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ABSTRACT 1 
 2 

We introduce a rule based multiline holding criterion for regularity in branch and trunk networks 3 

accounting for all passenger groups. On the shared transit corridor, we consider synchronization 4 

at the merging or the diverging stop. The decision between holding for regularity or 5 

synchronization is taken by comparing the expected passenger cost of each control action. The 6 

proposed criterion is tested through simulation in a synthetic double fork network with different 7 

shares of transferring passengers, control schemes for regularity and synchronization. The results 8 

show that multiline control outperforms the state of the art schemes at the network level, stemming 9 

from benefits occurring at the first part of the route and the shared transit corridor and a 3.5% more 10 

stable joint headway compared to the other schemes. Additionally, it is advised to perform the 11 

synchronization at the diverging stop, as it proves to result in a more stable transferring time equal 12 

to the joint frequency of the corridor while reducing the transfer time variability up to -42.7%. 13 

 14 

Keywords: Holding strategy, trunk and branch networks, transfers 15 

  16 
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INTRODUCTION 1 

The inherent stochastic nature of public transport operations is a continuous challenge for service 2 

providers. Real time control assists in limiting the negative externalities that are interwoven with 3 

highly variable travel times and passenger demand.  4 

Control strategies have been classified spatially (station, interstation and other) by Eberlein 5 

et al (1), based on the solution approach (analytical solutions and optimization) by Zolfaghari et al 6 

(2) and based on the objective (headway regulation and waiting time minimization) by Ibarra Rojas 7 

et al (3). Among such strategies, holding has been shown to be an effective station-based strategy 8 

for both bus and rail systems(4). The holding criterion varies from schedule adherence and 9 

headway adherence to the minimization of passenger cost, and depends on the characteristics of 10 

the transit line. To begin with, in the first category holding times refer to scheduled departure times 11 

like the early works of Newell and Potts (5) and Potts and Tamlin (6) and the more recent works 12 

from van Oort el al (7).  13 

For high frequency lines, the objective is to maintain low headway variability and alleviate 14 

bunching. In literature, this has been addressed mostly by rule-based holding strategies that allow 15 

departure after a specific threshold (8–10) or regulate the headway accounting for both the 16 

preceding and the succeeding vehicles (11–13). Other approaches worth being mentioned are those 17 

of Zhao et al (14), that treat buses as agents with a negotiation algorithm, and Bartholdi and 18 

Eisenstein (15), who adopt quasi-regular headways in order to mitigate bunching phenomena. The 19 

last category of holding criteria focuses on minimization of passenger travel times. The two key 20 

components to minimize are waiting time and in-vehicle time. Minimization has been addressed 21 

using analytical models (16), heuristics (17) and optimization models (4). Gradually, capacity 22 

constraints (2) and boarding limits (18) have been added.  23 

Holding has been combined with other strategies such as stop skipping (19), transit signal 24 

priority (20) and a combination of stop skipping, speed adjustment and boarding limits by Nesheli 25 

and Ceder (21). It has also been used to synchronize transfers between lines in several works (22–26 

25). Holding for synchronization is a first level of interaction and control beyond single line level. 27 

Other studies consider the dynamics between lines that share a sequence of common stops. 28 

Hernandez et al (26) apply multiline holding control for a trunk using game theory. Argote 29 

Cabanero et al (27) extend the work of Xuan et al (13) for shared transit corridors and test it for 30 

the city of San Sebastian, Spain. Sanchez Martinez et al (28) compare different single line rule-31 

based holding strategies subject to the line and the joint headway for the trunk-and-branch tram 32 

network of the city of Boston. Laskaris et al (29) introduce a holding criterion for lines merging 33 

into a shared transit corridor which includes coordination prior to shared transit corridor and 34 

controls jointly the trunk adjusting holding time to passengers experiencing the control action.  35 

So far, the works on controlling multiple lines have been limited and mainly focused on 36 

the shared transit corridor. In trunk-and-branch networks there are different passenger groups that 37 

interact and are affected differently by decisions taken in favor of single line regularity or the 38 

regularity of the joint trunk. In addition, transfer synchronization has not been applied on shared 39 

transit corridor stops, thus its effects on the regularity of the trunk has not been investigated. 40 

In this study, we apply a multiline holding criterion for regularity in branch-and-trunk 41 

networks consisting of branches prior and after a shared transit corridor. In addition, at the first 42 

and the last common stop we combine the regularity criterion with a holding criterion for 43 

synchronization. The decision between regularity and synchronization is taken by comparing the 44 

passenger cost of each action. The contributions of this paper are twofold: 1) we assess the 45 

performance of multiline control compared to single line control and its effect on the cost of every 46 
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passenger group; and 2) we explore on which common stop synchronization can be feasible and 1 

the resulting impact on the regularity of the individual lines. The performance is assessed using 2 

simulation for scenarios with different control schemes, demand patterns and cost comparison 3 

horizons. 4 

The remainder of the paper is structured as follows: in the next section, the multiline 5 

regularity and the synchronization criteria are presented, then the case study employed to assess 6 

the performance of the proposed criteria is described, followed by a discussion of the results 7 

obtained. In the last section, conclusions are drawn. 8 

 9 

METHODOLOGY 10 

Network description 11 
We focus on networks that consist of multiple transit lines and have at least one set of common 12 

consecutive stops, which is sufficiently large to be considered in operations as a shared transit 13 

corridor (as illustrated in Figure 1). Stops served by a single line are considered as part of a branch. 14 

The different stop sets are separated at specific stops (switching stops), where the number of lines 15 

operating jointly upstream and downstream is different. Depending on the number of stops prior 16 

and after, switching stops are divided into merging and diverging stops. When considering 17 

switching stops and how they interact with the different lines, bus stops can be subdivided in three 18 

sets: initial branch stops (before a merge), final branch stops (after a diverge) and, in between the 19 

two switching stops, shared transit corridor.  20 

Passengers can transfer at any stop of the shared transit corridor. We therefore treat the 21 

stops as shared transfer stops as characterized by Hadas and Ceder (30), assuming that passengers 22 

will not walk to a nearby connecting stop and their transferring time is equal to the walking time 23 

between vehicles. Passengers originating at the initial branch need to transfer in order to reach a 24 

stop served by a connecting line. Passengers on the shared transit corridor can wait for the line that 25 

serves their final destination. Passengers performing trips within the shared transit corridor are 26 

assumed indifferent towards the services traversing the shared corridor and will therefore board 27 

the first bus arriving at the stop since this choice minimizes their travel time (31, 32). 28 

 29 

 30 
Figure 1 Schematic representation of the network 31 

 32 

Assumptions  33 
For the formulation of the criteria, the following assumptions are taken into consideration: 34 

 35 

 Vehicles are equipped with AVL technology; 36 
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 Historical data for the demand of the lines and transferring passengers are available; 1 

 Capacity constraints are not binding; 2 

Additionally, the current study has the following limitations: 3 

 4 

 The transferring criterion is limited to two lines; 5 

 Passengers perform transfers only at a predefined stop at the shared transit corridor. 6 

 One operational direction is considered. 7 

 8 

Regularity Criterion 9 
 10 

The holding criterion was introduced by Laskaris et al (33) and is derived from a generalized 11 

passenger travel time function, consisting of waiting time and in-vehicle time as presented in 12 

previous studies (29, 33). The general form of the holding criterion is given below: 13 

 14 
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  (1) 15 

with 16 
hold

ijkt   the holding time for trip k of line i at stop j in [time units]; 17 

exit

ijkt  the departure (exit) time in [time units]; 18 

exit

ijkt̂  the expected departure time from the next switching stop in [time units];  19 

ijkq  the occupancy of trip k of line i at stop j in [passengers]; 20 

jΛ  the sum of the arrival rates from current stop j until the end of the route in 21 

[passengers/time unit];  22 

 23 

Formula (1) sets the holding time as a function of the stop set currently visited, the 24 

passenger demand, and the transition between the stop sets of the network. The first two terms are 25 

introduced to regularize the headway of the line and the shared transit corridor, considering the 26 

passenger demand that is affected by the corresponding headway. The third term has the objective 27 

of smoothening the transition between different stop sets by estimating the expected departure time 28 

from the next switching stop downstream and ensuring that the vehicles will initiate their 29 

independent operation with lower headway variability. The fourth and final term is the ratio 30 

between the passengers on board and the sum of the arrival rates from the current and the remaining 31 

downstream stops until the end of the line. This passenger ratio is subtracted from the holding 32 

time, calculated by the previous terms, in order to limit the effect on other passenger groups. 33 

Each term in Equation (1) is weighted by the ratio between the corresponding passenger 34 

segment and the total demand. Furthermore, the weights include a decay function based on the 35 
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distance to the next switching stop to avoid controlling when relying on estimations with lower 1 

accuracy. The terms that regulate the headways (joint and line) at the current stop of the corridor 2 

share the same distance weight, compared to the projection term in the equation. A parameter α, 3 

set to 0.5, is applied to both to demonstrate their equal contribution to the estimation of holding 4 

time to regulate both headways.  5 
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  (2) 6 

Transferring Criterion 7 
We apply a transfer criterion as presented by Gavriilidou and Cats (25). The authors apply the 8 

following criterion to a single stop, given different levels of information on the passenger demand. 9 

In line with the formulation of the regularity criterion, we assume that passenger information is 10 

based on historical data on boarding, alighting and transferring passengers.  11 

The holding time needed for synchronization is set equal to the difference between current 12 

time and the expected arrival of the next vehicle of the connecting line and is given by the 13 

following formula: 14 

 15 

  hold,sync arrival current transfer

i i 1, jt t t     (3) 

 16 

with 17 
arrival

i 1, jt 
 the expected arrival time of the following vehicle of the connecting line i+1 18 

at stop j in [time units] 19 
currentt   current time in [time units]; and 20 
transfer   minimum transferring time between vehicles in [time units]. 21 

 22 

Passenger Cost Comparison 23 
At each of the shared transit corridor stops, holding aims to provide instructions to the driver in 24 

terms of dwell time in order to minimize the cost. Therefore, the decision to hold for regularity 25 

(Equation (1)) or for synchronization (Equation (3)) is based on the minimum passenger cost: 26 

 27 

 
wait transfer held

wait transfer heldPax _ Cos t c c c     (4) 
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 1 

Passenger cost consists of all different components of passenger travel time. Waiting time cost 2 
waitc   is the product of half of the predicted headway between consecutive arrivals and the arrival 3 

rate of the passengers at the current and the downstream stops of the rolling horizon: 4 

 5 

    
μ μ

wait arr hold,reg exit arr hold,sync exit

imk ijk imk μ imk ijk imk

m=j m=j

1 1
c =δ t +t -t Λ +(δ-1) t +t -t

2 2
   (5) 

 6 

Where μ is the number of subsequent stops considered for the comparison of passenger cost and δ 7 

a dummy variable which is equal to 1 for waiting time cost with holding for regularity and zero 8 

when holding for synchronization. Transfer cost transferc  (if the current vehicle will not be held for 9 

synchronization) is the time transferring passengers have to wait until the next arrival of the desired 10 

downstream line:  11 

 12 

  transfer transfer arrival arrival

i+1,j i,jc =δ p t -t 
   (6) 

 13 

The expected number of transferring passengers is estimated as the product between the fraction 14 

of alighting passengers a at the transferring stop and the sum of the arrival rates transferring from 15 

one line to another: 16 

 17 

 
i+1Nj

transfer

m,n

m=1 n=j

p =a λ  (7) 

 18 

Finally, the cost of held passengers heldc  is the product of the passengers on board and the additional 19 

time of the control action they experience:  20 

 21 

     held hold,reg hold,syncc =δ t q + δ-1 t q  (8) 

 22 

All components are weighted according to results of previous studies (34, 35) for a given 23 

comparison horizon. The comparison horizon for the cost of the waiting passengers is set to the 24 

number of remaining downstream common stops. Regularity and synchronization criteria can be 25 

paired at any stop of the shared transit corridor.  26 

 27 

 

hold,reg reg sync

hold

reg synchold,sync

t Pax_Cost Pax_Cost
t =

Pax_Cost Pax_Costt

 



 (9) 

CASE STUDY 28 

The holding criterion presented above is tested for a generic network consisting of two lines 29 

operating in one direction as depicted in Figure 1. Both lines consist of 30 stops, and have the same 30 

stop sets. The first ten stops of each line serve the passengers within the initial branch, followed 31 

by ten successive stops within the shared transit corridor, which is the set of common stops, and 32 

finally the last ten stops of each line compose the final branch of the lines. Both lines have the 33 
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same frequency of 10 min.  1 

The vehicles on each line are dispatched so that an ideal joint frequency of 5 min is planned 2 

for the common part and vehicles arrive alternately at the merging stop. Vehicles complete trips in 3 

one direction only, without being assigned for another trip to the opposite direction. The demand 4 

profiles of the lines are given in Figure 2. The majority of the demand is concentrated in the shared 5 

transit corridor while the two branches and the traversing passenger groups have similar demand 6 

shares. 7 

 8 

 9 
Figure 2 Demand Profiles of Lines 1 and 2 10 

 11 

For this experimental setup, one common stop is chosen as control point for both regularity and 12 

synchronization.  13 

 14 

Scenarios  15 

The first division of the scenarios is based on the two general passenger groups that benefit from 16 

the regularity criterion and the transferring criterion, respectively. In order to assess the effect of 17 

synchronization on the network, three scenarios with different shares of transferring passengers 18 

are tested corresponding to 5%, 10% and 15% of the total demand. Passengers are transferring 19 

only from line 1 to line 2, in order to capture potential differences in performance between the first 20 

and the connecting line.  The size of passenger groups affected by the regularity criterion remains 21 

unchanged through the different scenarios. The dynamics of the subgroups of passengers travelling 22 

to different parts of the network are assessed for the different parts of the network.   23 

An important factor is the stop where the choice between the regularity and transferring 24 

criterion is made. Two different cases are tested: in the first case, holding for synchronization is 25 

enabled at the merging stop and in the second case at the diverging stop of the corridor. Three 26 

different control schemes are compared: the first is a do-nothing scenario (NC) where no control 27 

action is taken. The second scheme is a single line rule based holding control strategy (EH) by 28 

Cats et al (12) that regularizes the headway subject to both the preceding and the succeeding 29 

vehicle while limiting the maximum allowed headway to a specific share of the planned headway. 30 
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Finally, the proposed cooperative passenger cost (CPC) criterion of Equation 1 is used. With CPC, 1 

at the merging and the diverging stop, we allow also holding for synchronization. The decision 2 

between holding for regularity or synchronization is taken by comparing the passenger cost using 3 

Equation 4. Three different scenarios are considered based on the number of subsequent stops 4 

taken into account when comparing the passenger cost. Passenger cost is compared at the current 5 

stop only, for five downstream stops and for ten downstream stops. The five stop horizon 6 

corresponds to half of the length of the downstream stop set, while the ten stop horizon represents 7 

the full length. 8 

In summary, the scenarios are divided in two categories based on the stop wherein either 9 

synchronization or regularity criterion are applied, in three further categories based on the control 10 

scheme chosen (NC-EH-CPC). A final subdivision is performed for CPC scenarios alone, based 11 

on the horizon chosen for comparison. For the sake of understanding, the scenario names bear the 12 

same form SxCyz, where x refers to the stop that passengers can transfer at (1:merging 13 

stop,2:diverging stop) and y to the control scheme used (1:No Control, 2: Even Headway and 3: 14 

CPC). For scenarios with CPC, z refers to the horizon (number of stops) used to compute the 15 

passenger cost (1: One stop 2: Five Stops and 3: Ten Stops). The scenarios are tested for three 16 

different levels of transferring passenger demand.  17 

All scenarios are simulated using the mesoscopic transit simulator BusMezzo (36). 18 

BusMezzo has been previously used to evaluate holding strategies (37). The simulator includes a 19 

set of implemented holding strategies which are called after the completion of the dwell time to 20 

calculate holding time before giving the departure time of the vehicle at each stop. In order to 21 

apply coordinated control, all interacting lines should be taken into consideration. After the 22 

completion of dwell times, the first step of the controller is to retrieve all lines sharing the same 23 

control strategy. The routes of the lines are then compared stop by stop in order to find the set of 24 

consecutive stops. If the number of consecutive stops is equal or greater than the minimum number 25 

for them to be considered a shared transit corridor (as pre-specified by the user) then the merging 26 

stop and the diverging stop are defined, otherwise both lines are treated as individual, according 27 

to Laskaris et al (2016). The remaining stops sets are then characterized following their relation to 28 

the identified shared transit corridor (initial branch - final branch). Regularity holding is adopted 29 

according to the characterization of the current stop.  30 

If synchronization between lines is allowed, the expected arrival of the next vehicle of the 31 

connecting line is estimated by summing the scheduled riding time between the last visited stop 32 

and the transfer stop.  33 

For the calculation of passenger cost, the length of the comparison horizon in terms of 34 

number of stops is needed as input. The regularity criterion’s passenger cost is derived from the 35 

expected headways along the horizon and the historical arrival rates for the passengers at stops. 36 

For the transferring passenger cost, the number of transferring passengers is also given in arrival 37 

rates via an input file. The arrival rates for the transferring passengers result from the number of 38 

transferring passengers as recorded in the no control scenario. 39 
 40 

RESULTS 41 

Corridor Results 42 

The shared transit corridor can be considered as the most important stop set, since the majority of 43 

the demand is generated or travels through this part of the network. Passengers on this part of the 44 
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network benefit from the joint frequency of vehicles from different lines. Table 1 shows the 1 

coefficient of variation of the joint headway on the shared transit corridor for all different 2 

scenarios. Undeniably, CPC yields the lowest variability by accounting for all lines that mutually 3 

interact. The only exception appears in the scenario which allows synchronization at the last stop, 4 

combined with cost comparison accounting for the diverging stop alone. The significantly high 5 

variability of the joint headway is a result of the number of synchronization events that take place 6 

at the last stop.   7 

 8 

TABLE 1 Coefficient of Variation of Joint Headway 9 

Joint Headway 
Merging Stop 

(S1) 

Diverging 

Stop (S2) 

5% Transferring 

Passengers 

C1 0.504 0.491 

C2 0.412 0.401 

C31 0.398 0.403 

C32 0.388 0.392 

C33 0.389 0.393 

10% Transferring 

Passengers 

C1 0.521 0.490 

C2 0.406 0.381 

C31 0.393 0.419 

C32 0.409 0.388 

C33 0.403 0.387 

15% Transferring 

Passengers 

C1 0.518 0.515 

C2 0.435 0.427 

C31 0.401 0.460 

C32 0.399 0.423 

C31 0.399 0.401 

 10 
Two representative examples of scenario with 15% share of transferring passengers with 11 

synchronization allowed at the merging and the diverging stop, respectively, are illustrated in 12 

Figure 3. Recall that this scenario has the highest share of transferring passengers. The progression 13 

of the coefficient of variation of joint headways along the shared transit corridor is plotted against 14 

the corridor stops. With CPC, coordination between lines initiates at the branches and vehicles 15 

enter the shared transit corridor with a lower coefficient of variation. CPC manages to maintain 16 

low variability for the majority of the corridor stops until the point where a transition to single line 17 

operation begins. The most notable difference between the two scenarios is the behavior at the stop 18 

where synchronization is allowed. While synchronization rarely occurs in the merging stop 19 

scenario, this is the most frequent control decision in the diverging stop scenario. Vehicles held for 20 

synchronization must therefore wait for a time equal to the joint headway, which increases the 21 

level of variability accordingly. However, since this happens at the last common stop, it does not 22 

affect the joint operation.  23 

 24 
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 1 
Figure 3 Coefficient of Variation of Joint Headway per Stop 2 

 3 

The passenger costs for all passengers using the shared transit corridor are summarized in 4 

Table 2. CPC outperforms NC and EH in terms of waiting time in all scenarios. NC results in the 5 

lowest in-vehicle time because the reduction of waiting times in the holding control scenarios 6 

comes at the cost of an increased in-vehicle time. Among the scenarios where control is applied, 7 

CPC scenarios results to lower in vehicle time compared to EH scenarios. Again, when 8 

synchronization is chosen more frequently, it requires longer holding times and this is noticeable 9 

in scenario S2C31. The in-vehicle delay is significantly higher compared to the scenarios with 10 

different horizons and control schemes. 11 

 12 

TABLE 2 Passenger cost at the shared transit corridor 13 

  

5% Transferring Passengers 10% Transferring Passengers 15% Transferring Passengers 

Waiting 

Time 

[sec] 

In 

vehicle 

time 

[sec] 

Travel 

Time 

[sec] 

Waiting 

Time 

[sec] 

In 

vehicle 

time 

[sec] 

Travel 

Time 

[sec] 

Waiting 

Time 

[sec] 

In 

vehicle 

time 

[sec] 

Travel 

Time 

[sec] 

S1C1 169.7 151.4 490.9 167.6 152.2 487.4 176.1 152.2 504.5 

S1C2 163.3 154.0 480.6 161.5 155.0 477.9 166.8 155.1 488.8 

S1C31 161.6 152.5 475.6 161.2 153.9 476.4 164.3 153.0 481.5 

S1C32 161.2 152.1 474.5 161.2 154.2 476.7 164.1 152.9 481.1 

S1C33 162.0 152.7 476.7 161.5 153.9 476.8 164.1 152.9 481.1 

S2C1 173.3 150.8 497.4 172.9 151.3 497.0 173.6 152.3 499.4 

S2C2 165.9 153.0 484.8 164.1 154.1 482.4 164.8 154.8 484.4 

S2C31 164.1 154.8 482.9 154.0 161.2 469.2 149.9 163.5 463.4 

S2C32 163.9 152.8 480.7 163.6 153.5 480.6 159.8 156.8 476.3 

S2C33 163.9 152.9 480.6 164.4 153.2 482.1 160.9 154.2 476.0 

 14 
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Line Level Results 1 

The coefficient of variation of headway per stop is shown in Figure 4 for line 1 and in Figure 5 for 2 

line 2. The performance improves significantly compared to NC and as expected EH is the most 3 

effective strategy regulating single line operation. With CPC, the evolution of the variability index 4 

follows similar behavior with the lines in merging and diverging fork networks (29, 33). For both 5 

lines, the variability of the headway on the branch prior to the shared transit corridor starts 6 

increasing when the coordination is prioritized, and the regularity of the joint operation becomes 7 

more important. At the end of the corridor, the criterion shifts again from joint operation to single 8 

line operation and the loss of performance cannot be recovered until the end of the line. An 9 

interesting trend is apparent for the line that is held for synchronization at the diverging stop. In 10 

the scenarios with high shares of transferring passengers, scenario S2C33 shows a significant 11 

reduction in the coefficient of variation at the diverging stop compared to the scenarios bearing 12 

other cost comparison horizons. This scenario has the lowest share of holding for synchronization. 13 

No comparable effects for the connecting line (Line 2) can be seen. Line 2 performance is 14 

comparable to that of a diverging line as in (33), with a loss of performance due to the transition 15 

and a late recovery in the final branch. Line 2 is held only for regularity and the transferring 16 

passengers at the diverging stop are treated similarly to passengers travelling from corridor to 17 

branch. 18 

 19 

 20 
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 1 
Figure 4 Coefficient of Variation of Headway per Stop of Line 1 2 

 3 
 4 
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 1 
Figure 5 Coefficient of Variation of Headway per Stop of Line 2 2 

 3 
Table 3 shows the passenger costs for line 1 and line 2. As expected, EH outperforms CPC 4 

in terms of line regularity for both lines, meeting its objective. Compared to NC, CPC achieves 5 

better results in terms of waiting time with a lower cost for the on-board passengers. In vehicle 6 

time with CPC slightly increases or remains at the same level as NC. The only exception is  the S2 7 

scenario set for 15% of transferring passengers. Due to the high number of synchronization events, 8 

passengers on line 1, who are favored by the regularity of the line, are in turn penalized by an 9 

additional time waiting for line 2.  10 

 11 

 12 

 13 

 14 

 15 

 16 
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TABLE 3 Passenger costs for Line 1 and Line 2 1 

  

5% Transferring Passengers 10% Transferring Passengers 15% Transferring Passengers 

Waiting 

Time 

[sec] 

In 

vehicle 

time 

[sec] 

Travel 

Time 

[sec] 

Waiting 

Time 

[sec] 

In 

vehicle 

time 

[sec] 

Travel 

Time 

[sec] 

Waiting 

Time 

[sec] 

In 

vehicle 

time 

[sec] 

Travel 

Time [sec] 

  Line 1 

S1C1 314 144.2 772.2 315.2 144.4 774.9 314 144.4 772.3 

S1C2 304.2 146 754.4 308.3 147.4 764 304.4 147.1 755.9 

S1C31 308.6 145.4 762.5 310.2 145.9 766.3 310.2 145.3 765.7 

S1C32 307.3 145 759.5 310.5 146 767.1 310.2 145.2 765.6 

S1C33 309 145.6 763.5 310 146.2 766.3 310.2 145.2 765.6 

S2C1 314.1 143.9 772.2 313.4 144.3 771.1 314.4 144.7 773.4 

S2C2 304.3 145.7 754.2 308.3 146.3 762.9 305.2 147.1 757.6 

S2C31 308.6 146.7 764 309.1 151.2 769.3 310.4 153.2 774 

S2C32 308.9 145.7 763.5 306.7 145 758.5 309.4 147.5 766.4 

S2C33 308.9 145.7 763.5 306.7 144.8 758.3 308.6 146 763.2 

  Line 2 

S1C1 310.2 143.7 764.1 310.7 144.1 765.5 315.4 144.7 775.4 

S1C2 305.4 146.7 757.4 304.7 146.6 756 304.9 146.7 756.5 

S1C31 308.4 145 761.7 308.1 145.9 762.1 310.1 144.9 765.1 

S1C32 308.4 144.9 761.6 308.1 145.6 761.7 309.9 145 764.8 

S1C33 309.3 145.2 763.8 308.6 145.5 762.8 309.9 145 764.8 

S2C1 311.8 143.8 767.3 316.6 144.3 777.4 312.2 144.6 769 

S2C2 305.8 145.9 757.5 307 146.1 760.1 303.5 146.5 753.4 

S2C31 310.4 145.5 766.4 309.5 145.1 764.1 308.1 145.3 761.4 

S2C32 308.6 146.7 764 309.1 151.2 769.3 310.4 153.2 774 

S2C33 308.9 145.7 763.5 306.7 145 758.5 309.4 147.5 766.4 

 2 

 3 
The control decisions have different effects on each of the six passenger groups in the 4 

double fork network. Figure 6 illustrates the relative passenger cost compared to NC at the network 5 

level for all scenarios. The biggest gain from CPC is achieved prior to and within the shared transit 6 

corridor. The passengers traversing different stops sets are the most crucial passenger groups for 7 

CPC, since they experience the control action for regulating the operation of each stop set and the 8 

transition between stop sets. The reduction in passenger cost is lower with CPC than with EH. For 9 

the scenarios with synchronization at the diverging stop, passenger costs increase significantly in 10 

S2C31. Beside the cost increase for passengers travelling from the initial branch to the final branch, 11 

the cost increases also for the passengers travelling from the corridor to the branches in contrast to 12 

scenarios S2C32 and S2C33. EH is superior for the final branch in all scenarios. 13 

 14 

 15 
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 1 
Figure 6 Network passenger cost per passenger group 2 

 3 

Transfer Waiting Time 4 

Table 4 summarizes the average transfer time and its standard deviation for each scenario.  5 

The lowest average transfer time is reported in the NC and EH scenarios. In both instances lines 6 

operate independently and there is no corrective action for the joint headway or bunching between 7 

lines. On the other hand, on the shared transit corridor CPC aims to maintain or restore regularity 8 

based on the joint frequency of the common stop set. Vehicles among different lines are therefore 9 

controlled in order to maintain a stable interline headway and reduce interline bunching. As a 10 

result, CPC offers a more reliable transfer time due to the corridor control for regularity. S2C32 11 

resulted to 42.7% less variable transfer time compared to S2C2. Synchronization has conflicting 12 

objectives with respect to regularity in a shared transit corridor, and by applying multiline control 13 

and seeking for the optimum for the network a longer but reliable transfer time can be achieved 14 
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compared to potentially shorter but dramatically unreliable operations, inflicting thus occasionally 1 

very long delays.   2 

 3 

TABLE 4 Average Transfer Time and Standard Deviation 4 

  

C1 C2 C31 C32 C33 

Avera

ge 

Trans

fer 

Time 

[sec] 

St 

Deviati

on 

Avera

ge 

Trans

fer 

Time 

[sec] 

St 

Deviati

on 

Avera

ge 

Trans

fer 

Time 

[sec] 

St 

Deviati

on 

Avera

ge 

Trans

fer 

Time 

[sec] 

St 

Deviati

on 

Avera

ge 

Trans

fer 

Time 

[sec] 

St 

Deviati

on 

M
er

g
in

g
 S

to
p

 S
1

 

5% 

Transferring 

Passengers 

287.8 39.7 303.2 42.3 288.6 34.5 295.7 29.1 289.1 30.2 

10% 

Transferring 

Passengers 

288.5 37.3 291.0 34.7 303.6 30.8 293.2 26.5 307.3 28.2 

15% 

Transferring 

Passengers 

295.5 42.6 285.3 43.2 299.0 25.4 297.0 26.6 299.1 25.4 

D
iv

er
g

in
g

 S
to

p
 S

2
 

5% 

Transferring 

Passengers 

291.3 34.5 308.0 43.2 304.5 28.8 318.1 24.7 310.8 26.6 

10% 

Transferring 

Passengers 

287.1 38.2 286.9 34.7 299.0 30.0 297.5 24.8 301.5 30.0 

15% 

Transferring 

Passengers 

294.7 38.8 282.6 41.3 295.9 27.9 293.6 26.6 288.9 24.5 

 5 

Controller Decisions 6 

The frequency of each control decision per scenario is summarized in Table 5. 7 

 8 

  9 
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 1 

TABLE 5 Controller Decisions 2 

Comparison Horizon 10 Stops 1 Stop 5 Stops 

 
Regulari

ty 

Synchronizat

ion 

Regulari

ty 

Synchronizat

ion 

Regulari

ty 

Synchronizat

ion 

Merging Stop 

M
er

g
in

g
 S

to
p

 5% Transferring 

Passengers 
100% 0% 100.0% 0.0% 100% 0% 

10% Transferring 

Passengers 
100% 0% 99.0% 1.0% 100% 0% 

15% Transferring 

Passengers 
100% 0% 99.5% 0.5% 100% 0% 

  Diverging Stop 

D
iv

er
g

in
g

 S
to

p
 

5% Transferring 

Passengers 
95.4% 4.6% 66.4% 33.6% 94.6% 5.4% 

10% Transferring 

Passengers 
92.4% 7.6% 10.1% 89.9% 85.2% 14.8% 

15% Transferring 

Passengers 
87.1% 12.9% 1.1% 98.9% 47.2% 52.8% 

 3 
 4 

Controlling for regularity at the beginning of the shared transit corridor is dominant due to 5 

the great penalization in terms of passenger cost of the corresponding group if synchronization is 6 

selected. Independently from the length of the horizon, the majority of the passengers are 7 

concentrated downstream on the shared transit corridor and benefit from the regularization of the 8 

system. Synchronization at the merging stop can cause extremely long waiting times for the 9 

passengers along the shared transit corridor. Therefore, when the comparison of passenger cost 10 

extends beyond the current stop, the system focuses exclusively on maintaining regularity. When 11 

comparing the cost at the current stop alone, control for synchronization occurs, but comprises 12 

only 1% of the control decisions. 13 

The results are significantly different when synchronization is allowed at the diverging stop 14 

as opposed to the merging stop. The comparison horizon extends to the branch stop set. Demand 15 

on the branches is lower than on the shared transit corridor, which makes synchronization a feasible 16 

option. Similar to synchronization at the merging stop, vehicles are held mostly to restore 17 

regularity, but the controller chooses to hold for synchronization even in Scenario 1 with a low 18 

share of transferring passengers. The share of synchronization decisions increases with the share 19 

of transferring passengers and with the shortening of the comparison horizon. In the most myopic 20 

scenario (current stop cost comparison), synchronization is the most frequent choice in scenarios 21 

with 10% and 15% share of transferring passengers.   22 

CONCLUSIONS 23 

In this paper, a multiline criterion for regularity is introduced and tested using a synthetic double 24 

fork network with two lines. In addition, synchronization is allowed at either the merging or the 25 

diverging stop. The criterion for choosing between synchronization and regularity is the resulting 26 

passenger cost for each control action.  27 

Overall, the results show that multiline control is beneficial for the network, resulting in a 28 
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lower overall passenger cost. This result comes from the substantial gains along the shared transit 1 

corridor. In line with the results for a merging fork network (29), coordination helps to achieve a 2 

joint headway with lower variability prior to the common stop set and this is maintained along the 3 

corridor. Although the performance of CPC at the individual line level is not as high as single line 4 

control, significant cost reduction with lower in vehicle delay for the lines (often a shortcoming of 5 

holding control strategies) is achieved compared to no control.  6 

With a high concentration of demand on the shared transit corridor, from a control 7 

perspective it is not recommended to favor synchronization over regularity at the merging stop 8 

since the expected synchronization cost is very high for the system. At the diverging stop, 9 

synchronization becomes feasible and is the dominant choice under a range of demand distribution 10 

settings for shorter cost comparison horizons. However, at the diverging stop and after regulating 11 

the joint operation, transferring passengers benefit mostly by the low variability of the joint 12 

headway and their average transfer time corresponds to the headway of the shared transit corridor.  13 

This study introduces a new holding criterion that can be applied in a common type of 14 

transit networks, the branch and trunk one. The criterion is easy to be implemented in real time as 15 

it mostly relies on the position of the vehicles in real time and historical data for the passenger 16 

demand. Synchronization is also integrated in this control scheme and recommendations are 17 

provided on which stop it can be feasible and what will be the consequences to each of the 18 

passenger groups. Based on our findings, synchronization should be applied at the last common 19 

stop to be feasible and to avoid affecting the joint operation at the common part.  20 

Future research will focus on extending the evaluation of the criterion to a greater number 21 

of lines and more transfer options. Moreover, similarly to the work of (38), different levels of real 22 

time passenger data will be integrated to assess their potential for estimating the actual passenger 23 

cost and hence contribute to more informed control decisions.  24 
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