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Abstract.
Cloud computing has become one of the major computing paradigms. Not only

the number of offered cloud services has grown exponentially but also many different
providers compete and propose very similar services. This situation should eventu-
ally be beneficial for the customers, but considering that these services slightly differ
functionally and non-functionally -wise (e.g., performance, reliability, security), con-
sumers may be confused and unable to make an optimal choice. The emergence of
cloud service brokers addresses these issues. A broker gathers information about ser-
vices from providers and about the needs and requirements of the customers, with
the final goal of finding the best match.

In this paper, we formalize and study a novel problem that arises in the area of
cloud brokering. In its simplest form, brokering is a trivial assignment problem, but
in more complex and realistic cases this does not longer hold. The novelty of the
presented problem lies in considering services which can be sold in bundles. Bundling
is a common business practice, in which a set of services is sold together for the lower
price than the sum of services’ prices that are included in it. This work introduces a
multi-criteria optimization problem which could help customers to determine the best
IT solutions according to several criteria. The Cloud Brokering with Bundles (CBB)
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models the different IT packages (or bundles) found on the market while minimizing
(maximizing) different criteria. A proof of complexity is given for the single-objective
case and experiments have been conducted with a special case of two criteria: the
first one being the cost and the second is artificially generated. We also designed and
developed a benchmark generator, which is based on real data gathered from 19 cloud
providers. The problem is solved using an exact optimizer relying on a dichotomic
search method. The results show that the dichotomic search can be successfully
applied for small instances corresponding to typical cloud-brokering use cases and
returns results in terms of seconds. For larger problem instances, solving times are
not prohibitive, and solutions could be obtained for large, corporate clients in terms
of minutes.

Keywords: Applied operations research, Cloud computing, Cloud brokering, Op-
timization, Algorithms, Computational complexity

1. Introduction

Cloud computing [25] has become a widely-accepted paradigm allowing to access on-
demand distributed computing and storage resources in a transparent and seamless
way. It permits consumers to use a wide range of services without dealing with
hardware or system configurations [3]. These benefits justify why the Infrastructure-
as-a-Service (IaaS) model that offers a functional final application, is seen as the one
with the highest potential in terms of market size [10]. New business models even
feature free services (e.g., Google, Facebook) by relying on the commercialization of
end-users data for marketing purpose.

In the past years the number of cloud services and cloud service providers has
thus skyrocketed but with a certain lack of transparency. The plethora of available
services provide companies the opportunity to establish robust IT solutions relying
on security, reliability, redundancy and trust [28] while minimizing their overall cost.
However, selecting the appropriate services at the best price is increasingly difficult
for end-users. Indeed, numerous cloud services look-alike but in reality differ in terms
of price, performance or reliability.

One of the answers to this problem is cloud service brokering [16], a model in
which a trusted third party, the Cloud Service Broker (CSB) is matching the needs
of users with services of providers. The involvement of CSBs is beneficial not only for
customers, but also for providers, as CSBs can attract more customers by for instance
suggesting the most appropriate services matching customers’ needs.

Cloud service brokering faces many challenges. Among them there are the techni-
cal integration and customization of the various offers, the discovery and aggregation
of the different non-uniform offers of providers, and the matchmaking between clients’
needs and available offers. To complicate the picture, providers often apply bundling.
A bundle consists of services from single provider and its price is lower than the price
of the services that compose that bundle but sold separately. In other words, buying
bundled products provides a discount. It will be proven in the paper that considering
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the notion of bundles makes the problem strongly-NP hard.
Despite the high relevance of the problem, to our best knowledge, it has not

yet been formally modeled and studied in the literature. In this paper, we model the
cloud brokering problem as multi-objective optimization one. To explore the problem,
a dichotomic approach providing the exact solution set is applied. It ensures that all
solutions on the convex hull of the Pareto front are found. This approach proves to
be applicable on instances of reasonable size. Additionally, the set of exact solutions
can be used as benchmark for approximation algorithms.

The main contributions of this paper are summarized as follows:

• The Cloud brokering with bundles (CBB) problem is defined.

• The proof of strong NP-hardness of CBB problem is provided.

• An instance generation tool is developed, based on the real data delivered by
service providers.

• An exact algorithm solving the problem is presented. Extensive computational
simulations highlight the specificity of the problem, that is the instance size
solved in feasible time and the impact of the instance parameters.

The paper is organized as follows. Section 2 discusses the state of the art works
related to the cloud brokering problem. Section 3 defines the cloud brokering problem
and introduces the corresponding mathematical model. Section 4 includes the proof of
the strong NP-hardness of the problem. Section 5 describes the benchmark generator
based on the real data input. Section 6 presents the proposed multi-objective, exact
solution method. Section 7 shows the experimental results accompanied by discussion.
Section 8 summarizes the study and highlights the future work directions.

2. Related Works

Cloud brokering [25, 3] is one of the resource allocation problems crucial for cloud
computing [15]. It can span across multiple layers of cloud computing, but some of
them gathered more focus of researchers than others.

The International Organization for Standardization defines a cloud service broker
(CSB) as a “cloud service partner that negotiates relationships between cloud ser-
vice customers and cloud service providers” [17]. A cloud service partner is further
explained as a “party which is engaged in support of, or auxiliary to, activities of
either the cloud service provider or the cloud service customer or both”. In other
words CSB becomes third party that negotiates relationship between (Cloud Service
Providers, CSP) and (Cloud Service Client, CSC). It can change offers, modify them
to fit customers’ needs and to fulfill providers demands at the same time.

Cloud brokers can be described and divided by their main functionalities (various
specializations of cloud broker services). One can observe three main types of broker-
ing services: aggregation, integration, and customization. Aggregation-type brokers
provides platforms to bring together both providers and clients. The main idea is
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to presents offers from multiple CSP services at one central place - like a big CSP
supermarket. This kind of platform is introduced as an unified service. In general it
offers one billing (and provisioning) system. Client can order services from different
providers in faster and more comfortable way. The most often aggregation CSBs pro-
vide wide variety of services and possibilities and serve different type of customers,
from the individual ones to the biggest corporations. Integration CSB provide the
new, common and unified system that is built on the basis of existing solutions. The
main tasks to tackle are (but not limited to): integration of private and public clouds,
bridging between CSPs, taking care of security issues, data exchange problems and
security, proper sharing of data. Integrators are most often focused on the business-
to-business sector. The customization type of brokers are supposed to be the most
sophisticated from the three. On the one hand, they can include both aggregation
and integration properties. On the other, they can offer other added-value services or
even the new services that are dedicated (not offered by the CSPs) to the brokering
system. Normally they are implemented in the CSB platforms, but in some cases
they might include changes in the CSC’s workflows. Customization CSBs are often
specialized to offer unique purpose-oriented platforms (security, technology, specific
field, local markets, managing, consolidation, etc.).

However, it is worth to note that in real-life cases, it’s often impossible to clearly
classify a company to the specific type of those three. Many of cloud brokers work in
multiple fields, trying to respond to client needs.

Even in case of rational, perfectly-informed customers, brokering can provide ad-
vantages such as aggregating clients requests, better allocation of less flexible cus-
tomers’ demands, and balancing across providers infrastructures, as shown in [23],
where a case study where brokering is compared with direct ordering of cloud services
by customers was presented.

IaaS studies form the bulk of the literature on cloud brokering optimization, using
well established models from scheduling, as well as distributed and parallel comput-
ing research. In this group of studies, the broker, typically a centralized entity, is
allocating a set of user requests on cloud infrastructures offered by providers. These
optimization problems may include the time dimension, becoming then scheduling
problems. The most prominent objective is the cost minimization, but there could be
additional objectives such as customer satisfaction, performance, or energy-efficiency
related. Prasad et al. [32] proposed an algorithm (called CLOUD-CABOB) to solve
the optimization problem where cloud users submit their requirements, and in turn
vendors submit their offers containing price, QoS and their prepared sets of resources.

Nesmachnow, Iturriaga and Dorronsoro [30] propose a set of heuristics and a local
search for allocation of users VM requests to instances reserved by a broker. Tordsson
et al. [39] solve the VM placement brokering problem using integer programming
provided by the CPLEX solver1. Nir et al. [31] also use the same integer programming
approach and the CPLEX solver to optimize the brokering in case of cloud offloading,
known also as hybrid cloud. Lucas-Simarro et al. [22] consider a practical problem of
allocating VM instances on a set of clouds with OpenNebula [27] virtual infrastructure
manager, choosing the cheapest allocation for each instance. Aazam and Huh [2]

1CPLEX is a product of IBM corp.
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propose a dynamic broker, which predicts the behavior of user based on relinquish
probability, that is the likelihood that the user will cease to use the requested services.
The study involves also an advanced refund mechanism based on multiple criteria. It
is further extended to Amazon cloud model and historical record integration [1]. Zhou
et al. [46] propose a virtual resource renting methodology which maximizes the profit
taking into account the priority of tasks and the estimations of future prices. Lucas-
Simarro et al. [21] solve the IaaS problem in a dynamic pricing setting. Moens et al.
study the problem of placement of application features on resources, including not only
the server utilization cost, but also cost incurred by failed deployments of features
[26]. The CLOUDRB framework [38] additionally extends the brokering model by
adding energy-efficiency as an objective and extensive cloud job descriptions, which
includes resources requirements and data transfer. The problem is solved by relying on
particle swarm optimization. The cloud brokering IaaS problem may be also modeled
as a negotiation process, solved by applying for instance an adaptive probabilistic
behavioral learning system [33]. Kim et al. propose a brokering system for scientific
workflows, which optimizes a multi-criteria problem using an aggregated objective
function. The brokering part of the system selects the length of service period, to
minimize the cost of VMs lease [19]. The idea of broker exploitation of pricing model is
studied in [42] and solved using approximate dynamic programming. The theoretical
study of user request aggregation under a concave cost function assumption together
with Randomized Online Stack-Centric Scheduling Algorithm (ROSA) was proposed
in [45].

SaaS brokering, despite its market importance, was less covered by the researchers.
The SaaS aspect is covered as the parameters and arrival rate of tasks [9], however
the problem is still modeled as an IaaS one.

Attempts to solve the problem in a distributed environment of multiple parties with
diverging interest are commonly modeled as multi-agent problems. They commonly
involve game theory to analyze the stable states of cloud brokering scenarios and
optimal strategies for each party.

Gutierrez-Garcia and Sim [14] propose an agent based system, where a broker
agent is responsible for composing of a complex services from simple services as re-
quested by user agents. This work focuses on the feasibility of distributed composition
rather than on the cost optimization. A work by Sim [37] describes an agent-based
system with multiple competing brokers which maximizes the users utility functions
defined in the terms of price and time-slot preferences. The problem is formulated as
series of negotiations and is solved using a coordination scheme. Guan and Melodia
[13] analyze the scenario with multiple cooperative brokers. They find out that coop-
eration is beneficial in settings with only few brokers, but its importance when there
is large the number of brokers. Another study [34] shows that even for selfish service
provider, long term cooperative strategy is more beneficial than naive maximization
of each providers revenue.

The presented related works argues the validity and importance of the cloud ser-
vices brokers in the cloud computing landscape. The game-theoretic part of the state
of the art motivates additionally the usage of single broker, as it argues that cloud
federations are more beneficial to cloud providers. Additionally, the literature fo-
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cuses on resource-allocation motivates the advantages for users, who can benefit from
aggregation and large-quantity discounts.

To the best of our knowledge, the problem of SaaS applications purchase is only
covered by few studies. In general, there is no study that covers the aspect of the
aspect of bundling.

It is worth mentioning that the Internet Shopping Optimization Problem (ISOP)
[7] has some similarities with Cloud Brokering problem. Basic version of the ISOP
could be defined as follows. A customer wants to buy a set of products N = {j =
1, . . . , n}, where n is the number of products from online stores. A list of available
shops is M = {i = 1, . . . ,m}, where m is the number of shops. One would like to buy
all desired products at the minimum cost. This final cost also includes all delivery
prices which are associated with the shops (the ones that one or more products were
bought). The multiset Ni contains the available products from shop i. Each product
j ∈ Ni costs cij . Delivery cost is denoted as di for each shop i. The delivery cost is
flat rate and it is charged just once if one or more products are bought from shop i.
The ISOP is the minimization of the total cost of the shopping list N , including
delivery costs. This is formally described as the finding of a disjoint selection of
the products purchased from the different shops X = (X1, . . . , Xm). Among all the
products available at a given shop we should make a selection Xi ⊆ Ni. One have to
buy all products from the shopping list,

⋃m
i=1Xi = N . The goal is to minimize total

cost including the flat delivery costs: F (X) =
∑m

i=1

(
δ (|Xi|) di +

∑
j∈Xi

cij

)
, where

|Xi| is the cardinality of the multiset Xi, and δ(x) = 0 if x = 0 and δ(x) = 1 if x > 0.
Few years ago Wojciechowski and Musial [43] described their idea for a web-based

application / system dedicated to pharmacy products shopping. The idea was to
propose different possibilities to customers to find shops in a geographically defined
area that they can go and realize their shopping list at different total price. It could
be perceived as a basic prototype of the ISOP, which was presented and formally
modeled as an optimization problem [7]. It was proved that the problem is NP-
hard in the strong sense. Seeing that the targeted application of ISOP should be
an on-line program there was designed a simple, fast heuristic solution [44] proposed
as a representative of greedy solutions. Beside its obvious advantages (very fast
response, generally speaking good quality of results) subsequent analysis showed its
solution inefficiency with a very specific (unrealistic, but still) situations and data
sets. Therefore, a new Forecasting algorithm was proposed [5]. These heuristics are
used to validate the correctness and performance of the proposed solution methods
presented in the original article about ISOP [7].
Recently different types of the ISOP have been examined. Among other one should
notice:

• version with price sensitive discounts [4, 5], where authors used an algorithm
presented in [8],

• ISOP with two discounting functions (both based on the total amount of money
spent in a shop) including price and shipping costs discounts [6]

Further evaluation of the Internet Shopping Optimization Problem with its optimiza-
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tion can be found in [20, 29]. Furthermore, some motivations and similarities can be
found in research concerning stock market, namely considering multi-period portfo-
lio optimization problem. Sawik introduced selected multi-objective methods for the
problem where the objective is to allocate the wealth on different securities [35]. Goal
is to optimize the portfolio expected return, the probability that the return is not less
than a required level. Problem can be somehow similar with the CBB problem when
we link stocks, securities with services and bundles.

Models and algorithms issued from ISOP appear useful for addressing the general
Cloud Brokering problem. Cloud Brokering with Bundles definition and modeling
also can benefit from the above mentioned knowledge and research.

3. Problem Definition

The Cloud Brokering with Bundles (CBB) is an optimization problem. To introduce
the problem we decided to define and analyze the computational complexity of the
single objective CBB problem. Subsequently, we presented the bi- and multi-objective
versions of the problem, where the modeling and possible solutions are combined of
many single objective problems. The objective (single version) of CBB is to minimize
the cost of the selection of cloud services, which are sold in bundles, such that all cloud
services required by one customer are included in chosen bundles. Additionally, each
provider has a limited number of each type of the bundle. The problem is formally
defined as (cf. Table 1 for the denotation of symbols):

min F =
∑
i∈P

∑
j∈Bi

dijxij , (1)

s.t.
∑
i∈P

∑
j∈Bi

qsijxij ≥ rs ∀s ∈ {1, ..., |S|}, (2)

xij ≤ uij ∀i ∈ {1, ..., |P |}, ∀j ∈ {1, ..., |Bi|}, (3)

xij ∈ N, (4)

qsij ∈ N. (5)

The objective function F (Eq. 1) is equal to the total cost of all bundles purchased
from all providers, where xij is a non-negative integer, which determines how many
bundles of type j are ordered from provider i. There are four constraints. The first
constraint (Eq. 2) ensures that the number of obtained service units is greater or
equal to the required number of service rs, where s is the service type. The number
of obtained service units is calculated as the sum of the numbers of ordered bundles
multiplied by the number of service s units available in bundle j (qsij).
The second constraint (Eq. 3) ensures that the number of bundle type j units bought
from provider i (denoted as xij) is not higher than the maximum number of bundle
type j units available at provider i (namely uij). According to cloud computing
paradigm [36] a user should not need to take care of the limitations, but in practice
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there are often limitations on how many service instances can be ordered ad hoc, even
for the largest cloud providers.
The third and fourth constraints (Eqs. 4, 5) ensure that both xij and qsij are natural
numbers (N).

Table 1. Table of symbols

Symbol Explanation
F Objective function
P Set of providers
B Set of bundle types
Bi Bundle set of provider i
S Set of service types
bj bundle of type j
dij price associated with bundle type

j sold by provider i

qsij
number of units of service type s included in bundle j
sold by provider i

rs required number of service units
of type s

uij maximum number of bundle type
units j available at provider i

xij
number of bundle type j units bought from provider i
(decision variable)

4. Computational Complexity

In this section we analyze the computational complexity of the Cloud Brokering with
Bundles (CBB) problem. Moreover, we will prove its NP-hardness by proving the NP-
completeness of its decision counterpart problem (let us call it CBB-D). The latter has
the same input as CBB plus additional parameter y. The question is whether or not
there exists a selection of bundles containing all of the required services with the total
cost of y or less. Furthermore, we shortly discuss possibilities of CBB approximation.

Proposition 1. Cloud Brokering with Bundles problem is strongly NP-hard even if
all costs of bundles are equal to one and there is just one provider.

Proof. Let us construct a pseudo-polynomial transformation from the well-known,
strongly NP-complete problem, Set Covering (Minimum Cover) Problem (SCP) [18,
12] to the CBB-D problem.
The SCP can be described as follows. There is a given finite set of elements R, a
collection C of subsets of R, and a positive integer K ≤ |C|. The question is whether
there is a possibility of covering the set R with K or less subsets C ′ ⊆ C (|C ′| ≤ K)
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such that every element of R belongs to at least one member of C ′?
It is understandable that if Y is a solution to SCP, then |Y | ≤ K.

Given an instance of SCP we construct the following instance of CBB-D. Assume
that there is just one provider i, therefore |P | = 1 and we can skip index i in the
following parts of the section. The provider offers j bundle types of services which

create a set of all bundles
⋃|B|

j=1 bj = B = C. The customer would like to purchase
s types of services, what creates set S = {s1, s2, . . . , s|R|}, S = R. Each service s
should be included in at least one bundle bj ⊆ B, bj = C ′. Required number of units
of each service type s is 1 (therefore there is a requirement to collect all s service
types from the set S), all prices dj are equal to 1, number of service types s included
in each bundle type j, sold by provider is qsj = 1, and the maximum number of bundle
types j available at the provider (uj) equals 1. The threshold value of the criteria is
y = K.

Now, we show that SCP has a solution if and only if there exists a solutionX for the
constructed instance of problem CBB-D with |X| ≤ y. Seeing that the transformation
is pseudo-polynomial, problem CBB-D belongs to the class NP.

Let Y be a solution to SCP. Construct a solution for problem CBB-D, in which
the required services are realized with K bundles determined by C ′ = bj ∈ Y , i.e.,
xj = 1 if bj ∈ Y and xj = 0 if bj 6∈ Y. Since Y is a covering of S, all the required
services are purchased, and the cost of the corresponding solution X is |X| ≤ K.

Now assume that there exists a solution X for problem CBB-D with the cost

|X| ≤ y. For this solution the total number of chosen bundle types (
∑|B|

j=1 xj) should
not exceed y because otherwise |X| > y and corresponding solution Y will be |Y | > y.
On the other hand, the number of bundles should not be less than y because otherwise
at least one service s ∈ S will not be purchased. Therefore, there are exactly y

bundles j with xj = 1 (
∑|B|

j=1 xj = y). Since all purchased services covers the set S,

the collections of chosen bundles (where xj = 1) is
⋃|B|

j=1 xjbj = C ′ which represents
a solution for SCP.

Proposition 2. By upholding the CBB assumptions of the Proposition 1 and fol-
lowing the literature [12] we can post that the problem is solvable in polynomial time
(matching techniques) if all bj ∈ B have |bj | ≤ 2.

It is worth mentioning that the SCP is considered as a very difficult to approximate
[24]. Therefore, we can introduce the following statement.

Statement 1. The CBB problem cannot be approximated within a factor of c · logN
in polynomial time, for any 0 < c < 1

2 , unless P = NP.

Since the single objective CBB is modeled and proven to be NP-hard there is a
clear observation that the bi- and multi-objective versions of CBB problem that will
be combined of many single-objective CBBs are at least as hard as the latter.
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Table 2. Gamma distribution parameters fitted for real services

Shape 1.58 0.92 1.07 1.92 1.18 2.59 0.51 1.19 0.85 0.75 0.99
Rate 9.33 3.79 12 18.34 10.72 435.9 5.51 36.4 3.68 2.96 10.98

5. Bi-objective CBB and Instance Generation

Customers have generally several criteria when they purchase goods and services.
Therefore, after a proof of NP-hardness for the single-objective version, we will di-
rectly follow with a bi-objective version of the problem for the experiments described
hereafter. The first objective is naturally the cost which is desired to be at least as
possible. The second objective could be any kind of indicator concerning security, re-
liability, trust. In our case, we will generate an artificial second objective and ensure
that it is negatively correlated with first one.

min (F1 =
∑
i∈P

∑
j∈Bi

d1ijxij , F2 =
∑
i∈P

∑
j∈Bi

d2ijxij) (6)

s.t.
∑
i∈P

∑
j∈Bi

qsijxij ≥ rs ∀s ∈ {1, ..., |S|} (7)

xij ≤ uij ∀i ∈ {1, ..., |P |}, ∀j ∈ {1, ..., |Bi|} (8)

xij ∈ N (9)

qsij ∈ N. (10)

In order to stay close to the Cloud Service Market, we gathered data from ex-
isting cloud providers. In total, 19 cloud providers were data have been gathered
are: AWS, Centurylink Cloud, Microsoft Azure, Rackspace Cloud, HP Cloud, Elastic
Host, Google Cloud, Upcloud, Vault Network, SoftLayer, BareMetal Cloud, Exoscale,
Aruba Cloud, Cloudsigma, DigitalOcean, City Cloud, GMO Cloud, and Cloud Cen-
tral. For each of them, the advertised price of proposed services were recorded. As
each provider offers a unique subset of services, we decided to select the services for
which the most complete data was available. It resulted in a set of 11 services, with
some missing data points.

The gamma distribution was selected as appropriate for fitting the data, as the
histograms show that the distribution is not symmetric and the density is highest close
to the minimal price values, as presented in Fig.1. These results confirm an intuitive
expectation: due to the competition, CSPs have to provide price as low as possible, but
there still exist some providers that offer expensive alternatives, hence the significant
long tail. Additionally, gamma distribution shape can vary greatly depending on
parameters, which ensures its adaptability to different real-world situations. In the
end it was possible to fit gamma distributions for 11 services with parameters shown
in Table 2.

According the bi-objective model introduced in section 5, (qsij) have been generated
using a uniform distribution U(1, 10). The generation of the number of required
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Figure 1. Example of the quality of gamma distribution fitting to a service pricing
data (expressed in general units).
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services rs is chosen according to the uniform distribution U(10, 50). Bundle prices
are generated according to the following expression:

d1ij = U(max
s∈qij

costis,
∑
s∈qij

costis × qsij) (11)

where costis is the price of service s for provider i. costis are generated according to
the computed gamma distribution. In summary, the price of a bundle lies between the
price of the most expensive services and the sum of all service prices in the bundle. To
ensure that all generated instances are feasible, we also consider atomic bundles which
are single service bundles with guarantee that the demand can be satisfied. Finally,
the second objective F2 is generated with the same principle but kept negatively
correlated with F1 representing the prices of all bundles.

6. Algorithms Design

Cloud Brokering optimization often involves multiple objectives. In this paper, we
decided to solve instances with two objectives using a dichotomic search approach.
This procedure (see Algorithm 1) iteratively solves multi-objective problem by map-
ping it to a series of single objective problems. The single-objective problems are
all weighted-sum versions of the multi-objective problem, but the weights are dy-
namically set to find new Pareto-optimal solutions [11]. It is only able to provide
supported solutions and has been used as first phase procedure in [41]. The problem
is not tractable, but it can be efficiently solved optimally for relatively large instances.

Algorithm 1 Dichotomic search

1: Compute x(A) = min{λ1F1(x) + λ2F2(x) : x ∈ X} with λ1 = 1 and λ2 = 0
2: Compute x(B) = min{λ1F1(x) + λ2F2(x) : x ∈ X} with λ1 = 0 and λ2 = 1
3: S = {x(A), x(B)}
4: proc dichomotic(x(A) ↓,x(B) ↓,S l)
5: Compute x(C) = min{λ1F1(x) + λ2F2(x) : x ∈ X} with λ1 = F2(x

(A)) − F2(x
(B)) and

λ2 = F1(x
(B))− F1(x

(A))
6: if x(C) 6∈ S then
7: S = S ∪ {x(C)}
8: dichomotic(x(A),x(C),S)
9: dichomotic(x(C),x(B),S)

10: end if

7. Experimental Evaluation

The proposed method is a weighted sum scalarization approach which discover all sup-
ported solutions of the optimal Pareto front. The experimental evaluation is therefore
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devoted to two main factors: time needed to solve instance depending on its size, and
the number of solutions on the convex hull of the Pareto front, further referred to as
the number of solutions. The size of instance is driven by three parameters: number
of service types, the number of providers, and number of bundles per provider. Ta-
ble 3 summarizes the values of parameters which were set to balance the range and
precision of values with the time and resources needed to perform the simulations.
We consider that the maximum size of instance, which includes 100 types of services,
30 providers and 8 non-trivial bundles offered by provider, is realistic even for large
institutional customers or large groups of aggregated individual users, keeping in mind
that each type of service is typically requested multiple time in a single instance.

For each combination of parameters, 30 instances were randomly generated and
solved. Experiments have been conducted on the High Performance Computing
(HPC) platform of the University of Luxembourg [40]. The IBM ILOG CPLEX
12.4 solver has been used on a single core of a machine with Intel Xeon E5-2660 CPU
at 2.2GHz with 64Gb of RAM wit GNU/Linux Debian 7 operating system. For each
run, the machine used for computations was fully reserved to this single task to limit
variability. The maximum allowed solving time for each bi-objective instance of the
problem was set to 4 hours. The total solving time corresponded to 54.4 days of
single-core computation.
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Figure 2. Examples of convex hulls of Pareto fronts (prices expressed in general
units)

Based on the usage of the standardized experimental platform, we can meaning-
fully compare the solving time of instances. The number of services and number of
providers have the highest impact on the solution time, and as presented in Fig. 3b,
these impacts are multiplicative. The number of bundles per provider is less signif-
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Table 3. Parameters for Instance Generation

Parameter Values
Service Types 10,20,30,40,50,60,70,80,90,100
Providers 5,10,15,20,25,30
Bundles per Provider 0,2,4,6,8

icant and is additive with other parameters (see Fig. 3a and Fig. 3c). The average
solving time is up to over 2000 seconds, however in most simple cases it is below
500 s. It is clearly prohibitive to be offered for individual customers as an online
web-service, but such customers are probably interested in the smallest instance sizes
and an approximate Pareto front. On the other hand, this time is acceptable for
institutions that make large purchases which involve significant budgets.

The solving time is clearly influenced by the number of solutions that compose
the convex hull of the Pareto front. After analysis of the results, it can be observed
that, contrary to the solving time, it is dependent almost entirely on the number of
services, as illustrated in Fig. 4a and Fig. 4b. The two remaining parameters have
little impact on the solution number (Fig. 4c). The average number found Pareto
fronts is almost linear to the number of services. The fronts are rich in solutions,
and are often clustered, as presented in Fig. 2. It leads to the conclusion that for
the practical considerations it may be more efficient to solve the problem using only
few predefined alternatives of weights, which should find representatives of limited
number of clusters with high diversity.

Such approach would be then dependent on the average time spent to find a single
solution from the Pareto front, as the number of optimization solving subprocedures
would be fixed. Because of that, it is important to analyze the average time per single
solution criterion, which combines the two already discussed evaluation criteria. This
criterion is useful also in cases when the full Pareto front is not necessary, but only
a single (or limited number of) solution(s) with predefined weights. It is important
to note that this time can be also interpreted as the average time of solving single-
objective version of the problem.

The results show that for extreme values of some parameters, the general trend
does not apply. It is well visible for the low values of service number, where the effects
of another parameter are either increased (as for bundles per provider, Fig. 5a) or
decreased (as for providers number, Fig. 5b). There is also slight increase of the
importance of bundles per provider in case of low number of providers, as presented
in Fig. 5c. The vast majority of cases can be solved in few seconds, which we find
acceptable for on-line service exposed to end customer. Such response time would also
allow an interactive usage: similarly to search engines available for flights or hotels,
customers could refine their search if the solution is not fitting their needs.
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Figure 3. Average time needed by the dichotomic approach to find the convex hull
of Pareto front
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Figure 4. Average solution number on the convex hull of Pareto front

20
40

60
80

100

0

2

4

6

8

2

4

6

8

10

12

Services
Bundles

Time
per

Solution
[s]

(a)

20
40

60
80

100

5

10
15

20
25

30

5

10

15

20

Services
Providers

Time
per

Solution
[s]

(b)
0

2

4
6

8

5

10
15

20
25

30

5

10

15

Bundles
Providers

Time
per

Solution
[s]

(c)

Figure 5. Average time to obtain a solution from the convex hull of Pareto front

8. Conclusions

In this paper we defined and model a new optimization problem that concerns services
in Cloud Computing, the Cloud Brokering Bundle problem. The problem directly
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replies to the needs of users of such systems, however it was not investigated up
to now. We prove that the problem is strongly NP-hard even in its single-objective
variant. The most interesting and practical bi-objective version of the problem should
therefore be even harder. We propose also an instance generator that is based on
pricing data gathered from 19 real cloud providers.

The experiments revealed that number of services has the impacts on the number
of solutions in the obtained Pareto front. The number of available providers also
impacts on the time to solve, while the number of bundles is of lesser importance.
The experimental investigation shows that the intended for typical use cases instances
of the problem can be solved in acceptable time using exact methods.

This study introduces single- and bi-objective cases. In case of higher number of
dimensions, the dichotomic approach may be prohibitively costly, as number of so-
lutions may grow exponentially with each additional objective. Such multi-objective
cases, which are definitely corresponding to the real-life need are part of future work.
They could be solved by heuristics or computational intelligence tools such as evolu-
tionary algorithms.
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