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ABSTRACT
Anisotropic fluids (e.g. liquid crystals) offer a remarkable promise as optofluidic materials owing to
the directional, tunable, and coupled interactions between the material, flow, and the optical fields.
Here we present a comprehensive in silico treatment of this anisotropic interaction by performing
nonequilibriummolecular dynamics simulations.Wequantify the responseof anematic liquid crystal
(NLC) undergoing a Poiseuille flow in the Stokes regime,while being illuminatedby a laser beam inci-
dent perpendicular to the flow direction. We adopt aminimalistic model to capture the interactions,
accounting for two features: first, the laser heats up the NLC locally; and second, the laser polarises
the NLC and exerts an optical torque that tends to reorient molecules of the nematic phase. Because
of this reorientation the liquid crystal exhibits small regions of biaxiality, where the nematic director
is one symmetry axis and the axis of rotation for the reorientation of the molecules is the other one.
We find that the relative strength of the viscous and the optical torques mediates the flow-induced
response of the biaxial regions, thereby tuning the emergence, shape and location of the regions of
enhanced biaxiality. The mechanistic framework presented here promises experimentally tractable
routes toward novel optofluidic applications based on material-flow-light interactions.
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1. Introduction

Liquid crystals represent a nearly unique arena where
thermodynamics, hydrodynamics, and symmetry come
together to produce remarkable effects, completely
absent in matter composed of molecules with isotropic
interactions. Liquid crystals flow, and exhibit molecu-
lar order; they mediate interactions among colloids, and
have essential electro-optical properties.

Nematic liquid crystals are typically considered the
simplest member of their class. Composed of elongated

CONTACT Jan-Christoph Eichler jan-christoph.eichler@campus.tu-berlin.de Stranski-Laboratorium für Physikalische und Theoretische Chemie,
Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany

molecules, molecular interactions lead to a preferential
parallel alignment that produces a spontaneous break-
ing of the continuous rotational symmetry. A thermo-
dynamic phase with a preferential axis, called nematic
director, emerges. The long range orientational order in
nematic liquid crystals leads to intrinsic anisotropy in the
material properties [1], resulting in directional response
to applied external fields (e.g. electric, magnetic, optical
or viscous). The higher the anisotropy, the stronger is the
strength of the coupling between the nematic director
and the external field.
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Such anisotropic couplings have been traditionally
utilised to develop a range of liquid crystal based appli-
cations [2], and more recently, lab-on-a-chip concepts
that harness the dynamics of liquid crystal flows under
microfluidic settings [3–7]. Despite the rapid progress
in liquid crystal microfluidics, the integration of optical
field to such platforms is still in its infancy. Optical fields
have been extensively applied to modulate properties of
isotropic fluids flowing within microscale confinements.
This is evidenced by the emergence of optofluidics,
an active and well-established field of interdisciplinary
research [8]. However, replacing an isotropic fluid by an
anisotropic flowing material (e.g. liquid crystals) could
offer promising alternatives, and usher in unique appli-
cations based on the coupled, tunable and anisotropic
attributes [9–11]. Yet, to date, we lack a physical under-
standing of how – in conjunction – the flow, director
and optical fields interact and emerge. The flow-director-
optical nexus is a hallmark of liquid crystal based optoflu-
idics, and thus warrants a comprehensive theoretical
treatment that could enable innovative applications in
future.

For nematics, the statistical distribution of the molec-
ular orientations is independent of the angle about their
long axes; the system has uniaxial symmetry. Consider
now a liquid whosemolecular building blocks are shaped
as parallelepipeds. The distribution of the molecular ori-
entationswill showa strong correlation in a direction per-
pendicular to the nematic director. This so-called biaxial
fluid thus exhibits two symmetry axes: the director and
the secondary axis. First theoretically predicted in 1970
by Freiser [12], biaxial nematic phases have spurred a
controversial experimental hunt [13–17] and numerous
theoretical studies [18–25], because such liquids would
have fast response times under varying electric fields,
and thus would be of particular relevance for display
technologies. Concrete realisations of biaxial nematics
have mostly explored two main avenues: (i) sophisti-
cated chemical tuning of molecular shape or interactions
among basic moieties [26,27]; (ii) variation of the solvent
concentration in lyotropic liquid crystals [28].

Liquid crystals, however, offer the remarkable liberty
of manipulating the topology of their alignment field by
means of the hydrodynamic coupling of the director field
and advective velocity [29–31]. One of the main phys-
ical processes of liquid crystals (captured by the Erick-
sen–Leslie theory or more sophisticated approaches such
as the Beris–Edwards or the Qian–Sheng nematodynam-
ics) is that a local flow velocity will induce a change of ori-
entations, and, conversely, a local change of orientations
will induce local flows.

Application of an external electric field provides a
direct way of controlling the nematic director, on account

of the dipolar moment of liquid crystal molecules. The
ability of light to control the nematic director is the basis
of the modulation of the index of refraction that makes
liquid crystals so successful in display technologies.How-
ever, electric fields may also produce complex nonlinear
behaviour in liquid crystals.

We can then envision that the combined effect of
anchoring condition to a solid wall, flow, and possibly an
external field may induce the formation of a secondary
axis in a nematic fluid that in equilibrium conditions
would be uniaxial, and thus effectively producing biax-
iality in steady-state nonequilibrium conditions. In this
workwe begin to explore the setup of a nematic phase in a
model microfluidic setup. We confine a uniaxial nematic
fluid between two solid walls. We establish a steady-state
flow by driving the fluid in the microfluidic channel. Fur-
thermore, we expose a section of the system to a model
laser that has both a thermal effect and also a realigning
torque.

The remainder of this work is organised as follows.
Section 2 describes our models for the liquid crystal,
external fields, and confining walls. Section 3 introduces
the main observables that we will use to characterise
our system. Section 4 gives details of the numerical
scheme used to simulate our nematic microfluidic setup.
Section 5 reports our results. In Section 6 we discuss our
results and collect our conclusions. Finally, the Appen-
dices show details of the anisotropic interaction potential
and of the local alignment tensor.

2. Model

2.1. Potentials

Consider a liquid crystal composed of N uniaxial
molecules (i.e. mesogens) interacting with each other in
a pairwise additive fashion. We formally split the inter-
action potential into an isotropic and into an anisotropic
contribution according to

u
(
rij,ωi,ωj

) = uiso
(
rij
)+ uaniso

(
rij,ωi,ωj

)
, (1)

where rij = ri − rj is the distance vector connecting the
centres of mass of mesogens i and j. They are located at
the respective positions ri and rj and rij = |rij|. Because
we assume the mesogens to be uniaxial, their orienta-
tion can be specified by Euler angles ωi = (θi,ϕi) (i =
1, . . . ,N) where θi and ϕi denote polar and azimuthal
angle, respectively.

For later reference we emphasise that both angles refer
to a Cartesian coordinate system characterised by the
mutually orthonormal unit vectors, êTx = (1, 0, 0), êTy =
(0, 1, 0), and êTz = (0, 0, 1) where T denotes the trans-
pose. We refer to the set {̂ex, êy, êz} as the standard basis.
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Throughout this manuscript the caret is used to indicate
a unit vector. Hence, we can characterise the orientation
of mesogen i by

ûi ≡ û (ωi) =
⎛⎝sin θi cosϕisin θi sinϕi

cos θi

⎞⎠ , i = 1, . . . ,N. (2)

For the interaction between the spherically symmetric
cores of the mesogens we adopt the purely repulsive soft-
sphere potential

uiso
(
rij
) = 4ε

(
σ

rij

)12
, (3)

where σ is a characteristic length (see below) and ε sets
the energy scale for the isotropic repulsion between these
cores.

To derive a tractable expression for the anisotropic
contribution to the interaction potential we begin by
noticing that any function depending on rij, ωi, and
ωj can be expanded [see Sec. A.4.2 of Ref. [32]]
according to

uaniso
(
rij,ωi,ωj

) =
∑
l1l2l

ul1l2l
(
rij
)

×�l1l2l
(
ωi,ωj,ωij

)
, (4)

where {ul1l2l} is a set of expansion coefficients that depend
only on the centre-of-mass distance between a pair of
mesogens and ωij specifies the orientation of r̂ij = rij/rij
in a space-fixed frame of reference; l̃ (that is, l1, l2, or l) is
a non-negative integer. In Equation (4)

�l1l2l
(
ωi,ωj,ωij

) =
∑

m1m2m
C (l1l2l;m1m2m)

× Yl1m1 (ωi)Yl2m2

(
ωj
)Y∗

lm
(
ωij
)
(5)

is a rotational invariant where C is a Clebsch–Gordan
coefficient [32]; m̃ (that is, m1, m2, or m) is an inte-
ger linked to the corresponding l̃ through m̃ ∈ [−̃l,̃ l].
Thus, for each value of l̃ there are 2̃l + 1 integers m̃. In
Equation (5), Ỹlm̃ denotes a spherical harmonic and ∗
indicates its complex conjugate.

Based upon this approach we eventually arrive at (see
Appendix 1)

u
(
rij,ωi,ωj

) = 4ε
[(

σ

rij

)12
−
(
σ

rij

)6
× {1 +�

(̂
rij,ωi,ωj

)} ]
= uLJ

(
rij
)−

(
σ

rij

)6
�
(̂
rij,ωi,ωj

)
, (6)

where the anisotropy function is given by the expression

�
(̂
rij,ωi,ωj

) = ε′P2
(̂
ui · ûj

)
+ ε′′

[
P2
(̂
ui · r̂ij

)+ P2
(̂
uj · r̂ij

)]
(7)

and P2(x) = 1
2 (3x

2 − 1) is the second Legendre polyno-
mial. Thus, we can define σ in Equation (3) through
the relation uLJ(σ ) = 0. In Equation (7), ε′ and ε′′ are
dimensionless parameters rationalised in Appendix 1. In
Appendix 1, we also describe how the expression for �
in Equation (7) is derived.

It should perhaps be pointed out that the potential u
in Equation (6) with an anisotropy function � similar
to the one given in Equation (7) has been presented ear-
lier by Hess and Su [33]. Their model potential is derived
through an expansion in terms ofWigner rotationmatri-
ces [34]. This approach is different from but equivalent to
the one utilised in the present work.

For a suitable choice of values for the parameters ε′
and ε′′, Greschek et al. demonstrated that the poten-
tial defined by Equations (6) and (7) describes slightly
elongatedmesogens where a side-by-side arrangement of
the longer axes of a pair is energetically preferred (see
Fig. 1 of Ref. [35]). Throughout this work we employ
ε′ = 0.21 and ε′′ = 0.40. These elongated mesogens can
be described as ellipsoids of revolution characterised by
a relatively small aspect ratio of 1.26.

2.2. Thermostat and external fields

To study the model of a liquid crystal introduced in
Section 2.1 under stationary nonequilibrium conditions
we expose the N mesogens to an external body force
Fe = Fêex where Fe = |Fe|. The body force is constantly
applied in a small volume at one end of the volume V
occupied by the mesogens (see Section 4). Eventually, a
steady laminar flow is established in the direction of Fe.
To stay in the laminar flow regime, Fe obviously must not
be too large.

On account of the application of Fe, which is non-
conservative in nature, the liquid crystal would gradually
heat up over time and thus would not reach a stationary
nonequilibrium state. Therefore, we need to remove this
excess heat due to Fe from our system.

In non-equilibrium molecular dynamics (NEMD)
simulations this can be accomplished by applying a ther-
mostat. However, in a highly inhomogeneous system this
can be a bit tricky because some global thermostats tend
to remove too much heat from some regions of the inho-
mogeneous fluid whereas too little heat is removed from
other parts [36].
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As discussed in Ref. [36], a suitable thermostat to
avoid these problems is the Galilean-invariant thermo-
stat suggested by Stoyanov and Groot [37,38]. In this
thermostat one considers an extra pair force

Fij = λψ
(
rij/rc

)
δt

[
1 − 1

2
Ti − Tj

T′
0

] [(
vi − vj

) · r̂ij
]
r̂ij,

(8)

where λ = 0.1π denotes the strength of coupling to the
thermostat, ψ is a ‘smearing’ function (see below), δt is
the time step with which the centre-of-mass equations of
motion are solved numerically, T′

0 is the target tempera-
ture of the stationary nonequilibrium state, vi and vj are
the translational velocities with which mesogens i and j
move.

The quantities Ti and Tj in Equation (8) are somewhat
peculiar temperatures of mesogens i and j, respectively.
They are affiliated with the difference in kinetic ener-
gies of the moving pair and are defined through the
expression

kBTi =
∑

j ψ
(
rij/rc

)
m
(
vi − vj

)2
3
∑

j ψ
(
rij/rc

) , (9)

wherem is the mass of a mesogen.
In Equation (8), the smearing function is somewhat

arbitrary [37].Here, we simply follow earlierwork [37,39]
and choose

ψ (r) =
{
3 (1 − r) /π , 0 ≤ r ≤ 1,
0, r ≥ 1,

(10)

where r = rij/r′c (r′c = 1.6σ ) and the factor 3/π has been
introduced to make sure that 4π

∫ 1
0 ψ(r)r

2 dr = 1 [37].
The smearing function just serves as a means to ensure
that the thermostat acts rather locally and not on larger
length scales. For example, without the smearing func-
tion we would be back to a global thermostat which in
a highly inhomogeneous system would most likely be
prone to cause the aforementioned problems.

Once a steady flow is established through the proto-
col just described, a small portion of the liquid crystal
is exposed to a temperature gradient and to an optical
torque. Both perturbations are the most basic features
of a laser illuminating that portion of the liquid crystal
[40]. Our model laser causes the liquid crystal to heat up
locally.Wemodel this local heating by replacing the (con-
stant) target temperatureT′

0 in Equation (8) by a local one
via the equation

T0 (x) = Tout + (Tin − Tout) exp

[
−α

2
p

2
(x − x0)2

]
,

(11)

which induces a temperature gradient in the flow (i.e. x-)
direction. In Equation (11), Tin and Tout are the tem-
peratures inside and outside of the illuminated region,
respectively, x0 is the position of the centre of the laser
beam, and the inverse length αp is a measure of its width.
Throughout this work we take αp = 0.316σ−1 (α2p =
0.1σ−2).

A second consequence of this illumination is that it
exerts an optical torque on the uniaxial mesogens. Each
mesogen i therefore experiences a total torque that may
be cast as

τ i = τ int
i + τ opt, (12)

where τ int
i is the total torque exerted on mesogen i by

other mesogens and

τ opt = εopt exp

[
−α

2
p

2
(x − x0)2

]
p̂. (13)

In Equation (13), εopt determines the coupling strength
of the optical torque and p̂ is given by

p̂ =
⎛⎝01
0

⎞⎠ , (14)

which can be thought of as the direction in which the liq-
uid crystal is polarised by the incoming laser beam. In
Equations (11) and (13), αp is, of course, taken to be the
same.

2.3. Solid substrates

In addition to the external field described in the preced-
ing section we confine the liquid crystal by two planar
solid substrates, each composed of a single plane of spher-
ically symmetric particles; the walls are therefore atomi-
cally corrugated. The wall atoms are arranged in the x–y
plane according to the face-centred cubic (100) structure.
The purpose of the substrates is to provide friction to
the mesogens in their vicinity so that under steady-state
conditions Poiseuille flow is established. The substrates
are separated by a distance sz along the z-axis such that
the lower one is placed at z = −sz/2 (k=1) whereas the
upper one is located at z = +sz/2 (k=2).

The interaction between a mesogen and a substrate
atom is described by the Lennard-Jones potential [cf.,
Equation (6)] that is

ufs(r
(k)
ij ) = 4εfs

⎡⎣⎛⎝ σ

r(k)ij

⎞⎠12

−
⎛⎝ σ

r(k)ij

⎞⎠6⎤⎦ , (15)

where r(k)ij denotes the distance between the centres-of-
mass of mesogen i and a solid atom j located in wall k. In
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this expression we tacitly assume that the spherical cores
of both the mesogens and the solid atoms are of the same
size proportional to σ . The depth of the attractive well
is εfs/ε = 2.0. Whereas in principle the liquid crystal is
confined by two substrates to a slit-pore geometrywe take
sz large enough (see Section 4) such that a sufficiently big
portion of the liquid crystal is unaffected by a direct inter-
action with both solid substrates (see Section 5.1); the
orientation of the mesogens in that bulk-like region is,
however, affected indirectly through long-range orienta-
tional correlations induced by the solid substrates.

To equilibrate the liquid crystal with the flow being
turned off we employ an even simpler model for the
mesogen-wall interaction. In this case we smear the dis-
crete solid atoms over the plane of their respective wall.
That is we integrate Equation (15) over the position of the
solid atoms across the x–y plane and obtain

usw(�z(k)i ) = 2πεswn

⎡⎣2
5

(
σ

�z(k)i

)10

−
(

σ

�z(k)i

)4
⎤⎦ ,

(16)

where εsw = εfs/2π , n = 2/l2 is the areal density of solid
atoms in each wall and l/σ = 3√4 is the lattice constant
of the fcc (100) plane. In the previous equation,�z(k)i =
|zi ± sz/2| is the distance of mesogen i from the upper
and lower solid wall, respectively.

3. Properties

To analyse our simulations we now introduce a few
useful quantities. A central one is the local alignment
tensor Q (see Appendix 2 for its definition from a
statistico-mechanical approach). At each point r, Q is a
real, symmetric, traceless, second-rank tensor. It can be
represented by a 3 × 3 matrix.

As far as our systems of interest are concerned, two
different types of alignment tensorsQ will be considered
that are related to the originalQ through spatial averages.
In the first type of situationwe have translational symme-
try in the x- and y-directions. This implies that we can
averageQ over these two coordinates according to

Q (z) = 1
sxsy

∫ sx/2

−sx/2
dx
∫ sy/2

−sy/2
dyQ (r) . (17)

This twofold spatial average is useful in the situation in
which there is no flow, the temperature field is homoge-
neous [i.e. Tin = Tout in Equation (11)], and no optical
torque is applied [i.e. εopt = 0 in Equation (12)].

In the second type of situationswhen the flowhas been
turned on (and regardless of whether or not we do have
a temperature and a polarising field on top), translational

symmetry is preserved only in the y-direction. Hence, we
can expressQ via

Q (x, z) = 1
sy

∫ sy/2

−sy/2
dyQ (r) . (18)

Moreover, we note in passing that in Appendix 2 the
local alignment tensor is introduced via ensemble aver-
ages assuming that the system under study is at thermo-
dynamic equilibrium. In ourNEMDsimulations the rele-
vant expressions are, of course, time rather than ensemble
averages. In addition, we assume that under steady-state
nonequilibrium conditions the equilibrium treatment,
from which the expression for Q is derived, just carries
over.

However, regardless of the symmetry of the system
to which specific spatial averages of Q correspond, they
satisfy an eigenvalue equation of the form

Q (·) n̂0,± (·) = λ0,± (·) n̂0,± (·) , (19)

where (·) is shorthand notation representing either a
point along the z-axis if Q is taken from Equation (17)
or a point in the x–z plane if Q is computed via
Equation (18). In Equation (19), λ0,± are the three eigen-
values and the subscript is shorthand notation referring
to the fact that λ− ≤ λ0 < λ+ where the equality holds
in the absence of biaxiality [see Equation (21) below]; n̂−,
n̂0, and n̂+ are the corresponding eigenvectors. Accord-
ing to the principles of linear algebra [41] these eigenvec-
tors are pairwise orthogonal to one another becauseQ is
real and symmetric.

Equation (19) is solved numerically using Jacobi’s
transformation [42]. The alignment tensor can be diag-
onalised in the basis of its three eigenvectors and may
therefore be cast as

diagQ (·) =
⎛⎝λ− (·) 0 0

0 λ0 (·) 0
0 0 λ+ (·)

⎞⎠

=

⎛⎜⎜⎜⎝
−S (·)+ ξ (·)

2
0 0

0 −S (·)− ξ (·)
2

0
0 0 S (·)

⎞⎟⎟⎟⎠ ,

(20)

where S = λ+ is the nematic and

ξ (·) = λ0 (·)− λ− (·) (21)

is the biaxiality order parameter. The specific form of
diagQ defining S and ξ is consistent with the phe-
nomenological Landau-de Gennes theory of biaxial
nematics (see Chapter 2.3.1 of Ref. [43]).
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Figure 1. (a) The nematic director n̂+ on the unit sphere in the standard basis {̂ex, êy, êz}where it is assumed that n̂+ · êz = 1. The unit
vector ûi [see Equation (2)] specifies the orientation of mesogen i. In addition, polar (θ ) and azimuthal (ϕ) angles are also shown. (b) as
(a), but for the rotated basis {̂e1, ê2, ê3} where θ̃ and ϕ̃ are polar and azimuthal angles, respectively. The projection of ûi onto the ê1–̂e2
plane is given by up,i . The area shaded in yellow represents a two-dimensional bin of the histogram (see text). The orange circular line
marks the equator of the sphere.

Another quantity of interest is the orientation distri-
bution function (odf) defined through the expression

α (x, ω̃) =
∑N

i=1 〈δ (x − xi) δ (ω̃ − ω̃i)〉∫ 2π
0
∫ π
0 sin θ̃ dθ̃ dϕ̃ 〈δ (x − xi) δ (ω̃ − ω̃i)〉

,

(22)

where δ is the Dirac δ-distribution and 〈. . .〉 indicates a
time average computed in a stationary nonequilibrium
situation (see also Appendix 2).

In Equation (22) the tilde is used to signal that in
order to compute the odf in a simulation it is numerically
advantageous to express the orientations in a coordinate
system that has been rotated with respect to the original
one spanned by the standard basis. This is because in a
computer simulation, α is obtained as a two-dimensional
histogram. To that end, one partitions the surface of a
sphere into small bins of area δÃ = sin θ̃ δθ̃δϕ̃ and sim-
ply counts the number of mesogens with an orientation
pertaining to a specific bin.

As indicated by the sketch in Figure 1, the area δÃ of a
bin depends on its location on the surface of the sphere:
δÃ is largest for bins situated along the equator of the
sphere but gradually vanishes as one approaches one of
the poles. Thus, from a statistics point of view it would
be advantageous to replace the standard basis by a new
one {̂e1, ê2, ê3} that is rotated with respect to the stan-
dard basis. If this passive rotation is carried out properly
a unit vector ûi will always be sorted into the largest pos-
sible bins. This way the odf is calculated with maximum
statistical accuracy and resolution.

Let us consider a situation, on the one hand, in which
the mesogens are aligned homeotropically at the plane of
the solidwalls. If this alignment is perfect it complieswith
n̂+ · êz = 1 [see Figure 1(a)]. If, on the other hand, the

mesogens are exposed to the optical torque we have n̂+ ·
êy = 1 if the orientation of the mesogens is again ideal
because of Equation (14).

Hence, we want to carry out a passive rotation such
that the equations ê1 = R̂ex = êy and ê2 = R̂ey = êz are
satisfied. Because the basis {̂e1, ê2, ê3} should consist of
unit vectors that are pairwise orthogonal, ê3 = R̂ez = êx
must also hold. From these three equations one easily sees
that

R =
⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠ . (23)

The angles θ̃i and ϕ̃i in Figure 1(b) can be computed
by actively rotating ûi [see Equation (2)] according to

û (ω̃i) =
⎛⎝sin θ̃i cos ϕ̃isin θ̃i sin ϕ̃i

cos θ̃i

⎞⎠
= R−1û (ωi) (24)

for i = 1, . . . ,N. We can easily solve Equation (24) for θ̃i
and ϕ̃i and then compute the odf from Equation (22).

An additional benefit of using the rotated coordinate
system is that it helps to simplify the analysis of the odf.
Clearly, if a portion of the liquid crystal becomes polar on
account of p̂, one expects the odf to exhibit a single max-
imum centred on ϕ̃ = 0 and θ̃ = π/2. If, on the other
hand, the nematic phase possesses head-tail symmetry
(that is, n̂+ and −n̂+ are equivalent), one anticipates the
odf to have two instead of just a single maximum. One
of these is centred on ϕ̃ = −π/2 and θ̃ = π/2. The sec-
ond maximum is also centred at θ̃ = π/2 but shifted to
ϕ̃ = π/2.

With the odf we can compute the local polarisation of
the liquid crystal which arises in the direction of the flow
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on account of the optical torque τ opt [see Equation (13)].
Following earlier work [44,45] we focus on components
of the local polarisation vector P which we introduce via
[cf., Equation (24)]

P (x) =
∫

dω̃ û (ω̃) α (x, ω̃) . (25)

With the aid of Equations (A.62) and (A.63) of Ref. [32]
we can compute (Cartesian) components of P. For exam-
ple, it is easy to realise that

Px (x) =
∫

dω̃ α (x, ω̃) sin θ̃ cos ϕ̃

= −
√
4π
3

(
1
2

)1/2 ∫
dω̃ α (x, ω̃)

× [Y11 (ω̃)+ Y∗
11 (ω̃)

]
= −

√
8π
3

∫
dω̃ α (x, ω̃)ReY11 (ω̃) . (26)

Similarly, we obtain

Py (x) =
√
8π
3

∫
dω̃ ImY11 (ω̃) α (x, ω̃) (27a)

Pz (x) =
√
4π
3

∫
dω̃Y10 (ω̃) α (x, ω̃) . (27b)

In Equations (26) and (27a), ‘Re ’ and ‘Im ’ denote
real and imaginary parts, respectively. From Equa-
tions (26)–(27b) it is straightforward to compute the
polarisation

P (x) = |P (x)|
=
√
P2x (x)+ P2y (x)+ P2z (x) (28)

which we will also be considering below.
To make sure that under the conditions of our NEMD

simulations a laminar flow is eventually established we
compute the Reynolds number defined as [46]

R = ρv∞�
η

(29)

which expresses the ratio of inertial to viscous forces. In
Equation (29), ρ is the mean density, v∞ is the maximum
of the steady-state flow velocity in the x-direction (i.e. in
the direction of the flow), � is a characteristic length, and
η is the dynamic viscosity. The physical significance of �
is admittedly somewhat ambiguous. Because the velocity
profile is established perpendicular to the solid substrates
and following previous work [39], we assume � = sz.

For our present setup we expect Poiseuille flow on
account of the atomically structured solid substrates

[see Equation (15)]. Poiseuille flow is characterised by a
parabolic velocity profile given by the expression

vx (z) = Feρ
2η

(
z2 − s2z

4

)
, (30)

where vx = v · êx is the x-component of the velocity
field v. Equation (30) can be derived from the linearised
Navier–Stokes equation invoking different approxima-
tions [36,39,47–49]. Fitting Equation (30) to velocity pro-
files generated in the NEMD simulations permits one to
determine η [36,39] and with it R from Equation (29).
The reader should appreciate that Equation (30) is valid
in the absence of the optical torque [see Equation (13)]
and if the temperature T0 is constant everywhere in the
system [see Equation (8)].

4. Numerical details

In the following we will give all physical quantities in
dimensionless (i.e. ‘reduced’) units. In our NEMD sim-
ulations, we take as basic units the massm of a mesogen,
the diameter σ of its spherical core, and the depth ε of the
attractive well of uLJ [see Equation (A6)]. Other dimen-
sionless units are defined via suitable combinations of
these basic ones (see Appendix B of the book by Allen
and Tildesley [50]).

To integrate the equations of motion we employ the
velocity Verlet algorithm as suggested by Ilnytskyi and
Wilson for Lennard-Jones andGay-Bernemolecules [51]
with a time step δt = 10−3. Interactions between meso-
gens are cut off if their distance exceeds rc = 3.0. We
typically place N ≈ 15,600 mesogens in a simulation cell
with side lengths of sx = 100.0, sy = 8.0 − 9.0, and sz =
24.0 in the x-, y-, and z-directions, respectively. To save
computer time we partition the simulation cell into small
boxes using a linked-cell neighbour list [50]. A given box
is considered a neighbour of its neighbouring boxes if the
distance between their centres does not exceed 6.0.

Because we are interested in relatively low flow speeds
we need to equilibrate the system for a reasonably large
number of time steps ranging from 105 to 2.0 × 105.
Equilibration proceeds in two steps. First, we use a simu-
lation in the isothermal-isobaric ensemble in the absence
of flow and with the laser turned off. This is followed by a
second equilibration in the same ensemble with the laser
being turned on and eventually the flow is turned on as
well.

Once a steady-state nonequilibrium situation has been
reached, averages are collected for another 2.0 × 106

time steps. Equilibration runs are performed in the
isothermal-isobaric ensemble by fixing the pressure (ten-
sor component) in the y-direction to P=1.8. That way
and because of the size of the system we generate a
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bulk-like region of a typical liquid density as we shall be
demonstrating below. Taking the average side length sy in
that direction at the end of the equilibration run as input,
the production run is then performed in the canonical
ensemble.

In both, the equilibration and the averaging part of the
simulation the body force Fe is applied in the x-direction
in a small cuboid of volume δsx × sy × sz where δsx =
2.0; the cuboid begins at the left end of the simulation
box at x = −sx/2.

5. Results

5.1. Structure of the nematic liquid crystal at
thermodynamic equilibrium

We begin the discussion of our results by demonstrat-
ing that our system is sufficiently large to avoid spurious
effects resulting from the wall-induced stratification of
the liquid crystal. To that end we introduce the average
local density

ρ (z) = 〈N (z)〉
Aδz

, (31)

where 〈N〉 is the average number of mesogens having
their centres of mass located in a small interval of size
δz centred on z; A is the area of planes normal to the z-
axis of the Cartesian coordinate system (i.e. parallel to the
planes of the walls).

Equation (31) tacitly assumes that the local density
depends only on z. Strictly speaking, this is not the
case on account of the atomistic corrugation of the solid
walls reflected by the dependence of ufs on rij. Therefore,
Equation (31) has to be viewed as an approximation.

The plot in Figure 2(a) shows that in the immediate
vicinity of the wall atoms ρ = 0 on account of strongly
repulsive interactions between the mesogens and the
solid walls. As one moves away from the solid walls, ρ
oscillates with decreasing |z| which reflects stratification,
that is the packing of the mesogens in individual lay-
ers. However, the amplitude of the oscillations decreases
quickly and is essentially zero for |z| � 5.0. This reflects
the short-range character of ufs. Therefore, a bulk-like
region exists for |z| � 5.0.

A plot of the corresponding nematic order parameter
S is presented in Figure 2(b). In the immediate vicin-
ity of the solid walls, S=0 for the same reasons already
explained. As |z| decreases, S decays and exhibits weak
and rapidly damped oscillations. They reflect the same
layering phenomenon that was seen in the plot of ρ in
Figure 2(a).

Below |z| 
 5.0 we concluded from Figure 2(a) that a
bulk-like region exists characterised by a constant density
ofρ 
 0.85. In this so defined bulk-like regime the plot in

Figure 2. (a) Plot of the average local density ρ as a function of
the position z between the solid walls located at z = ±sz/2 =
±24.0. The dashed vertical lines demarcate an essentially bulk-
like region centred on z= 0 in which the constant bulk density
ρ 
 0.85 is attained. Data have been obtained for N 
 15,600
mesogens and a temperature of T = 0.90; (b) as (a), but for the
nematic order parameter S.

Figure 2(b) reveals that Sdecreases slightly until it reaches
its minimum of S 
 0.54 at z=0.

However, the reader should realise that this value is
still indicative of the existence of a nematic phase. For
example, if one applies Landau-de Gennes theory a stable
nematic phase is expected to form at a transition tem-
perature below which S ≥ 1

3 [52]. A more sophisticated
computer simulation based finite-size scaling approach
would suggest that for the present model the threshold
value is S 
 0.36 [52] which is surprisingly close to the
Landau-de Gennes result.

5.2. The impact of external fields in the absence of
flow

The focus of this work is ultimately on the combined
effects of flow, local heating, and an optical torque on
the structure of a nematic liquid crystal. As expected the
local heating gives rise to a temperature gradient in the
x-direction as one can see from the plots in Figure 3(a).
The temperature profile obtained from the simulation
follows very closely the one imposed by Equation (11)
indicating that the Galilean thermostat represented by
Equation (8) gives physically meaningful results free
from any spurious effects.

We also plot in Figure 3(b) the total polarisation com-
puted from Equation (28) for various coupling strengths
εopt of the optical torque [see Equation (13)]. For suffi-
ciently weak coupling, P exhibits a nearly Gaussian shape
as dictated by Equation (13); however, at increasingly
higher values of εopt a plateau forms around the centre
of the area in which τ opt acts upon the mesogens.
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Figure 3. Nematic liquid crystal exposed to both thermal heat-
ing and polarisation due to the laser. (a) Plots of the local change
in temperature�T(�x) = T ′

0 − T0(�x) [�x = x − x0, see Equa-
tions (8) and (11)]; ( ) Tin = 0.9, ( ) Tin = 1.0, ( ) Tin = 1.4, ( )
Tin = 1.9. In all cases Tout = T0 = 0.9 and εopt = 0.0. Solid lines
represent Equation (11) at the corresponding temperatures. (b)
As (a), but for the polarisation P [see Equation (28)] where ( )
εopt = 0.0, ( ) εopt = 5.0, ( ) εopt = 15.0, ( ) εopt = 30.0. The
solid lines represent fits intended to guide the eye. The plots have
been obtained for Tin = Tout = 0.9.

According to one’s physical intuition one anticipates
that a (local) increase in the temperature reduces the
order upon increasing temperature. However, the joint
effect of flow plus an optical torque is a bit more difficult
to disentangle. It therefore seems prudent to first consider
the impact of the optical torque in a system at thermo-
dynamic equilibrium [without local heating and in the
absence of flow, that is for Tin = Tout in Equation (11)
and for Fe = 0].

Plots in Figure 4 illustrate the impact of τ opt alone
in greater detail. Because of the underlying Gaussian in
our definition of τ opt in Equation (13) we define as the
width δx of the central region in which the optical torque
is appreciable, two times the confidence interval of the
Gaussian profile in Equation (13). Under the conditions
chosen in this study, δx 
 12.0.

The plot in Figure 4(a) reveals that sufficiently far
away from the central region [i.e. for |�x| � 20.0] the
local nematic order parameter S 
 0.54. This value does
not vary much with position and the associated director
field is fairly homogeneous pointing in the z-direction.
The latter is a consequence of the homeotropic align-
ment of the mesogens at the solid walls. In this regime,
n̂+ 
 nx,+̂ex + nz,+̂ez and n2x,+ + n2z,+ 
 1 as well as
|ny,+| 
 0.

As one approaches the central region illuminated by
the laser beam, two effects can be seen in Figure 4(a).
First, S decreases considerably and second, the small
dashes representing n̂+ eventually shrink in length. The
shrinkage of n̂+ is relatively easy to understand. Because
|̂n+| = 1 regardless of its orientation in space, the dashes

Figure 4. Nematic liquid crystal exposed only to polarisation due
to the laser. (a) Plot of the local nematic order parameter S(x, z)
[see Equation (18)] in the x–z plane as a function of the distance
�x = x − x0 from the centre of the external field at x0.; the mag-
nitude of S(x, z) is given by the bar attached. The direction of the
associated director field n̂(r) is represented by the short dashes
(see text). The distance between the two long vertical lines cor-
responds to two times the confidence interval of the Gaussian in
Equation (13). (b) As (a), but for the local biaxiality order parameter
ξ(x, z) [see Equation (21). In this case, the dashes represent n̂−(r).
Data have been obtained at thermodynamic equilibrium (Fe = 0)
without local heating [Tin = Tout = 0.90, see Equation (11) and
Figure 3(a)] and a polarising field [εopt = 15.0, see Equation (13)].

representing the nematic director become shorter if the
net orientation of the mesogens is rotated out of the
x–z plane because then n2x,+ + n2z,+ < 1. Hence, the
shorter dashes visible near the central region of our
system indicate that n̂+ aligns increasingly with the y-
axis. Notice, that in the ideal case of perfect alignment
the dashes vanish completely as then n2x,+ + n2z,+ = 0.
The latter is observed directly inside the central region
where, on account of τ opt, S increases to a maximum of
about 0.95.

Thus, the process illustrated in Figure 4(a) is the fol-
lowing. Sufficiently far from the laser beam (i.e. for,
say,�x � −20.00) the preferred alignment of the meso-
gens is homeotropic with respect to the plane of the
solid walls because the mesogens are slightly elongated.
This is because in this region ufs dominates the orienta-
tional order [see Equation (15)]. This order is long-range
despite the short-range character of ufs [see Figure 2(b)].

As one moves into the region illuminated by the
laser beam, the increasing optical torque then rotates
the longer axes of the mesogens. Eventually the meso-
gens are nearly perfectly aligned with the y-axis in the
central region (i.e. for |�x| � 6.0). Moving then out of
the central region (i.e. for �x � 6.0) the mesogens are
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rotated back to the x–z plane because the mesogen-
wall interaction begins to dominate the orientational
structure again. Eventually the mesogens assume their
original homeotropic alignment at the solid walls; the
homeotropic alignment is then transferred into regions
further away from the walls (i.e. beyond the range of ufs)
through a cooperative, long-range mechanism.

It is now instructive to correlate the plots of S and n̂+
in Figure 4(a) with those of the biaxiality order parameter
ξ and n̂− in Figure 4(b). From the plot of ξ one can see
that there is quite a bit of biaxial order in regions in which
S in Figure 4(a) decreases. We refer to these regions as
the nematic and biaxiality halo, respectively, as they sur-
round the laser beam. The origin of this biaxiality can be
rationalised as follows.

The three eigenvectors of Q form a set of orthonor-
mal basis vectors so that n̂+ · n̂− = 0 everywhere in the
system. Consider then the plot of n̂− in Figure 4(b). Until
one reaches the region inwhich τ opt becomes appreciable
(i.e. for |�x| � 6.0), n̂− is parallel to the x-axis. More-
over, we already saw from the plot of n̂+ in Figure 4(a)
that as one approaches the central region of |�x| � 6.0,
the nematic director begins to rotate out of the x–z plane
and aligns increasingly with êy. The axis of this rotation
is êx.

Thus, when this happens n̂− changes its physical sig-
nificance from just being one of the three (pairwise
orthonormal) eigenvectors of Q to the common axis of
active rotation for the set of mesogenic orientations {̂ui}
(and therefore for n̂+). Thus, we now have two distinct
symmetry axes, namely n̂+ and the axis of rotation êx =
n̂−. This is the reason for the existence of the biaxial halo.
According to the definition of ξ in Equation (21) the biax-
ial halo is that region of the liquid crystal in which the
laser-induced optical torque abrogates the degeneracy of
the eigenvalues λ− and λ0.

The plot of n̂− also reveals that it remains approxi-
mately parallel to the x-axis until the central region of
the laser beam is approached (i.e. until |�x| 
 6.0. In this
central region the mesogens are almost perfectly aligned
with the y-axis and n̂+ is hardly visible anymore for rea-
sons already explained. In the central region, n̂− exhibits
two characteristic features.

First, locally n̂− is no longer aligned with the x-axis
and second the short dashes representing n̂− are more
or less of the same length. This indicates that locally and
regardless of the specific position the eigenvectors n̂− are
restricted to the x–z plane with an infinitely large degen-
eracy of their orientation. This is because n̂− must always
be orthogonal to n̂+ and because n̂+ is nearly perfectly
aligned with the y-axis on account of a sufficiently strong
optical torque. However, there is no mechanism discrim-
inating any specific orientation of n̂− in the x–z plane as

Figure 5. Plots of the orientation distribution function α(x, ω̃)
in the ϕ̃–θ̃ plane [see Figure 1]. The height of α(x, ω̃) can be
read off the bars attached to the plots on the right where we
also emphasise the different scales used. Part (a) corresponds to
x sufficiently far away from the laser beam whereas part (b) of
the figure corresponds to x = x0 (i.e.�x = 0 in Figure 4). Notice,
that in both parts of the figure, α(x, ω̃) has been averaged over a
sufficiently wide region centred on x in which the plot of S(x, z)
indicates a more or less homogeneously ordered nematic phase.
In both parts of the figure Tin = 1.0, Tout = 0.9, and εopt = 15.0
[see Equations (11), (13), and (14)].

long as the orthogonality of n̂− and n̂+ is preserved (i.e.
as long as n̂− · êy = 0 is satisfied).

The orientational features discussed so far are consis-
tent with the changes in the structure of the odf plotted
in Figure 5. As one can see, the odf in Figure 5(a) exhibits
two relatively localised peaks centred on ϕ̃ = ±π/2 and
θ̃ = π/2. To rationalise these angles let us assume that
n̂+ · êz = 1 (homeotropic alignment). Thus, we have

n̂+ (ω̃) = R−1n̂+ (ω) =
⎛⎝sin θ̃ cos ϕ̃sin θ̃ sin ϕ̃

cos θ̃

⎞⎠
= R−1̂ez =

⎛⎝01
0

⎞⎠ , (32)

where the inverse rotation matrix R−1 can easily be
obtained from Equation (23). Equation (32) therefore
implies ϕ̃ = θ̃ = π/2. Noticing also that n̂+ and −n̂+
describe the same physics, ϕ̃ = −(π/2) would also be
permissible in Equation (32). Thus, one would anticipate
the odf to have maxima at ϕ̃ = ±π/2 and for θ̃ = π/2
and this is what is indeed observed in Figure 5(a). More-
over, the two maxima visible in the plot in Figure 5(a)
have equal heights thus supporting the equivalence of
n̂+ and −n̂+. We therefore conclude that the plot shown
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in Figure 5(a) corresponds to a ‘normal’ (i.e. nonpolar)
nematic phase.

Let us now assume that n̂+ is aligned with the y-axis,
that is n̂+ · êy = 1. In this case

n̂+ (ω̃) = R−1n̂+ (ω) =
⎛⎝10
0

⎞⎠ (33)

consistent with ϕ̃ = 0 and θ̃ = π/2. An inspection of the
plot in Figure 5(b) shows that this agrees with the odf pre-
sented in that figure. As one can also see the odf has only
a single maximum. In other words, n̂+ and −n̂+ are not
equivalent and the nematic phase represented by the odf
in Figure 5must be polarwhere the direction of the polar-
isation is in the direction of êy. This is consistent with
τ opt specified in Equations (13) and (14). Notice also that
the maximum of the odf plotted in Figure 5(b) exceeds
the ones in Figure 5(a) by a factor of 2.5–3.0 reflecting
the relative degree of order inside and outside of the laser
beam.

5.3. The impact of flow

Having characterised the structure of the liquid crystal in
the absence of flow, we now turn to its nonequilibrium
behaviour at steady-state flow conditions. We begin by
focusing on the behaviour of the nematic liquid crystal
under flow but in the absence of any other external field,
that is we set Tin = Tout in Equation (11) and εopt = 0 in
Equation (13).

We intend to limit ourselves to laminar-flow scenarios,
that is to flowwhich can be described in terms of individ-
ual fluid layers moving at different relative speeds [53] in
the direction of the external body force Fe. Because Fe
acts in the x-direction we focus on the velocity profile in
that same direction and as a function of the position z
between the solid walls.

Plots of vx are presented in Figure 6 for various
strengths of Fe. In general, and irrespective of the mag-
nitude of Fe, parabolic velocity profiles are observed.
The shape of the profiles is therefore consistent with
Equation (30) that was obtained as a solution of the
linearised Navier–Stokes equation.

Towards the solid walls (i.e. as |z| → 12.5), vx decays
monotonically and then vanishes in the immediate vicin-
ity of the walls where the corresponding plot of ρ in
Figure 2(a) reveals that the local density drops to zero as
well. These general features are to be expected for true
Poiseuille flow [48,49].

If, however, Fe exceeds a certain (model dependent)
threshold value, the parabolic shape of vx is maintained
at first but the curves do no longer drop to zero as one

Figure 6. As Figure 2(a), but for the x-component the velocity
field v; ( ) Fe = 0.05, ( ) Fe = 0.10, ( ) Fe = 0.20, ( ) Fe = 0.30,
( ) Fe = 0.40. Solid lines are fits of Equation (30) to the discrete
data points.

Figure 7. Plot of the Reynolds number R as a function of the
strengthof the external body force Fe where ( ) is computed from
the NEMD data using Equation (29) (see text). The solid line is a fit
to the discrete data points intended to guide the eye. The point for
Fe = 0 (◦) is included to demonstrate the consistency of the data
obtained from the NEMD simulations.

approaches the walls indicating that for these values of
the body force the friction exerted by the wall atoms
is insufficient [see, for example, Figure 2 of Ref. [39]].
Unfortunately, the strength of the interaction between a
mesogen and a wall atom cannot be made much larger
before the portion of the liquid crystal closest to the wall
forms an unwanted glassy structure.

From the fit of Equation (30) to the discrete data points
plotted in Figure 6 we compute the dynamic viscosity η
which we are treating as a fit parameter. Using this latter
quantity we compute the Reynolds numberR that char-
acterises the flow regime we are in. Specifically, one can
see from the plot in Figure 7 that over the entire range
of body forces Fe considered, R � 1. This implies that
under the conditions chosen in this work we are in the
Stokes (or creeping) flow regime, where viscous forces
surpass the inertial ones.

Turning on the flow has remarkable consequences for
the local nematic order parameter S, the local biaxiality
order parameter ξ , as well as for the orientation of the
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Figure 8. As Figure 4, but in the presence of flow for Fe = 0.1 [parts (a) and (c)] and Fe = 0.3 [parts (b) and (d)]. Top panels: plots of
the local nematic order parameter S(x, z) (see attached bar) and the nematic director n̂+ (dashes). The arrows indicate the direction of
the flow. Bottom panels: Parts (c) and (d) show plots of the local biaxiality order parameter ξ(x, z) (see attached bar) and of the local
eigenvector n̂− (dashes). In parts (c) and (d) the strength of the body force is the same as in the corresponding parts (a) and (b) of the
figure. Plots in parts (a)–(d) have been obtained for εopt = 5.0 and Tin = 1.0 and Tout = 0.9.

mesogens. Generally speaking, if a stationary nonequi-
librium flow has been initiated, the symmetry is broken
along the flow direction such that S, ξ , n̂+, and n̂− may
now differ between the upstream and downstream side of
the laser beam.

As before in thermodynamic equilibrium, the nematic
halo visible in the plot of S demarcates the region in
which S decreases on account of the optical torque. As
in Figure 4(a) the decrease of S indicates the region of
reorientation of the mesogens and their beginning align-
ment with the y-direction. However, in the presence of
flow the halo appears to be deformed towards the down-
stream side. This deformation can already be detected in
Figure 8(a) and is clearly visible in Figure 8(b).

The corresponding maps of ξ and n̂− in Figure 8(c,d)
show that the biaxiality on the upstream side is lowered.
This effect is already seen in Figure 8(c) but can easily be
detected in Figure 8(d); ξ is rather low on the upstream
compared with the downstream side. This phenomenon
can be rationalised as follows.

The plot of n̂− in Figure 8(c) shows that this eigen-
vector field is slightly bent towards the z-axis on the
upstream side as the solid walls are approached. This
implies that n̂− does not exactly coincide with êx and
therefore a second symmetry axis is less well defined.

As �x → 0− the mesogens are increasingly aligned
with the y-axis. As explained before, this is inferred
from the absence of the small dashes representing n̂+ in
Figure 8(b). The corresponding plot in Figure 8(d) indi-
cates that by the time the mesogens are moving out of the
laser beam the nematic director n̂+ is aligned nearly per-
fectly with the z-axis and so is n̂− with the x-axis. Thus,
the direction of n̂− becomes again the axis of rotation
so that together with n̂+ we have a system with biaxial

symmetry. This is the reason why ξ is relatively large on
the downstream side of the halo visible in Figure 8(d).

A somewhat peculiar feature visible in Figure 8(d) are
two bands of low tomoderate biaxiality ξ 
 0.08 running
across the entire system along the �x-axis. These bands
can solely be ascribed to the presence of the flow as the
topological similarity between the plots in Figures 8(d)
and 9 suggests. The biaxial bands can be rationalised
by the plots of components of n̂+ and n̂− presented in
Figure 10(a,b).

The plot in Figure 10(a) shows that nz,+ is nearly one
but exhibits two minima that are shifted symmetrically
with respect to z=0. Because nz,+ ≈ 1.0 the mesogens
are nearly perfectly aligned with the z-axis. Moreover, if
nz,+ < 1.0, nx,+ turns out to be nonzero and changes sign
at z=0 (ny,+ 
 0.0 because n̂+ is a unit vector). Because
nx,+ � nz,+ and because nx,+ changes sign one readily
concludes that the nematic director must be very slightly
tilted towards the flow (x-) direction.

It is instructive to contrast these observations with
the spatial variation of components nx,− and nz,− shown
in Figure 10(b). The relative magnitude of these two
components of n̂− is inverted compared with the corre-
sponding components of n̂+. The plots in Figure 10(b)
show that nz,− is always positive but nearly vanishes. As
before, nz,− is symmetric with respect to z=0 where
it is zero. The other component nx,− is the one domi-
nating n̂− and is also symmetric with respect to z=0
where it changes sign. These features indicate that n̂−
is largely aligned with the flow direction but also has a
nonvanishing component ny,−.

Thus, the substrate-induced alignment of n̂+ with the
z-axis on the one hand and the flow-induced alignment of
n̂− with the x-axis on the other hand causes the observed
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Figure 9. As Figure 8(d), but without the laser [i.e. for Tin = Tout = 0.9 and εopt = 0.0.]

Figure 10. (a) Plots of nx,+(z) ( ) (left ordinate) and nz,+(z)
( ) (right ordinate) as function of the position z between the
solid walls. (b) as (a), but for nx,−(z) and nz,+(z). In addition, the
biaxiality order parameter ξ(z) ( ) is also shown (right ordinate).

biaxiality bands visible in Figures 8(d) and 9. As the plot
of ξ in Figure 10(b) reveals the biaxial order is fairly small.
However, the bands visible in Figures 8(d) and 9manifest
themselves as the two maxima of ξ in Figure 10(b).

If one now increases the strength of the optical torque
by increasing εopt in Equation (13) a couple of interesting
features arise. First, comparing the plots in Figure 8(a,b)

with their counterparts shown in Figure 11(a,b) one
realises that the nematic order is enhanced inside the
laser beam as far as the latter set of plots is concerned.

This is an immediate consequence of the larger value
of εopt. The plots in Figure 3(b) for εopt = 5.0 and εopt =
15.0 reveal that the polar order inside the laser beam
increaseswith εopt as expected. Thus, the enhancement of
S in Figure 11(a,b) reflects a more ordered polar nematic
inside the laser beam.

Another consequence of increasing εopt is that the
width of the nematic halo is larger if εopt increases
which can be seen by comparing the plot in Figures 8(a)
and 11(a). This is also easy to understand because for
two values of εopt the optical torque will assume the
same value at a larger value of |�x| if εopt increases.
Therefore, the reorientation of themesogens from the x-z
plane to an alignment with the y-axis occurs at signifi-
cantly larger values of |�x| in Figure 11(a) as opposed to
Figure 8(a).

Consequently, the biaxial halo is also bigger in
Figure 11(c) compared with the data plotted in Figure
8(c). This seems to be caused by the higher order at
higher εopt as the plots in Figures 3(b), 8(a,c), and 11(a,c)
clearly show. This phenomenon can be explained because
it takes more time for the mesogens to reorient them-
selves when the polarisation inside the laser beam is
larger. Consequently the region over which this happens
is widened if εopt increases.

Figure 11. As Figure 8, but for εopt = 15.0 [see Equation (13)].
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Last but not least, regions of biaxiality are absent in
Figure 11(d) except for small regions in the immediate
vicinity of the solid walls. If the flow is enhanced one
realises that n̂− is different everywhere in the system.
Hence, a common axis of rotation does not exist any
longer and therefore there is no second symmetry axis.
Consequently, the order is uniaxial almost everywhere as
the plot in Figure 11(d) reveals.

6. Discussion and conclusions

Although the technological success of optofluidics has
largely been realised through isotropic fluids, its full
potential will depend on our ability to tailor and
harnesses light-induced microscale flow properties of
anisotropic fluids. With an eye for enabling future appli-
cations, in this work we investigate the properties of a
simple model of a nematic liquid crystal in a steady-state
nonequilibrium situation by means of NEMD simula-
tions. To drive the system out of thermodynamic equi-
librium a constant body force is applied to the mesogens
located in a small volume at the beginning of the simula-
tion cell. All results presented here pertain to the Stokes
or creeping regime of laminar flow.

We then expose the liquid crystal to a laser field. Our
laser is based upon a rather minimalistic model which
accounts only for the most basic features, namely, local
heating of the illuminated region and an optical torque
that serves to change the nonpolar nematic structure of
the liquid crystal to a polar one.

In principle, the simulations that have been carried
out in this work would give one access to the dielectric
anisotropy [40] which is linked to the refractive indices
as a measurable quantity. As the dielectric anisotropy is
also related to the alignment tensor one might envision
to compare the present simulations with parallel exper-
iments. However, a detailed analysis of these relation-
ships is beyond the scope of the present article. Having
demonstrated that our setup is capable to give physi-
callymeaningful results, one could think of extending the
present model to one in which cholesteric structures are
stable [54].

As pointed out in the book by de Gennes and
Prost [43] it is possible to unwind the cholesteric helix by
sufficiently strong electric ormagnetic fields. Preliminary
results by us show that this could very well be possible
using optothermal conditions as well. Work along those
lines is currently under way.

One could argue though that the dimensions of the
constituents of our model laser are too tiny to repre-
sent a typical laser experiment. This would probably be
the case if we take our mesogens to represent individ-
ual molecules in which our unit of length σ would be

of the order of several tenth of a nanometre. However,
because of the small aspect ratio exceeding a value of
1.0 only slightly [35] it seems permissible to adopt the
notion that our mesogens should, in fact, be perceived
as nanoscopic droplets consisting of several individual
molecules. The typical size of such a droplet could eas-
ily increase to several 10 nm. This perception has been
introduced originally by Maier and Saupe [55] and was
adopted later by Steuer et al. [56] as well as by Schlot-
thauer et al. [57]. Based upon this supramolecular picture
[58,59] the width of our laser beam δx would, in fact,
correspond to a couple of hundred nanometres.

Similarly, we allow the temperature T of the liquid
crystal to increase on account of the laser by a small
amount �T = 0.1 in dimensionless units. Based upon
the assumption that our unit of energy ε/kB = O(102)K,
�T would correspond to an increase of the temperature
inside the laser beam by some ten K.

The liquid crystal is placed between two plane par-
allel, atomically corrugated solid walls that we need for
the mesogens to experience friction under nonequilib-
rium steady-state flow conditions. This friction is a neces-
sary prerequisite to establish the typical parabolic velocity
profiles characteristic of Poiseuille flow.

Outside of the illuminated area the mesogens are
alignedwith the z-axis and therefore exhibit homeotropic
alignment with respect to the planes of the solid walls.
Sufficiently far away from the laser both n̂+ and S are
homogeneous and do not show any dependence on the
specific location. As one approaches the laser the opti-
cal torque causes the mesogens to rotate out of the x–z
plane and to align with the y-axis. When this rotation
sets in S decreases because during this rotation themeso-
gens do not behave as a single entity. In other words, the
rotation of themesogens is not a coordinated process and
the biaxiality order parameter ξ increases simultaneously.
However, this is apparently not true if τ opt is sufficiently
large.

The appearance of a significant biaxiality can be
explained as follows. When the mesogens begin to rotate
out of the x-z plane, it turns out that the axis of rotation is
given by n̂−. Thus, the system has two principal symme-
try axes, namely n̂+ and n̂− = êx and therefore exhibits
biaxial symmetry.

As soon as the alignment of the mesogens is com-
plete the symmetry of the system inside the laser region
becomes uniaxial again and the only constraint between
the nematic director and the eigenvector associated with
the smallest eigenvalue of Q is that n̂+ · n̂− = 0. Hence,
in the x–z plane the distribution of the directions of n̂−
is isotropic.

Under relatively weak flow and for a weak optical
torque this general picture prevails except that now the
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region of biaxiality turns out to be an approximately ellip-
tic halo. This halo surrounds a region in which the direc-
tions of n̂− exhibit an isotropic arrangement across the
x–z plane. If the flow becomes stronger the halo becomes
asymmetric. Biaxiality is reduced on the upstream and
enhanced on the downstream side. The reduction on
the upstream side is a consequence of a slight deviation
between n̂− and the axis of rotation êx.

The enhancement of biaxiality on the downstream
side can also be rationalised fairly easily. First one
realises that the optical torque aligns the mesogens
nearly perfectly with the y-axis at the centre of the laser
beam. Because n̂+ · n̂− = 0, the eigenvector n̂− becomes
aligned with the axis of rotation êx. As the mesogens are
being carried out of the laser beamby the flow and as they
begin to rotate back to their original homeotropic align-
ment with the plane of the solid walls, the system again
exhibits two well-defined principal symmetry axes. As a
consequence the biaxial halo is more pronounced on the
downstream side.

The situation becomes more complex if the strength
of the optical torque increases [i.e. for larger values of
εopt in Equation (13)]. As we show in Section 5.3 increas-
ing the optical torque has two main consequences. First,
the (polar) nematic order inside the laser beam increases;
second, the biaxial halo is shifted and broadened com-
paredwith the situation for aweaker optical torque. Thus,
for a rather weak flow it takes the mesogens longer to
assume a polar nematic order at the centre of the laser
beam.

For stronger flow and for a stronger optical torque
it turns out that the liquid crystal is uniaxially ordered
almost everywhere in the system. This is because it turns
out that a common axis of rotation does not longer exist.
Therefore, a second symmetry axis, the necessary prereq-
uisite for biaxiality, cannot be established.

We would also like to stress that for the present class
of systems liquid-crystalline properties arise on account
of strongly anisotropic attraction between mesogens that
have a nearly spherical core. Both features make them
quite distinct from more conventional model systems
such as spherocylinders or the widely used Gay-Berne
particles. In these lattermodels orderedmesophases arise
mostly because of the shape anisometry of the mesogens.
In our opinion it is fair to say that with the advent of
the present class of models has significantly advanced
the numerical study of liquid-crystallinematerials and its
various features.

The reason for this is twofold. First, on account
of the nearly spherical core of the mesogens the sys-
tems are fairly easy to equilibrate and therefore they are
computationally cheap. This is particularly important in
the context of the present work where large systems had

to be utilised. These large samples are required to have
a sufficiently wide laser beam surrounded by sufficiently
large bulk-like regions.

In addition, we are restricted to the small-flow regime
to avoid spurious effects from the periodic boundary con-
ditions and to make sure the velocity profiles generated
are characteristic of Poiseuille flow. For slow flows the
temporal evolution of the system is also slow and there-
fore the simulations have to be run for a long time to
establish a stationary nonequilibrium situation and to
sample quantities of interest with sufficiently good statis-
tics. This is the second reason why one wishes to have a
computationally cheap model system at hand.

At the same time it needs to be emphasised that
despite their simplicity and computational convenience,
the present class of model liquid crystals has repeat-
edly been shown to be sufficiently realistic. Examples
include structures and the dynamics in nematic colloidal
suspensions [52]. These structures were observed exper-
imentally [60,61] but remained unexplained for nearly
twenty years. Another example concerns the develop-
ment of defect topologies that form when a colloidal
particle is immersed into a nematic or smectic A carrier
fluid [62]. Our theoretical results [63] are in good quali-
tative agreement with experimental findings [64,65]. Our
last example concerns biaxial binarymixtures of two uni-
axially symmetric compounds that pertain also to the
present class of model systems [25].
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Appendices

Appendix 1. Treatment of the orientation
dependence of interactions

In this Appendix we give an account of the derivation of u
and � in Equations (6) and (7), respectively. Because the set
of basis functions {Ỹlm̃} is complete, the expansion of uaniso in
Equation (4) is exact. However, Equation (4) is not very use-
ful on account of the fact that the number of terms involved
in the sixfold summation over l1, l2, l, m1, m2, and m grows
very quickly. Thus, Equation (4) becomes prohibitively cum-
bersome even if one truncates it at relatively small values of l1,
l2, and l. Therefore, additional, physically sensible assumptions
need to be introduced to render Equation (4) computationally
tractable.

We are seeking an orientation dependence of uaniso that is
characterised by two features, namely

(1) The resulting potential should involve a contribution that
depends on the relative orientations ωi and ωj but should
not depend on the orientations of both mesogens with
respect to the orientation of the distance vector r̂ij con-
necting their centres of mass.

(2) There should be also a contribution involving the orienta-
tion of eithermesogen i or jwith respect to the orientation
of r̂ij.

Because of these two requirements we can split uaniso into
two contributions according to

uaniso
(
rij,ωi,ωj

) = u(1)
(
rij,ω1,ω2

)+ u(2)
(
rij,ωi,ωj

)
, (A1)

where the superscripts refer to assumption (1) and (2),
respectively. Because of this decomposition and because of
Equation (4) we now have to consider two separate expansions
of u(1) and u(2) in the basis of the rotational invariants.

On account of condition (1), u(1) can depend only on rij
at the most. This implies that for any fixed orientation of
mesogens i and j, u(1) is effectively isotropic. In other words,
�l1l2l cannot depend on ωij which suggests that l=m= 0 in
Equation (5). Under this premise nonzero Clebsch–Gordan
coefficients are obtained only if the two selection rules

• m1 + m2 = m [see Equation (A.130) of Ref. [32]] and
• |l1 − l2| ≤ l ≤ l1 + l2 [triangle inequality, see Equation

(A.131) of Ref. [32]]

are satisfied simultaneously. If l=m= 0 the first of these
reduces to m1 = −m2. In addition, for l= 0 the trian-
gle inequality can only be satisfied if l1 = l2. Using then
Equation (A.157) of Ref. [32] we obtain from Equations (4)
and (5)

1√
4π

∞∑
l=0

ull0
(
rij
)

√
2l + 1

l∑
m=−l

(−1)l+m Ylm (ωi)Ylm
(
ωj
)

= 1√
4π

∞∑
l>0

ull0
(
rij
)

√
2l + 1

l∑
m=−l

(−1)l+m Ylm (ωi)Ylm
(
ωj
)

+ 1
(4π)3/2

u000
(
rij
)
, (A2)

wherem = −m andY00 = 1/
√
4π has also been used. Notice,

that on the second and third lines of Equation (A2) the isotropic
contribution u000 is treated separately.

Invoking now the relation (−1)mYlm = Y∗
lm together

with the addition theorem for spherical harmonics [see
Equation (A.33) of Ref. [32]] allows us to rewrite the previous
expression for u(1) more compactly as

∞∑
l>0

(−1)l
√
2l + 1

(4π)3/2
ull0
(
rij
)
Pl (x)+ 1

(4π)3/2
u000

(
rij
)

= u(1)
(
rij,ωi,ωj

)+ 1
(4π)3/2

u000
(
rij
)
, (A3)

where Pl is a Legendre polynomial of order l and x = ûi · ûj is
the cosine of the angle between ûi and ûj [see Equation (2)].

In addition, we require u(1) to be invariant if mesogen i (or j)
is inverted such that γij → γ ′

ij = γij + π . This invariance ofu(1)

reflects the head-tail symmetry typical of many mesogens[43].
Using the well-known addition theorems for trigonometric
functions it is easy to verify that this transformation yields
x′ = cos γ ′

ij = −x.
For odd integers l, Pl contains only odd powers of xwhereas

it consists only of even powers of x (and a constant) if l is even
[see Equations (A.8) and (A.9) of Ref. [32]]. Thus, to preserve
the desired invariance of u(1), only terms for even l should be
retained in the sum on the righthand side of Equation (A3);
terms for odd l are being discarded henceforth.

Turning now to condition (2) one first realises that in the
analogous expansion of u(2), l must not be zero. If it were,
we would again have l=m= 0. Consequently, u(2) would be
independent of rij which is inconsistent with condition (2).
We also impose a symmetry constraint on u(2). Because the
mesogens are achiral, u(2) should be invariant under the trans-
formation ωij → ω′

ij = −ωij. In other words, if mesogens i and
j interchange their centre-of-mass position such that rij →
r′ij = −rij, u(2) should remain unaffected. The inversion par-
ity of spherical harmonics [see Equation (A47) of Ref. [32]]
then suggests that lmust be even and therefore must satisfy the
inequality l ≥ 2.

Next, we remind ourselves that from condition (2) the ori-
entation dependence of u(2) should be such that it can be
decomposed into separate contributions where either the ori-
entation of mesogen i with respect to r̂ij or that of mesogen j
matters. This prompts us to write the expansion of u(2) more
explicitly as

u(2)
(
rij,ω1,ω2

) =
∑
l1,l
l≥2

ul10l
(
rij
)
�l10l

(
ωi,ωj,ωij

)

+
∑
l2,l
l≥2

u0l2l
(
rij
)
�0l2l

(
ωi,ωj,ωij

)
. (A4)

The triangle inequality therefore suggests that l1 = l in the first
term on the righthand side of this expression. By the same
token, l2 = lmust hold for the second term. Thus, both double
sums collapse to single ones.



3732 J.-C. EICHLER ET AL.

We now invoke the definition of rotational invariants given
in Equation (5) which gives

�l0l
(
ωi,ωj,ωij

) = 1√
4π

∑
m

C (l0l;m0m)Ylm (ωi)Y∗
lm
(
ωij
)

= 1√
4π

∑
m

Ylm (ωi)Y∗
lm
(
ωij
)

= 2l + 1
(4π)3/2

Pl (xi) , (A5)

where Y00 = 1/
√
4π , C(l0l;m0m) = 1, and the addition

theorem for spherical harmonics have also been invoked
[see Equations (A.33), (A.62), and (A.156) of Ref. [32]]. In
Equation (A5), xi = ûi · r̂ij denotes the cosine of the angle
between the unit vector ûi and r̂ij. A similar expression is
obtained for �0ll where, however xi is replaced by xj = ûj ·
r̂ij and C(0ll; 0mm) = C(l0l;m0m) [see Equation (A.134) of
Ref. [32]] has been invoked.We can then rewrite Equation (A4)
more compactly as

u(2)
(
rij,ω1,ω2

)
=
∑
l≥2
l even

2l + 1
(4π)3/2

[
ul0l
(
rij
)
Pl (xi)+ u0ll

(
rij
)
Pl
(
xj
)]
. (A6)

It is clear from Equations (A2) and (A4) that we would
still need to consider an infinite number of terms in principle.
Because this is clearly impossible we limit our treatment to the
leading term describing the orientation dependence of uaniso.
From Equations (A1), (A2), and (A6) we then have

uaniso
(
rij,ωi,ωj

) = 1
(4π)3/2

{√5u220
(
rij
)
P2 (x)

+ 5[u202
(
rij
)
P2 (xi)+ u022

(
rij
)
P2
(
xj
)
]}.

(A7)

So far nothing is known about the expansion coefficients
u000, u220, u202, and u022. However, introducing as our last
assumption that mesogens i and j interact via dispersion inter-
actions only, all four expansion coefficients are proportional to
−1/r6ij [see Equations (2.226), (2.228), and (2.230) of Ref. [32]].
The coefficient of proportionality involves the average ioni-
sation energy of the interacting pair of mesogens times their
principal axes static polarisability components [32] and thus
has units of energy × (length)6. From this dimensional argu-
ment and putting together all the remaining, purely numerical
prefactors it seems quite reasonable to express the expansion
coefficients as

u000
(
rij
) = −4ε

(
σ

rij

)6
, (A8a)

u220
(
rij
) = −4εε′

(
σ

rij

)6
, (A8b)

u202
(
rij
) = −4εε′′

(
σ

rij

)6
, (A8c)

u022
(
rij
) = −4εε′′

(
σ

rij

)6
. (A8d)

At this stage it seems sensible to combine the isotropic con-
tribution given by the expression in Equation (A8a) with the

soft-sphere potential introduced in Equation (3). This gives the
well-known Lennard-Jones potential function.

The dimensionless constants ε′ and ε′′ appearing in Equa-
tions (A8b)–(A8d) take notice of the fact that different combi-
nations of the principal axes static polarisability components
arise in the expressions for the expansion coefficients [32].
Thus, from Equations (1), (A7), and (A8) we finally arrive at
the expressions given in Equations (6) and (7).

Appendix 2. Derivation of the local alignment tensor

In this Appendix we seek to derive a molecular expression for
the local alignment tensor. We begin by considering first the
generic distribution function [see Equation (3.91) of Ref. [32]]
defined as

ρ
(
rN ,ωN) = N!

Z
exp
[−β U (rN ,ωN)] , (A9)

where

Z =
∫∫

drNdωN exp
[−β U (rN ,ωN)] , (A10)

and rN ={r1, r1, . . . , rN} andωN ={ω1,ω1, . . . ,ωN} are short-
hand notations for the set of N centre-of-mass positions and
orientations, respectively; similarly, drNdωN = dr1 . . . drNdω1
. . . dωN . In Equations (A9) and (A10), β = 1/kBT (kB is Boltz-
mann’s constant and T is the temperature), and

U (rN ,ωN) =
N−1∑
i=1

N∑
j=i+1

u
(
rij,ωi,ωj

)

+
2∑

k=1

N∑
i=1

N(k)∑
j=1

ufs(r
(k)
ij ), (A11)

whereN(k) is the number of solid atoms in wall k and u and ufs
are given by Equations (6) and (15), respectively.

From Equation (A9) we obtain the n-particle generic dis-
tribution function by integrating over the subsets rN−n =
{rn+1, rn+2, . . . , rN} ⊆ rN and ωN−n = {ωn+1,ωn+2, . . . ,ωN}
⊆ ωN according to

ρ
(
rn,ωn) = N!

(N − n)!
1
Z

∫∫
drN−ndωN−n

× exp
[−β U (rN ,ωN)] , (A12)

where the combinatorial factor N!/(N − n)! is the number of
ways in which subsets rn and ωn can be formed within the sets
rN and ωN , respectively [32].

Consider now

〈δ (r − r1) δ (ω − ω1)〉

= 1
Z

∫∫
drNdωN δ (r − r1) δ (ω − ω1)

× exp
[−β U (rN ,ωN)]

= 1
Z

∫∫
drN−1dωN−1

× exp
[−β U (r, rN−1,ω,ωN−1)] , (A13)

where 〈. . .〉 denotes the ensemble average of the product of the
two Dirac δ-functions.
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Following the arguments put forth in the book of Hansen
and McDonald (see [66, Chapter 2.5]) one could replace r1
and ω1 in the arguments of the Dirac δ-functions by any
corresponding members of the sets rN and ωN without alter-
ing the ensemble average on the last line of Equation (A13).
Thus, by summing up all these equivalent integrals one would
have N times the expression given in Equation (A13). In
fact, with the aid of Equation (A12) (n= 1) it immediately
follows that

ρ (r,ω) =
N∑
i=1

〈δ (r − ri) δ (ω − ωi)〉 . (A14)

To obtain a molecular expression for the local density we then
integrate Equation (A13) according to

ρ (r) =
∫

dω ρ (r,ω)

= N
Z

∫
dω
∫∫

drN−1dωN−1

× exp
[−β U (r, rN−1,ω,ωN−1)]

= N
Z

∫∫
drN−1dωN exp

[−β U (r, rN−1,ωN)] (A15)

which is equivalent to Equation (3.100) of Ref. [32]. Equation
(A15) can be interpreted as the local density of the liquid
crystal because it follows from Equation (A12) together with
Equation (A15) that ∫

dr ρ (r) = N. (A16)

This is because for n= 1 an additional integration over the one
remaining centre-of-mass position the integral on the right-
hand side of Equation (A9) is equal to Z which consequently
cancels between numerator and denominator and therefore
gives N!/(N − 1)! = N.

To proceed we introduce the single-mesogen alignment
tensor defined as

q (ω1) = 1
2
[3̂u (ω1) û (ω1)− 1] , (A17)

where 1 is the unit tensor. As its globally defined counterpartQ
introduced quite some time ago by Eppenga and Frenkel [67],
q is a second-rank, symmetric, and traceless tensor that can be
represented by a 3 × 3 matrix.

We are now seeking to compute the ensemble average

〈q (ω1) δ (r − r1) δ (ω − ω1)〉

= 1
Z

∫∫
drNdωN q (ω1)

× δ (r − r1) δ (ω − ω1) exp
[−β U (rN ,ωN)]

= 1
Z

∫∫
drN−1dωN−1 q (ω)

× exp
[−β U (r, rN−1,ω,ωN−1)] . (A18)

By the same token as before one realises that any one of the
members of the sets rN and ωN could have been picked in
evaluating the ensemble average in Equation (A18). Integrat-
ing Equation (A18) over the one remaining orientation as in
Equation (A15) we compute

1
ρ (r)

∫
dω′

N∑
i=1

〈
q (ωi) δ (r − ri) δ

(
ω′ − ωi

)〉
= 1
ρ (r)

N
Z

∫
dω′

∫∫
drN−1dωN−1 q

(
ω′)

× exp
[−β U (r, rN−1,ωN)] , (A19)

where we use the notation ω′ to indicate that the set ωN−1 does
not contain the orientation of one of the mesogens which has
been picked at will. Thus, the integrations over orientations are
carried out for all the remaining N−1 mesogens but that of
the chosen one. At this stage it is convenient to introduce the
probability density

P
(
r,ω′) =

∫∫
drN−1dωN−1 exp

[−β U (r, rN−1,ωN)]∫∫
drN−1dωN exp

[−β U (r, rN−1,ωN
)]
(A20)

as a measure of finding the centre of mass of a mesogen in
a small volume dr centred on r with an orientation within
an interval dω′ around ω′. With this quantity we can rewrite
Equation (A19) as

Q (r) =
∫

dω q (ω) P (r,ω)

= 1
ρ (r)

∫
dω

N∑
i=1

〈q (ωi)

× δ (r − ri) δ (ω − ωi)〉, (A21)

whereQ is the local alignment tensor and we have changed the
notation such that ω′ → ω. During a simulation the far right-
hand side of Equation (A21) is computed as a histogram of
instantaneous values of q.
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