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Thermodynamic efficiency in dissipative chemistry
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Chemical processes in closed systems inevitably relax to equilibrium. Living systems avoid

this fate and give rise to a much richer diversity of phenomena by operating under none-

quilibrium conditions. Recent experiments in dissipative self-assembly also demonstrated

that by opening reaction vessels and steering certain concentrations, an ocean of opportu-

nities for artificial synthesis and energy storage emerges. To navigate it, thermodynamic

notions of energy, work and dissipation must be established for these open chemical systems.

Here, we do so by building upon recent theoretical advances in nonequilibrium statistical

physics. As a central outcome, we show how to quantify the efficiency of such chemical

operations and lay the foundation for performance analysis of any dissipative chemical

process.
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Traditional chemical thermodynamics deals with closed
systems, which always evolve towards equilibrium. At
equilibrium, all reaction currents—defined as the forward

reaction fluxes minus the backwards (Jρ= J+ρ− J−ρ, where ρ
labels the reactions)—eventually vanish. The first thermodynamic
description of nonequilibrium chemical processes was achieved
by the Brussels school founded by de Donder and perpetuated by
Prigogine1,2, but they focused on few reactions close to equili-
brium in the so-called linear regime. However, processes such as
fuel-driven self-assembly involve open chemical reaction net-
works (CRN) with many reactions operating far away from
equilibrium3,4. The openness arises from the presence of one or
more chemostats, i.e. particle reservoirs coupled with the system
which externally control the concentrations of some species—just
like thermostats control temperatures—and allow for matter
exchanges. Open CRN can then be thought of as thermodynamic
machines powered by chemostats. Two operating regimes may be
distinguished, reminiscent of stroke and steady-state engines. In
the first, work is used to induce a time-dependent change in the
species abundances that could never be reached at equilibrium.
An example could be the accumulation of a large amount of
molecules with a high free energy content as in fuel-driven self-
assembly, or the depletion of some undesired species as in
metabolite repair5. In the second, work is used to maintain the
system in a nonequilibrium stationary state which continuously
transduces an input work into useful output work. Beyond energy
transduction within pseudo-first order reactions6, no framework
currently exists to assess how efficient and powerful such che-
mical engines can be. We provide one grounded in the recently
established nonequilibrium thermodynamics of CRN7,8, which
was born from the combination of state-of-the-art statistical
mechanics9–14 and mathematical CRN theory15,16. Establishing
rigorous concepts of free energy, chemical work and dissipation
valid far from equilibrium reveals crucial. They provide the basis
for thermodynamically meaningful definitions of efficiencies and
optimal performance in the different operating regimes. In the
following, energy storage (ES) and driven synthesis (DS) are
analyzed as models epitomizing the first and the second operating
regime, respectively, but our findings apply to any dissipative
chemical process.

Results
Energy storage. In energy storage, an open CRN initially at
equilibrium with high concentrations of low-energy molecules
and low concentrations of high-energy ones is brought out of
equilibrium with the aim to increase the concentrations of the
high-energy species. This process is reminiscent of charging a
capacitor via the coupling to a voltage generator. In the context
of supramolecular chemistry, the concept of ES was proposed
by Ragazzon and Prins4. An insightful model capturing its main
features is described in Fig. 1. Its thermodynamic analysis,
detailed in Supplementary Note 1b, will now be outlined. Given
a set of reaction rate constants, the accumulation of the high-
energy species A2 may be enabled when chemostats set a certain
positive chemical potential difference of fuel and waste, i.e.
F fuel ¼ μF � μW>0, by steering [F] (see Supplementary Fig. 1).
This implies the injection of F molecules at a rate IF and the
extraction of W at rate IW. The resulting power (i.e., work per
unit of time) performed on the system by the fueling
mechanism is _Wfuel ¼ IFF fuel

7,8,17. The proper way to quantify
the energy content of an open CRN is via its nonequilibrium
free energy G. During the charging process, only part of the
work, namely ΔG, is dedicated to shift the concentrations dis-
tribution and is stored as free energy in the system4. The
remaining fraction, namely TΣ, is dissipated according to the

second law of thermodynamics

Wfuel ¼ ΔG þ TΣ; ð1Þ
where T is temperature and Σ ≥ 0 the entropy production,
which only vanishes at equilibrium. The time-dependent ther-
modynamic efficiency of an ES process is thus the ratio

ηes ¼
ΔG
Wfuel

¼ 1� TΣ
W fuel

: ð2Þ

Equation (1) has been used to derive the second equality. We
emphasize that each of these contributions has an explicit
expression in terms of concentrations and rate constants (see
Supplementary Note 1b). For instance, the energy stored at any
time with respect to equilibrium is given by the expression

ΔG ¼ RT
X

X¼M;

M�;A�
2 ;A2

½X�ln ½X�
½X�eq

� ½X� þ ½X�eq
" #

� 0;
ð3Þ

which is reminiscent of an information theoretical measure called
relative entropy18. Crucially, any concentration distribution
different from the equilibrium one has a positive energy content.
Equation (1) thus implies that an amount of work of at least ΔG
needs to be provided to reach it. It also ensures that ηes is
bounded between zero and one.

We simulated an ES process and plotted the dynamics of
concentrations as well as efficiency and its contributions in
Fig. 2. The process can be divided into a charging and a
maintenance phase. During the former, the system energy grows
dtG> 0ð Þ in a way which correlates with the accumulation of the
high-energy species A2. The process can be quite efficient as a
significant portion of the work is converted into free energy.
However, in the maintenance phase, the system has reached a
nonequilibrium steady state. The efficiency drops towards zero
(proportional to the inverse time) as the entire work is being
spent to preserve the energy previously accumulated dtG ’ 0ð Þ.
The maximum ηes is reached during the charging phase
(see Supplementary Note 1b for a rigorous proof) and defines
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Fig. 1 Model for energy storage and driven synthesis. Without (resp. with)
the orange dashed transition, the chemical reaction network models energy
storage (resp. driven synthesis). The high-energy species A2 is at low
concentration at equilibrium. Powering the system by chemostatting fuel
(F) and waste (W) species boosts the formation of A2 out of the monomer
M via the activated species M2 and A�

2. a The chemical reaction network
(forward fluxes are defined counter-clockwise). b Sketch of concentrations
distributions (proportional to radii) and net currents (proportional to
arrows thickness, see Supplementary Note 1c)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11676-x

2 NATURE COMMUNICATIONS |         (2019) 10:3865 | https://doi.org/10.1038/s41467-019-11676-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the time that minimizes the dissipation of ES. The value of the
efficiency when the process enters the maintenance phase
characterizes instead the performance of the ES process when
the system has reached its maximum storage capacity. The
best time to stop ES and start making use of it (cf. driven
synthesis below) will be a tradeoff between maximizing the
energy stored and minimizing dissipation. In general, the ideal
situation will be the one in which ηes peaks as close as possible to
the maintenance phase.

Figure 3 focuses on the maintenance phase for different values
of F fuel. It shows that by driving the system away from
equilibrium, one can reach species abundances that are very
different with respect to the equilibrium ones. It also shows that
the accumulation of free energy does not necessarily coincide
with an increase in concentration of the most energetic species
A2. Indeed, while at low values of F fuel the accumulation of G
correlates with [A2], beyond a threshold A2 starts to be depleted
while energy continues getting stored by further moving away the
concentration distribution from equilibrium. We finally note that
the connection of our work to “kinetic asymmetry”4,19 is
discussed in Supplementary Note 1c.

As we have seen, the crucial part of energy storage is the
charging phase, as the maintenance phase is purely dissipative
and consumes chemical work without any energy gain. In order
to make use of the energy accumulated during the charging phase,
a mechanism extracting the energetic species from the system

must be introduced. This complementary but distinct working
regime of an open CRN will now be considered.

Driven synthesis. In driven synthesis, an energetic species that
accumulates thanks to a fueling process is continuously extracted
from a system in a nonequilibrium steady state. One may con-
sider for instance processes where the product either evaporates,
precipitates or undergoes other fast transformations while being
rapidly replaced by reactants. By building upon the above ES
scheme, a simple way to model DS is to add an ideal extraction/
injection mechanism to the CRN (orange dashed arrows in
Fig. 1). This mechanism removes the assembled molecule A2 and
renews two M molecules at a rate Iext= kext[A2]. In doing so, we
model the endergonic synthesis of molecules that are strongly
unfavored at equilibrium, a strategy used by Nature20–22 and
which may be within reach of supramolecular chemists23–25.

From the thermodynamic standpoint detailed in Supplemen-
tary Note 2b, the input power spent by the fueling mechanism,
_W fuel ¼ IFF fuel ¼ IFðμF � μWÞ, is now not just dissipated as T _Σ,
but part of it is used to sustain the production of A2:

_W fuel ¼ � _Wext þ T _Σ: ð4Þ
The output power released by the extraction mechanism,

_Wext ¼ Iextð2μM � μA2
Þ, is negative when DS occurs. In this

context the thermodynamic efficiency is thus given by

ηds ¼ �
_Wext

_W fuel

¼ 1� T _Σ
_W fuel

; ð5Þ

where Eq. (4) has been used to derive the second equality. It is
bounded between zero and one when DS occurs.

In Fig. 4, we simulated DS for various working conditions by
varying kext and F fuel. We start our analysis by considering a
given value of F fuel. As kext is increased, ηds first grows to an
optimal value before decreasing towards negative values where
the DS regime ends (see Fig. 4a). At the same time Iext increases
until it reaches a plateau (see Fig. 4c). This happens when kext
overcomes the ability of the system to sustain high values of [A2]
(Fig. 4b). Eventually the drop in [A2] is such that 2μM � μA2

>0,
thus resulting in the loss of the DS regime. We now fix kext and
increase F fuel. The DS regime starts at a threshold value, when
[A2] becomes high enough. After that, both [A2] and the
efficiency grow to an optimal value before decreasing again. This
time however, the efficiency remains positive as [M] drops
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together with [A2] (see Fig. 4d). Figure 4e shows another
important feature. As F fuel is increased, Iext first increases too, but
eventually reaches a maximum after which it decreases. This
phenomenon is a hallmark of far-from-equilibrium physics which
could not happen in a linear regime, namely when kext and F fuel
are small. Remarkably, the global maximum of the efficiency in
Fig. 4a is reached in a region far from equilibrium. We note that it
corresponds to values of F fuel close to the one maximizing [A2] in
the maintenance phase of ES (see Fig. 3) and to values of kext of
order one resulting in Iext which do not overly deplete [A2]. We
finally turn to the lines of maximum efficiency and efficiency at
maximum power in Fig. 4a, where the maximization is done with
respect to kext at a given F fuel. Since these two lines typically do
not coincide, the study of the tradeoffs is the object of a rich field
called finite-time thermodynamics26. Interestingly, while these
two lines cannot coincide in the linear regime (see Supplementary
Note 2d), we see that they do intersect far-from-equilibrium, not
far from the global maximum of the efficiency. Our analysis thus
allowed us to identify a region of good tradeoff between power
and efficiency for the model of DS we introduced. In order to
emphasize the fact that all the interesting features that we
identified in DS occur far-from-equilibrium, we analyze in detail
in Supplementary Note 2d the linear regime of DS. After
identifying the Onsager matrix, we are able to analytically
reproduce the results of the simulations in the limit of small F fuel
and kext (bottom-left part of Fig.4a, see Supplementary Fig. 3 for
details), thus pinpointing the limit of validity of the linear regime
approximation.

Discussion
Thermodynamics was born from the effort to systematize the
performance of steam engines. Open CRN, which are at the core
of recent efforts in artificial synthesis27 and ubiquitous in living
systems22,28,29, can be seen as chemical engines. In the spirit of
this analogy, in this article we built a chemical thermodynamic
framework which enables us to systematically analyze the per-
formance of two fundamental dissipative chemical processes. The
first, energy storage, is concerned with the time-dependent accu-
mulation of high-energy species far from equilibrium and is cur-
rently raising significant attention from supramolecular chemists.
The second, driven synthesis, aims at continuously extracting the

previously obtained high-energy species and provides a simple and
insightful instance of energy transduction beyond pseudo-
unimolecular CRN. In doing so, we identified their optimal
regimes of operation. Crucially they lie far-from-equilibrium in
regions unreachable using conventional linear regime thermo-
dynamics. We emphasize that the methods developed in this
paper can in principle be applied to any open CRN and thus
provide the basis for future performance studies and optimal
design of dissipative chemistry. They are thus destined to play a
major role in bioengineering and nanotechnologies.

Data availability
All data needed to reproduce numerical results are reported in the Supplementary
Information.

Code availability
The code that generated the plots is available from the corresponding author upon
request.
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SUPPLEMENTARY NOTE 1: DETAILS ON ENERGY STORAGE

a. Dynamics

The evolution in time of the concentrations of the species M, M∗, A∗2, and A2 is ruled by the rate
equations

dt
©­­­«
[M]
[M∗]
[A∗2]
[A2]

ª®®®¬︸ ︷︷ ︸
[X ]

=

©­­­«
−1 −1 0 0 0 2
1 1 −2 0 0 0
0 0 1 −1 −1 0
0 0 0 1 1 −1

ª®®®¬︸                            ︷︷                            ︸
SX

·

©­­­­­­«

k+1F[F][M] − k−1F[M∗]
k+1W[W][M] − k−1W[M∗]

k+2[M∗]2 − k−2[A∗2]
k+3F[A∗2] − k−1F[A2][F]2

k+3W[A∗2] − k−1W[A2][W]2
k+4[A2] − k−4[M]2

ª®®®®®®¬︸                                ︷︷                                ︸
J = J+ − J−

, (1)
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2

where [F] and [W] are the concentrations of fuel and waste species. Since these latter are externally kept
constant by the chemostats, the balance equations for their concentrations read

0 = dt
(
[F]
[W]

)
︸ ︷︷ ︸
[Y ]

=

(
−1 0 0 2 0 0
0 −1 0 0 2 0

)
︸                   ︷︷                   ︸

SY

·

©­­­­­­«

k+1F[F][M] − k−1F[M∗]
k+1W[W][M] − k−1W[M∗]

k+2[M∗]2 − k−2[A∗2]
k+3F[A∗2] − k−1F[A2][F]2

k+3W[A∗2] − k−1W[A2][W]2
k+4[A2] − k−4[M]2

ª®®®®®®¬︸                                ︷︷                                ︸
J = J+ − J−

+

(
IF
IW

)
︸︷︷︸
I

, (2)

with IF and IW denoting the external currents of fuel and waste �owing from the chemostats. We
denote by X = M,M∗,A2,A∗2 the internal species, by Y = F,W the chemostatted ones, and label by
ρ = 1F, 1W, 2, 3F, 3W, 4 the reactions.

b. Thermodynamics

We consider an isothermal, isobaric, and well-stirred ideal dilute solution containing species undergoing
elementary reactions. Each species is thermodynamically characterized by chemical potentials of the
form

µX = µ
◦
X + RT ln

[X ]

[0]
, µY = µ

◦
Y + RT ln

[Y ]

[0]
, (3)

where µ◦X and µ◦Y are standard-state chemical potentials and [0] is the standard-state concentration.
Dynamics and thermodynamics are related via the hypothesis of local detailed balance, which relates

the ratio of rate constants to the di�erences of standard-state chemical potentials along reactions

RT ln
k+ρ

k−ρ
= −

∑
X

µ◦XS
X
ρ −

∑
Y

µ◦YS
Y
ρ . (4)

At equilibrium, the thermodynamic forces driving each reaction, also called a�nities, vanish

A
eq
ρ = −

∑
X µ

eq
X SX

ρ −
∑
Y µ

eq
Y SY

ρ = 0 , (5)

as well as all reaction currents

J
eq
ρ = J

eq
+ρ − J

eq
−ρ = 0 . (6)

The dissipation of the process is captured by the entropy production (EP) rate

T ÛΣ = RT
∑
ρ

Jρ ln
J+ρ

J−ρ
≥ 0 , (7)

which also vanishes at equilibrium. Using the rate equations and the local detailed balance, Supplementary
Equation 4, one can rewrite this quantity as

T ÛΣ = −dtG + ÛWchem , (8)

where

G =
∑

X [X ] (µX − RT ) +
∑
Y [Y ] (µY − RT ) (9)
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is the Gibbs free energy, while

ÛWchem =
∑
Y µY IY = µFIF + µWIW (10)

is the chemical work per unit time exchanged with the chemostats.
One can also show that if the CRN were closed (fuel and waste not chemostatted) it would relax to

equilibrium by minimizing G [1]. Fuel and waste are however chemostatted and we need to identify the
conditions for equilibrium in the open CRN. To do so we preliminary identify the topological properties
of the network.

The stoichiometric matrixS ≡ (SX,SY)T (see Supplementary Equations 1 and 2) encodes the topological
properties of the CRN. We can access these properties by determining its cokernel, which is spanned by

`M =
( M M∗ A∗2 A2 F W

1 1 2 2 0 0
)
, (11)

`W =
( M M∗ A∗2 A2 F W

0 1 2 0 1 1
)
. (12)

The �rst of these vectors identi�es a conserved quantity

LM = `L ·

(
[X ]
[Y ]

)
= [M] + [M∗] + 2[A∗2] + 2[A2] ,

dtLM = 0 (13)

which is proved using the rate equations Supplementary Equation 1 and Supplementary Equation 2.
The second vector identi�es what we call a broken conserved quantity

LW = `W ·

(
[X ]
[Y ]

)
= [M∗] + 2[A∗2] + [F] + [W] . (14)

Using again the rate equations, it can be shown that

dtLW := IF + IW . (15)

Namely, LW changes only due to the exchange of fuel and waste with the chemostats. If the CRN were
closed, LW would be constant. Using Supplementary Equation 15, we can rewrite the entropy production
in Supplementary Equation 8 as

T ÛΣ = −dtG + ÛWfuel , (16)

where

G =
∑

X [X ] (µX − RT ) +
∑
Y [Y ] (µY − RT ) − µWLW

=[M]µM + [A2]µA2 + [M
∗] (µM∗ − µW) + [A∗2]

(
µA∗2 − 2µW

)
+ [F] (µF − µW)+

− RT
(
[M] + [A2] + [M∗] + [A∗2] + [F] + [W]

) (17)

is a semigrand Gibbs potential, and

ÛWfuel := IF(µF − µW) . (18)

is the fueling chemical work per unit of time (i.e., the fueling power). The derivation of Supplementary
Equation 18 for an arbitrary CRN is discussed in Supplementary References [1], [2] and [3].

If µF = µW, Supplementary Equation 16 shows that G is a monotonically decreasing function in time,
given that T ÛΣ ≥ 0. Its minimum value — i.e., the equilibrium value — under the constraint given by
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the conservation law (Supplementary Equation 13) is found by minimizing the function Λ = G − λLM,
where λ is the Lagrange multiplier corresponding to LM. The equilibrium concentrations thus satisfy the
following conditions

0 =
dΛ
d[M]

����
eq
= µ

eq
M − λ = µ

◦
M + RT ln[M]eq − λ ,

0 =
dΛ

d[A2]

����
eq
= µ

eq
A2
− 2λ = µ◦A2

+ RT ln[A2]eq − 2λ ,

0 =
dΛ

d[M∗]

����
eq
= µ

eq
M∗ − µW − λ = µ

◦
M∗ + RT ln[M∗]eq − µW − λ ,

0 =
dΛ

d[A∗2]

����
eq
= µ

eq
A∗2
− 2µW − 2λ = µ◦A∗2 + RT ln[A∗2]eq − 2µW − 2λ .

(19)

The equilibrium semigrand Gibbs potential reads

Geq = λLM − RT
(
[M]eq + [A2]eq + [M∗]eq + [A∗2]eq + [F]eq + [W]eq

)
= [M]µeqM + [A2]µ

eq
A2
+ [M∗]

(
µ
eq
M∗ − µW

)
+ [A∗2]

(
µ
eq
A∗2
− 2µW

)
+

− RT
(
[M]eq + [A2]eq + [M∗]eq + [A∗2]eq + [F]eq + [W]eq

)
,

(20)

which leads by direct calculation to Equation (3) in the main text:

G − Geq = RT
∑
X

[
[X ] ln

[X ]

[X ]eq
− [X ] + [X ]eq

]
≥ 0 . (21)

Therefore, when µF = µW, the quantity G − Geq is a Lyapunov function for the open network relaxing to
equilibrium. When Ffuel = µF − µW , 0, the fueling chemical work in Supplementary Equation 16 does
not vanish, and the system is prevented from reaching equilibrium.

Equation (1) in the main text is obtained by integrating Supplementary Equation 16 from time t = 0 to
a generic time t . In our simulation of energy storage, we focused on the special case in which the system
at time t = 0 is at equilibrium (Ffuel = 0).

We end this section by analytically proving that ηes de�ned in the main text goes to zero both in the
short and in the long time limits.

In the short time limit t = δt � 1, i.e. immediately after tuning on Ffuel by changing [F], we have

∆G ' dtG|0 δt + d2tG|0 δt
2

Wfuel ' ÛWfuel(0)δt + dt ÛWfuel |0 δt
2 ,

(22)

While ÛWfuel(0) , 0, dtG|0 = 0. Indeed, by using Supplementary Equation17, we �nd that

dtG|0 =
∑

X µ̂X (0) dt [X ]|0 =
∑

X µ̂X (0)SX J (0) , (23)

where µ̂X is equal to

µ̂M = µM , µ̂M∗ = µM∗ − µW , µ̂A∗2 = µA∗2 − 2µW , µ̂A2 = µA2 . (24)

At t = 0, the concentrations of internal speciesX as well as their chemical potentials µX are at equilibrium.
By using Supplementary Equation 19, one readily sees that

∑
X µ̂

eq
X SX = 0 for all reactions, and from

Supplementary Equation 23 one proves that dtG|0 = 0. Therefore

ηes(δt) '
d2tG|0 δt
ÛWfuel(0)

(25)
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goes to zero when δt goes to zero.
In the long time limit t → ∞, the system approaches a steady state in which dtG → 0, and thus
ÛWfuel ' ÛΣ ≥ 0. Therefore, while ∆G remains �nite,Wfuel keeps growing, and ηes → 0.
Since in ES ∆G ≥ 0, as announced, ηes will start in zero, increase in time, reach a maximum, and then

eventually decrease back to zero. The above proof can be generalized to arbitrary chemical reaction
networks evolving towards steady states, but ηes might have more than one local maximum depending
on the underlying dynamics.

c. Cycles & kinetic symmetry

From the thermodynamic point of view we adopted in this work, any steady state other than the
equilibrium one has a non null energy content which is quanti�ed through its concentrations distribution
according to Supplementary Equation 21 (equation (3) in the main text). A condition referred to as
“kinetic symmetry” is central in the literature on ES [4, 5]. This section aims to frame this concept into
our theory.

In a CRN, a cycle is a reaction pathway which does not alter the internal state of the system. They
play an important role at steady state, where chemical currents can only �ow along cycles. Any possible
cycle is represented by a vector in the kernel of SX, which is spanned by

cT1 =
( 1F 1W 2 3F 3W 4

1 −1 0 0 0 0
)
, (26)

cT2 =
( 1F 1W 2 3F 3W 4

0 0 0 1 −1 0
)
, (27)

cT3 =
( 1F 1W 2 3F 3W 4

2 0 1 0 1 1
)
, (28)

where each entry represents the number of times the corresponding reaction has to be performed in
order to complete the cycle. The vector of steady-state currents can always be expressed in terms of a
complete base of cycles:

J = J (c1)c1 + J (c2)c2 + J (c3)c3 (29)

where the coe�cients are called cycle currents and represent the contribution of each cycle to the total
current observed along each reaction. An important thing to note is that the relation 1

2 (J1F + J1W) = J2 =
J3F + J3W = J4 always holds. It shows that the net current from M to M∗ has to be twice as much those
across other steps at the stationary state, as represented through arrow thickness in Figure 1b of the
main text. When the cycle current for a particular cycle is equal to zero, we refer to that cycle as being
stalled [6, 7].

Kinetic symmetry as de�ned in Supplementary Reference [5] corresponds to the situation where no
accumulation of A2 occurs in the system, i.e. when no net current from monomers to assemblies can occur.
This corresponds to the situation where the cycle c3 is stalled, i.e. when J (c3)c3 = 0 in Supplementary
Equation 29. Mathematically it implies

([F] · k+1F + [W] · k+1W)2 k+2 (k+3F + k+3W)k+4
(k−1F + k−1W)2 k−2 ([F]2 · k−3F + [W]2 · k−3W)k−4

= 1 , (30)

which is the same as Equation (2) reported in Supplementary Reference [5], but with the dependence
on the chemostatted species made explicit. The above equation has two solutions in [F]. One always
exists and corresponds to the equilibrium state, where by de�nition all the cycles are stalled and no
energy is stored in the system. The other one, when physical (it may be negative), corresponds to a
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nonequilibrium steady state where A2 does not accumulate (current will instead �ow along cycles c1
and c2) but ES nevertheless occurs via an increase of G. Therefore, ES involving the accumulation of A2
requires to break the kinetic symmetry of the network, as happens when varying [F]. We note that for
the choice of kinetic constants and [W] we adopted in the paper (see Supplementary Note 1d below), the
condition of nonequilibrium kinetic symmetry can’t be realized with any value of Ffuel di�erent from
the equilibrium one.

d. Parameters

With reference to the model in Figure 1 of the main text, the following parameters were used for all
the simulations:

Supplementary Table 1. Parameters used for the energy storage model depicted in Figure 1 of the main text. Values
of the backward kinetic constants were obtain through Supplementary Equation 4 in order to assure thermodynamic
consistency, here they are reported with 3 digits. For the sake of completeness, equilibrium constants of the various
reactions (Kρ = k+ρ/k−ρ ) are reported. Note that [W] is kept �xed, while we used [F] to tune Ffuel in the various
discussions (see Supplementary Figure 1 below).

µ◦M −2 · 103 J mol−1

µ◦M∗ −3 · 10
3 J mol−1

µ◦A∗2
−4 · 103 J mol−1

µ◦A2
9 · 103 J mol−1

µ◦F 11 · 103 J mol−1

µ◦W −11 · 103 J mol−1
LM 1 M
[F]

[
1 · 10−4, 4 · 102

]
M

[W] 1 M

k+1F 5 M−1s−1
k+1W 1 · 10−3 M−1s−1
k+2 1 M−1s−1
k+3F 1 · 10−6 s−1
k+3W 5 s−1
k+4 1 · 10−1 s−1
k−1F 3.63 · 10−2 s−1
k−1W 6.06 · 10−2 s−1
k−2 2.27 s−1
k−3F 1.74 M−2s−1
k−3W 1.24 · 10−1 M−2s−1
k−4 4.81 · 10−4 M−1s−1

K1F 1.38 · 102 M−1
K1W 1.65 · 10−2 M−1
K2 4.40 · 10−1 M−1
K3F 5.76 · 10−7 M2

K3W 4.02 · 101 M2

K4 2.08 · 102 M

Supplementary Figure 1. Values of Ffuel as a function of [F] (note the logarithmic scale for the x axis). The value of
[F] giving Ffuel = 7.5 · RT is highlighted by the vertical dotted line.
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SUPPLEMENTARY NOTE 2: DETAILS ON DRIVEN SYNTHESIS

a. Dynamics

With the addition of the extraction mechanism, the evolution in time of the concentrations of the
species M, M∗, A2, and A∗2 is ruled by the following rate equations

dt
©­­­«
[M]
[M∗]
[A∗2]
[A2]

ª®®®¬︸ ︷︷ ︸
[X ]

=

©­­­«
−1 −1 0 0 0 2
1 1 −2 0 0 0
0 0 1 −1 −1 0
0 0 0 1 1 −1

ª®®®¬︸                            ︷︷                            ︸
SX

·

©­­­­­­«

k+1F[F][M] − k−1F[M∗]
k+1W[W][M] − k−1W[M∗]

k+2[M∗]2 − k−2[A∗2]
k+3F[A∗2] − k−3F[A2][F]2

k+3W[A∗2] − k−3W[A2][W]2
k+4[A2] − k−4[M]2

ª®®®®®®¬︸                                ︷︷                                ︸
J = J+ − J−

+

©­­­«
2Iext
0
0
−Iext

ª®®®¬ , (31)

where the current of extraction reads Iext = kext[A2].
We examine this system at the steady state, in which all concentrations are stationary: dt [X ]ss = 0 for

all X . Their expressions are not analytical, but can be easily obtained numerically, thus showing that the
steady state state is unique within a broad range of values for the parameters that we examined.

b. Thermodynamics

For the driven synthesis model at the steady state, Supplementary Equation 8 becomes

T ÛΣ = ÛWchem , (32)

where the chemical work per unit of time now reads

ÛWchem = µFIF + µWIW + 2µMIext − µA2 Iext . (33)

In order to construct the entropy balance as in Equation (4) of the main text, we once again need to
consider conservation vectors (11) and (12), i.e. a basis of the cokernel of S.

`M =
( M M∗ A∗2 A2 F W

1 1 2 2 0 0
)
, (34)

`W =
( M M∗ A∗2 A2 F W

0 1 2 0 1 1
)
. (35)

Now, both these vectors identify broken conserved quantities. The former corresponds to the conserved
quantity relative to the monomer

LM = `M ·

(
[X ]
[Y ]

)
= [M] + [M∗] + 2[A∗2] + 2[A2] . (36)

In the framework of Supplementary Reference [1], this is a broken conservation law because of the
presence of the extraction mechanism. Here its value does not change by construction of the model,
since every A2 which is exchanged is readily replaced by 2 M molecules

dtLM = 2Iext − 2Iext = 0 . (37)
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The latter represents the F/W conservation law

LW = `W ·

(
[X ]
[Y ]

)
= [M∗] + 2[A∗2] + [F] + [W] , (38)

which is broken by the fueling mechanism

dtLW = IF + IW . (39)

At the steady state all time derivative vanish, and we can use Supplementary Equation 39 to recast the
chemical work per unit of time in Supplementary Equation 33 into

ÛWchem = ÛWfuel + ÛWext (40)

where

ÛWfuel = IF (µF − µW) . (41)

is the input power, and

ÛWext = Iext(2µM − µA2 ) (42)

is the output power. By combining Supplementary Equation 40 with Supplementary Equation 32, we
obtain Equation (4) of the main text.

c. Plots of − ÛWext and ÛWfuel

(a) (b)

Supplementary Figure 2. (a) Minus the output power (− ÛWext) and (b) input power ( ÛWfuel) plotted in the same
range of parameter as in Figure 4 of the main text. The e�ciency is given by the ratio of the two plots, according to
Equation (5) of the main text.

d. Linear Regime

For kext = 0 and Ffuel = µF − µW = 0, the entropy production at the steady state vanishes, and hence
the steady state is an equilibrium one ([X ]eq). For

kext � 1 (43a)
Ffuel = µF − µW � RT (43b)
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the entropy production is close to zero and hence the system is in a linear regime close to equilibrium. In
this regime, we can write the steady-state concentrations as [X ]ss = [X ]eq(1 + fX /RT ), where fX � RT
for all X encode the linear shifts from equilibrium. Regarding the chemostatted ones, without loss of
generality, we write [F] = [F]eq(1+Ffuel/RT ) and [W] = [W]eq, where µ◦F +RT ln[F]eq = µ◦W+RT ln[W]eq.
In this way, when approximating the chemical potentials of the chemostats using the fact that Ffuel � RT ,
the equality in Supplementary Equation 43b is recovered.

By inserting the above expressions into the rate equations, Supplementary Equation 31 and 2, one
obtains the analytical solution of the driven synthesis model at the steady-state in the linear regime.
Indeed, by discarding second order terms and exploiting the properties of the equilibrium state (J eq+ρ = J

eq
−ρ ),

the rate equations read

MX
X ·

©­­­«
fM
fM∗
fA∗2
fA2

ª®®®¬ + Ffuel M
X
F =

©­­­«
2Iext
0
0
−Iext

ª®®®¬ and MF
X ·

©­­­«
fM
fM∗
fA∗2
fA2

ª®®®¬ + Ffuel M
F
F = IF , (44)

for the internal and chemostatted species, respectively. The extraction current is given by Iext = kext[A2]eq,
while the matrix M is a 6 by 6 matrix which encodes both the topology and the kinetics of the linear
regime dynamics

M := S · diag
{
J
eq
+

}
· ST/RT , (45)

where

J
eq
+ =

(
k+1F[F]eq[M]eq k+1W[W]eq[M]eq k+2[M∗]2eq k+3F[A∗2]eq k+3W[A∗2]eq k+4[A2]eq

)
(46)

are the equilibrium forward �uxes. The labels X and F in Supplementary Equation 44 select blocks of M
corresponding to internal and fuel species, respectively, as shown below.





M =

MX
X MX

F MX
W

MF
X

MW
X

M
F,W
F,W

M

M∗

A2

A∗2

F

W

M M∗ A∗2 A2 F W

(47)

Let us now introduce the index “a” to denote the activated species which are neither exchanged nor
extracted (M∗ and A∗2), whereas the index “e” denotes the extracted/injected species (A2 and M). The
rate equations can thus be further split into

0 = Ffuel Ma
F +M

a
a ·

(
fM∗
fA∗2

)
+Ma

e ·

(
fM
fA2

)
−Iext = Ffuel M

A2
F +M

A2
a ·

(
fM∗
fA∗2

)
+MA2

e ·

(
fM
fA2

)
IF = Ffuel M

F
F +M

F
a ·

(
fM∗
fA∗2

)
+MF

e ·

(
fM
fA2

)
.

(48)
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We now observe that from the de�nition of conservation law, the following constraint holds

0 = M `TM = Ma ·

(
1
2

)
+Me ·

(
1
2

)
, (49)

which implies that

MM = −2MA2 −Ma ·

(
1
2

)
. (50)

This allows us to rewrite Supplementary Equations 48 as

0 = Ffuel Ma
F +M

a
a ·

(
fM∗ − fM
fA∗2 − 2fM

)
+

(
fA2 − 2fM

)
Ma

A2

−Iext = M
A2
F Ffuel +M

A2
a ·

(
fM∗ − fM
fA∗2 − 2fM

)
+

(
fA2 − 2fM

)
M

A2
A2

IF = Ffuel M
F
F +M

F
a ·

(
fM∗ − fM
fA∗2 − 2fM

)
+

(
fA2 − 2fM

)
MF

A2
.

(51)

We now solve the �rst of the three equations above for the vector in parenthesis, using the fact that Ma
a

is nonsingular.(
fM∗ − fM
fA∗2 − 2fM

)
= −(Ma

a)
−1 ·

[
Ffuel M

a
F +

(
fA2 − 2fM

)
Ma

A2

]
. (52)

This follows from the fact thatMa
a is Gramian [8], andSa contains linearly independent vectors. Therefore,

the last two equations in 51 can be recast into

−Iext = Ffuel

[
M

A2
F −M

A2
a · (M

a
a)
−1 ·Ma

F

]
+

(
fA2 − 2fM

) [
M

A2
A2
−MA2

a · (M
a
a)
−1 ·Ma

A2

]
IF = Ffuel

[
MF

F −M
F
a · (M

a
a)
−1 ·Ma

F
]
+

(
fA2 − 2fM

) [
MF

A2
−MF

a · (M
a
a)
−1 ·Ma

A2

]
.

(53)

Changing signs conveniently, we can rewrite the above equations in terms of the Onsager matrix L,
which expresses the linear dependence of currents from forces when the system is close to equilibrium:(

IF
Iext

)
= L

(
µF − µW
2µM − µA2

)
. (54)

Indeed, in the linear regime the chemical force associated to the extraction currents is 2µM − µA2 =

2fM − fA2 . The entries of the Onsager matrix are given by

L =

(
MF

F −M
F
a · (M

a
a)
−1 ·Ma

F MF
a · (M

a
a)
−1 ·Ma

A2
−MF

A2

M
A2
A2
−M

A2
a · (M

a
a)
−1 ·Ma

A2
M

A2
a · (M

a
a)
−1 ·Ma

F −M
A2
F

)
:=

(
L11 L12
L21 L22

)
. (55)

We can use Supplementary Equation 54 to analytically evaluate the e�ciency ηds introduced in
Equation (5) of the main text, as well as the output power ÛWext, in terms of kext and Ffuel, namely the
control parameters in the model:

ηds = −
Iext(Iext − FfuelL12)

Ffuel(IextL12 + Ffueldet[L])
; ÛWext =

Iext(Iext − FfuelL12)

L11
. (56)
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When Ffuel is kept �xed, the values of kext which extremise ηds and − ÛWext are readily found by deriving
the previous expressions and look for the unique stable points:

max e�ciency : k∗ext =

√
L11L22det[L] − det[L]

L12[A2]eq
Ffuel (57)

max output power : k∗ext =
L12

2[A2]eq
Ffuel . (58)

The above equations de�ne the sets of points of maximum e�ciency and e�ciency at maximum power
for any value of Ffuel within the linear regime. By equating the right hand sides of Supplementary
Equations 57 and 58, one obtains that these two expressions coicide if and only if L12 = L21 = 0, which is
never the case for coupled currents.

When evaluated using the parameters in Supplementary Table 1, Supplementary Equation 55 reads

L =

(
17.7835 3.74893
3.74893 23.7732

)
· 10−8mol2/sLJ (59)

where the cross coe�cients are equal according to the Onsager reciprocal relations.
When the analytical solution is plotted against kext and Ffuel, we obtain the plot in Supplementary

Figure 3b, where both maximum e�ciency and e�ciency at maximum power are highlighted as in
Figure 3 of the main text. An enlargement of the linear region of Figure 3 of the main text is shown in
Supplementary Figure 3a.

(a) (b)

Supplementary Figure 3. Comparison between exact simulation of the full dynamics (a) and analytical formula
obtained in the linear regime (b) for the e�ciency in the linear regime. The log scale emphasizes the changes of
magnitude of these values. For low forces and extraction rates — where Supplementary Equation 54 is a good
approximation — the two plots clearly coincide. When Ffuel is of the order of 0.1 (in units of RT ) and kext reaches
10−3 s−1 di�erences in both numerical values and shape emerge. In particular, we see that the increase in e�ciency
visible for high Ffuel and kext in (a) is a genuine nonequilibrium feature as it is absent in the linear regime, (b).
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