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We formulate a nonequilibrium thermodynamic description for open chemical reaction networks
(CRNs) described by a chemical master equation. The topological properties of the CRN and
its conservation laws are shown to play a crucial role. They are used to decompose the entropy
production into a potential change and two work contributions, the first due to time dependent
changes in the externally controlled chemostats concentrations and the second due to flows main-
tained across the system by nonconservative forces. These two works jointly satisfy a Jarzynski
and Crooks fluctuation theorem. In the absence of work, the potential is minimized by the dynam-
ics as the system relaxes to equilibrium and its equilibrium value coincides with the maximum
entropy principle. A generalized Landauer’s principle also holds: the minimal work needed to create a
nonequilibrium state is the relative entropy of that state to its equilibrium value reached in the absence
of any work. © 2018 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5042253

I. INTRODUCTION

Nonequilibrium thermodynamic descriptions of stochas-
tic (bio-)chemical processes have long since been developed.
Among the first, Hill and co-workers studied bio-catalysts
as small fluctuating machines operating at steady-state. They
introduced the concept of free energy transduction and ana-
lyzed how one form of chemical work can drive another one
against its spontaneous direction.1 The importance of decom-
posing currents into network cycles (i.e., cyclic sets of transi-
tions) was already emphasized. These results were, however,
limited to steady-state systems described by linear chemical
reaction networks (CRNs). The stochastic as well as the deter-
ministic dynamics of these CRNs is described by the same
linear rate equations for, respectively, probabilities or concen-
trations. They model, for instance, conformational changes of
an enzyme or of a membrane transporter. Inspired by these
seminal studies, Schnakenberg formulated steady-state ther-
modynamics for generic Markov jump processes and provided
a systematic cycle decomposition for the entropy production
(EP) rate.2 He considered, in particular, the stochastic descrip-
tion in terms of the Chemical Master Equation (CME)3,4 of
nonlinear chemical reaction networks, i.e., CRNs described at
the deterministic level by nonlinear rate equations for con-
centrations. The Brussels school and Ross and co-workers
focused on the connection between the thermodynamic
description resulting from the stochastic and the deterministic
dynamics.5–8

With the advent of stochastic thermodynamics,9–12 the
focus moved to the study of fluctuations, rather than focusing
on the first two moments. Gaspard first showed that EP fluctu-
ations in nonlinear CRNs at steady state satisfy a fluctuation

theorem (FT).13 This result was later expressed in terms of cur-
rents along Schnakenberg cycles.14,15 Fluctuations in complex
chemical dynamics such as bistability was analyzed, amongst
others, by Qian and co-workers.16–18 A first formulation of
stochastic thermodynamics for CRNs beyond steady state was
done by Schmiedl and Seifert.19

Despite this long history, none of these descriptions made
use of the specific topology of the CRN encoded in its sto-
ichiometric matrix. Mathematicians know, however, that the
CRN topology plays an important role in its deterministic20,21

as well as stochastic dynamics.22,23 But the question of how
it affects the thermodynamic description was only studied
recently: for deterministic dynamics in Refs. 24 and 25 and for
stochastic dynamics at steady state in Ref. 26. In this paper, we
address this question in full generality for CRNs whose dynam-
ics is stochastic. We will do so by presenting a formulation
of stochastic thermodynamics for CRNs which systematically
makes use of the conservation laws. Doing so leads to a signifi-
cantly more informative thermodynamic description. In partic-
ular, we decompose the EP into three fundamental dissipative
contributions: a newly defined potential change, a driving work
contribution due to time dependent changes in the externally
controlled chemostats concentrations, and a nonconservative
work contribution due to a minimal set of flows maintained
across the system by nonconservative forces. In contrast to
the traditional chemical work given by minus the free energy
change in the chemostats, these two new work contributions
are shown to jointly satisfy a finite-time detailed and integral
FT when the CRN is initially prepared in an equilibrium state.
In turn, the importance of the potential lies in the fact that it
is minimized by the relaxation dynamics towards equilibrium
in the absence of the first two work contributions, i.e., when
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the system is detailed-balanced. It can be seen as a Legen-
dre transform with respect to those conservation laws that are
broken by the chemostats. At equilibrium, it coincides with
the potential obtained from maximizing entropy with broken
conservation laws as constrains. We also discuss the connec-
tion of our findings to absolute irreversibility,27 to free energy
transduction in nonlinear CRNs, and to cycle decompositions
of the entropy production. Finally, we derive a nonequilibrium
Landauer’s principle for the driving and nonconservative work
which generalizes the previous ones to nondetailed-balanced
dynamics.28,29

A. Outline

The paper is organized as follows. In Sec. II, we review
the stochastic description of closed and open CRNs and intro-
duce conservation laws and stoichiometric cycles. In Sec. III,
the connection with thermodynamics is made. The stochas-
tic reaction rates are expressed in terms of Gibbs potentials
via the equilibrium distribution of the closed CRN. Enthalpy
balance and entropy balance are defined along stochastic tra-
jectories, and Jarzynski-like FTs for the chemical work are
discussed. In Sec. IV, the EP is partitioned into its three con-
tributions. In Sec. V, we analyze open detailed balanced CRNs;
more specifically, their relaxation to equilibrium as chemostats
are successively introduced. In Sec. VI, finite-time detailed
FTs for the driving and nonconservative work are derived. In
Sec. VII, the ensemble average description is presented and
the nonequilibrium Landauer’s principle is derived. Finally
in Sec. VIII, our results are applied on a simple model to
show the importance of our formulation for free energy trans-
duction. Throughout the paper, our formalism is illustrated
using a simple enzymatic scheme, whereas some technical
derivations are given in Appendixes A and B. We also provide
a table which lists the symbols used throughout the paper,
Table III.

II. STOCHASTIC DYNAMICS AND CRN TOPOLOGY
A. Chemical reaction networks

We consider a homogeneous, isobaric, and isothermal
ideal dilute solution made of Nz chemical species, encoded
in a vector z. Their integer-valued population n changes due
to internal reactions which we label by {ρi} for ρi = ±1, . . .,
±Ni

νρi · z
kρi
−−−⇀↽−−−
k−ρi

ν−ρi · z. (1)

In open CRNs, the population of a subset of species, named
exchanged species and denoted by y where z ≡ (x, y), varies
also due to exchanges with external chemostats denoted by
Y. Their effect is modeled by exchange reactions, {ρe} for
ρe = ±1, . . ., ±Ny (see Fig. 1)

ν
y
ρe · y

kρe
−−−⇀↽−−−
k−ρe

νY
−ρe
· Y. (2)

The non-negative integer-valued vectors {νρ ≡ (νx
ρ, νy

ρ)} for ρ
∈ {ρi} ∪ {ρe} encode the stoichiometric coefficients of each
reaction. Note that each entry of νy

ρe and νY
ρe

is nonzero and

FIG. 1. Pictorial representation of an open CRN modeling an enzymatic
scheme discussed in example 1.

equal to one only if it corresponds to the species exchanged
by ρe. Note also that all reactions are assumed elementary
and reversible. For any reaction ρ, −ρ denotes its backward
counterpart and the sums over ρ includes both + and −. The
different types of species are summarized in Table I.

The topology of the CRN is encoded in its stoichiometric
vectors

Sρ B ν−ρ − νρ and SY
ρ B νY

−ρ − ν
Y
ρ . (3)

The former quantifies the change of the population induced
by a given reaction ρ, whereas the latter quantifies the corre-
sponding amount of chemostatted species that is exchanged.
By definition, Sρ = −S−ρ and SY

ρ = −SY
−ρ. Collecting the col-

umn vectors Sρ (respectively, SY
ρ ) corresponding to arbitrarily-

chosen forward reactions defines the internal (respectively,
external) stoichiometric matrix denoted by S (respectively,
SY). It is not difficult to see that these can be decomposed
as

S ≡
(
Si Se

)
≡ *

,

Sx
i O

Sy
i Sy

e

+
-

(4)

and

SY ≡
(
SY

i SY
e

)
≡

(
O −Sy

e

)
. (5)

In closed CRNs, all exchange reactions disappear and the
stoichiometric matrix reduces to Si.

Remark Previous studies on thermodynamics of CRNs,
e.g., Refs. 19, 24, 25, and 30, describe open CRNs by assum-
ing that the exchanged species y are so abundant that they
can be regarded as particle reservoirs within the system. As a
result, the exchange reactions are disregarded, y are treated as
chemostatted, and the stoichiometric matrices read

TABLE I. In the second column, the symbols used for the various species are
listed. The corresponding total number of entries and symbols used to denote
their abundance is given in the third and fourth column, respectively. The first
column summarizes the name used to refer to these species, while the last one
lists the symbol used to collect the abundances of the internal species. Internal
species, x and y, are characterized by low populations, n. The population of
x can change only because of reactions, whereas that of y is also exchanged
with chemostats, which are identified by Y, Eq. (1).

Species Symbol Number Abundance

Internal

{
x Nx nx

}
n

Exchanged y Ny ny

Chemostatted Y Ny [Y]
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Salt = Sx
i and SY

alt = Sy
i . (6)

In the closed CRNs, the stoichiometric matrix becomes
(Salt,SY

alt)
T. As we will see, the two approaches are formally

very similar, but the former has the advantage of preserving
the number of internal species when the CRN is chemostatted.
This makes it more suitable for a stochastic description.

Example 1. For the open CRN in Fig. 1,

x = (E, E∗, E∗∗), y = (A, B), Y = (Ae, Be) (7)

and
n = (nE, nE∗ , nE∗∗ , nA, nB). (8)

Internal reactions, ρi = ±1, . . ., ±4, are distinguished from the
exchange ones, ρe = ±a, ±b, and the stoichiometric matrices
read

S =

*.........
,

+1 +2 +3 +4 +a +b

E −1 1 −1 1 0 0

E∗ 1 −1 0 0 0 0

E∗∗ 0 0 1 −1 0 0

A −1 0 0 1 1 0

B 0 1 −1 0 0 1

+/////////
-

(9)

and

SY = *
,

+1 +2 +3 +4 +a +b

Ae 0 0 0 0 −1 0

Be 0 0 0 0 0 −1
+
-

(10)

for our arbitrary choice of forward reactions. ◽

Notation Henceforth, we will use the following notation:

a! =
∏

i
ai!, a·b =

∏
i
abi

i and c ·b = c
∑

ibi

for generic vectors a and b and for a generic constant c. “ln a”
must be read as a vector whose entries are the logarithm of the
entries of a. 1 denotes a vector whose entries are all equal to
1. Total and partial time derivatives are written as dt and ∂t ,
and the overdot “·” denotes the rates of change of observables
which are not state functions.

B. Chemical master equation

In our stochastic description, n is treated as a fluctuating
variable and all reactions are regarded as stochastic events. The
probability of finding the CRN in the state n at time t is denoted
by pn ≡ pn(t) and its evolution is ruled by the CME3,4,31

dtpn =
∑
ρ

{
w−ρ(n + Sρ) pn+Sρ − wρ(n)pn

}
=

∑
m

Wnmpm, (11)

where the stochastic generator reads

Wnm =
∑
ρ

wρ(m)
{
δn,m+Sρ − δn,m

}
. (12)

Since all reactions are assumed elementary, we consider mass-
action stochastic reaction rates

wρ(n) B kρ
V

V ·νρ
[Y]·ν

Y
ρ

n!
(n − νρ)!

, (13)

where {kρ} denote the rate constants. The dependence on
the volume V ensures the correct scaling when taking the
large particle limit and guarantees that {kρ} are the same
as in deterministic descriptions.32 The chemostat concentra-
tions [Y] only appear in exchange reactions ρe and quantify
the concentration of the exchanged species in the chemostats.
Hence, they are real-valued, nonfluctuating, and unaffected by
the occurrence of exchange reactions. We assume that [Y] can
change over time and their value at each time t is encoded in
the driving protocol πt . This may describe, for instance, the
controlled injection of certain molecules across a cell mem-
brane. In such situations, the CRN is said to be subjected to a
“driving.” In the absence of driving, the CRNs is instead said
to be autonomous.

Equilibrium probability distributions are of crucial impor-
tance for our discussion. They satisfy the detailed balance
property

wρ(n)peq
n = w−ρ(n + Sρ)peq

n+Sρ
, for all ρ, n. (14)

This means that the probability current of any reaction ρ occur-
ring from any state n vanishes. Stochastic CRNs which admit
a steady-state probability distribution satisfying Eq. (14) are
referred to as detailed balanced. Their stochastic thermody-
namics will be analyzed in Sec. V.

Example 2. For the CRN in Fig. 1, the transition rates are

w+1 = k+1nAnE, w−1 = k−1nE∗ ,

w+2 = k+2nE∗ , w−2 = k−2nEnB,

w+3 = k+3nEnB, w−3 = k−3nE∗∗ ,

w+4 = k+4nE∗∗ , w−4 = k−4nEnA,

w+a = k+a[Ae], w−a = k−anA,

w+b = k+b[Be], w−b = k−bnB.

(15)

◽

C. Stochastic trajectories

A stochastic trajectory of duration t, nt , is defined as a set
of reactions {ρl} sequentially occurring at times {tl} starting
from n0 at time t0. Such trajectories can be generated by a
stochastic simulation algorithm.33 Given the initial state, a
trajectory is completely characterized by

jρ(n, τ) B
∑

l
δρρl δnntl

δ(τ − tl), (16)

which encodes the reactions that occur ({ρl}), the states from
which these occur ({ntl }), and the reaction times ({tl}). The
transition index l runs from l = 1 to the last transition prior to
time t, Nt . The instantaneous reaction fluxes

Jρ(τ) B
∑

n
jρ(n, τ) =

∑
l
δρρl δ(τ − tl) (17)

quantify the instantaneous rate of occurrence of each reaction
irrespective of the state from which it occurs. Additionally, we
denote the population of the CRN at time τ ∈ [t0 = 0, t] by nτ .

The path probability of a trajectory reads

P[nt] =
Nt∏
l=0

exp

{
−

∫ tl+1

tl

dτ
∑

ρ
wρ(nτ , τ)

} Nt∏
l=1

wρl (ntl , tl),

(18)
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where tNt+1 B t is the final time of the trajectory. The first
term accounts for the probability that the system spends {tl+1

− tl} time in the state {ntl }, while the second term accounts
for the probability of transitioning. When averaging Eq. (16)
over all stochastic trajectories, we obtain the transition rates,
Eq. (13),

〈jρ(n, τ)〉 = wρ(n, τ)pn(τ). (19)

Changes of generic observables along trajectories are
written as

δX [nt] =
∫ t

0
dτ

{
Ẋ(nτ , τ) +

∑
n,ρ

δXρ(n, τ) jρ(n, τ)
}
, (20)

where Ẋ(n, πτ) denotes its change in time while the CRN
dwells in the state n (it need not be an exact time derivative) and
δXρ(n, πτ) denotes its finite change along the reaction ρ occur-
ring while in n. By contrast, the changes of state observables
O(n, t) can be written as

∆O[nt] = O(nt , t) −O(n0, 0)

=

∫ t

0
dτ

{
[∂τO(n, τ)]|nτ

+
∑
n,ρ

∆ρO(n, τ) jρ(n, τ)
}
,

(21)

where ∂τO(n, τ) is the time derivative of O(n, τ) and

∆ρO(n, τ) B O(n + Sρ, τ) −O(n, τ) (22)

is the difference of O(n, τ) along reactions; see Fig. 2.

D. Conservation laws

The topological properties of CRNs are encoded in the
matrices S and SY and can be identified via their cokernels
and kernels. Conservation laws ` are defined as vectors in
coker S

` · Sρ = 0, for all ρ. (23)

They identify conserved quantities, called components34

Ln B ` · n. (24)

Despite the fact that Ln depends on the stochastic variable n,
the probability of observing any specific value L,

P(L) B
∑

n
pn δ[Ln, L], (25)

is constant over time, i.e., dtP(L) = 0. δ is a Kronecker
delta. More generally, any observable of type O(Ln) does not
fluctuate

FIG. 2. Pictorial representation of the change of a state variable observableO
along a trajectory. The orange dashed curves represent the changes due to the
protocol—the first term in Eq. (21)—while the vertical blue lines represent
changes due to reactions—the second term in Eq. (21).

dt

∑
n
pn O(Ln) = 0, (26)

as a direct consequence of the fact that ∆ρO(Ln) = 0. Clearly,
P(L) can be deduced from the initial conditions pn(0) and only
those states for which P(Ln, 0) is nonvanishing have a finite
probability of being observed during the subsequent stochastic
dynamics.

In closed CRNs, conservation laws (23) follow from

`x · Sx
ρi

+ `y · Sy
ρi
= 0, for all ρi. (27)

We denote a set of linearly independent conservation laws of
the closed CRN by {`λ}, and the corresponding components by{
Lλn B `λ · n

}
, for λ = 1, . . . , Nλ B dim coker Si. The choice

of this set is not unique, and different choices have different
physical meanings. This set is never empty since the total mass
is always conserved. The latter corresponds to a `whose entries
are the masses of each species. Physically, the conservation
laws of closed CRNs can always be chosen so as to correspond
to moieties, which are parts of molecules exchanged between
species along reactions or subject to isomerization.35

For open CRNs, the condition identifying conservation
laws, Eq. (23), becomes

`x · Sx
ρi

+ `y · Sy
ρi
= 0, for all ρi, (28a)

`y · Sy
ρe = 0, for all ρe. (28b)

We now recall that for all ρe, there is one and only one
exchanged species for which the corresponding entry of Sy

ρe is
different from zero. Hence, Eq. (28b) demands that `y = 0 and
Eq. (28) become `x · Sx

ρi
= 0 for all ρi.

Crucially, any set of independent conservation laws of the
open CRN, Eq. (28), denoted by {`λu }, for λu = 1, . . . , Nλu

B dim coker S < Nλ, can be regarded as a subset of the conser-
vation laws of the closed CRN, {`λ} ≡ {`λu }∪{`λb }, since they
satisfy Eq. (27), too. In view of this, we call them unbroken
conservation laws. The remaining independent conservation
laws, labeled as {`λb } and referred to as broken, satisfy Eq. (27)
while not Eq. (28). They involve exchanged species, `y

λb
, 0;

hence, `y
λb
· Sy

ρe , 0 and the probability distribution of any set

{Lλb
n ≡ `λb · n},

P({Lλb }) B
∑

n
pn

∏
λb
δ
[
Lλb

n , Lλb

]
, (29)

changes in time.
Summarizing, in open CRNs, the chemostatting breaks a

subset of the conservation laws of the corresponding closed
CRN, {`λb }. Only the probability distribution of the unbroken
components {Lλu

n ≡ `λu · n},

P({Lλu }) B
∑

n
pn

∏
λu
δ
[
Lλu

n , Lλu

]
, (30)

is invariant and completely determined by the initial probabil-
ity distribution pn(0). The state space identified by one particu-
lar set of values for {Lλu } is called stoichiometric compatibility
class.

Example 3. The CRN in Fig. 1 has two conservation
laws
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`E =
( E E∗ E∗∗ A B

1 1 1 0 0
)
, (31a)

`b =
( E E∗ E∗∗ A B

0 1 1 1 1
)
, (31b)

among which the second is broken. The unbroken conservation
law identifies the enzyme moiety and corresponds to the total
number of enzyme molecules populating the CRN, LE

n = nE

+nE∗+nE∗∗ . Instead, the broken one identifies the moiety A—or
equivalently B—Lb

n = nE∗ + nE∗∗ + nA + nB. ◽

E. Stoichiometric cycles

We can now set the stage for the thermodynamic descrip-
tion based on a stoichiometric cycle decomposition. This sec-
tion, as well as the other ones discussing cycles (Secs. IV D,
VI A, and VII C), may be omitted at a first reading.

Additional information about the CRN topology is pro-
vided by the stoichiometric cycles c = {cρ} as they are vectors
in ker S. Equivalently, these satisfy∑

ρ
Sρcρ = 0 (32)

and at most one entry for each forward–backward transition
pair is nonzero. Since S is integer-valued, any c can always
be chosen non-negative-integer-valued. In this way, its entries
denote the number of times each transition occurs along a
transformation which overall leaves the state n unchanged.
Alternatively, a stoichiometric cycle can be seen as a set of
reactions {ρc1, ρc2, . . . , ρcNc } identifying a closed loop in the
state space

n→ n + Sρc1 → · · · → n +
Nc∑
i=1

Sρci = n, (33)

where
∑Nc

i=1 Sρci =
∑
ρ Sρcρ = 0.

We now relate cycles of the closed and open CRNs as
previously done for conservation laws. In the closed CRN, the
stoichiometric cycles are given by∑

ρi
Sx
ρi

cρi = 0, (34a)∑
ρi

Sy
ρi

cρi = 0. (34b)

The entries corresponding to the exchange reactions are taken
equal to 0: cρe = 0, for all ρe. Let us denote by {cα}, for
α = 1, . . . , Nα B dim ker Si, a set of independent stoichio-
metric cycles of the closed CRN.

In the open CRN, the condition identifying cycles,
Eq. (32), reads ∑

ρi
Sx
ρi

cρi = 0, (35a)∑
ρi

Sy
ρi

cρi +
∑

ρe
Sy
ρe cρe = 0. (35b)

Since the cycles of the closed CRN satisfy Eq. (35), they
can be regarded as a subset of an independent set of cycles for
the open CRN, {cα, cη}. We refer to the additional cycles {cη},

for η = 1, . . . , Nη B dim ker S−dim ker Si, as emergent. They
are characterized by at least one nonzero entry for {ρe}, and
the vectors

CY
η B

∑
ρ

(
− SY

ρ

)
cηρ =

∑
ρe

Sy
ρe cηρe , 0 (36)

quantify the amount of exchanged species flowing in the sys-
tem from the corresponding chemostats upon completion of
cη . As the concentrations of the chemostats are unaffected by
the exchange of particles with the system, the emergent stoi-
chiometric cycles can be thought of as pathways transferring
chemicals across chemostats while leaving the internal state
of the CRN unchanged.

As first proved in Ref. 24, by applying the rank-nullity
theorem to the stoichiometric matrices of the open and closed
CRNs, one can show that

Ny = Nλb + Nη . (37)

In words, for any exchanged species, either a conservation law
is broken or an emergent cycle is created.

Example 4. The CRN in Fig. 1 has one cycle

cint =
( +1 +2 +3 +4 +a +b

1 1 1 1 0 0
)

(38)

and one emergent cycle

cext =
( +1 +2 +3 +4 +a +b

1 1 0 0 1 −1
)
. (39)

Negative entries must be interpreted as reactions occurring in
the backward direction. The latter cycle corresponds to the
injection of one molecule of A, its conversion into one of B
passing via E∗, and its ejection

Cext =
( A B

1 −1
)
. (40)

We can also check the validity of Eq. (37), as the number
of chemostats, 2, equals the number of broken conservation
laws, 1, see example 3, plus the number of emergent cycles,
1, Eq. (39). ◽

Remark Stoichiometric cycles must be distinguished
from graph-theoretic cycles, also called loops; see, e.g., Ref. 2.
To elucidate this point, we note that the network of transitions
of a CRN can be regarded as a semi-infinite graph whose ver-
tices are the accessible states n and whose directed edges are
given by the reactions—which are encoded in the stoichiomet-
ric matrix S. Hence, one can see that loops are the recursive
appearance of stoichiometric cycles, as in Eq. (33). However,
they may not be complete at the boundaries of the graph (low
n) due to peculiar topological properties of the CRN; see, e.g.,
Ref. 26. These observations will be used later to relate dif-
ferent approaches for cycle decomposition of thermodynamic
quantities.

III. STOCHASTIC THERMODYNAMICS

We now build a nonequilibrium thermodynamic descrip-
tion on top of the stochastic dynamics. We assume that the
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solvent acts as a thermal reservoir by keeping the tempera-
ture, T, and the pressure constant everywhere. Since particle
numbers are low, we can assume that that the time scale in
which molecules spatially homogenize is much faster than
that of reactions. Therefore, if all reactions could be instanta-
neously shut down, we would observe an equilibrium mixture
of inert species at all times. However, due to reactions, the
populations of species and their probability distribution can
be far from equilibrium. These hypotheses can be regarded as
a special case of local equilibrium36 since temperature, pres-
sure, and density are not only locally well defined, but also
constant.

A. Equilibrium of closed CRNs

Equilibrium statistical mechanics requires that the equi-
librium distribution of a closed CRN with given values of {Lλ}
reads

peq(n|{Lλ}) =
exp{−βgn}

Z({Lλ})

∏
λ
δ
[
Lλn , Lλ

]
, (41)

where

gn =
(
µ◦ − 1kBT ln ns

)
· n + kBT ln n! (42)

is the Gibbs free energy of the state n derived in Appendix A.
The first term quantifies the energetic contribution of each
single molecule: µ◦ ≡ µ◦(T ) is the vector of standard-state
chemical potentials (see Appendix A), whereas −1kBT ln ns is
an entropic contribution—constant for all species—since ns is
the population of the solvent. The last term is purely entropic
and accounts for the indistinguishability of molecules of the
same species. In Eq. (41),

Z({Lλ}) =
∑

m
exp{−βgm}

∏
λ
δ
[
Lλm, Lλ

]
(43)

is the partition function, while β = 1/(kBT ). When taking into
account an ensemble of components, P({Lλ}), Eq. (41) allows
us to write

peq
n =

∑
{Lλ }

peq(n|{Lλ}) P({Lλ})

= peq(n|{Lλn }) P({Lλn }), (44)

which can be regarded as a constrained equilibrium distri-
bution. Hence, peq(n|{Lλn }) is the conditional probability of
observing n given the stoichiometric compatibility class it
identifies.

Equation (44) can also be written as

peq
n = exp

{
−β

[
gn − Geq({Lλn })

]}
(45)

in terms of the equilibrium Gibbs potential of the CRN

Geq({Lλ}) = kBT ln P({Lλ}) − kBT ln Z({Lλ}). (46)

It is worth emphasizing that Geq({Lλ}) is a function solely
of the set of components and that Geq({Lλn }) needs to be
understood as Geq evaluated in {Lλn }. Invoking the hypothe-
sis of local equilibrium, we extend Geq to arbitrary probability
distributions pn,

G(n) B kBT ln pn + gn, (47)

and we call it stochastic Gibbs potential, as it is the far-from-
equilibrium fluctuating expression of Geq. In addition to the
Gibbs free energy of the state n, gn, it accounts for the entropic
contribution due to the uncertainty of pn: kBT ln pn can indeed
be written as −T (−kB ln pn), where the term in parentheses
is the self-information measured in kB units.37 For closed
CRNs at equilibrium, using Eq. (44), G(n) reduces to Geq in
Eq. (46). Also, its average value, the nonequilibrium Gibbs
potential

〈G〉 =
∑

n
pn

[
kBT ln pn + gn

]
(48)

takes its minimum value at equilibrium

〈G〉 − 〈Geq〉L =
〈
G − Geq

〉
= kBT

∑
n
pn ln

pn

peq
n

≡ kBT D(p‖peq) ≥ 0. (49)

In the first equality, we used the fact that the equilibrium Gibbs
potential depends only on the components

〈Geq〉L ≡
∑
{Lλ }

P({Lλ})Geq({Lλ})

=
∑
{Lλ }

[∑
n
pn

∏
λ
δ
[
Lλn , Lλ

] ]
Geq({Lλ})

=
∑

n
pnGeq({Lλn }). (50)

In the last equality of Eq. (49), D(p‖peq) is the relative entropy
of the transient probability distribution pn with respect to the
equilibrium one peq

n . It is always positive and vanishes only
when pn = peq

n . We will see later (Sec. VII) that Eq. (49)
quantifies exactly the average dissipation of the relaxation to
equilibrium.

B. Local detailed balance

The zero-th law of thermodynamics for CRNs requires that
closed CRNs relax to equilibrium. To ensure this, the dynam-
ical requirement for detailed balance, Eq. (14), is combined
with the equilibrium distribution, Eq. (44). As a result, the
local detailed balance ensues

ln
wρi (n)

w−ρi (n + Sρi )
= −β∆ρi gn, (51)

where ∆ρi · is defined as in Eq. (22). In agreement with deter-
ministic descriptions, see, e.g., Ref. 25, we recover the relation
between the rate constants and the standard-state chemical
potentials

ln
kρi

k−ρi

= −β
(
µ◦ − kBT1 ln[s]

)
· Sρi , (52)

in which [s] B ns/V denotes the concentration of the sol-
vent. The local detailed balance (51) should be regarded as a
fundamental property of the stochastic reaction rates of ele-
mentary reactions valid beyond closed CRNs. This central
concept is well known in stochastic thermodynamics because
it provides the connection between stochastic dynamics and
nonequilibrium thermodynamics.
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In open CRNs,

ln
wρ(n)

w−ρ(n + Sρ)
= −β

(
∆ρgn + µY · S

Y
ρ

)
(53)

generalizes Eq. (51), where

µY = µ
◦
Y + kBT ln{[Y]/[s]} (54)

are the chemical potentials of the chemostats. The first con-
tribution accounts for the Gibbs free energy change of the
internal species, while the second one accounts for the Gibbs
free energy exchanged with the chemostats.

We introduce the transition affinities which quantify the
force acting along each transition

Aρ(n) = kBT ln
wρ(n)pn

w−ρ(n + Sρ)pn+Sρ

. (55)

They measure the distance from detailed balance (14), where
they all vanish. Using Eq. (53), they can be rewritten in terms
of differences of stochastic Gibbs potential (47) as

Aρ(n) = −∆ρG(n) + µY ·
(
− SY

ρ

)
. (56)

This fundamental relation reveals the thermodynamic nature
of the dynamical forces acting along reaction. Its early for-
mulation for deterministic chemical kinetics is due to de
Donder.38

We will prove in Sec. VII that our theoretical framework
based on Eq. (53) guarantees that closed CRNs described by a
CME (11) relax to equilibrium, Eq. (44): the average potential
〈G〉 is minimized by the dynamics during the relaxation and
hence plays the role of a Lyapunov function.

C. Enthalpy and entropy balance

Starting from the stochastic Gibbs potential (47) and the
local detailed balance (53), we now formulate the energy and
entropy balance along stochastic trajectories.

The stochastic entropy of the CRNs follows from the
derivative of the stochastic Gibbs potential (47) with respect

to the temperature

S(n) = −

(
∂G
∂T

)
n
= −kB ln pn + sn. (57)

Similar to G(n), S(n) is the far-from-equilibrium fluctuat-
ing expression of the entropy.39 The first term on the rhs is
the self-information, while the second is the entropy of the
state n

sn = −
∂gn

∂T
=

(
s◦ + kB ln ns

)
· n − kB ln n!. (58)

It accounts for both the entropic contribution carried by each
species, i.e., the standard entropies of formation

s◦ = −
∂µ◦

∂T
, (59)

and the entropic contribution due to the multiplicity of indis-
tinguishable states. When averaged, we recover the Gibbs–
Shannon entropy plus an internal entropy contribution

〈S〉 =
∑

n
pn

[
−kB ln pn + sn

]
. (60)

The enthalpy follows from

H(n) = G(n) + TS(n) = gn + Tsn = h · n, (61)
where

h = µ◦ + Ts◦ = h◦ (62)

denotes the vector of standard enthalpies of formation,
in agreement with traditional thermodynamics of ideal
dilute solutions.34 Likewise, the chemical potentials of the
chemostats, Eq. (54), will be decomposed in terms of enthalpic
and entropic contributions

µY = hY − TsY, (63)

where hY = h◦Y and sY = s◦Y − kB ln{[Y]/[s]}.
To recover the enthalpy balance along stochastic trajecto-

ries, we write the change of enthalpy as the sum of its changes
due to reactions

∆H[nt] = H(nt) − H(n0)

=

∫ t

0
dτ

∑
n,ρ

∆ρH(n) jρ(n, τ),
(64)

where

∆ρH(n) = h · Sρ = h · Sρ + hY · SY
ρ︸              ︷︷              ︸

=:Qthr
ρ

+ TsY ·
(
− SY

ρ

)︸           ︷︷           ︸
=:Qchm

ρ︸                                    ︷︷                                    ︸
=:Qρ

+ µY ·
(
− SY

ρ

)︸         ︷︷         ︸
=:W c

ρ

, for all n. (65)

We used Eqs. (21), (62), and (63). The first two contributions,
Qthr
ρ , account for the heat of reaction, i.e., the heat flowing from

the thermal reservoir (the solvent). The third term characterizes
the heat flowing from the chemostats, Qchm

ρ . The first three
terms, Qρ, integrated along the trajectory quantify the total

heat flow

Q[nt] =
∫ t

0
dτ

{∑
ρ
Qthr
ρ Jρ(τ) + TsY(τ) · IY(τ)

}
, (66)
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where the instantaneous external currents

IY(τ) B
∑

ρ

(
− SY

ρ

)
Jρ(τ) (67)

give the amount of exchanged species injected in the CRN at
each time; see Eq. (17).

The last term in Eq. (65), W c
ρ, quantifies the Gibbs free

energy exchanged with the chemostats. Once integrated, it
gives the chemical work

Wc[nt] =
∫ t

0
dτ µY(τ) · IY(τ). (68)

From Eqs. (64)–(68), the enthalpy balance along a trajectory
follows

∆H[nt] = Q[nt] + Wc[nt]. (69)

This is the expression of the first law of thermodynamics for
stochastic CRNs at the trajectory level (cf. Ref. 40, Eq. 2.10).

To recover the entropy balance along stochastic trajecto-
ries, we notice that since the entropy is a state function, its
change along a trajectory reads

∆S[nt] =
∫ t

0
dτ

{[
−∂τkB ln pn(τ)

] ��nτ
+
∑
n,ρ

∆ρS(n) jρ(n, τ)
}
,

(70)

as seen in Eq. (21). The changes along transitions can be recast
into

T∆ρS(n) = T∆ρsn − kBT ln
pn+Sρ

pn

= h · Sρ + hY · SY
ρ + TsY ·

(
− SY

ρ

)︸                                    ︷︷                                    ︸
=Qρ

−

[
∆ρgn + kBT ln

pn+Sρ

pn

]

︸                        ︷︷                        ︸
=∆ρG(n)

+ µY ·
(
− SY

ρ

)︸         ︷︷         ︸
=W c

ρ︸                                               ︷︷                                               ︸
=Aρ (n)

, (71)

where we have used Eq. (61). As highlighted with underbraces,
the first three terms are the heat flow along reactions, while the
last three terms correspond to the affinity of transition, Eq. (56).
When integrating over the whole trajectory, we recover the
entropy balance

∆S[nt] =
1
T

Q[nt] + Σ[nt], (72)

where the EP (times the temperature) reads

TΣ[nt] =
∫ t

0
dτ

{ [
−∂τkBT ln pn(τ)

] ��nτ
+
∑
n,ρ

Aρ(n, τ) jρ(n, τ)
}

(73a)

= kBT ln
pn0 (0)

pnt (t)
+
∫ t

0
dτjρ(n, τ)kBT ln

wρ(n, τ)

w−ρ(n + Sρ, τ)

(73b)

= Wc[nt] − ∆G[nt]. (73c)

The second equality follows from the definition of affinity,
Eq. (55), when integrating the changes of the probability
distribution. Instead, the third one readily follows from the
relationship between affinity and Gibbs potential, Eq. (56).
It expresses the overall energy dissipated as the difference
between the Gibbs free energy supplied by the chemostats
and that changing internally.

Mindful of Eq. (18), the EP can be rewritten as the ratio
of the probability of observing the trajectory nt under a for-
ward dynamics driven by a protocol πt over the probability of
observing the backward trajectory n†t under a dynamics driven
by the time-reversed protocol π† such that π†τ B πt−τ

TΣ[nt] = kBT ln
pn0 (0)P[nt ; π]

pnt (t)P[n†t ; π†]
. (74)

This central result in stochastic thermodynamics11,39 was for-
mulated for CRNs in Ref. 19 and clearly shows that the EP
measures the statistical asymmetry of a trajectory under time
reversal. It implies that the EP satisfies the following integral
FT: 〈

exp{−Σ/kB}
〉
= 1, (75)

where the ensemble average 〈·〉 runs over all trajectories. It
represents a refinement of the second law of thermodynamics
at the trajectory level. Using Jensen’s inequality, the second
law ensues, 〈Σ〉 ≥ 0.

Remark Using Eqs. (62) and (63), the local detailed
balance, Eq. (53), can be rewritten as

kB ln
wρ(n)

w−ρ(n + Sρ)
= − 1

T Qthr
ρ + sY · SY

ρ + ∆ρsn. (76)

The first term is the entropy change in the thermal bath, the
second one is the entropy change in the chemostats, whereas
the last one is the internal entropy change of the CRN.

Remark Chemical work and Gibbs potential are defined
up to a gauge, which accounts for the choice of the standard-
state chemical potentials. Indeed, let us consider the following
transformation:

µ◦ → µ◦ +
∑

λ
aλ`λ,

µ◦Y → µ◦Y +
∑

λ
aλ`

y
λ,

(77)
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where the second term is a linear combination of conservation
laws. This transformation leaves affinities (56) and EP (74)
unchanged, while transforming both the chemical work (69)
and the Gibbs potential (47). The former changes as

Wc[nt]→ Wc[nt] +
∑

λb
aλb`

y
λb
· IY[nt], (78)

where

IY[nt] =
∫ t

0
dτ IY(τ) (79)

are the integrated currents of exchanged species flowing in the
system. Likewise, the Gibbs potential becomes

G(n)→ G(n) +
∑

λ
aλLλn . (80)

Using the properties of conservation laws, Sec. II D, it is easy
to verify that

∆Lλu [nt] = 0, ∆Lλb [nt] = `
y
λb
· IY[nt], (81)

which confirms that the gauge terms cancel in the EP,
Eq. (73c).

Alternatively, one can apply the transformation (77) to
either (h, hY) or (s◦, s◦Y) and investigate how the terms in the
entropy balance (72) change. In the former case, one can easily
verify that both Q[nt] and S(n) are unaltered. In the latter case,
instead

S(n)→ S(n) +
∑

λ
aλLλn ,

Qthr[nt]→ Qthr[nt], and

Qchm[nt]→ Qchm[nt] + T
∑

λb
aλb`

y
λb
· IY[nt],

(82)

where we distinguished the thermal and chemical heat contri-
butions.

We thus emphasize that, W c, G(n), S(n), and Qchm are
not uniquely defined, in contrast to Σ and Qthr. Despite that,
once the gauge is fixed—i.e., the values of the standard-state
quantities are chosen—they are useful concepts for character-
izing the dissipation of the process. Further discussions on the
gauge arising in the work-potential connection will be given
in Sec. V C.

Remark Rather than defining the heat as minus the
entropy change in the environment times T, Eqs. (65) and (66),
we could have defined it as minus the entropy change in the
thermal reservoir times T, Qthr, thus leaving the chemical part
aside. Clearly, this does not affect the EP, but its expression
would lose the typical Kelvin–Clausius form, Eq. (72), as it
would read Σ[nt] = ∆S[nt] − 1

T Qthr[nt] − ∫
t

0 dτ sY(τ) · IY(τ).
These two different but equivalent approaches are not new to
nonequilibrium thermodynamics and have been discussed in
Ref. 41, Chap. III, Sec. 3, for instance.

D. FT for the chemical work and comparison
with previous results

When combining the EP FT (75) with Eq. (73c), we
immediately obtain the integral FT for the chemical work

〈
exp{−β(Wc − ∆G)}

〉
= 1. (83)

However, a Jarzynski-like integral FT42–45 for the
chemical work—i.e., expressions such as

〈
exp{−βWc}

〉
= exp

{
−β∆Geq

}
—does not ensue. This relation would require

that (i) the process starts and finishes at equilibrium in a closed
network, ∆G = ∆Geq—the condition on the final state can be
relaxed, though—and (ii) ∆Geq is a nonfluctuating quantity
along the process so that its exponential can be moved out of
the average. However, due to broken conservation laws, Geq

fluctuates along any trajectory of open CRNs.
Let us consider a generic process in which the CRNs is

initially closed and at equilibrium, Eq. (44), with a Gibbs
free energy

∑
{Lλ }

P({Lλ})Geq({Lλ}). The CRN is then open
and driven according to some time-dependent protocol, πτ ,
for τ ∈ [0, t]. At time t, the CRN is closed again and let
to relax to a new equilibrium distribution peqt

n . Since the
chemostatting procedure unavoidably breaks some conser-
vation laws, the accessible state space suddenly increases.
The final distribution of broken components, P({Lλb }; t), will
thus have a support broader than that of the initial distribu-
tion, P({Lλb }; 0); see, e.g., Fig. 3. This process is akin to
the free expansion of a gas that is initially at equilibrium
in a constrained region of space. The crucial point is that
the initial state is a constrained, or local, equilibrium with
respect to the state space where the dynamics subsequently
evolves.

The stochastic thermodynamics of these processes is char-
acterized by absolute irreversibility.27 Namely, when the EP
(74) is integrated over all trajectories to obtain the FT (75),
there are some backward trajectories whose corresponding for-
ward probability is vanishing. These are the trajectories leading
to values of the broken components not in supp

{
P({Lλb }; 0)

}
.

Since the EP of these trajectories diverges negatively, see
Eq. (74), the expression of the integral FTs (75), as well
as (83), is invalidated but can be replaced by 〈exp{−Σ/kB}〉

= 1 − λS, where 0 ≤ λS ≤ 1 measures the probability
of those backward trajectories whose forward one has zero
probability.27

Hence, let us assume that supp
{
P({Lλb }; 0)

}
spans all

possible values of {Lλb } so that no absolute irreversibility
occurs. By conditioning the average in Eq. (83) upon observa-
tion of specific initial and final components (〈·〉{Lλ },{L′λ }

), we
obtain ∑

{Lλ }

∑
{L′λ }

P({Lλ}; 0) P({L′λ}; t)

× exp
{
β[Geqt

({L′λ}) − Geq0
({Lλ})]

}

×
〈
exp{−βWc}

〉
{Lλ },{L′λ }

= 1. (84)

However, this equation cannot be simplified further: since
the Gibbs potential depends on the broken components, it
fluctuates during the transient dynamics and an average over
all components must be taken. As a result, no Jarzynski
FT for the chemical work in the Gibbs ensemble can be
derived.

In Ref. 19, a Jarzynski relation for the chemical work is
derived using the grand canonical ensemble Ref. 19, Eq. (61).
Translated into our notation, this result reads
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FIG. 3. Illustration of the evolution of
the probability distribution of the broken
components associated with Eq. (31b)
in the CRNs in Fig. 1. As the CRN
evolves, the state space enlarges as the
stochastic dynamics explores states cor-
responding to different broken compo-
nents, Lb. The four distributions are
obtained by means of 106 trajectories
simulated using the stochastic simula-
tion algorithm. All rate constants are
equal to 1, whereas the concentrations of
the chemostatted species are [Ae] = 17
and [Be] = 10. The value of the enzyme
moiety is LE = 5.

〈
exp

{
−β[Wc − ∆(µeq · n)]

}〉
= exp

{
−β∆Geq

}
, (85)

where the initial and final equilibrium states are grand canon-
ical

peq
n = exp

{
β

[
Geq − gn + µeq · n

] }
. (86)

The grand potential is defined as

G B G − µeq · n, (87)

and µeq are implicitly defined by

µ
eq
x · S

x
ρi

+ µeq
y · S

y
ρi
= 0, for all ρi, (88)

[Ref. 19, Eq. (27)]. The absence of the exchange transition is
due to a different form of chemostatting; see the remark in
Sec. II A. The grand potential is naturally suited to describe
CRNs in which all species are chemostatted and µeq are their
chemical potentials. But for most CRNs, where only a subset
of species are typically chemostatted, the grand potential is not
the most convenient and intuitive potential to work with. The
physical interpretation of the contribution −∆(µeq·n) is, for
instance, not transparent. In Secs. IV–VIII, we will make use of
conservation laws to identify the potential which best describes
CRNs where only a subset of species are chemostatted. New
work contributions with a transparent physical interpretation
will ensue.

IV. CRN-SPECIFIC STOCHASTIC THERMODYNAMICS

We now proceed with our main results. Making use of the
conservation laws identified in Sec. II D, we decompose the EP
into three fundamental contributions: a potential difference, a
contribution due to time-dependent driving, and a minimal set
of contributions due to nonconservative chemical forces. To
do so, we first decompose the local detailed balance and then
proceed with the EP.

A. Entropy production

We start our EP decomposition by partitioning the set of
chemostatted species Y into two groups, denoted by Yp and Yf.
Likewise, the corresponding exchanged species are denoted
by yp and yf, respectively. The former group is composed by
a minimal set of chemostatted species which—when starting
from the closed CRN—break all broken conservation laws. In
other words, each entry of Yp breaks exactly one distinct con-
servation law. The remaining chemostatted species form the
latter group. For a given CRN, our partitioning is not unique,
but the number of yp and yf is uniquely defined: Nyp

= Nλb

and Nyf
= Ny − Nλb , respectively; see example 5.

We now notice that the linear independence of {`λ}
implies that the matrix whose rows are {`

yp

λb
} is nonsingular.

We will denote by {`
yp

λb
} the column vectors of the inverse of

the latter matrix. By making use of this important property, we
can recast the identity

∆ρLλb
n ≡ `λb · Sρ ≡ `

x
λb
· Sx

ρ + `
yp

λb
· S

yp
ρ + `yf

λb
· Syf

ρ (89)

into

S
yp
ρ = ∆ρM

yp
n −

∑
λb
`

yp

λb

[
`x
λb
· Sx

ρ + `yf
λb
· Syf

ρ

]
, (90)

where

M
yp
n B

∑
λb
`

yp

λb
Lλb

n . (91)

Mindful that SY
ρ = −Sy

ρ and `x
λb
· Sx

ρe
= 0 for all ρe, one can

use Eq. (90) to rewrite the chemical work along reactions as

− µY · S
Y
ρ = ∆ρ

[
µYp
·M

yp
n

]
−FYf · S

Yf
ρ , (92)

where
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FYf B µYf
− µYp

·
∑

λb
`

yp

λb
`

yf
λb

. (93)

A reformulation of the local detailed balance Eq. (53) readily
ensues

ln
wρ(n)

w−ρ(n + Sρ)
= −β

(
∆ρgn + FYf · S

Yf
ρ

)
, (94)

where

gn B gn − µYp
·M

yp
n . (95)

We now notice that the expression of the potential gn is
reminiscent of a Legendre transform of gn with respect to M

yp
n ,

in which µYp
are the conjugated intensive fields. To reveal the

physical meaning of M
yp
n , let us consider the case in which the

broken conservation laws correspond to moieties, see Sec. II D,
and hence each species can be thought of as a composition of
these. Through yp, some combinations of these moieties are

exchanged with the environment. The entries of M
yp
n quantify

the total abundance of these combinations in state n, and hence
we refer to M

yp
n as the moiety population vector. In view of this

and the fact that (in general) not all moieties are exchanged,
one can interpret gn as the semigrand Gibbs free energy of
the state n.34 Note also that, from the definition of broken
conservation law, Eq. (27), it follows that ∆ρi M

yp
n = 0, for all

ρi—viz., internal reactions never create or destroy moieties—
whereas for ρe only we have that∆ρe M

yp
n , 0—viz., exchange

reactions introduce or remove moieties. We also mention that
an alternative interpretation of gn can be given once we rewrite
it as

gn B gn −
∑

λb
fλb Lλb

n , (96)

where

fλb B µYp
· `

yp

λb
. (97)

In this form, gn is reminiscent of a Legendre transform with
respect to the broken components {Lλb

n }, in which {fλb } are the
conjugated intensive fields.

In the second term on the rhs of Eq. (94), FYf identifies
chemical potential gradients imposed by the chemostats on the
CRN. Its entries, denoted by {Fyf }, for yf = 1, . . . , Nyf

, are a
maximal independent set of nonconservative chemical forces:
if and only if FYf = 0, then the rhs of Eq. (94) is conservative.
In this case, the CRN is detailed-balanced since the steady-
state probability distribution defined by peq

n ∝ exp
{
−βgn

}
satisfies the detailed balance property, Eq. (14). Since {Fyf }

make the CRN non-detailed balanced, we refer to them as fun-
damental nonconservative chemical forces. Equation (94) is
our first major result.

To proceed with our EP decomposition, we combine
Eqs. (73b) and (94)

TΣ[nt] = kBT ln
pn0 (0)

pnt (t)
−

∫ t

0
dτ

∑
ρ,n
∆ρgn(τ) jρ(n, τ)

+
∑

yf
Wnc

yf
[nt], (98)

where

Wnc
yf

[nt] B
∫ t

0
dτFyf (τ)Iyf (τ). (99)

{Iyf (τ)}, for yf = 1, . . . , Nyf
, denote the entries of the instan-

taneous external currents corresponding to Yf, Eq. (67). We
now recall that gn is a state function; hence,

∆g[nt] = Wd[nt] +
∫ t

0
dτ

∑
ρ,n

∆ρgn(τ) jρ(n, τ), (100)

where

Wd[nt] B
∫ t

0
dτ

[
∂τgn(τ)

] ��nτ
=

∫ t

0
dτ

[
−∂τµYp

(τ)
]
·M

yp
nτ

.

(101)

Therefore, combining Eqs. (98) and (100), we obtain

TΣ[nt] = −∆G[nt] + Wd[nt] +
∑

yf
Wnc

yf
[nt], (102)

where the first term is the difference of stochastic semigrand
Gibbs potential

G(n) B kBT ln pn + gn. (103)

The EP decomposition in Eq. (102) is a major result of
our paper. The first term on the rhs constitutes the conser-
vative force contribution of the EP. It describes the dissipa-
tion due to overall changes of thermodynamic state variables:
enthalpy, H(n), entropy, S(n), and chemical energy {µYp

·M
yp
n }.

The second term, Eq. (101), arises in the presence of time-
dependent driving and accounts for the changes caused by
manipulations of the chemical potentials µYp

. As it is a con-
trolled way of changing the Gibbs free energy landscape of
the CRN, we refer to it as driving chemical work. Finally, for
each exchanged species Yf, a nonconservative force contri-
bution (99) arises, {Wnc

yf
}. All together, they account for the

chemical energy flowing between different chemostats across
the CRN and we refer to them as nonconservative chemi-
cal work contributions. Equation (102) holds for an arbitrary
CRN, yet it is CRN-specific, as it is derived using the topo-
logical properties of the CRN encoded in the conservation
laws. To gain more intuition, we now focus on specific classes
of CRNs, whose resulting decomposition is summarized in
Table II. In Sec. IV B, we continue our discussion on the work
contributions Wd and {Wnc

yf
}, whereas in example 5 and in

Sec. VIII, we evaluate them for specific models. Finally, in
Secs. VI and VII, we will further explore the implications of
Eq. (102).

TABLE II. Entropy production for specific processes. “0” (respectively,
“X”) denotes a vanishing (respectively, a finite) contribution.

Dynamics −∆G Wd Wnc

Autonomous detailed-balanced X 0 0
Unconditionally detailed-balanced X X 0
Autonomous X 0 X
Nonequilibrium steady state 0 0 X
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1. Autonomous detailed-balanced CRNs

The CRN is autonomous and all fundamental forces
vanish. The trajectory EP becomes minus a potential difference

TΣ[nt] = −∆G[nt]. (104)

We will prove in Sec. VII that this is the class of open CRNs
which relax to equilibrium and in which the average potential
〈G〉 is minimized at equilibrium by the dynamics described by
CME (11).

2. Unconditionally detailed-balanced CRNs

The set of species Yf is empty—i.e., each exchanged
species breaks a conservation law—and no fundamental force
arises. Hence, these CRNs are detailed-balanced irrespective
of the values of µY, but the time-dependent driving prevents
them from reaching equilibrium, and their EP reads

TΣ[nt] = −∆G[nt] + Wd[nt]. (105)

3. Autonomous CRNs

The driving work vanishes and the forces are constant in
time. Hence, the EP becomes

TΣ[nt] = −∆G[nt] +
∑

yf
FyfIyf [nt]. (106)

The nonconservative chemical work displays a typical current–
force structure. In the long time limit,∆G[nt] is typically subex-
tensive in time, and we obtain the EP typical of nonequilibrium
steady states

TΣ[nt]
t→∞
=

∑
yf
FyfIyf [nt] (107)

[see Eq. (79)]. In other words, TΣ[nt] is dominated by the
dissipative flows of chemicals across the CRN.

Remark For CRN with infinite number of species and
reactions—e.g., aggregation–fragmentation and polymeriza-
tion processes46–48—the CRN may undergo steady growth
regimes in which ∆G is not subextensive in time and cannot
be neglected in the long-time limit.

Remark Our EP decomposition is not unique and differ-
ent expressions for gn and FYf correspond to different ways
of partitioning Y into Yp and Yf.

Example 5. For the open CRN in Fig. 1, the chemostat-
ted species can be split into Yp and Yf in two possible—and
trivial—ways: either A is regarded as the species breaking the
conservation law (31b), or B. We consider the former choice,
yp = (A) and yf = (B). Since `b

A = 1, the only entry of the
moiety vector reads

MA
n = nE∗ + nE∗∗ + nA + nB = Lb

n, (108)

which is equal to the total abundance of the A–B moiety. The
intensive variable conjugated to the broken conservation law
is equal to the chemical potential of Ae

fb = µAe . (109)

The potential thus readily follows from Eq. (95), or equiva-
lently Eq. (96),

gn = gn − µAe MA
n . (110)

The instantaneous driving work rate associated with any
manipulation of the latter potential is

Ẇd(n) = −∂t µAe MA
n . (111)

Once integrated over a trajectory, it gives the driving work,
Eq. (101). Since yf = (B), the conjugated fundamental chemical
force reads

FBe = µBe − µAe (112)

and the instantaneous dissipative contribution due to this
force is

Ẇnc
Be
= FBe IBe , (113)

where IBe = J+b − J−b. When integrated over a trajectory,
it measures the work spent to sustain a current between
Ae and Be across the CRN. A pictorial illustration of the
work contributions is given in Fig. 4. The trajectory EP thus
reads

TΣ[nt] =
∫ t

0
dτ

[
−∂τ µAe (τ)MA

n
] ��nτ
− ∆G[nt]

+
∫ t

0
dτFBe (τ)IBe (τ). (114)

�

B. Energy balance

In Eq. (102), the driving and nonconservative chemical
work, Wd and {Wnc

yf
}, emerge as dissipative contributions. To

strengthen their interpretation as work contributions, we now
show that they can also be described as part of an energy
balance. For this purpose, let us introduce the semigrand
enthalpy49

H(n) B H(n) − µYp
·M

yp
n = G(n) + TS(n). (115)

This CRN-specific potential quantifies the portion of energy
which is not attributed to volume (−pV, where p is the external
pressure) and exchanged moieties, µYp

·M
yp
n . It accounts for

the energy stored in its internal chemical composition, i.e.,
the internal species x and the unbroken components {Lλu }.
When combining its definition with the enthalpy and entropy
balances, Eqs. (69), (72), and (102), we obtain

FIG. 4. Pictorial illustration of the work contributions. The driving one arises
when the chemical potential of the chemostat Ae changes in time. The non-
conservative chemical work, instead, characterizes the sustained conversion
of A into B.
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∆H[nt] = Q[nt] + Wd[nt] +
∑

yf
Wnc

yf
[nt], (116)

viz., the overall change of semigrand enthalpy is equal to the
sum of heat flow, driving, and nonconservative chemical work.
By analogy with Eq. (69), this can be interpreted as a CRN-
specific formulation of the first law.

In Sec. III C, we introduced the chemical work as the
Gibbs free energy exchanged with the chemostats, Eq. (68).
By comparing Eqs. (61) and (116), we obtain its relationship
with Wd and {Wnc

yf
}

Wc[nt]−∆
[
µYp
·M

yp
n

]
= Wd[nt] +

∑
yf

Wnc
yf

[nt]. (117)

We emphasize that in contrast to the chemical work, the driving
one does not account for direct exchanges of Gibbs free energy,
but it captures the instantaneous changes of the chemostats
Gibbs free energy.

Remark The driving work is reminiscent of the mechan-
ical work as defined in stochastic thermodynamics. In this
framework, Wmech[nt] = ∫

t
0 dτ ∂τEn(τ)|nτ describes internal

energy changes due to external time-dependent control; see,
e.g., Refs. 44 and 50. In CRNs, the time-dependent control
is exerted via the chemostats, and Wd[nt] indeed accounts for
this fact.

C. Equilibrium of open CRNs

We have already seen that in the absence of fundamental
forces, the rhs of the local detailed balance (94) becomes a state
function difference. The steady-state probability distribution

peq(n|{Lλu }) =
exp

{
−βgn

}
Z({Lλu })

∏
λu
δ
[
Lλu

n , Lλu

]
(118)

satisfies the detailed balance property (53) and therefore char-
acterizes the equilibrium of open CRNs. Not accidentally, the
relationship between the partition function Z({Lλu }) and that
of closed CRNs, Eq. (43),

Z({Lλu }) =
∑

m
exp

{
−βgm

} ∏
λu
δ
[
Lλu

m , Lλu

]
=

∑
{Lλb }

exp
{
β
∑

λb
fλb Lλb

}
Z({Lλ}), (119)

is akin to that between canonical and grand canonical par-
tition functions; see, e.g., Ref. 51. With an ensemble of
unbroken components, P({Lλu }), the constrained equilibrium
distribution reads

peq
n =

∑
{Lλb }

peq(n|{Lλu }) P({Lλu })

= peq(n|{Lλu
n }) P({Lλu

n }), (120)

where peq(n|{Lλu
n }) is the probability distribution of observ-

ing the state n given its stoichiometric compatibility class.
Equation (120) thus generalizes the equilibrium probability
distribution (44) to open CRNs.

Importantly, the average semigrand Gibbs potential (103)
takes its minimum value at peq

n , Eq. (120), where it reduces to
the equilibrium semigrand Gibbs potential

Geq({Lλu }) = −kBT lnZ({Lλu })+kBT ln P({Lλu }), (121)

averaged over P({Lλu }). Indeed,

〈G〉 − 〈Geq〉Lu = 〈G − Geq〉 = kBT D(p‖peq) ≥ 0, (122)

where 〈
Geq

〉
Lu
≡

∑
{Lλu }

P({Lλu })Geq({Lλu }). (123)

The first equality follows from the fact that Geq is nonfluctu-
ating, since it depends solely on the unbroken components.
As for the Gibbs free energy in closed CRNs, we will show
later (Sec. VII) that Eq. (122) quantifies the average dissipation
during the relaxation to equilibrium.

D. Dissipation balance along stoichiometric cycles

We can now formulate the EP decomposition in terms
of stoichiometric cycle affinities. These are defined as the
sum of the transition affinities along stoichiometric cycles
{c ≡ ρc1, ρc1, . . . , ρcNc }

A B Aρc1(n) + Aρc2(n + Sρc1) + . . . . . .

+ AρcNc (n +
∑Nc−1

j=1
Sρcj). (124)

Using Eq. (56), and the fact that −∆ρG(n) vanishes when
summed over the loop c, we obtain

A = −µY ·

Nc∑
i=1

SY
ρci = −µY ·

∑
ρ
SY
ρ cρ. (125)

Since
∑
ρSY

ρ cαρ = 0, those evaluated along the stoichiomet-
ric cycles of the closed CRN, {cα}, always vanish. By con-
trast, those along the emergent cycles, {cη}, do not vanish in
general

Aη = µY · C
Y
η (126)

[see Eq. (36)]. These affinities can be thus understood as the
chemical potential gradient imposed by the chemostats on the
cycle.

To rewrite the EP (102) in terms {Aη }, let us highlight
their relationship with the fundamental forces

Aη = FYf · C
Yf
η , (127)

which is obtained when summing the local detailed balance
(94) along {cη} as in Eq. (124). Since the matrix whose
columns are {CYf

η } is square and nonsingular—as it can be
deduced from the linear independence of the set of emergent
cycles—we can invert it and write

FYf =
∑

η
C

Yf

η Aη , (128)

where {C
Yf

η } denote the rows of the inverse matrix. This
relation clarifies the one-to-one correspondence which lies
between {Fyf } and {Aη }. Inserting the last expression in the
local detailed balance, Eq. (94), we obtain

ln
wρ(n)

w−ρ(n + Sρ)
= −β

(
∆ρgn −

∑
η
Aηζη,ρ

)
, (129)
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where the coefficients

ζη,ρ B −C
Yf

η · S
Yf
ρ (130)

quantify how much each reaction contributes to the emergent
cycles. Algebraically, the row vectors {ζη} are dual to the
cycles, {cη}

ζη · c
η′ = −

∑
ρ
C

Yf

η ·S
Yf
ρ cη

′

ρ = C
Yf

η ·C
Yf
η′ = δη,η′ . (131)

As previously done for Eq. (102), when integrating the
trajectory EP (73b) with the local detailed balance (129), we
obtain

TΣ[nt] = −∆G[nt] + Wd[nt] +
∑

η
Γη[nt]. (132)

The stochastic semigrand Gibbs potential and the driving work
read as in Eqs. (103) and (101), respectively. For each emergent
stoichiometric cycle,

Γη[nt] B
∫ t

0
dτAη(τ)

∑
ρ
ζη,ρJρ(τ) (133)

quantifies the chemical work spent to sustain the related cyclic
flow of chemicals. For autonomous CRNs,

TΣ[nt] = −∆G[nt] +
∑

η
AηJη[nt], (134)

where

Jη[nt] B
∫ t

0
dτ

∑
ρ
ζη,ρJρ(τ) (135)

quantifies the integrated current along the cycle η. In the long-
time limit, in which ∆G[nt] is negligible, we obtain

TΣ[nt]
t→∞
=

∑
η
AηJη[nt]. (136)

When all emergent cycle affinities vanish—as well as when
no emergent cycle is created—the CRN becomes detailed-
balanced, in agreement with the Kolmogorov–Wegscheider
condition.52–54

We emphasize that the cycle chemical work contributions
and currents, Eqs. (133) and (135), can be written as combi-
nations of fundamental external currents, {IYf } Eq. (67), via
Eq. (130). The added value of Eq. (102) over (132) lies in the
fact that each force is conjugated to the external current of only
one external species.

Remark An alternative approach that can be used for
cycle EP decompositions is the graph-theoretic one based
on the identification of the loops appearing in the network
of transitions.2,55 Once these loops are identified, they can
be sorted according to the chemostats they are coupled to,
as these determine their affinity; see Eq. (124). Equivalently,
loops are classified according to the stoichiometric cycle they
correspond to. In Ref. 56, a graph-theoretic approach based on
loop affinities led to the expression analogous to Eq. (136). By
contrast, our cycle EP decomposition is based on a stoichio-
metric approach: emergent cycles are directly identified by the
kernels of Si and S.

This observation points out the redundancy which is
intrinsic in bare graph-theoretic EP decompositions: many
loops may be coupled to the same set of reservoirs and thus
carry the same affinity, while many others may carry a vanish-
ing affinity—for CRN, these latter are those corresponding to
stoichiometric cycles of the closed network, {cα}. For generic
networks, a systematic way of identifying these so-called sym-
metries was derived in Ref. 57, whereas in Ref. 58, they are
used to formulate generic thermodynamic—rather than mere
graph-theoretic—EP decompositions.

Example 6. The emergent cycle affinity corresponding to
the emergent stoichiometric cycle (39) reads

A = µBe − µAe = FBe . (137)

The contributions to the corresponding cycle current follow
from Eq. (130)

ζ =
( +1 +2 +3 +4 +a +b

0 0 0 0 0 −1
)
. (138)

The entries corresponding to the backward reactions are minus
those of the forward. Notice that, since the CRN has exactly
one emergent cycle, the force and cycle EP decompositions
are identical; see Eq. (127).

V. SEMIGRAND GIBBS POTENTIAL

Here we further elaborate on equilibrium distributions
and semigrand Gibbs potentials by addressing three points:
(i) the relationship between Eq. (120) and the equilibrium
distributions as expressed in chemical reaction network the-
ory; (ii) the role of conservation laws for characterizing the
dissipation of CRNs subject to sequential introduction of
exchanged species; (iii) the gauge freedom intrinsic to the def-
inition of driving work. This section can be skipped at a first
read.

A. Equilibrium distributions in chemical
reaction network theory

In Ref. 22 (see also Ref. 59), equilibrium distributions of
CRNs are proven to be multi-Poissonian

peq(n|{Lλu }) =
exp

{
n · ln

{
[z]eqV

}}

n!Z({Lλu })

∏
λu
δ
[
Lλu

n , Lλu

]
,

(139)

where [z]eq is the equilibrium concentration distribution of the
same CRN described by a set of deterministic rate equations.
Z({Lλu }) is again a normalizing factor. To highlight the rela-
tionship between this equation and Eqs. (120) and (86), we
need to recall that, for deterministic CRNs, thermodynamic
equilibrium is defined by the fact that chemical potential dif-
ferences along all reactions vanish; see Eqs. (88) and (A8). As
observed in Ref. 25, this entails that

µeq =
∑

λ
fλ`λ, (140)
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where {f λ} are real coefficients depending on µY and {Lλu }.
Those related to the broken components, {fλb }, are indeed those
appearing in Eq. (97). Using the expression of chemical poten-
tial valid in the thermodynamic limit, Eq. (A7), we therefore
have

ln
{
[z]eqV

}
= −β

(
µ◦ − kBT ln ns −

∑
λ
fλ`λ

)
, (141)

from which

n · ln
{
[z]eqV

}
− ln n! = −β

(
gn − µ

eq · n
)

= −β
(
gn −

∑
λu

fλu Lλu
n

)
(142)

ensues. At this point, Eqs. (86), (118), and (139) appear identi-
cal up to

∑
λu

fλu Lλu
n . However, since this term involves only the

unbroken components it vanishes in Eq. (139). This shows the
connection between the CRN theoretical and thermodynamic
expression of equilibrium distributions.

B. Hierarchies of equilibriums

Here we show that when starting from a closed CRN,
a sequential introduction of exchange reactions that keep
the CRN detailed balanced drives it down in the semi-
grand Gibbs potential by equilibrating previously constrained
degrees of freedom: the conservation laws; see Fig. 5. Let
us imagine a closed CRN whose initial probability distribu-
tion is pn(0) =

∑
{Lλ }

p0(n|{Lλ}) P0({Lλ}), where P0({Lλ})
=

∏
λ Pλ0 (Lλ), i.e., different components are independently

distributed. As it relaxes to equilibrium, P0({Lλ}) will not
change, while p0(n|{Lλ}) will relax to Eq. (41). The average
dissipation is

T〈Σ〉 = −∆〈G〉

=
∑
{Lλ }

P0({Lλ})

[
kBT

∑
n
p(n|{Lλ}) ln

p(n|{Lλ})
peq(n|{Lλ})

]

≡
∑
{Lλ }

P0({Lλ})
[
− ∆〈G({Lλ})〉

]
. (143)

This expression is obtained when combining the prop-
erties of the Gibbs potential, Eq. (49), with the equilibrium

FIG. 5. Pictorial representation of the hierarchy of equilibrium states and the
semigrand Gibbs free energy drops following the relaxation to equilibrium
when conservation laws are broken.

distribution of closed CRNs, Eq. (44). It shows that the aver-
age drop of Gibbs free energy can be expressed as the weighted
average of the drops of Gibbs free energy at given components,
−∆〈G({Lλ})〉.

We now open the CRN by chemostatting one species.
Hence, one conservation law is broken, e.g., the total mass
`λ1 , and the CRN relaxes to a new equilibrium, Eq. (120),
whose partition function is denoted by Zλ1 , Eq. (119). Clearly,
Pλ0 (Lλ), for λ , λ1, will not change during the relaxation, and
we can rewrite the new equilibrium as

p(λ1)
eq (n) =

exp
{
−βgn + βfλ1 Lλ1

n

}

Zλ1 ({Lλn }λ,λ1 )

∏
λ,λ1

Pλ0 (Lλn )

=
exp{−βgn}

Z({Lλn })︸        ︷︷        ︸
=peq(n | {Lλ

n })

Z({Lλn }) exp
{
βfλ1 Lλ1

n

}

Zλ1 ({Lλn }λ,λ1 )︸                        ︷︷                        ︸
=:Peq(L

λ1
n | {L

λ
n }λ,λ1 )

∏
λ,λ1

Pλ0 (Lλn ).

(144)

The first term is the equilibrium distribution of the closed
CRN, while the second can be interpreted as the equilib-
rium distribution of the broken component for a given unbro-
ken component. In other words, the final equilibrium can
be understood as a closed CRN equilibrium with an equi-
librium probability distribution over the broken component.
Hence, the average amount of semigrand Gibbs free energy,
Gλ1 (n) = G(n) − fλ1 Lλ1

n , dissipated during the relaxation can
be written as

−∆
〈
Gλ1

〉
= kBT

∑
n
peq(n|{Lλn })

∏
λ
Pλ0 (Lλn )

× ln
Pλ1

0 (Lλ1
n )

Peq(Lλ1
n |{L

λ
n }λ,λ1 )

, (145)

upon application of Eq. (122) with the distributions (44) and
(144). When rewriting this expression as a sum over all values
of the components and performing the summation over the
states of peq(n|{Lλ}), we finally obtain

−∆
〈
Gλ1

〉
=

∑
{Lλ }λ,λ1

Pλ0 (Lλ)

×



∑
Lλ1

Pλ1
0 (Lλ1 )kBT ln

Pλ1
0 (Lλ1 )

Peq(Lλ1 |{Lλ}λ,λ1 )


=

∑
{Lλ }λ,λ1

Pλ0 (Lλ)
[
−∆

〈
Gλ1 ({Lλ}λ,λ1 )

〉]
. (146)

In the first line, we recognize the relative entropy between the
initial probability of the broken component, Pλ1

0 (Lλ1 ), and the
equilibrium one, Peq(Lλ1 |{Lλ}λ,λ1 ). It is equal to the differ-
ence of semigrand Gibbs free energy at a given component, as
highlighted in the second line. We thus see that the dissipation
following the relaxation from one equilibrium to the other is
completely characterized by the equilibration of the initially
constrained degrees of freedom.
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This procedure can of course be repeated when a further
species is chemostatted and it breaks another conservation
law. The dissipation is quantified by a difference of semi-
grand Gibbs free energy, which accounts for the relaxation
of the degree of freedom which has been released. When the
chemostatting breaks all conservation laws without generat-
ing fundamental forces, the CRN finally reaches the global
minimum of available semigrand Gibbs free energy, Fig. 5.
In this case, the potential becomes the grand potential used in
Ref. 19 and discussed in Sec. III D [cf. Eqs. (87), (96), (103),
and (140)].

C. Wd–G gauge

The driving work and the stochastic semigrand Gibbs
potential are defined up to a gauge—distinct from that involv-
ing G and W c—which corresponds to the choice of the
components. Let us consider a basis change in the space of
conservation laws

`λ → ` ′λ =
∑

λ′
Ωλλ′`λ′ , (147)

with Ωλuλb = 0 for all λu, λb so that the unbroken ones pre-
serve their properties. Accordingly, the conjugated intensive
variables transform as

fλ → f ′λ =
∑

λ′
fλ′Ωλ′λ (148)

[see Eq. (140)], where Ω denotes the inverse of Ω. We now
notice that when the sum involves only the broken conservation
laws, such a bilinear form becomes∑

λb
fλb`λb →

∑
λb

fλb`λb −
∑

λu
fλu
`λu , (149)

where

fλu
B

∑
λ′uλ

′
b

fλ′bΩλ′bλ′uΩλ′uλu . (150)

Therefore, the instantaneous driving work rate [the integrand
of Eq. (101) rewritten with Eq. (97)] and the semigrand
potential become

Ẇd(n)→ Ẇd(n) +
∑

λu
∂tfλu

Lλu
n (151)

and

G(n)→ G(n) +
∑

λu
fλu

Lλu
n , (152)

respectively. By contrast, the nonconservative forces—and
thus the nonconservative work—is left invariant

FYf → FYf +
∑

λu
fλu
`

yf
λu
= FYf , (153)

since `yf
λu
= 0. Crucially, the gauge terms in Wd and −∆G can-

cel and the EP is unaltered. After all, the physical process is
not modified. Notice also that since the gauge term is nonfluc-
tuating, it vanishes for cyclic protocols when integrated over
a period.

We thus conclude that driving work and semigrand Gibbs
potential are not univocally defined as they are affected by a

gauge freedom. The gauge affecting the potential–work con-
nection in stochastic thermodynamics led to debates; see Ref.
60 and references therein. As observed in the latter reference,
the problem is rooted in what can be experimentally measured
as work, as different experimental setups entail different gauge
choices. In our chemical framework, different choices of the
broken components involve expressions of the work in which
different species appear and whose abundances need to be
measured to estimate the work.

Example 7. To illustrate the potential–work gauge, we
use the CRN in Fig. 1. Let us consider the transforma-
tion of the set conservation laws, Eq. (31), identified by the
matrix

Ω = *
,

1 −1

0 1
+
-
, (154)

according to which the conservation laws become

` ′E = `E =
( E E∗ E∗∗ A B

1 1 1 0 0
)
, (155a)

` ′b = `b − `E =
( E E∗ E∗∗ A B

−1 0 0 1 1
)
. (155b)

Using Eq. (109), the gauge term reads

fλu
(πt) = µA(πt) (156)

from which we can easily derive the expression for the new
driving work rate

Ẇd(n) = (nE − nA − nB)∂t µA. (157)

The semigrand Gibbs free energy easily follows. We can now
highlight the difference between the two definitions of driving
work, Eqs. (111) and (157): while the first entails the measure-
ment of the population of A, B and of the activated complexes
E∗ and E∗∗, the latter entails that of A, B and of the free enzyme
E. The values of the two expressions will differ except for
cyclic protocols integrated over a period. ◽

VI. FLUCTUATION THEOREMS

We now proceed to show that the driving work and the
nonconservative chemical work satisfy a finite-time detailed
FT. The FT holds for any process, referred to as forward, if
the open CRN is initially prepared at equilibrium, Eq. (120).
For the sake of simplicity, and without loss of generality, we
assume that the initial distribution of unbroken components is
P({Lλu

n }) =
∏
λu
δ
[
Lλu

n , Lλu

]
. Let π0 be the initial value of the

protocol, which corresponds to equilibrium ruled by g(π0). At
time 0, the driving is activated and the CRN evolves controlled
by the protocol πτ , for τ ∈ [0, t]. The corresponding backward
process is again initially prepared at the equilibrium—where
FYf = 0—but the chemical potentials µYp

must have the
same value they have at time t in the forward process. This
guarantees that the equilibrium distribution is ruled by gn(πt).
The backward process is driven by the time-reversed protocol,
π†τ B πt−τ , for τ ∈ [0, t] (Fig. 6).



245101-17 R. Rao and M. Esposito J. Chem. Phys. 149, 245101 (2018)

FIG. 6. Schematic representation of the forward and backward processes.
The relaxation to the equilibrium obtained by shutting down the driving and
turning off the forces at time t (respectively, 0) for the forward (respectively,
backward) process merely relates the two processes, but it is irrelevant for
the FT.

The finite-time detailed FT establishes the relationship
between the forward and backward process

Pt(Wd, {Wnc
yf
})

P†t (−Wd, {−Wnc
yf
})
= exp

{
β
(
Wd +

∑
yf

Wnc
yf
− ∆Geq

)}
,

(158)

where Pt(Wd, {Wnc
yf
}) is the probability of observing Wd

driving work and {Wnc
yf
} nonconservative contributions

along the forward process, Eqs. (101) and (99). Instead,
P†t (−Wd, {−Wnc

yf
}) is the probability of observing −Wd driv-

ing work and {−Wnc
yf
} nonconservative contributions along the

backward process. Finally,

∆Geq = −kBT ln
Z(πt , {Lλu })

Z(π0, {Lλu })
(159)

is the difference of the equilibrium semigrand Gibbs potential
between the backward and forward initial equilibrium states.
When integrating this expression over all possible values of
Wd and {Wnc

yf
}, we recover a Jarzynski-like integral FT〈

exp
{
−β

(
Wd +

∑
yf

Wnc
yf

)}〉
= exp

{
−β∆Geq

}
. (160)

We emphasize that in contrast to the FT for the chemical work
discussed in the first part of Sec. III D, the driving and non-
conservative work contributions require that the process starts
from the equilibrium state ruled by G, which is that of open
CRNs. As a consequence, there is no break of conservation
laws happening during the process and Geq is nonfluctuat-
ing. The proof of the FT (158) is given in Appendix B and
it hinges on the generating function techniques presented in
Ref. 58.

We now discuss some special yet interesting cases of
the FT (158). In unconditionally detailed-balance CRNs, the
nonconservative work vanishes and we obtain

Pt(Wd)

P†t (−Wd)
= exp

{
β
(
Wd − ∆Geq

)}
. (161)

This is the analog of Crooks’ FT for CRNs50,61 since solely the
work due to external manipulations is involved. By contrast,
for autonomous processes, the driving chemical work vanishes
and the FT can be formulated as

Pt({Iyf })

Pt({−Iyf })
= exp

{
β
∑

yf
FyfIyf

}
, (162)

which evidences the symmetry that the fluctuations of the
fundamental currents [see Eq. (79)] satisfy.

The FT in Eq. (158) is inspired by an analogous result
derived in Refs. 58 and 62 in the context of generic Markov
jump processes. It is a major result of this paper and its impor-
tance is manifold. It holds for processes of finite duration t
and it is expressed in terms of measurable chemical quantities.
Its only constraint is the initial state, which must be equi-
librium. It reveals the most appropriate boundary conditions
under which Jarzynski–Crooks-like FTs can be formulated for
CRNs: equilibrium distribution of open CRNs. Most impor-
tantly, it evidences the merits of our stoichiometric approach
based on the identification of conservation laws: it allowed us
to characterize the potential describing the equilibrium distri-
bution of open CRNs and to formulate the decomposition of
the EP which supports our FTs, Eq. (102).

Remark A physical interpretation of the argument of the
exponential in Eq. (158) follows from the following observa-
tion: if, at time t, the driving is stopped and the fundamental
forces (93) turned off—viz., set to zero by an appropriate
choice of µYf

: µ∗Yf
B µYp

·
∑
λb
`

yp

λb
`

yf
λb

—the CRN relaxes to
the initial condition of the backward process. During the relax-
ation, neither Wd nor {Wnc

yf
} are performed and the related EP

is TΣrelax = G(n, πt)+kBT lnZ(πt , {Lλu }). The argument of the
exponential can thus be interpreted as the EP of the fictitious
combined process “forward process + relaxation to the final
equilibrium.”

Remark For autonomous CRNs and arbitrary initial con-
ditions, the steady-state FT follows

P({İyf })

P({−İyf })

t→∞
= exp

{
t β

∑
yf
Fyf İyf

}
, (163)

where P({İyf }) is the probability of observing average rates of
fundamental external currents

{ 1
t ∫

t
0 dτ Iyf (τ)

}
equal to {İyf }.

Equation (163) can be proved using the large deviation tech-
nique used in Ref. 13 in combination with the local detailed
balance (94).

A. FT along stoichiometric cycles

An alternative yet equivalent formulation of the FT (158)
is that given in terms of nonconservative contributions along
emergent stoichiometric cycles, Eq. (133),

Pt(Wd, {Γη })

P†t (−Wd, {−Γη })
= exp

{
β
(
Wd +

∑
η
Γη − ∆Geq

)}
, (164)

where Pt(Wd, {Γη }) is the probability of observing Wd driv-
ing work and {Γη} nonconservative contributions along the
forward process. We discuss its proof in Appendix B.

Remark As for the fundamental currents, the local
detailed balance (129) can be used to prove a steady-state FT
for currents along emergent stoichiometric cycles

P({J̇η })
P({−J̇η })

t→∞
= exp

{
t β

∑
η
AηJ̇η

}
, (165)
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which is valid for autonomous CRNs and arbitrary initial con-
ditions.P({J̇η }) is the probability of observing average rates of
emergent cycle currents

{ 1
t ∫

t
0 dτ

∑
ρζη,ρJρ(τ)

}
equal to {J̇η }.

In contrast to the analogous FT obtained in Ref. 14, Eq. (165)
is achieved using a stoichiometric approach based on the iden-
tification of stoichiometric cycles. For this reason, it accounts
for the minimal set of nonzero macroscopic affinities.

VII. ENSEMBLE AVERAGE RATES DESCRIPTION

We now summarize our main results for ensemble average
rates and discuss the relaxation to equilibrium of detailed-
balanced CRNs. We also highlight the difference between an
approach that does and does not take into account the topol-
ogy of the CRN. We do so by recapitulating the procedure to
decompose the EP into its fundamental contributions. We end
by formulating a nonequilibrium Landauer’s principle.

A. Traditional description
1. Enthalpy balance

The enthalpy balance follows from the time derivative of
the average enthalpy, Eq. (61),

dt

∑
n
pn(h · n) ≡ dt〈H〉 = 〈Q̇〉 + 〈Ẇc〉. (166)

It characterizes the average rate of change of enthalpy in the
same way Eq. (69) characterizes the enthalpy change along
stochastic trajectories. The average heat flow rate is given
by

〈Q̇〉 = 〈Q̇thr〉 + 〈Q̇chm〉. (167)

The first term quantifies the average rate of heat of reaction

〈Q̇thr〉 =
∑

ρ

[
h · Sρ + hY · SY

ρ

]
〈Jρ〉, (168)

where 〈Jρ〉 =
∑

nwρ(n)pn is the average reaction current. The
second term is the average heat flow in the chemostats

〈Q̇chm〉 = TsY · 〈IY〉, (169)

where 〈IY〉 =
∑
ρ(−SY

ρ )〈Jρ〉 are the average external cur-
rents, Eq. (19). Instead, the ensemble average chemical work
rate

〈Ẇc〉 = µY · 〈I
Y〉 (170)

quantifies the average rate of exchange of Gibbs free energy
with the chemostats.

2. Entropy production rate

At the ensemble average level, the second law of ther-
modynamics manifests itself in the non-negative average EP
rate

〈Σ̇〉 = dt〈S〉 − 1
T 〈Q̇〉

= kB

∑
n,ρ

wρ(n)pn ln
wρ(n)pn

wρ(n + Sρ) pn+Sρ

≥ 0, (171)

where 〈S〉 =
∑

npnS(n), Eq. (57). Using the expression for the
transition affinity, Eq. (56), it can be recast into

T〈Σ̇〉 = 〈Ẇc〉 − dt〈G〉, (172)

where the chemical work rate and the average Gibbs potential
are given in Eqs. (170) and (48), respectively. Equivalently,
Eqs. (166), (171), and (172) can be obtained by directly averag-
ing Eqs. (69), (73a), and (73c), respectively, over all stochastic
trajectories.

For closed CRNs, Eq. (172) reduces to dt〈G〉 = −T〈Σ̇〉
≤ 0. This relation, together with Eq. (49), shows that: (i) 〈G〉
is a Lyapunov function and hence that closed CRNs relax to
equilibrium, Eq. (44); (ii) 〈G〉 − 〈Geq〉L = T〈Σ〉 is the average
dissipation during the relaxation to equilibrium.

B. CRN-specific description
1. Entropy production rate

We now summarize the procedure to recover the EP
decomposition (102) at the ensemble average level. (i) Iden-
tify the broken and unbroken conservation laws, {`λu , `λb },
Sec. II D. (ii) Identify a set of Nλb exchanged species, yp, for

which the matrix whose rows are {`
yp

λb
} is nonsingular. The

columns of its inverse are denoted by {`
yp

λ }. Physically, each
species yp breaks exactly one conservation law. The remain-
ing exchanged species form the set denoted by yf. (iii) The
nonequilibrium semigrand Gibbs potential follows from the
average of Eq. (103)

〈G〉 =
∑

n
pn

[
kBT ln pn + gn

]
. (173)

It depends on the vector 〈Myp〉 which describes the average
population of the combination of moieties whose conserva-
tion is broken by the chemostats, Sec. II D and Eq. (91). (iv)
The change in time of 〈g〉 due to the time-dependent driving
describes the average driving work rate, Eq. (101),

〈Ẇd〉 = −
[
∂tµYp

]
· 〈Myp〉. (174)

It quantifies the average amount of work spent to change the
chemical potentials of the chemostats Yp. (v) The second
group of exchanged species, yf, is used to identify the min-
imal set of fundamental nonconservative forces, FYf ≡ {Fyf },
Eq. (93). The average nonconservative chemical work rate fol-
lows from the product of these forces and their corresponding
instantaneous external currents, Eq. (67),

〈Ẇnc
yf
〉 B Fyf 〈Iyf 〉. (175)

They quantify the average work per unit time spent to sustain
a net current of species yf across the CRN. (vi) The aver-
age EP rate decomposed as in Eq. (102) finally follows from
Eqs. (173)–(175)

T〈Σ̇〉 = −dt〈G〉 + 〈Ẇd〉 +
∑

yf
〈Ẇnc

yf
〉. (176)

Its three fundamental contributions appear: a conservative
force contribution, a time-dependent driving contribution, a
minimal set of nonconservative terms.

For open autonomous detailed-balanced CRNs, FYf = 0,
∂tµYp

= 0, and hence Eq. (176) reduces to dt〈G〉 = −T〈Σ̇〉 ≤ 0.
Recalling Eq. (122), this relation shows that: (i) 〈G〉 is
a Lyapunov function and hence that these CRNs relax to
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equilibrium, Eq. (120); (ii) 〈G〉−〈Geq〉Lu = T〈Σ〉 is the average
dissipation during the relaxation to equilibrium.

2. Enthalpy balance

By averaging Eq. (116), the CRN-specific average
enthalpy balance also ensues

dt〈H〉 = 〈Q̇〉 + 〈Ẇd〉 +
∑

yf
〈Ẇnc

yf
〉, (177)

which strengthens the interpretation of 〈Ẇd〉 and {〈Ẇnc
yf
〉} as

average work rate contributions.

C. Average EP along stoichiometric cycles

The average EP decomposition expressed in terms of
emergent cycle currents and affinities can be achieved through
an analogous recipe. (i) Identify broken and unbroken conser-
vation laws, {`λu , `λb }, as well as stoichiometric and emergent
stoichiometric cycles, {cα, cη} [Secs. II D and II E]. Follow
steps (ii)–(iv) as above. (v) Identify the emergent stoichiomet-
ric cycles affinities, Eq. (126), as well as their corresponding
average currents

∑
ρζη ,ρ〈Jρ〉, Eq. (130). (vi) The average EP

rate follows from Eqs. (173) and (174) and the emergent
stoichiometric cycles currents and affinities

T〈Σ̇〉 = −dt〈G〉 + 〈Ẇd〉 +
∑

η
〈Γ̇η〉, (178)

where

〈Γ̇η〉 = Aη

∑
ρ
ζη,ρ〈Jρ〉 (179)

as in Eqs. (132) and (133).

D. Nonequilibrium Landauer’s principle

We can now formulate the nonequilibrium Landauer’s
principle for the driving and nonconservative work. We have
already seen that when the driving is stopped and all forces
are turned off, the CRN relaxes to equilibrium by minimizing
the nonequilibrium semigrand Gibbs potential. Equation (122)
can be thus combined with Eq. (176), and by integrating over
time, we obtain

〈Wd〉 +
∑

yf
〈Wnc

yf
〉 = ∆〈Geq〉Lu + kBT ∆D(p‖peq) + T 〈Σ〉︸︷︷︸

≥0

.

(180)

This fundamental result shows that the minimal cost for
transforming a CRN from an arbitrary nonequilibrium state
to another is bounded by a relative entropy difference, as
depicted in Fig. 7. This entropy is an information-theoretical
measure of the dissimilarity between two probability distri-
butions: the actual nonequilibrium one and its corresponding
equilibrium, which is used as a reference. For processes start-
ing at equilibrium, kBT∆D = kBTD(pf ‖peqf

) ≥ 0 quantifies
the minimal cost of producing the final nonequilibrium state.
By contrast, for processes relaxing to equilibrium, kBT∆D
= −kBTD(pi‖peqi

) ≤ 0 quantifies the maximum amount of
work that can be extracted from the initial nonequilibrium
state. For transformations in the absence of nonconservative
forces (FYf = 0), we obtain the chemical version of the result

FIG. 7. Pictorial representation of the transformation between two nonequi-
librium probability distributions. The nonequilibrium transformation (blue
line) is compared with the equilibrium one (green line). The latter is obtained
by shutting down the driving and turning off the forces at each time (dashed
gray lines).

of Ref. 28. The original Landauer’s principle63 is recovered
when considering erasure in a two state system (0 and 1)
with identical energies. In this process, the initial equilibrium
state (system equally likely to be found in 0 or 1) is trans-
formed into a metastable nonequilibrium one (system found
with probability one in 0) via a cyclic protocol. The difference
of relative entropy is ∆D = ln 2 and thus 〈Wd〉 ≥ kBT ln 2.
Finally, Kelvin’s formulation of the second law is recovered
for transformation between equilibrium states in the absence
of nonconservative forces, 〈Wd〉 ≥ ∆〈Geq〉Lu .

Remark To obtain the Landauer’s principle for 〈Ẇd〉 and
{〈Ẇnc

yf
〉}, the equilibrium states of the open CRN have been

used as reference states; see Fig. 7. Alternatively, one could use
the equilibrium states of the closed CRN, which are obtained
by shutting down all exchange reactions. If one does so and
uses Eq. (172), an analogous Landauer’s principle for the
chemical work can be derived

〈Wc〉 = ∆〈Geq〉L + kBT ∆D(p‖peq) + T〈Σ〉. (181)

The traditional thermodynamic work relation 〈Wc〉 ≥ ∆〈Geq〉L

is recovered for processes whose initial and final states are
equilibrium ones.

E. Connection with deterministic descriptions

For CRNs with very abundant populations of species, a
deterministic dynamical description in terms of nonlinear rate
equations is justified. The corresponding nonequilibrium ther-
modynamics was analyzed in Ref. 25, where the counterparts
of Eqs. (166), (172), and (105) can be found. Following a pro-
cedure similar to that described in this paper, one can also
formulate the deterministic analog of the EP decomposition
(176).

One can also recover the deterministic thermodynamic
description from the ensemble average one by performing the
thermodynamic limit—n� 1, V � 1, with n/V = : [z] finite,
see Appendix A—and assuming that pn ' δn,V [z], i.e., the
distribution is very peaked around the population that is the
solution of the rate equations, V [z].

We conclude with two remarks.

Remark Not all results valid for stochastic CRNs hold
for the deterministic ones. An example is provided by the
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adiabatic–nonadiabatic EP decomposition introduced in Ref.
64 for generic stochastic processes: it is valid for determin-
istic CRNs only for complex-balanced CRNs; see Refs. 25
and 65.

Remark As briefly mentioned in Sec. II A, there is
an alternative way of modeling open CRNs in which the
exchanged species y are treated as particle reservoirs with very
large population. All main results of our paper—i.e., the EP
decomposition (102), the finite-time detailed FT (158), and the
Landauer’s principle (180)—still hold. The only difference lies
in the fact that the different definitions of stoichiometric matri-
ces, Eq. (6), also entail slightly different definitions of broken
conservation laws. Besides that, the procedure described in
Sec. VII B can be followed in the same way.

VIII. APPLICATION

We now illustrate our EP decompositions (102) and (132)
on a CRN displaying more than one fundamental force,
which allows us to introduce the phenomenology of free
energy transduction. We consider the following active catalytic
mechanism:

T + E
k+1
−−⇀↽−− ET

k+5
−−⇀↽−− ED

k+4
−−⇀↽−− E + D,

ET + S
k+2
−−⇀↽−− E∗

k+3
−−⇀↽−− ED + P.

(182)

It describes the T-driven catalysis of S into P, having D as a
byproduct; see Fig. 8. All substrates and products are regarded
as exchanged species

S −−⇀↽−−
k+s

Se, P −−⇀↽−−
k+p

Pe, T −−⇀↽−−
k+t

Te, D −−⇀↽−−
k+d

De. (183)

The stoichiometric matrices S and SY read

*..................
,

+1 +2 +3 +4 +5 +s +p +t +d

E −1 0 0 1 0 0 0 0 0

ET 1 −1 0 0 −1 0 0 0 0

E∗ 0 1 −1 0 0 0 0 0 0

ED 0 0 1 −1 1 0 0 0 0

S 0 −1 0 0 0 1 0 0 0

P 0 0 1 0 0 0 1 0 0

T −1 0 0 0 0 0 0 1 0

D 0 0 0 1 0 0 0 0 1

+//////////////////
-

, (184)

in which the stoichiometric matrix of the closed CRN is
highlighted, and

FIG. 8. Pictorial illustration of the open CRN in Eqs. (182) and (183), from
which one can see the active catalytic mechanism more clearly.

*......
,

+1 +2 +3 +4 +5 +s +p +t +d

Se 0 0 0 0 0 −1 0 0 0

Pe 0 0 0 0 0 0 −1 0 0

Te 0 0 0 0 0 0 0 −1 0

De 0 0 0 0 0 0 0 0 −1

+//////
-

, (185)

respectively.
We now follow the procedure described in Sec. VII and

characterize all terms of Eq. (102). (i) The closed CRN has
three independent conservation laws

`E =
( E ET E∗ ED S P D T Se Pe Te De

1 1 1 1 0 0 0 0 0 0 0 0
)
, (186a)

`S =
( E ET E∗ ED S P D T Se Pe Te De

0 0 1 0 1 1 0 0 1 1 0 0
)
, (186b)

`T =
( E ET E∗ ED S P D T Se Pe Te De

0 1 1 1 0 0 1 1 0 0 1 1
)
. (186c)

The first corresponds to the enzyme moiety and it is unbroken
in the open CRN. By contrast, the last two correspond to the
moieties S–P and T–D, which are broken in the open CRN.
(ii) We choose Se and Te as chemostatted species Yp since the
entries of `S and `T corresponding to these species identify a
nonsingular matrix—it is an identity matrix. (iii) The moiety
population vector reads

M
yp
n =

*
,

S nE∗ + nS + nP

T nET + nE∗ + nED + nT + nD

+
-
, (187)

from which the semigrand Gibbs potential G follows,
Eqs. (103) and (173). (iv) The driving work rate follows from
the scalar product of the vector above and

− ∂tµYp
= *

,

Se −∂t µSe

Te −∂t µTe

+
-
, (188)

Eqs. (101) and (174). (v) The chemostatted species Pe and De

form the set Yf and determine the fundamental forces

FYf =
*
,

FPe

FDe

+
-
= *

,

Pe µPe − µSe

De µDe − µTe

+
-
, (189)

Eq. (93). Together with the instantaneous external currents

IYf = *
,

IPe

IDe

+
-
= *

,

Pe J+p − J−p

De J+d − J−d

+
-
, (190)

they identify the nonconservative contributions, Eq. (99). The
first one, FPe IPe , characterizes the work spent to convert S
into P, while the second, FDe IDe , characterizes that due to
the consumption of T. The sum of these terms and the driv-
ing work integrated over time contribute to the EP as in
Eq. (102).

The similar EP decomposition written in terms of non-
conservative contributions along stoichiometric cycles follows
when these latter are identified. The kernel of stoichiometric
matrix of the closed CRN is empty, while that of the open is
spanned by
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FIG. 9. (a) Average external currents and (b) average work rates vs. time for the CRN in Fig. 8. The plots are obtained using 104 trajectories generated via the
stochastic simulation algorithm. To simplify the illustration, all substrate and products are treated as chemostatted species. The concentrations of Se, Pe, and
De are kept constant ([Se] = 10, [Pe] = 70, and [De] = 10), whereas that of Te increases according to a logistic function: [Te] = [Te]max/(1 + exp{−κ(t − t0)})
([Te]max = 200, κ = 20, t0 = 1.5). This mimics the process in which the force that sustains the active catalysis, FDe , is switched on from 0 to a finite value
after t0. The change of the chemical potential µTe is plotted in red in the inset. The choice of the rate constants is as follows: k+1 = 103; k+2 = 103; k+3 = 103;
k+4 = 103; k+5 = 102, whereas the backward rates are obtained by means of Eq. (52) using the following values for the standard-state chemical potentials:
µ◦E = 1; µ◦ET = 3; µ◦E∗ = 4; µ◦ED = 2; µ◦Se

= 1; µ◦Pe
= 2; µ◦Te

= 10; µ◦De
= 1. Since reactions are unimolecular, the constant term −kBT1 ln[s] is ignored. Finally,

kBT = 1 and the value of the enzyme moiety is LE = 10.

c1 =
( +1 +2 +3 +4 +5 +s +p +t +d

1 0 0 1 1 0 0 1 −1
)
, (191a)

c2 =
( +1 +2 +3 +4 +5 +s +p +t +d

1 1 1 1 0 1 −1 1 −1
)
, (191b)

which are regarded as emergent stoichiometric cycles. Along
the first, the enzyme converts one molecule of T into one of
D, while for the second it processes T and S and produces D
and P

CY
1 =

( Se Pe Te De

0 0 1 −1
)
, (192a)

CY
2 =

( Se Pe Te De

1 −1 1 −1
)
. (192b)

At this point, we can proceed from step (v) and determine the
affinities

A1 = µTe − µDe , (193a)

A2 = µTe + µSe − µDe − µPe , (193b)

as well as the related instantaneous currents

J1 = J+p − J−p − J+d − J−d, (194a)

J2 = J−p − J+p. (194b)

The nonconservative work follows from the products
A1J1 and A2J2 and the decomposition in Eq. (132) can thus
be expressed. The former characterizes the dissipation due to
the futile consumption of T, since S is not converted into P.
The latter, instead, is the work spent to convert T and S into D
and P.

This system can be used to illustrate free energy trans-
duction when one considers the autonomous regime where
FDe < 0, FPe > 0, but 〈Ẇnc

De
〉 > −〈Ẇnc

Pe
〉 > 0. Namely, the

external current of Pe flows towards the chemostat, 〈IPe〉 < 0
(Pe produced), despite the fact that its force is positive,

FPe > 0. This can happen thanks to the free energy provided
by the conversion of Te into De, 〈Ẇnc

De
〉 > 0. In Fig. 9, we

illustrate the behavior of the average external currents and
work contributions as function of time when the transducer
in Fig. 8 is smoothly switched from a nontransducing regime
to a transduction one. At early times, FDe = 0, FPe > 0,
and one observes only a consumption of Pe: 〈IPe〉 > 0 and
〈IDe〉 ' 0 [respectively, orange and blue curves in Fig. 9(b)].
Consequently, the nonconservative work contributions are
〈Ẇnc

Pe
〉 > 0 and 〈Ẇnc

De
〉 = 0 [respectively, orange and blue

curves in Fig. 9(b)]. By contrast, when the motive force FDe

is switched on (at large times), the current 〈IPe〉 turns neg-
ative, whereas the motive current 〈IPe〉 aligns itself with its
corresponding force. We thus observe that 〈Ẇnc

De
〉 > −〈Ẇnc

Pe
〉 >

0. At intermediate times, driving work is extracted follow-
ing the smooth increase of the motive force [green curve in
Fig. 9(b)].

IX. CONCLUSIONS AND PERSPECTIVES

In this paper, we presented a thorough description of
nonequilibrium thermodynamics of stochastic CRNs. The fun-
damental results of traditional irreversible chemical thermody-
namics (viz., enthalpy and entropy balance) are formulated at
the level of single trajectories, Eqs. (61) and (72). By mak-
ing use of the CRN topology and by identifying conservation
laws, we decompose the EP into two fundamental work con-
tributions and a semigrand potential difference, Eqs. (102) and
(176). The driving work describes the thermodynamic cost of
manipulating the CRN by changing the chemical potentials
of its chemostats. Instead, the nonconservative work quanti-
fies the cost of sustaining chemical currents through the CRN.
These currents prevent the CRN from reaching equilibrium,
but when the related fundamental forces vanish (and the chem-
ical potentials of the reservoirs are kept constant in time),
the CRN relaxes to equilibrium by minimizing the semigrand
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Gibbs potential. We elucidate the relationship between this
thermodynamic potential and the dynamical potentials used
in chemical reaction network theory. Our EP decomposition
written in terms of stoichiometric cycle affinities general-
izes previous decompositions formulated for linear CRNs or
steady-state dynamics.

Two detailed FTs follow from our EP decompositions,
Eqs. (158) and (164). They are valid at any time and entirely
expressed in terms of physical quantities. Hence, they offer the
possibility of validating our findings experimentally and, from
a wider perspective, of validating the foundations of stochastic
thermodynamics beyond electronic devices or colloidal parti-
cles.66,67 Finally, we derive a nonequilibrium Landauer’s prin-
ciple for the work contributions, Eq. (180), which quantifies
the minimum thermodynamic cost involved in transformations
between arbitrary nonequilibrium states. In contrast to early
formulations of the latter principle, we consider not only the
cost of external manipulations but also that related to sustained
currents across the system.

Our EP decomposition identifies the fundamental dis-
sipative contributions in CRNs of arbitrary complexity and
thus it can be used to analyze free energy conversion in
CRNs beyond single biocatalysts, molecular motors, or sen-
sory systems, which are usually described by linear CRNs.68–71

The nonconservative work contributions capture Hill’s idea
of free energy transduction and extend it to nonlinear CRNs
with an arbitrary number of chemical forces. (As illustrated
in Sec. VIII, transduction occurs whenever one contribu-
tion becomes negative, thus requiring the other ones to be
positive and larger than the former in absolute value by
virtue of the second law of thermodynamics.) In turn, the
driving work contribution allows us to generalize transduc-
tion to CRNs with reservoirs externally controlled in time.
Hence, our framework can be used to analyze pumping
in CRNs,72,73 namely, mechanisms whose periodic external
control sustains a chemical current against its spontaneous
direction.

In biochemical information-handling systems48,70,74,75

and chemical computing,76 information is stored and pro-
cessed at the molecular level. Conservation laws play a cru-
cial role since they enable storing information in the form
of nontrivial probability distributions77 [see, e.g., Eq. (120)].
Early applications of the nonequilibrium Landauer’s prin-
ciple proved successful for characterizing the thermody-
namic cost of information processing in simple mecha-
nisms.78,79 Our generalization of this principle could thus
be used to analyze biochemical information-handling sys-
tems of far greater complexity. This endeavor is important
in the light of the current understanding that biological sys-
tems evolved by optimizing the gathering and representation of
information.80,81

Noise is known to play an important role in many bio-
chemical processes. Since a complete stochastic descrip-
tion remains both analytically and computationally demand-
ing, developing hybrid stochastic–deterministic descriptions
would be of great importance.25,82,83 Also, many of these pro-
cesses are regulated by enzymes, thus extending the present
theory beyond mass-action kinetics, as already done for
deterministic CRNs,84 is also necessary.
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APPENDIX A: THERMODYNAMIC POTENTIALS

Using equilibrium statistical mechanics, we derive the
equilibrium Gibbs free energy of a CRN in a given state n.
Our derivation is similar to that found in Ref. 85, Sec. 3.2,
whereas for different approaches, we refer the reader to Refs.
86–89.

We regard the reacting species, labeled by σ = 1, . . .,
Nz, as solutes of an ideal dilute solution in a closed vessel.
Since the solvent, s, is much more abundant than the solutes,
ns �

∑
σnσ . As in ideal solutions, interactions among solutes

are negligible and the partition function of the whole solution
Q(T , n, ns) can be written as the product of single species par-
tition functions, q≡ {qσ(T )} and qs. By idealizing the solution
as a lattice gas, in which each site is occupied by one molecule,
we obtain

Q(T , n, ns) =
(ns +

∑
σnσ)!

ns!
∏
σnσ!

qs(ns)
∏
σ

qnσ
σ . (A1)

The combinatoric term accounts for all possible permutations
of molecules, in which the overcounting due to the indistin-
guishability of molecules of the same species is removed.
We note that the fact that different molecules might occupy
different volumes is neglected.

Since we deal with dilute solutions, q ≡ {qσ(T )} depends
mainly on the temperature and the solutes–solvent interactions,
whereas qs depends on the abundance of solvent as well as the
external pressure (which we omit for brevity). Using Stirling’s
formula and the high relative abundance of the solvent, the
combinatoric term can be approximated as

(ns +
∑
σnσ)!

ns!
∏
σnσ!

'
∏

σ

nnσ
s

nσ!
≡

n ·ns
n!

. (A2)

Using Eq. (A1), the Gibbs free energy of a given state n is thus
given by

gn = −kBT lnQ(T , n, ns)

=
(
µ◦ − 1kBT ln ns

)
· n + kBT ln n! + gs, (A3)

where

µ◦ B −kBT ln q (A4)

can be identified as standard chemical potentials. Since the
contribution that derives from the solvent, gsB−kBT ln qs(ns),
is constant, it can be set to zero without loss of generality. We
emphasize that despite the idealizations that we introduced,
Eq. (A3) is consistent with a rigorous approach based on mean-
force potentials [cf. Ref. 87, Eq. F.44.a].

The Gibbs free energy changes along internal reactions
read
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TABLE III. List of symbols used throughout the text. The physical quantity
that they denote and the equation number in which they are defined are also
reported.

Symbol Physical quantity Equations

Sρ Stoichiometric vectors (3)
S Stoichiometric matrix (4) and (5)
wρ(n) Stochastic reaction rates (13)
Jρ(τ) Instantaneous reaction fluxes (17)
` Conservation laws (23)
Ln Component (24)
c Stoichiometric cycles (32)
µY Chemostats chemical potential (54)
gn Gibbs free energy of n (42)
G(n) Stochastic Gibbs potential (47)
〈G(n)〉 Nonequilibrium Gibbs potential (48)
Z Closed-CRN partition function (43)
Aρ(n) Reaction affinity (56)
sn Entropy of n (58)
S(n) Stochastic entropy (57)
〈S(n)〉 Gibbs–Shannon entropy (60)
H(n) Enthalpy (61) and (166)
Q (〈Q̇〉) Heat flow (rate) (66) and (167)
Wc (〈Ẇc〉) Chemical work (rate) (68) and (170)
IY Instantaneous external currents (67)
Σ (〈Σ̇〉) Entropy production (rate) (74) and (171)

M
yp
n Moiety population vector (91)

FYf Fundamental forces (93)
IYf Fundamental external currents (79)
gn Semigrand Gibbs free energy of n (95)
G(n) Stoch. semigrand Gibbs pot. (103)
〈G(n)〉 Noneq. semigrand Gibbs pot. (173)
Z Open-CRN partition function (119)
Wd (〈Ẇd〉) Driving chem. work (rate) (101) and (174)
Wnc

yf
(〈Ẇnc

yf
〉) Nonconservative chem. work (rate) (99) and (175)

H(n) Semigrand enthalpy (115) and (177)
Aη Stoichiometric cycle affinity (126)
Jη Stoichiometric cycle current (135)
Γη Nonconservative cycle chem. work (133) and (179)

∆ρi g = gn+Sρi
− gn

=
(
µ◦ − 1kBT ln ns

)
· Sρi + kBT ln

(n + Sρi )!

n!
.

(A5)

1. Thermodynamic limit

For V � 1, n� 1, and finite [z] = n/V, the Gibbs potential
(A3) becomes

gn/V ' µ · [z] − kBT [z] · 1, (A6)

where

µ = µ◦ + kBT ln{[z]/[s]} (A7)

are the chemical potentials of solutes in an ideal dilute solution
and [s] = ns/V is the concentration of the solvent. We thus
recover the Gibbs free energy density of ideal dilute solutions;
see, e.g., Refs. 51 and 90.

When applying the same limit to the Gibbs free energy
differences, Eq. (A5), we recover the Gibbs free energies of
reaction

∆ρi g ' µ · Sρi . (A8)

This result also justifies the form of the second term in the
local detailed balance of exchange reactions, Eq. (53).

Remark The chemical potentials of ideal dilute solutions
obtained in Eq. (A7) are expressed in terms of the concentra-
tion of the solvent. By including this term in µ◦ and introducing
a reference concentration for each species [z0], we recover the
common expression for the potential of ideal dilute solutions
µ = µ̂◦ + kBT ln{[z]/[z0]}, where the standard-state chemical
potential µ̂◦ B µ◦ + kBT ln{[z0]/[s]} is that measured at the
reference concentration.

Summarizing, gn given in Eq. (A3) characterizes the free
energy of each CRN state. In the thermodynamic limit, the
traditional potentials of ideal dilute solutions are recovered.

APPENDIX B: PROOFS OF DETAILED
FLUCTUATION THEOREMS

To prove the finite time detailed FTs (158), we use moment
generating functions and change the notation in favor of one
using brackets and operators.

Let Pt(n, Wd, {Wnc
yf
}) be the joint probability of observ-

ing a trajectory ending in the state n along which the driv-
ing work is Wd while the nonconservative contributions are
{Wnc

yf
}. These probabilities, one for each n, are stacked in

the ket |Pt(Wd, {Wnc
yf
})
〉
. The time evolution of their moment

generating function,

|Λt(ξd, {ξyf })
〉
B

∫
dWd

∏
yf

dWnc
yf

exp
{
−ξdWd −

∑
yf
ξyf W

nc
yf

}
× |Pt(Wd, {Wnc

yf
})
〉
, (B1)

is ruled by the biased stochastic dynamics

dt |Λt(ξd, {ξyf })
〉
=Wt(ξd, {ξyf })|Λt(ξd, {ξyf })

〉
, (B2)

where the entries of the biased generator are given by

Wmn,t(ξd, {ξyf }) =
∑

ρ
wρ(n)

{
exp

{
−
∑

yf
ξyfFyf

(
− Syf

ρ
)}

× δm,n+Sρ − δm,n

}
− ξd∂tgmδn,m. (B3)

We denoted the entries of SYf
ρ as {Syf

ρ }. As a consequence of the
local detailed balance (94), the stochastic generator satisfies
the following symmetry:

Wt
T(ξd, {ξyf }) = B−1

t Wt(ξd, {1 − ξyf })Bt , (B4)

where the entries of Bt are given by

Bnm,t B exp
{
−βgm(t)

}
δn,m. (B5)

Introducing the partition function for the generic equilibrium
state identified by the protocol at time τ, Zτ ≡ Z(πτ , {Lλu })
= exp{−βGeqτ }, the initial condition can be written as

|Λ0(ξd, {ξyf })
〉
= |peq0

〉
= B0/Z0 |1

〉
. (B6)
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The ket |1〉 refers to the vector in the state space whose entries
are all equal to one.

In order to proceed further, it is convenient to first
prove a preliminary result. Let us consider the generic biased
dynamics, e.g., Eq. (B2),

dt |Λt(ξ)
〉
=Wt(ξ)|Λt(ξ)

〉
, (B7)

whose initial condition is ��Λ0(ξ)〉 = |p(0)〉. A formal solu-
tion of Eq. (B7) is |Λt(ξ)

〉
= Ut(ξ) |p(0)

〉
, where the time-

evolution operator reads Ut(ξ) = T+ exp
{
∫

t
0 dτWτ(ξ)

}
, with

T+ being the time-ordering operator. We clearly have dtUt(ξ)
=Wt(ξ)Ut(ξ). Let us now consider the following transformed
evolution operator:

Ũt(ξ) B X−1
t Ut(ξ)X0, (B8)

with Xt being a generic invertible operator. Its dynamics is
ruled by the following biased stochastic dynamics:

dtŨt(ξ) = dtX−1
t Ut(ξ)X0 + X−1

t dtUt(ξ)X0

=
{
dtX−1

t Xt + X−1
t Wt(ξ)Xt

}
Ũt(ξ)

≡ W̃t(ξ) Ũt(ξ), (B9)

which allows us to conclude that the transformed time-
evolution operator is given by

Ũ(ξ) = T+ exp

{∫ t

0
dτ W̃τ(ξ)

}
. (B10)

From Eqs. (B8)–(B10), we deduce that

X−1
t Ut(ξ)X0 = T+ exp

{∫ t

0
dτ

[
dτX−1

τ Xτ + X−1
τ Wτ(ξ)Xτ

]}
.

(B11)

We can now come back to our specific biased stochas-
tic dynamics (B2). The moment generating function of
Pt(Wd, {Wnc

yf
}) is given by

Λt(ξd, {ξyf }) = 〈1|Λt(ξd, {ξyf })〉

= 〈1|Ut(ξd, {ξyf })B0/Z0 |1〉

= 〈1|
Bt

Zt
B−1

t Ut(ξd, {ξyf })B0 |1〉
Zt

Z0
, (B12)

where Ut(ξd, {ξyf }) is the time-evolution operator of the biased
stochastic dynamics (B2). Note that

〈
1��Bt/Zt is the equilibrium

initial distribution of the backward process
〈
peqt

��. Using the
relation in Eq. (B11), the last term can be rewritten as

= 〈peqt
|T+ exp

{∫ t

0
dτ

[
∂τB−1

τ Bτ +B−1
τ Wτ(ξd, {ξyf })Bτ

]}
|1〉

× exp
{
−β∆Geq

}
, (B13)

where ∆Geq is defined in Eq. (159). Since ∂τB−1
τ Bτ

= diag
{
∂τgn

}
, the first term in the square bracket can be added

to the diagonal entries of the second term, thus giving

= 〈peqt
|T+ exp

{∫ t

0
dτ

[
B−1
τ Wτ(ξd − 1, {ξyf })Bτ

]}
|1〉

× exp
{
−β∆Geq

}
. (B14)

The symmetry (B4) allow us to recast the latter into

= 〈peqt
|T+ exp

{∫ t

0
dτWT

τ

(
ξd − 1, {1 − ξyf }

)}
|1〉

× exp
{
−β∆Geq

}
. (B15)

The crucial step comes as we transform the integration variable
from τ to τ† = t − τ. Accordingly, the time-ordering operator,
T+, becomes an anti-time-ordering one T−, while the diagonal
entries of the biased generator become

Wmm,t−τ† (ξd, {ξyf }) =
∑

ρ
wρ(m, t − τ†) + ξd ∂τ†gm(t − τ†)

(B16)
from which we conclude that

Wnm,t−τ† (ξd, {ξyf }) = Wnm,t−τ† (−ξd, {ξyf })

=: W†
nm,τ†

(−ξd, {ξyf }). (B17)

W†
τ†

(ξd, {ξyf }) is the biased generator of the dynamics subject

to the time-reversed protocol, π†, i.e., the dynamics of the
backward process. Equation (B15) thus becomes

= 〈peqt
|T− exp

{∫ t

0
dτ†W†

τ†
T
(
1 − ξd, {1 − ξyf }

)}
|1〉

× exp
{
−β∆Geq

}
. (B18)

Upon a global transposition, we can write

= 〈1|T+ exp

{∫ t

0
dτ†W†

τ†

(
1 − ξd, {1 − ξyf }

)}
|peqt
〉

× exp
{
−β∆Geq

}
, (B19)

where we also used the relationship between transposition and
time-ordering

T+

(∏
i
AT

tl

)
=

(
T−

∏
i
Atl

)
T, (B20)

in which At is a generic operator. From the last expression, we
readily obtain

= 〈1|U†t
(
1 − ξd, {1 − ξyf }

)
|peqt
〉 exp

{
−β∆Geq

}

= Λ
†
t

(
1 − ξd, {1 − ξyf }

)
exp

{
−β∆Geq

}
,

(B21)

where Λ†t
(
ξd, {ξyf }

)
is the moment generating function of

P†t (Wd, {Wnc
yf
}). Summarizing, we have the following symme-

try:

Λt(ξd, {ξyf }) = Λ
†
t

(
1 − ξd, {1 − ξyf }

)
exp

{
−β∆Geq

}
, (B22)

whose inverse Laplace transform gives the FT in Eq. (158).

1. Fluctuation theorem for emergent
stoichiometric cycles currents

The finite-time detailed FT for nonconservative contribu-
tions along fundamental cycles, Eq. (164), follows the same
logic and mathematical steps described above. The moment
generating function which now must be taken into account
is
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|Λt(ξd, {ξη })
〉
B

∫
dWd

∏
η

dΓη exp
{
−ξdWd −

∑
η
ξηΓη

}
× |Pt(Wd, {Γη })

〉
, (B23)

which is ruled by the biased generator whose entries are

Wmn,t(ξd, {ξη }) =
∑

ρ
wρ(n)

{
exp

{
−
∑

η
ξηAηζη,ρ

}
× δm,n+Sρ − δm,n

}
− ξd∂tgmδn,m. (B24)

The symmetry of the latter generator—on top of which the
proof is constructed—is based on the expression of the local
detailed balance given in Eq. (94)

Wt
T(ξd, {ξη }) = B−1

t Wt(ξd, {1 − ξη })Bt , (B25)

where the entries of Bt are given in Eq. (B5). Following the
steps from Eq. (B12) to Eq. (B22), with the definitions and
equations in Eqs. (B23)–(B25), proves the FT in Eq. (164).
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