taxiing to

flying in the air. When the event IncreaseElevation() triggers,
the aircraft takes an initial climb and reaches a specific altitude

that is mentioned in the guard condition. This phase of the

flight is represented by Climb state.

After the climbing phase of the aircraft, the aircraft reaches

a specific altitude at which it cruises with constant airspeed

and altitude. It refers to the Cruise in the state diagram.

The Descent is the phase of the flight in which the aircraft

decreases its altitude. The three flight phases i.e., Climb,
Cruise, and Descent involve three different types of turns as

shown in Fig. 5. StraightAndLevel is the phase of the flight in

which the aircraft maintain altitude for straight and level flight.

During the flight, the aircraft can fly in Autopilot mode when

the event SetAPModeOn() triggers. The autopilot can take the

aircraft through four different states i.e., StraightAndLevel,
Climb, Cruise, and Descent. Therefore, the Flying state has

two orthogonal states, one for autopilot mode and the other

for the four flight phases. The Approach and Landing are the

two last phases of the flight in which the aircraft prepares

to land by reducing its altitude and airspeed. The events

such as DecreaseElevation(), DecreaseAirspeed() trigger to go

through the transition from Descent to Approach state and

from Approach to the Landing state.

We provide this reference state machine as support for

test engineers. The state machine can be reused by the test

engineers and may also be modified. During all the states

defined in the state machine diagram, the state values of

the CDS widgets and all the relevant information associated
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Fig. 4. UML state machine representing the aircraft flight behavior

Fig. 5. Aircraft flight sub-state machine for turns

with those widgets changes frequently. This change in the

state of the widgets and the associated information occurs

because of the external events that are triggered by the aircraft

crew in order to carry out flight operations. For instance

during the approach, by retracting the flaps the airspeed of the

aircraft reduces and the airspeed tape shows the corresponding

decrease in the airspeed. Similarly, while landing, when the

aircraft reaches at an altitude of 2500 feet, a digital radio

altimeter appears on Attitude Indicator Display. This is an

example of the change in the state of the widget from invisible

to visible based on a specific constraint.

After the flight model is ready, the test engineer is required

to model the constraints on the various elements of the CDS

corresponding to the states of the aircraft. For this purpose, we

use Object Constraint Language (OCL) to specify constraints

on the states of our state machine. OCL is a textual language

that allows specifying constraints on models [17], [18]. All

the constraints are written in the context of an Aircraft class

containing the stereotype «Aircraft». These OCL constraints

act as an oracle during testing and provide the expected values

for the various widgets of the CDS.

E. Testing CDS

In the following, we discuss the proposed strategy for

automated testing of cockpit display systems (CDS) of aircraft.

A test case in our context is the evaluation of the properties

of widgets being displayed on CDS by taking the aircraft

into different states. For example, a test case can be taking
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the aircraft to a particular altitude and evaluating whether

the corresponding values in the Altimeter are updated or

not. As per the current industrial practice, taking the aircraft

into different states is done with by using simulators. The

testers have pre-written test scripts that are loaded into the

simulators to execute different scenarios. Following we discuss

the steps related to test case generation, test execution, and test

evaluation.

1) Test Case Generation: We use the aircraft flight state

machine developed in previous steps to generate the test cases.

The test paths are obtained using the well-known strategy

of achieving round-trip coverage by generating a transition

tree from the state machine [16]. The round-trip strategy

traverses a state machine to generate end-to-end paths by

removing the cycles of the state machine. The approach has

been widely used in literature for generating tests from UML

state machines [19], [20].

2) Test Case Execution: The first step in test execution

is reading the test cases (paths) and taking the aircraft to

the desired state by executing the pre-written scripts for the

simulator. For example, to take the system into Taxiing state,

the corresponding script is executed on the flight simulator.

An example of a JSBSim script to set throttle value is shown

in Listing 1. The name specifies the property for throttle of

the engine using the command fcs/throttle-cmd-norm[0]. The

range of the value is from 0 to 1.0. The script shown in

Listing 1 will be executed after ten seconds of the start of

the simulation, and it will set the value of throttle to 0.15

(15%) to start taxiing on the runway.

Listing 1. A script for setting throttle value in a flight simulator

1 <event name="SetThrottle">
2 <condition>
3 sim-time-sec >= 10.0
4 </condition>
5 <set name="fcs/throttle-cmd-norm[0]" value="0.15"/>
6 <set name="fcs/throttle-cmd-norm[1]" value="0.15"/>
7 <set name="fcs/throttle-cmd-norm[2]" value="0.15"/>
8 <set name="fcs/throttle-cmd-norm[3]" value="0.15"/>
9 </event>

During the flight simulation, the flight data is sent to the

different CDS elements for display. For example, the value

of the current altitude of the aircraft is sent to the altimeter

in CDS. On reaching a state during simulation, a number of

screenshots of the CDS are taken with an interval of one

second. The screenshots are to be processed later using image

processing techniques. There is no need to perform the image

analysis during test case execution, therefore we store the

screenshots and process these during the test evaluation phase.

3) Test Evaluation: Once the test execution is completed,

the information from each image is automatically extracted.

The values of positions obtained from the instance model are

used to identify the exact position. We use the properties x-

axis, y-axis, x-size, and y-size to identify the location of the

required information on the screen. We crop that part into

an image using computer vision software and feed it into the

optical character recognition software to extract information

from the image. This provides us the exact value for the

Fig. 6. Component diagram of the CDS testing tool

widget. If a widget is not identified in an image, the testers are

asked to tag the various widgets on the screenshot. In our case,

most of the widgets we are testing have fixed positions on the

screens (which is also the common case). Once a widget is

identified, the exact values in the instance model are populated

by using an Optical Character Recognition (OCR) tool (in our

case Tesseract [21]). When this process is completed we get

multiple instance models of the CDS profile-based CDS model

during different aircraft flight states. All this information is

populated as values of the instance models.

Next, we compare the expected result with the actual results.

The expected results are available as OCL constraints. Once a

test case is executed, on every state, the corresponding OCL

constraints are evaluated. If a constraint results in a false
outcome, a test case is considered to have detected a potential

bug.

IV. TOOL SUPPORT

In this section, we discuss the tool developed to automate

the testing of CDS. The tool consists of six major compo-

nents, (i) Test Path Generator, (ii) Simulator Executor, (iii)

Image Capturer, (iv) Data Extractor, (v) OCL Evaluator, and

(vi) Results Generator. Fig. 6 shows the component diagram

comprises of all major components of CDS testing tool and

the interaction among them. In the following, we discuss each

component individually.

A. Test Path Generator

This module takes input a behavioral model in the form of

the UML state machine. According to our proposed approach,

this module uses the state machine to implement the strategy of

achieving round-trip coverage by generating a transition tree.

The generated transition tree contains a number of round-trip

paths. These paths are used to run the simulation and make

the aircraft follow the specified path.

B. Simulator Executor

To simulate the behavior of an aircraft, we use JSBSim [8]

flight dynamics model that has been used by many researchers

to model the dynamics of flight of an aircraft [22], [23]. For

each round-trip path generated by the Test Path Generator, a
JSBSim script is created to traverse each test path individually.

JSBSim is executed for each test script that provides flight data

(such as altitude and airspeed) to CDS under test.
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C. Image Capturer

This component of the tool is responsible for taking screen-

shots of the flight simulation during the execution of the

flight test paths. The images are captured after the specified

interval time. The captured images are stored on the hard disk

according to the test path and the aircraft states. These images

are used by the Data Extractor module to process each image

and extract the relevant information.

D. Data Extractor

To extract data from images, this component makes use

of an instance model of CDS model developed based on

the proposed UML profile. The instance model is populated

from the XML produced by a CDS designer tool. The current

version of the tool supports the XML generated by VAPS XT.

The instance model provides complete information about each

widget on CDS. For example, the position (x and y-axis) of the

widget, size, and color information. This information is used to

identify various widgets in the image. Using the information

obtained from the instance model, the subpart of the image

containing the target widget is extracted. To extract subpart

of the image, an external library OpenCV 3.4.1 [24] is used.

After the widget is extracted from the image, the text showing

particular information (e.g., altitude, speed) is retrieved. To

perform optical character recognition (OCR) in the image, we

use an open source tool Tesseract OCR [21].

E. OCL Evaluator

This part of the tool is mainly used to evaluate the OCL

constraints against the data extracted from images. First, it

takes input OCL constraints corresponding to each state of

the aircraft flight. Second, it uses the data obtained from

images captured during the simulation and according to the

aircraft flight states. The data extracted from images is used

to populate the instance model in order to prepare it for OCL

constraints evaluation. Finally, the input OCL constraints are

evaluated on the instance model. In the case when the data

conforms to constraints, OCL evaluator returns true and false
otherwise.

F. Results Generator

In this phase, the evaluation results from OCL Evaluator are
compiled in the form of a report. The report contains informa-

tion about covered and uncovered branches of the test path.

The report also consists of the information regarding passed

and failed OCL constraints and the scenarios (i.e, states) in

which the faults are encountered. The report generated by this

module helps a test engineer to trace the faults in various CDS

widgets.

V. EVALUATION

In this section, we apply our proposed approach on an

industrial case study for evaluation. First, we provide the

details of the case study. Second, we discuss the evaluation

setup. Finally, we discuss the evaluation results including the

insights and practical applicability.

Fig. 7. A screen grab of a Primary Flight Display (PFD)

A. Case Study

The case study used for the evaluation is developed in

collaboration with the CDS development team of our industrial

partner using VAPS XT [6] tool. The case study comprises of

the primary flight display (PFD) for an aircraft as shown in

Fig. 7. An excerpt of the XML produced by VAPS XT tool for

altimeter part of the PFD is shown in Listing 2. An excerpt of

the corresponding instance model for the altimeter, airspeed,

and heading indicator part of the PFD is shown in Fig. 8.

Primary Flight Display(PFD) is the main component of an

electronic flight instrument system (EFIS). The Primary Flight

Display (PFD) is the primary source of flight information

for the pilots and displays different type of information like

altitude, attitude, airspeed, vertical speed, barometric pressure,

and ground speed, etc. Each type of information is shown

by a separate graphical widget on the PFD. Thus, PFD is

representative of a CDS because it composes the information

displayed on individual widgets such as an Altimeter to display

altitude, a Vertical Speed Indicator (VSI) to show vertical

speed, etc.

Listing 2. An excerpt of the VAPS XT structural model for altimeter part
of PFD

1 <object name="AltitudeTape" class="TapeCircular">
2 <model>
3 <prop name="IsVisible">TRUE</prop>
4 <xyprop name="Position" x="131.349" y="-751.194"/>
5 <prop name="Value">0</prop>
6 <prop name="ValuePerRevolution">10000</prop>
7 <structprop name="DisplayArea">
8 <field name="Left">-2300</field>
9 <field name="Bottom">-5000</field>

10 <field name="Right">2300</field>
11 <field name="Top">6500</field>
12 </structprop>
13 <xyprop name="Motion" x="0" y="128571"/>
14 </model>
15 </object>
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Fig. 8. An excerpt of instance model of the PFD

TABLE II
MODELING STATISTICS OF THE CASE STUDY

Artifact Count
No. of states 14

No. of guards 24

No. of transitions 33

No. of classes 18

No. of attributes 173

No. of applied stereotypes 11

No. of constraints 30

A simulation of PFD of an aircraft flying at 2183 feet above

sea level (ASL) is shown in Fig. 7. On the left side of the PFD,

there is an airspeed tape that shows the airspeed of the aircraft.

In Fig. 7 the airspeed is ≈160 knots. On the right-hand side

of PFD, there is an altitude tape showing the altitude of the

aircraft, i.e., ≈2183 feet above sea level (ASL). The center of

the PFD contains the attitude indicator that shows the pitch

and roll of the aircraft. Barometric pressure is shown in green

color below the altitude tape on the bottom right corner.

Listing 3. An excerpt of the OCL constraints for ground operations

1 context Aircraft inv: self.oclIsInState(Standing) and
self.pfd.airspeedindicator.airSpeed>=0 and self.pfd
.airspeedindicator.airSpeed<=10 and self.pfd.
turnIndicator.angle=0

2 context Aircraft inv: self.oclIsInState(Taxiing) and
self.oclIsInState(TurningLeft) and (self.pfd.
headingIndicator.angle<0 and self.pfd.
headingIndicator.angle>=-45)

3 context Aircraft inv: self.oclIsInState(Taxiing) and
self.oclIsInState(TurningRight) and (self.pfd.
headingIndicator.angle>0 and self.pfd.
headingIndicator.angle<=45)

4 context Aircraft inv: self.oclIsInState(Taxiing) and
self.pfd.airSpeedIndicator.airSpeed>=10 and self.
pfd.airSpeedIndicator.airSpeed<=60 and self.pfd.
barometer.airpressure=29.92

B. Evaluation Setup

All the structural details of PFD (i.e, the location and

relative scales of various widgets and information displayed

Fig. 9. One test path from the transition tree

on them) are represented in a UML class diagram, which is

an instance model of our proposed CDS profile. An example

of the generated UML class diagram for PFD is shown in

Fig. 8. For the behavioral model of an aircraft, we use the

reference state machine as shown in Fig. 4. We model the

expected properties of the widgets for the aircraft states as

OCL constraints.

The modeling statistics for the case study are shown in Table

II. The instance model of the profile for PFD consists of 18

classes, 173 attributes, and 11 stereotypes. The state machine

that we use for the evaluation contains 14 states, 24 guard

conditions, and 33 transitions (as shown in Table II). The

constraints for various widgets were identified during different

sessions with our industry partner on cockpit-display systems

which included the PFD. Listing 3 shows some of the OCL

constraints modeled for the states (i.e., Standing and Taxiing)
of an aircraft. The identified constraints were then presented

to an avionics and aviation domain expert and any identified

corrections and omissions were fixed. The constraint modeling

processes resulted in identifying 30 distinct constraints on the

various widgets of CDS.

C. Evaluation Procedure

We use the state machine shown in Fig. 4 for generating

the test cases. We generate test cases corresponding to the

round-trip path coverage criterion [16]. The total number of

paths generated using coverage criteria is 494. We select 34

paths that cover all important states required for the complete

aircraft flight. One simple test path is shown in Fig. 9. The

test case models an end to end scenario of an aircraft flight,

from starting its engines to engine shutdown at the end of the

flight. To execute the test case, it is necessary to interface with

a flight simulator. For PFD case study we use JSBSim [8] to

simulate the data for various widgets obtained from the flight

dynamics model of Cessna 172 Skyhawk aircraft. For each

test path, a JSBSim script is written to execute the simulation.

The evaluation statistics are shown in Table IV. The statistics
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TABLE III
AVERAGE TIME, TOTAL IMAGES, FAULTY IMAGES, AND FAULTS IDENTIFIED IN EACH STATE FOR PFD

Standing Taxiing TakeOff Climb Cruise Descent StraightAndLevel Approach Landing
Time (m) 9.28 34.87 13.27 153.6 122.67 110.83 26.88 17.95 13.52

Images 557 2092 796 9216 7360 6611 1613 1077 811

Faulty Images 0 475 146 823 492 750 606 621 439

Unique Faults 0 2 3 2 2 3 2 2 2

TABLE IV
EVALUATION STATISTICS OF THE CASE STUDY

Artifact Value
JSBSim Scripts 34

Instance models 30133

Evaluation Time (m) 1800

include total JSBSim scripts, a total number of instance models

and total time (in minutes) spent during the evaluation.
During the flight, the aircraft goes through different states,

as modeled in the state machine. At each state during the

flight, images are captured after one second and stored with

respect to the state. At the end of the simulation, the data

from images is extracted and the constraints specified on that

state are evaluated. The test case passes if no constraints are

violated during the flight, i.e, all displays of PFD function as

per the specification.

D. Results and Discussion
In the following, we present the results of the evaluation for

an industrial case study of Primary Flight Display (PFD) of

an aircraft.
Our automated approach generated 494 test paths in total

to test the functionality of PFD. We select 34 paths that

cover all important states required for the complete aircraft

flight. We identify three major faults in the PFD. One of

the identified faults is in the airspeed monitor section of the

PFD. During Descent state, the airspeed indicator crossed the

maximum limit for the airspeed i.e., 200 as shown in Fig.

10. The airspeed indicator tape moved a little ahead when the

maximum airspeed limit was reached. As a result, the OCL

constraint shown in Listing 4 (C1) failed during the execution

as the airspeed was greater than the maximum airspeed.
The second identified fault is the inconsistency between the

two different types of turn indicators (Fig. 11). During the

execution, one OCL constraint related to the turn angle failed

as shown in Listing 4 (C2). The turn angle for one heading

indicator (bottom) shows the aircraft is turning right whereas

the middle heading indicator shows the angle according to left

turn.
The third fault was detected in altimeter tape of PFD. During

TakeOff state, the aircraft increases the altitude to enter in

Climb state. The altimeter tape showed constant altitude for a

few seconds and then started to increase the value of altitude.

In this case, the corresponding OCL constraint failed is shown

in Listing 4 (C3).

Fig. 10. A bug indicating the airspeed greater than the maximum value

Fig. 11. A bug indicating the inconsistency between the two turn indicators

Table III shows the average time (in minutes) of flight in

each state and the number of images captured and processed,
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faulty images and the unique faults detected in each state. As

can be seen from the table, the generated test cases identified

a total of 18 faults. Further inspection of the results showed

that in addition to the three faults mentioned above, a further

thirteen faults could be attributed to missing functionality in

the simulator. This functionality is not implemented in the

PFD, however, was reflected in the constraints due to input

from the domain expert. This indicates that the approach can

also be used to identify missing functionalities.

Listing 4. Some of the violated constraints for PFD

C1: context Aircraft inv: self.oclIsInState(Descent) and
self.pfd.airSpeedIndicator.airSpeed>=60 and self.
pfd.airSpeedIndicator.airSpeed<=200

C2: context Aircraft inv: self.oclIsInState(Climb) and
self.oclIsInState(TurningLeft) and (self.pfd.
headingIndicator.angle<=0 and self.pfd.
headingIndicator.angle>=-45)

C3: context Aircraft inv: self.oclIsInState(TakeOff) and
self.pfd.altimeter.altitudeValue>0 and self.pfd.
altimeter.altitudeValue<=10000

Using simulators for testing CDS applications is a common

mechanism. Our strategy allows the tester to execute a large

number of scenarios and evaluate their results automatically.

Though our approach requires familiarity with state machine

and OCL constraints modeling. In our experience the avionics

engineers are well-versed in developing state machines. Most

of the OCL constraints that were written only required a basic

knowledge of OCL, however it required a deep understanding

of the domain and flight behavior. The proposed profile

allowed the domain experts to model constraints using the

domain concepts and constructs. The profile also allowed

independence from the actual tool that is used to model the

CDS.

VI. LIMITATIONS

Though the paper provides an automated and systematic

approach to CDS of avionics systems, the approach has a few

limitations. The first limitation of the proposed approach is that

it relies on the test ready behavioral models and constraints

written in OCL. Testers have to invest time to get these models

and scripts ready.

An important step in our approach is to use image process-

ing to extract relevant information (e.g., text) from various

CDS widgets. The prediction accuracy of the OCR engine such

as Tesseract [21] poses another limitation to our approach.

The accuracy of Tesseract OCR is not always 100% [25]–

[27]. To handle this limitation and to enhance the accuracy,

we used region-based segmentation and image preprocessing

techniques such as noise removal, canny edge detection, and

contours finding.

VII. RELATED WORK

The work presented in this paper is the first one to target

testing of avionics systems based on the information displayed

in CDS. In the following, we discuss the published works

that are related to CDS and some relevant works focusing on

testing of graphical user interfaces of interactive applications.

Campos et al. [28] present an approach to ensure the

effectiveness of the interactive applications with automated

generation of various validation scenarios using task models.

Campos et al. [29] improved previous work [28] and generated

feasible test scenarios using task models. Catelani et al.
[30] proposed a technique for the validation testing of the

customized TFT-LCD screens that are ready to install in the

cockpits of military aircraft. Similarly, Behnken and Salgado

[31] present an approach to test display properties of cockpit

displays such as color, resolution, position, etc. The benefits

of our approach over all the above-mentioned approaches are

that our approach is generalizable for modern cockpits and

comply with the international standard for CDS (A661 [5]).

A well-known GUI testing tool, GUITAR [32], makes use

of event flow graphs by reverse engineering the GUI structure

to automatically generate the test cases. In addition to this,

some other GUI testing tools such as Android Ripper [33],

Amola [34], Orbit [35], etc have also been developed after

extensive research. Yeh et al. [36] propose Sikuli which is

an automated tool to test GUI using screenshots. Chang et
al. [37] present Sikuli Test with the aim to facilitate testers

to write and generate visual test scripts for GUI. Similarly,

to perform system-level testing, Alegroth et al. [38] proposed
a visual GUI testing tool named as JAutomate. Garousi et al.
[39] conduct an industrial evaluation and highlight the problem

with the replay feature of both Sikuli [36] and JAutomate

[38]. The main difference of GUI testing approaches with

our approach is that the data displayed on CDS is generated

by various hardware components (e.g., sensors) of an aircraft

based on pilot’s interaction and operating environment.

VIII. CONCLUSION

Testing the avionics of an aircraft is a rigorous process

governed by various international standards. As an estimated

70% of all costs of avionics development is spent on testing,

software testing being an important part. An important step in

testing the user application is to test whether the required in-

formation is being displayed correctly on the Cockpit Display

Systems (CDS) of an aircraft. The current industrial practice is

to test this manually, which is very labor extensive and error-

prone. In this paper, we proposed a model-based approach for

the automated testing of CDS. We developed a UML profile

based on the ARINC 661 standard to model CDS under test.

The CDS models developed using graphical modeling tools

(e.g., VAPS XT) are automatically converted to an instance

of the profile-based model. A test modeler then models the

common states of an aircraft during its flight. The modeler also

models the constraints on the states of aircraft using Object

Constraint Language (OCL). Test cases are generated from

the UML state machines, which are then executed using a

flight simulator and evaluated using image processing, optical

character recognition tools, and OCL evaluator. We apply the

approach on an industrial case study of a Primary Flight

Display (PFD) developed for an aircraft. The results show that

our approach is successful in identifying 18 faults in the PFD,

which shows the overall usefulness of the approach.
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