
ÆGIS: Smart Shielding of Smart Contracts
Christof Ferreira Torres

∗

SnT, University of Luxembourg

Luxembourg, Luxembourg

christof.torres@uni.lu

Mathis Baden

SnT, University of Luxembourg

Luxembourg, Luxembourg

mathis.steichen@uni.lu

Robert Norvill

SnT, University of Luxembourg

Luxembourg, Luxembourg

robert.norvill@uni.lu

Hugo Jonker

1
Open University of the Netherlands

Heerlen, Netherlands

2
Radboud University

Nijmegen, Netherlands

hugo.jonker@ou.nl

ABSTRACT

In recent years, smart contracts have suffered major exploits, losing

millions of dollars. Unlike traditional programs, smart contracts

cannot be updated once deployed. Though various tools were pro-

posed to detect vulnerable smart contracts, they all fail to protect

contracts that have already been deployed on the blockchain. More-

over, they focus on vulnerabilities, but do not address scams (e.g.,

honeypots). In this work, we introduce ÆGIS, a tool that shields

smart contracts and users on the blockchain from being exploited.

To this end, ÆGIS reverts transactions in real-time based on pat-

tern matching. These patterns encode the detection of malicious

transactions that trigger exploits or scams. New patterns are voted

upon and stored via a smart contract, thus leveraging the benefits

of tamper-resistance and transparency provided by blockchain. By

allowing its protection to be updated, the smart contract acts as a

smart shield.

CCS CONCEPTS

• Security and privacy→ Software and application security;

Domain-specific security and privacy architectures; Systems security.

KEYWORDS

Ethereum, smart contracts, exploit prevention, security updates

ACM Reference Format:

Christof Ferreira Torres, Mathis Baden, Robert Norvill, and Hugo Jonker.

2019. ÆGIS: Smart Shielding of Smart Contracts. In 2019 ACM SIGSAC
Conference on Computer andCommunications Security (CCS ’19), November
11–15, 2019, London, UK. ACM, New York, NY, USA, 3 pages. https://doi.

org/10.1145/nnnnnnn.nnnnnnn

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, UK
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Since the inception of Bitcoin [7], a broad range of blockchain

implementations have emerged. Ethereum [13] is currently the

most popular blockchain technology with respect to smart con-

tracts. Smart contracts are programs that are stored and executed

across blockchain nodes. They are deployed and invoked via trans-

actions. Deployed smart contracts are immutable, but still prone to

bugs. Moreover, since contract owners are anonymous, responsi-

ble disclosure is usually infeasible. Though smart contracts can be

implemented with upgradeability and destroyability in mind, this

is not compulsory. In fact, Ethereum already faced several devas-

tating attacks on vulnerable smart contracts. In 2016, an attacker

exploited a reentrancy bug in a crowdfunding smart contract called

the DAO, draining over $150 million [10]. In 2017, the Parity wallet

was hacked twice due to a logic bug in the access control of the

smart contract, causing a combined loss of over $130 million [8].

In 2018, a blockchain security company called PeckShield reported

that multiple smart contracts have been attacked or are vulnerable

to integer overflows [3]. In 2019, Torres et al. reported an emerging

trend among scammers, that try to lure their victims into traps by

deploying seemingly vulnerable contracts that in reality contain

hidden traps (i.e. honeypots), making users lose their funds if they

attempt to exploit or interact with the smart contract [12].

In response to these events, academia proposed a plethora of

different tools that allow users to scan smart contracts for vulner-

abilities and scams, prior to deploying them on the blockchain or

interacting with them (see e.g. [4, 5, 11, 12]). However, all of these

tools fail to protect inattentive users and contracts that have already

been deployed on the blockchain. In order to protect already de-

ployed contracts, Rodler et al. [9] leverage the principle that every

exploit is performed via a transaction. They propose Sereum, a

modified Ethereum client that detects and reverts transactions that

trigger reentrancy attacks. Unfortunately, Sereum has three major

drawbacks. First, it solely detects reentrancy attacks, despite there

being many other types of vulnerabilities and scams. Second, it

requires the client to be modified whenever a new type of vulnera-

bility or scam is found. Third, not only the tool itself but also any

updates to it must be manually adopted by the majority of nodes

for its security provisions to become effective.

Contributions. Our main contributions are:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/287734805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS ’19, November 11–15, 2019, London, UK C. Ferreira Torres et al.

• We introduce a novel domain specific language (DSL), which

enables the description of vulnerability patterns. These pat-
terns reflect malicious control and data flows that occur

during execution of malicious Ethereum transactions.

• We present a tool called ÆGIS, that reverts
1
malicious trans-

actions based on vulnerability patterns, thereby preventing

attacks on vulnerable smart contracts.

• Wepropose the use of a smart contract to store and vote upon

new vulnerability patterns, in order to quickly and safely

propagate security updates, without relying on client-side up-

date mechanisms. This ensures integrity, brings democracy

and provides full transparency on the proposed vulnerability

patterns.

2 BACKGROUND

The Ethereum blockchain is a decentralized public ledger that is

maintained by a network of nodes that distrust one another. Every

node runs one of several existing Ethereum clients, for example

geth
2
. With the use of these clients, users can send transactions in

order to create and invoke smart contracts. Transactions are broad-

cast through the blockchain network and are processed by miners.
These are a specific type of nodes that propose new blocks and exe-

cute smart contracts via the Ethereum Virtual Machine (EVM). The

EVM is a purely stack-based, register-less virtual machine that sup-

ports a Turing-complete instruction set of opcodes. These opcodes

allow smart contracts to perform memory operations and interact

with the blockchain, such as retrieving specific information (e.g.,

the current block number). Ethereum makes use of gas to make

sure that contracts terminate and to prevent denial-of-services at-

tacks. Thus, it assigns a cost to the execution of an opcode. The

execution of a smart contract results in the modification of its state.

The latter is stored on the blockchain and consists of a balance and
a storage. The balance represents the amount of ether (Ethereum’s

cryptocurrency) currently owned by the smart contract. The stor-

age is organized as a key-value store and allows the smart contract

to store values and keep state across executions. In summary, the

EVM is a transaction-based state machine that updates a smart

contract based on transaction input data and the smart contract’s

bytecode.

3 RELATEDWORK

Ethereum smart contracts are programs that are executed across

the Ethereum blockchain. Unfortunately, as with any program, they

may contain bugs and can be vulnerable to exploitation. As dis-

cussed in [1], different types of vulnerabilities exist, often leading

to financial gains for the attacker. The issue is made worse by the

fact that smart contracts are immutable. Once deployed, they can-

not be altered and vulnerabilities cannot be fixed. In addition to

that, automated tools for launching attacks exist [4]. Several de-

fense mechanisms have been proposed (e.g. [5, 11, 12]). However,

while these tools identify vulnerabilities and scams, they cannot

protect already deployed smart contracts from being exploited or

neglectful users from falling for scams. Therefore, to deal with the

issue of vulnerabilities in deployed smart contracts, [9] proposes a

1
Consuming gas, without letting the transaction affect the state of the blockchain.

2
For more details about the geth client: https://github.com/ethereum/go-ethereum.

Figure 1: An illustrative example of ÆGIS’s workflow: Step

1) A benign user proposes a pattern to the smart contract.

Step 2) Eligible voters vote to either accept or reject the pat-

tern. Step 3) An attacker fails to exploit a vulnerable smart

contract due to the voted pattern matching the malicious

transaction.

modification to the Ethereum client, geth. However, this approach

only deals with one type of attacks, reentrancy, and requires all

the clients in the network to be modified. The latter is an issue

for the following reasons. On one hand side, every update of the

vulnerability detection software requires an update of the differ-

ent Ethereum client implementations. This is true for both, bug

fixes and functionality upgrades, for example the detection of new

vulnerabilities. On the other hand side, every modification of the

clients needs to be adopted by all the nodes participating in the

Ethereum blockchain. This can take time and breaks compatibility

between updated and non-updated clients. In this work, we propose

a generic solution that only requires clients to be modified once

and that protects contracts and users from existing and future vul-

nerabilities, without modifying the clients every time a new scam

or vulnerable smart contract is found.

4 METHODOLOGY

Our idea is to bundle every Ethereum client with a modified EVM

capable of interpreting a DSL. The DSL is specifically tailored to the

EVM instruction set and allows the description of malicious control

and data flows in the form of patterns. The modified EVM can then

revert transactions during execution based on pattern matching.

For example, a malicious integer overflow could be described as the

following pattern:

(opcode = CALLDATALOAD)

data

−−−→ (opcode = ADD) ∧ (stack [0] +

stack [1] , stack . r e su l t)

data

−−−→ (opcode i n [SSTORE , CALL])

This pattern evaluates to true if a transaction meets all of the follow-

ing three conditions: 1) there is a data flow from a CALLDATALOAD
instruction into an ADD instruction; 2) the result of the addition

pushed by the EVM onto the stack is different from the sum of the

two previous stack elements; and 3) there is a data flow of the result

into either an SSTORE or a CALL instruction.

https://github.com/ethereum/go-ethereum

ÆGIS: Smart Shielding of Smart Contracts CCS ’19, November 11–15, 2019, London, UK

Table 1: Ethereum Top 10 Miners by Blocks
∗

Miner # Blocks % of all mined blocks

Spark Pool 24,261 24.42%

Ethermine 22,579 23.66%

F2Pool 2 11,373 11.92%

Nanopool 10,579 11.08%

MiningPoolHub 4,422 4.63%

zhizhu.top 3,377 3.54%

0xd224ca. . . b79f53 1,739 1.82%

PandaMiner 1,519 1.59%

0xaa5c42. . . acf05e 1,419 1.49%

xnpool 1,373 1.44%

∗
Source: Etherscan.io, August 2019

Patterns are governed via a smart contract that is deployed on-chain

(see Figure 1). Whenever a new vulnerability or scam is discovered,

anyone may write a new pattern using the DSL and propose it

through the smart contract. The contract maintains a list of eligible

voters that vote for either accepting or rejecting a new pattern. If the

majority has voted with “yes”, then the pattern is added to the list

of active patterns. In that case, every client is automatically notified

and retrieves the updated list of patterns from the smart contract

(i.e. the blockchain). Thus, clients are updated independently. The

only requirement is a one-time client-side update of the EVM to

add the capability of processing patterns expressed in the DSL. In

other words, if a pattern is accepted by the voting mechanism, it is

updated instantaneously across all the clients through the existing

consensus mechanism of the Ethereum blockchain.

5 DISCUSSION

Setting up the list of eligible voters is crucial, as these will have

the power to decide on the result of transactions. One option is to

choose miners as eligible voters, as these already carry a powerful

role in deciding which transactions are to be included into blocks.

However, miners may lack incentives to stop specific vulnerabilities

or scams, as well as the expertise to decide on which patterns to be

added or rejected. Moreover, as seen in Table 1, miners should not

be given voting power according to their mining power. Otherwise,

a small fraction of top miners could collude and together control

more than 50% of the votes. Therefore, it may be better to select a

group of independent security experts, such as the members of the

Smart Contract Weakness Classification registry (SWC)
3
.

In contrast to democratic elections, where privacy and verifiabil-

ity are paramount, a voting system for vulnerabilities would require

accountability. In this light, it is more akin to ‘boardroom’ e-voting

systems than ‘parliamentary’ e-voting systems. Such systems allow

for tracing an unencrypted vote back to a voter, which, in turn,

enables a constituency (e.g., shareholders) to hold the voter account-

able for their voting choices. Another important requirement is

that of fairness: the requirement that each voter should have equal

power to affect the outcome, regardless of when they vote. One

aspect of this is to prevent leaking of intermediate results (which

3
For more details see: https://smartcontractsecurity.github.io/SWC-registry/.

would give later voters more information on the effect of their vote).

This can be achieved through the use of cryptographic commit-

ments [2, 6]. Of course, this still lets later voters see the number of

votes cast, which reveals whether or not the result could potentially

be a tie. This violates fairness: the last voter can choose to vote to

create or break a potential tie. To mitigate these concerns, voting

should be done off-chain with a strong protocol. Moreover, this

protocol should result in a a proof of correct execution of the voting

process, which is then stored on-chain to fulfill the accountability

requirement.

6 CONCLUSION

We propose ÆGIS, a modified EVM that uses patterns in order to

protect users from vulnerable smart contracts and scams. Moreover,

we present a novel mechanism that allows patterns to be updated

quickly and transparently via the blockchain. Finally, we discuss

the challenges faced when decentralizing the governance of these

patterns.

ACKNOWLEDGMENTS

This work is partly supported by the LuxembourgNational Research

Fund (FNR) under grant 13192291.

REFERENCES

[1] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks

on Ethereum Smart Contracts (SoK). In Proceedings of the 6th International
Conference on Principles of Security and Trust - Volume 10204. Springer-Verlag
New York, Inc., 164–186. https://doi.org/10.1007/978-3-662-54455-6_8

[2] Gilles Brassard, David Chaum, and Claude Crépeau. 1988. Minimum disclosure

proofs of knowledge. Journal of computer and system sciences 37, 2 (1988), 156–
189.

[3] PeckShield Inc. 2018. ALERT: New batchOverflow Bug

in Multiple ERC20 Smart Contracts (CVE-2018-10299).

https://blog.peckshield.com/2018/04/22/batchOverflow/.

[4] Johannes Krupp and Christian Rossow. 2018. teether: Gnawing at ethereum

to automatically exploit smart contracts. In 27th USENIX Security Symposium
(USENIX Security 18). 1317–1333.

[5] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,

NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[6] T. Moran and M. Naor. 2007. Split-ballot voting: everlasting privacy with dis-

tributed trust. In Proc. 14th ACM Conference on Computer and Communications
Security (CCS). ACM, 246–255.

[7] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. Cryp-
tography Mailing list at https://metzdowd.com (03 2009).

[8] Sergey Petrov. 2017. Another Parity Wallet hack explained.

https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-

847ca46a2e1c.

[9] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2019. Sereum:

Protecting Existing Smart Contracts Against Re-Entrancy Attacks. In 26th An-
nual Network and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27.

[10] David Siegel. 2016. Understanding The DAO Attack.

https://www.coindesk.com/understanding-dao-hack-journalists/.

[11] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting

for Integer Bugs in Ethereum Smart Contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference (ACSAC ’18). ACM, New York, NY,

USA, 664–676. https://doi.org/10.1145/3274694.3274737

[12] Christof Ferreira Torres, Mathis Steichen, and Radu State. 2019. The Art of The

Scam: Demystifying Honeypots in Ethereum Smart Contracts. In 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA,

1591–1607.

[13] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum Project Yellow Paper 151 (2014), 1–32.

https://smartcontractsecurity.github.io/SWC-registry/
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/3274694.3274737

	Abstract
	1 Introduction
	2 Background
	3 Related work
	4 Methodology
	5 Discussion
	6 Conclusion
	Acknowledgments
	References

