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Abstract. We consider the problem of extending maps from algebras to their
profinite completions in finitely generated quasivarieties. Our developments
are based on the construction of the profinite completion of an algebra as its
natural extension. We provide an extension which is a multi-map and we study
its continuity properties, and the conditions under which it is a map.

1. Introduction

This paper is a contribution to the study of profinite completions in internally
residually finite prevarieties. A class A of algebras is called [3] an internally residu-
ally finite prevariety (IRF-prevariety for short) if there is a setM of finite algebras
such that A = ISP(M). Every algebra A of an IRF-prevariety A embeds in its
A-profinite completion proA(A), which is defined as the inverse limit of the inverse
system of the finite quotients of A that belongs to A, with natural homomorphisms
as bonding maps (see Section 2 for details). In what follows, we limit ourself to
those IRF-prevareties A that are finitely generated quasivarieties, i.e., for which
there is a finite set M of finite algebras such that A = ISP(M). Moreover, we
assume that A = ISP({M}), but this restriction is a matter of convenience: we
claim that our developments admit the obvious generalization to the multi-sorted
case whereM = {M1, . . . ,Mn}.

It is proved in [3] that proA(A) is isomorphic to the natural extension Aδ of
A, that is, the topological closure of eA(A) in MA∗

ι , where A∗ = A(A,M), where
eA : A → MA∗ is the evaluation map defined as eA(a)(φ) = φ(a), and where ι is
the discrete topology on M (this representation result actually holds in any IRF-
prevariety). Moreover, if M˜ is a discrete structure that yields a natural duality
for A, and if A∗ is considered as a (closed) substructure of M˜A, then Aδ can be
concretely computed as the algebra of structure preserving maps from A∗ to M˜[3, Theorem 4.3]. With these results in mind, we adopt the notation Aδ to denote
proA(A) for the remaining of the paper.

We consider the following problem: given A,B ∈ A and a map u : A → B,
how to define a ‘reasonable’ extension uδ : Aδ → Bδ of u? Such an extension would
allow to study profinite completions of expansions ofA-algebras, and preservation of
equations through profinite completions. This problem has a well known solution [8]
in the particular case where A = DL = ISP(2) is the variety of bounded distributive
lattices, in which profinite completions coincide with canonical extensions. In this
particular case, the theory of canonical extensions provides with a lower and an
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upper extension of any map u : L → L′ to the canonical extensions of L and L′.
However, in the more general setting of non lattice-based algebras, no method
of extension of maps from algebras to their profinite completions has yet been
developed.

The paper is organized as follows. In section 2, we recall some results about
profinite completions in IRF-prevarieties, and we set up the notations. In section 3,
we introduce a new topology δ on Aδ such that A is the largest discrete subspace of
Aδ
δ. We prove that this topology boils down to the existing one [7, 9] in the specific

case A = DL. Finally, we prove that if M˜ yields a logarithmic full duality for A,
then the construction of profinite completions (alias, natural extensions) commutes
with the one of finite Cartesian products. We generalize this result to Boolean
products in the Appendix.

Section 4 is the core of the paper. We work under the more restrictive assumption
that there is a discrete topological structureM˜ that yields a logarithmic duality for
A and that M˜ is injective in the dual category IScP(M˜). Given a map u : A→ B,
we use the topology δ to define an extension ũ of u on Aδ. In general, the map ũ is
not valued on Bδ but ũ(x) is a closed subspace of Bδ

ι for every x ∈ Aδ (where ι is
the topology inherited from M˜A(B,M)). It means that ũ has to be considered as a
multi-map between Aδ and Bδ rather than a map. Nevertheless, under additional
continuity assumptions, we show that ũ can be turned into a map valued in Bδ, a
property that we call smoothness.

In Section 5, we study how the construction of ũ interacts with function com-
positions. We illustrate our developments by considering a sample case, namely,
the case where A is the variety of median algebras (a non lattice-based variety). In
particular, we exhibit an example of smooth map that is not a homomorphism nor
an operation of the type of the algebra. We also prove that median algebras whose
profinite completion is Boolean are exactly the Boolean powers of the 2-element
median algebra.

In section 6, we consider the special case where M can be equipped with a total
order in such a way that every A ∈ A can be considered locally has a (semi)lattice.
We also show how the construction of ũ shed lights on the existence of an upper
and a lower extension of u in the case of distributive lattices. We close the paper
by some concluding remarks and topics of further research.

2. Preliminaries

We work under the general setting of [2]. LetM = {M1, . . . ,Mn} be a finite set
of finite algebras of the same type, and let A be the prevariety ISP(M). In what
follows we assume for convenience thatM = {M}. We denote by M˜ an alter-ego
of M, i.e., a topological structure

M˜ = 〈M,G ∪H ∪R, ι〉,

where ι is the discrete topology on M , and G, H and R are respectively a set (pos-
sibly empty) of algebraic operations, algebraic partial operations (with nonempty
domain), and algebraic (nonempty) relations on M, respectively. We use X to de-
note the topological prevariety IScP(M˜), that is, the class of topological structures
that are isomorphic to a closed substructure of a nonempty power of M˜. For any
X,Y ∈ X we denote by X (X,Y ) the set of the structure preserving continuous
maps f : X → Y . We use X∗ to denote X (X,M˜).
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For any A ∈ A, we denote by A∗ the set A(A,M) of the homomorphisms from
A to M. The Preduality Theorem ([2, Theorem 5.2]) states that if A∗ inherits the
structure and the topology from M˜A, then A∗ ∈ X . Moreover, the evaluation map

eA : A→ (A∗)∗ : a 7→ eA(a) : φ 7→ φ(a)

is an A-embedding. Similarly, for any X ∈ X the map

εX : X → (X∗)
∗ : φ 7→ εX(φ) : x 7→ x(φ)

is a X -embedding.
If τ is a topology on a set X, we denote by 〈X, τ〉 or Xτ the corresponding

topological space. In particular, we denote by Mι the topological algebra obtained
by equipping M with the discrete topology. For any set X, the notation MX

ι stands
for the power algebra MX equipped with the product topology induced by ι on M .
We denote by Aι the category of topological algebras that are isomorphic to a
closed subalgebra of a nonempty power of Mι with continuous homomorphisms as
arrows. For every A ∈ A, the map eA identifies A with the subspace eA(A) of
MA∗

ι , and we usually consider A up to this identification.

Definition 2.1 ([3]). The natural extension of A ∈ A, in notation Aδ, is the
topological closure of A in MA∗

ι . The algebra Aδ is turned into an element Aδ
ι of

Aι by considering it as a subspace of MA∗

ι .

When M˜ yields a natural duality for A, i.e., when the map eA : A → (A∗)∗
is an isomorphism for every A ∈ A, then Proposition 2.2 shows how to explicitly
construct Aδ from A∗ without relying on any notion of (topological) limit. For
any topological structure X and any topological algebra A, we denote respectively
by X[ and A[ the structure obtained from X and the algebra obtained from A by
dropping the topology. We denote by X [ the category whose objects are the X[

where X ∈ X with structure preserving maps as arrows. By abuse of notation, we
write X [(X,Y ) instead of X [(X[, Y [). Note that X [(A∗,M˜) is a closed subalgebra
of MA∗

ι for every A ∈ A.

Proposition 2.2 ([3, Theorems 3.6 and 4.3]). Assume that A ∈ A.
(1) The definition of Aδ

ι is independent of the algebraic structure G ∪ H ∪ R
used to defined M˜ and of the algebra M used to define A.

(2) If in additionM˜ yields a duality for A then Aδ
ι is isomorphic to 〈X [(A∗,M˜), ι〉.

Recall that for any A ∈ A, the family {A/θ | θ ∈ Con(A) and A/θ ∈ A is finite}
with the natural bonding maps φθ,θ′ : x/θ 7→ x/θ′ for every θ ≤ θ′ forms an inverse
system, the inverse limit of which is called the A-profinite completion of A (or
simply the profinite completion of A) and is denoted by proA(A). Any A ∈ A
embeds in proA(A). If in additionA is a variety, thenA/θ ∈ A for every congruence
ofA, and the construction of proA(A) does not rely on A and is commonly denoted
by Â. The following result, which follows from [3, Theorem 3.6], states that under
our assumption of a finitely generated prevariety A, the A-profinite completion of
A ∈ A coincides with its natural extension Aδ.

Proposition 2.3. If A ∈ A, then there is an isomorphism between proA(A) and
Aδ that fixes A.
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Informally speaking, Proposition 2.3 shows that natural extension is a tool to
compute profinite completions.

We close the section by introducing some notation. We write F b X if F is a
finite subset of X. If τ is a topology on X and x ∈ X, then we denote by τx the set
of open τ -neighborhoods of x. If b ∈ XZ

τ for some Z and if F b Z, then we denote
by [b|F ] the basic open set {y ∈ XZ | y�F = b�F } of XZ

τ .
If (X,≤) is an ordered set and x ∈ X, then we denote by x↑ and x↓ the up-set

and the down-set generated by x, respectively.

3. The topology δ for profinite completions

In the distributive lattice-based setting, it is well known that the topology ι

that naturally equips the canonical extension of a DL A can be enriched into a
finer topology in which A is definable as the algebra of isolated points. Authors
have used various notations for this topology: Gehrke and Jónsson denote it by
σ in [8] and Gehrke and Vosmaer denote it by δ in [9]. We aim at defining a
similar topology in the more general setting of a finitely generated prevariety A
and A-profinite completions.

3.1. A topology to define A in its profinite completion. If X,Y ∈ X we
denote by Xp(X,Y ) the set of partial morphisms from X to Y , i.e., the set of
the maps f : dom(f) → Y where dom(f) is a closed substructure of X and where
f ∈ X (dom(f), Y ).

Definition 3.1. If A ∈ A and f ∈ Xp(A∗,M˜), we set

Of = {x ∈ X [(A∗,M˜) | x ⊇ f}.

Then, we denote by ∆A, or simply ∆, the family

∆ = {Of | f ∈ Xp(A∗,M˜)}.

The topology δ is defined as the topology generated by ∆, and we denote by Aδ

the topological algebraic structure obtained by equipping A with δ.

Remark 3.2. (1) If M˜ is injective in X , then ∆ is equal to the family of the
sets OK,a := OeA(a)�K where a ∈ A and K is a closed substructure of A∗.

(2) It is not always possible to compare topologies δ and ι. Nevertheless, we
have ι ⊆ δ if any finite subset of A∗ generates a finite substructure in A∗.
In particular, we have ι ⊆ δ if M˜ is a purely relational structure.

Recall that a strong duality is said to be logarithmic if (finite) coproducts in the
dual category (they always exist since they are dual to products) are given by the
direct unions, that is, disjoint unions with constants amalgamated (see section 6.3
in [2]).

Lemma 3.3. If M˜ yields a logarithmic duality for A, then ∆ is a basis of δ.

Proof. Let A ∈ A and f, g ∈ Xp(A∗,M˜). We prove that Of ∩Og ∈ ∆ or Of ∩Og =

∅. First, we note that dom(f) ∪ dom(g) is a substructure of A∗. Indeed, if ih
is the inclusion map ih : dom(h) → A∗ for h ∈ {f, g}, and if sh is the canonical
embedding from dom(h) into dom(f) q dom(g) for h ∈ {f, g}, then there is a
morphism i : dom(f)qdom(g)→ A∗ such that i◦sf = if and i◦sg = ig. It follows
that Im(i) = dom(f) ∪ dom(g) is a closed substructure of A∗.
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If f ∪ g is not a function, i.e., if f and g do not coincide on dom(f) ∩ dom(g),
or if f ∪ g is a function that does not belong to X [(dom(f) ∪ dom(g),M˜), then
Of ∩Og = ∅.

If f∪g ∈ X [(dom(f)∪dom(g),M˜), then it also belongs to X (dom(f)∪dom(g),M˜)

by continuity of f and g. It follows that Of ∩Og = Of∪g. �

Lemma 3.4. Assume that A ∈ A.
(1) The elements of X (A∗,M˜) are isolated points in 〈X [(A∗,M˜), δ〉.
(2) If M˜ is injective in X and if ∆ is a basis of δ, then (A∗)∗ is dense in
〈X [(A∗,M˜), δ〉.

(3) If M˜ is injective in X and yields a duality for A and if ∆ is a basis of δ,
then A is a discrete dense subspace of Aδ

δ.

Proof. (1) If x ∈ (A∗)∗ then Ox = {x} ∈ δ.
(2) Let f ∈ Xp(A∗,M˜). Since M˜ is injective in X , there is an a ∈ (A∗)∗ such

that a = f on dom(f). It means by definition of δ that a ∈ Of ∩ (A∗)∗.
(3) We know by (1) and (2) that eA(A) = (A∗)∗ is the subspace of isolated

points of Aδ
δ. The conclusion follows from Proposition 2.2 (2). �

By combining Lemmas 3.3 and 3.4, we obtain the following proposition.

Proposition 3.5. If M˜ is injective in X and yields a logarithmic duality for A,
then A is the subspace of isolated points of Aδ

δ for every A ∈ A.

Let DL be the variety of bounded distributive lattices, that is, DL = ISP(2),
where 2 = 〈{0, 1},∨,∧〉 is the two-element lattice. Recall that 2˜ := 〈{0, 1},≤
, ι〉 where 0 ≤ 1 yields a logarithmic natural strong duality for DL, known as
Priestley duality. If L ∈ DL, then Lδ coincides with the canonical extension of
L, which can be constructed by Proposition 2.2 as the lattice of decreasing subsets
of the L∗. In [8], the authors introduce a topology δ′ on Lδ (denoted by σ in [8] and
by δ in [9]), and use this topology to extend maps between distributive lattices to
their canononical extensions (i.e., their profinite completions). Recall that a basis
of δ′ is given by the sets [F,O] where F is a closed element of Lδ (i.e., a closed
decreasing subset of L∗), and O is an open element of Lδ (i.e., an open decreasing
subset of L∗). In the next proposition, we prove that the topology δ defined in
Definition 3.1 coincides with δ′.

Proposition 3.6. If L ∈ DL, then δ(Lδ) = δ′(Lδ).

Proof. First, we prove that δ′ ⊆ δ. Let F and O be a closed and an open element of
Lδ, respectively, and assume F ⊆ O. Then, G := F ∪ −O is a closed substructure
of L∗. Let f : G → 2˜ be the map defined by f−1(0) = F . We have f ∈ X (G, 2˜)and [F,O] = Of .

Conversely, let f ∈ Xp(L∗,M˜). Then, f−1(0) is a decreasing clopen subset of
dom(f). Hence, it is a closed subspace of L∗ and F := f−1(0)↓ is a decreasing
closed subspace of L∗. Similarly, F ′ = f−1(1)↑ is an increasing closed subspace of
L∗. It follows that

x ∈ Of ⇔ f−1(0) ⊆ x and f−1(1) ⊆ −x,
⇔ F ⊆ x and x ⊆ −F ′.

We conclude that Of = [F,−F ′] ∈ δ′. �
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Note that there is no statement equivalent to Proposition 3.6 for the variety of
bounded lattices since it is not an IRF-prevariety.

3.2. Profinite completions and products. We aim to use the topology δ to de-
fine extension of maps between algebras of A to their profinite completions. In this
view, an important feature is that under our general assumptions the construction
of profinite completions commutes with the construction of products, i.e.,

(A×B)δ ' Aδ ×Bδ, (1)

for every A,B ∈ A. Given a procedure to extend maps from algebras to their
profinite completions, property (1) would allow us to extend n-ary operations (n ≥
2) on A ∈ A to n-ary operations on Aδ. As proved in the next result, this property
holds true under rather mild assumptions.

Theorem 3.7. Assume that M is of finite type and that M˜ yields a full duality
for A. If A,B ∈ A, then

(A×B)δ ' Aδ ×Bδ ⇐⇒ (A∗ qB∗)[ ' (A∗)[ q (B∗)[.

In particular, if M˜ yields a full logarithmic duality for A, then (1) holds for
every A,B ∈ A and we may assume that the isomorphism is also a ι- and δ-
homeomorphism.

Proof. Assume that (A∗ qB∗)[ ' (A∗)[ q (B∗)[. It then follows successively that

(A×B)δ ' X [((A×B)∗[,M˜[)

' X [((A∗ qB∗)[,M˜[) (2)

' X [((A∗)[ q (B∗)[,M˜[) (3)

' X [((A∗)[,M˜[)×X [((B∗)[,M˜[) (4)

' Aδ ×Bδ,

where (2) is obtained because full dualities turn products to coproducts, (4) follows
from the fact that (Aι(·,Mι),X [(·,M˜[), e, ε) is a dual adjunction between Aι and
ISP(M˜[) and hence turns coproducts to products, and (3) holds by assumption.
Moreover, if M˜ yields a logarithmic duality for A, the isomorphism given by the
previous piece of argument is easily seen to be a ι- and δ-homeomorphism.

Conversely, if (A×B)δ ' Aδ ×Bδ, it follows successively that

(A∗ qB∗)[ ' (A×B)∗[

' Aι((A×B)δ,Mι) (5)

' Aι(Aδ ×Bδ,Mι) (6)

' Aι(Aδ,Mι)qAι(Bδ,Mι) (7)

' (A∗)[ q (B∗)[ (8)

where (6) holds by assumption, and where (5), (7) and (8) follow from the fact that
Aι(·,Mι) and X [(·,M˜[) define a dual equivalence between Aι and ISP(M˜[) (see [4,
Theorem 2.4]). �

In the Appendix, we generalize Theorem 3.7 to Boolean products.
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4. Multi-extension of maps

Given a map u : A → B, we consider the problem of defining an extension of u
between Aδ and Bδ. Our approach (Definition 4.2) provides with a mutli-extension
ũ of u, that is, a map valued in the set of (closed) subsets Γ(Bδ

ι ) of Bδ
ι . This multi-

extension ũ enjoys some continuity properties (Theorem 4.5).
We adopt the following assumption for the remainder of the paper.

Assumption 4.1. The structure M˜ yields a logarithmic duality for A and M˜ is
injective in X .

Surprisingly enough, as noted in [2], many known strong dualities are logarithmic
and hence, satisfy Assumption 4.1.

Definition 4.2. Let A,B ∈ A and u : A→ B. The relational extension of u is the
relation u defined as the topological closure of u in Aδ

δ ×Bδ
ι . The multi-extension

of u is the map ũ defined on Aδ by setting ũ(x) = {y ∈ Bδ | (x, y) ∈ u} for every
x ∈ Aδ.

Let us recall that if 〈X, τ〉 is a topological space, then the set Γ(X) of closed
subsets of X is a complete lattice. Moreover, if Y is dense in X, if C is a
complete lattice, and if f : Y → C, then lim supτ f is the map defined on X by
lim supτ f(x) =

∧
{
∨
f(Y ∩ U) | U ∈ τx}. The next lemma shows that ũ can be

computed analogously as the upper extension in the setting of bounded distributive
lattices (see [8, Definition 2.13]).

Lemma 4.3. Let A,B ∈ A and u : A→ B. If û : Aδ → Γ(Bδ
ι ) is the map defined

as û(a) = {u(a)}, then ũ = lim supδ û.

Proof. For every x ∈ Aδ, we have

lim supδû(x) =
⋂
{u(U ∩A)− | U ∈ δx},

where the closure is computed in Bδ
ι . It follows directly that y ∈ lim supδû(x) if

and only if (x, y) ∈ u. �

Combining Proposition 3.5 with Lemma 4.3, and by compactness ofBδ
ι we obtain

directly the following result.

Proposition 4.4. Let A,B ∈ A and u : A→ B.

(1) If a ∈ A, then ũ(a) = {u(a)}.
(2) If x ∈ Aδ then ũ(x) is nonempty.

The following theorem shows that ũ enjoys similar continuity properties as the
upper extension in the setting of bounded distributive lattices (see [8, Theorem
2.12]). Recall that if 〈X, τ〉 is a compact Hausdorff space, then the family of sets

�U = {F ∈ Γ(X) | F ⊆ U}, U ∈ τ,

is a basis of a topology σ↓, which is called the co-Scott topology.

Theorem 4.5. Let A, B ∈ A and u : A→ B.

(1) The map ũ : Aδ → Γ(Bδ
ι ) is (δ, σ↓)-continuous.

(2) If u′ : Aδ → Γ(Bδ
ι ) is a (δ, σ↓)-continuous map such that u′(a) = {u(a)}

for every a ∈ A, then ũ(x) ⊆ u′(x) for every x ∈ X.
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Proof. First, we prove the following claim.

Claim. For any x ∈ Aδ and any F b B∗, it holds ũ(x)�F =
⋂
{u(V ∩ A)�F |

V ∈ δx}.

Proof of the Claim. The inclusion ⊆ is clear. Let us prove inclusion ⊇. Let α ∈MF

be such that α ∈ u(V ∩A)�F for every δ-neighborhood V of x. For any finite subset
G of B∗ that contains F and any δ-neighborhood V of x, set

KG,V := {y ∈ Bδ | y�G ∈ u(V ∩A)�G} ∩ [α|F ].

We obtain by compactness that HG :=
⋂
{KG,V | V ∈ δx} is a nonempty closed

subspace of Bδ
ι . It follows again by compactness that the family {HG | F b G b

B∗} has an nonempty intersection H. Any element y of H belongs to ũ(x) and
satisfies y�F = α, which proves that α ∈ ũ(x)�F .

(1) We prove that ũ−1(�U) is an open subspace ofAδ
δ for any open subspace U of

Bδ
ι . By compactness of Bδ

ι , it suffices to consider the case where U is a finite union
of basic open sets [α|F ] where F b B∗ and α ∈MF . We consider the case where U
if the union of two such basic open sets [F1|α1] and [F2|α2], as the general case can
be proved in a similar way. Let x ∈ ũ−1

(
�([F1|α1]∪[F2|α2])

)
and F be F1∪F2. The

family KF := {u(V ∩ A)�F | V ∈ δx} is a downward directed family of nonempty
finite sets, so it has a nonempty intersection. Let W be any δ-neighborhood of x
such that u(W ∩ A)�F =

⋂
KF . We prove that W ⊆ ũ−1

(
�([F1|α1] ∪ [F2 ∩ α2])

)
.

Let z ∈W . We obtain successively

ũ(z)�F =
⋂
{u(V ∩A)�F | V ∈ δz} (9)

⊆ u(W ∩A)�F (10)

=
⋂
{u(V ∩A)�F | V ∈ δx} (11)

= ũ(x)�F , (12)

where (9) and (12) are obtained by the Claim, where (10) holds because W is a
δ-neighborhood of z, and (11) holds by definition of W . We deduce from (12) that
ũ(z) ⊆ [F1|α1] ∪ [F2|α2].

(2) By definition of the map ũ, it suffices to prove that R := {(x, y) ∈ Aδ
δ ×Bδ

ι |
y ∈ u′(x)} is a closed relation that contains u. We have u ⊆ R by assumption.
Now, let (x, y) ∈ Aδ

δ × Bδ
ι such that y 6∈ u′(x). Since u′(x) is a closed subspace

of the Boolean space Bδ
ι , there is a clopen subspace U of Bδ

ι such that z 6∈ U and
u′(x) ⊆ U . It follows by continuity of u′ that u′−1(�U)×(Bδ

ι \U) is a neighborhood
of (x, y) disjoint from R. �

Remark 4.6. It follows from the Claim stated in the proof of Theorem 4.5 that if
u : A→ B then ũ(x)�{φ} = φ̃ ◦ u(x) for any x ∈ Aδ and any φ ∈ B∗.

5. Coninuity properties and function compositions

Theorem 4.5 characterizes ũ as the smallest (δ, σ↓)-continuous extension u′ : Aδ →
Γ(Bδ

ι ) of u. In this section, we investigate the properties of ũ under additional con-
tinuity assumptions.
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5.1. Smoothness and strongness. The case where the relational extension u of
u : A→ B is a function leads us to the following natural definition.

Definition 5.1. Let A,B ∈ A and u : A → B. We say that u is is smooth if u is
a function, that is, if ũ(x) is a one-element set for every x ∈ Aδ. In this case, we
denote by uδ the map uδ : Aδ → Bδ defined by uδ(x) ∈ ũ(x).

Example 5.2. If ι ⊆ δ then any term function is smooth since it is (ι, ι)-continuous.

Theorem 4.5 can be rephrased for smooth maps in the following way.

Proposition 5.3. Let A,B ∈ A and u : A→ B.

(1) If u is smooth then uδ : Aδ → Bδ is a (δ, ι)-continuous extension of u.
(2) If u admits a (δ, ι)-continuous extension u′ : Aδ → Bδ then u is smooth

and uδ = u′.

Propositions 3.6 and 5.3 show that the notion of smoothness as defined in Defi-
nition 5.1 boils down to the one defined in [7] when it is considered for the variety
of bounded distributive lattices. As a corollary of Proposition 5.3(2), we obtain
that if u : A→ B is not smooth, then it is not even possible to define a continuous
extension uδ : Aδ

δ → Bδ
ι by suitably picking up an element uδ(x) in ũ(x) for every

x ∈ Aδ.

Example 5.4. If ι ⊆ δ, then every element φ ∈ A∗ is smooth. Consider the map
φ′ : Aδ → M defined by φ′(x) = x(φ). For any F ⊆ M , we have φ′−1(F ) =⋃
f∈F [φ : f ]∩Aδ, which proves that φ′ is (ι, ι)-continuous, so it is (δ, ι)-continuous

since δ ⊆ ι. The conclusion follows from Proposition 5.3 (2).

Proposition 5.5. Let A,B ∈ A and u : A→ B. The map u is smooth if and only
if φ ◦ u is smooth for every φ ∈ Bδ.

Proof. If u is smooth and φ ∈ B∗, then the map φ′ ◦ u where φ′(x) := x(φ) for any
x ∈ Bδ is a (δ, ι)-continuous extension of φ ◦ u. It follows that φ ◦ u is smooth by
Proposition 5.3(2). Conversely, assume that φ ◦ u is smooth for every φ ∈ B∗. We
prove that the map u′ : Aδ

δ → Bδ
ι defined as u′(x) = (φ ◦ u)δ ◦ x is continuous, and

the conclusion follows from Proposition 5.3(2). Let F be a finite subset of B∗ and
α ∈MF . We have

u′−1([F |α]) =
⋂
{
(
(φ ◦ u)δ

)−1
({α(φ)}) | φ ∈ F},

which proves that u′ is (δ, ι)-continuous by Proposition 5.3(2) and our assumption.
�

Example 5.6. If ι ⊆ δ, then every u ∈ A(A,B) is smooth. This result follows from
Example 5.4 and Proposition 5.5. If M is of finite type, it can also be considered
as a consequence of [4, Theorem 2.4].

Definition 5.7. Let A,B ∈ A and u : A → B. We say that u is is strong if ũ is
(ι, σ↓)-continuous.

The proof of the following Lemma is straightforward.

Lemma 5.8. Assume that ι ⊆ δ, and let u : A → B be a smooth map. Then u is
strong if and only if uδ is (ι, ι)-continuous.
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Example 5.9. If ι ⊆ δ, then every u ∈ A(A,B) is strong. We already know that
u is smooth, and we prove as in Example 5.4 that uδ(x)(φ) = x(φ ◦ u) for every
x ∈ Aδ and φ ∈ B∗. It follows that uδ is (ι, ι)-continuous, or equivalently, that ũ
is (ι, σ↓)-continuous by Lemma 5.8.

Strongness can be used to obtain the preservation of functional composition
through profinite completions, as illustrated in the next proposition.

Proposition 5.10. Let A,B,C ∈ A, u : A→ B and v : B→ C.
(1) If v is strong then vu ⊆ v ◦ u.
(2) If u is smooth and if v is strong and smooth, then vu is smooth and (vu)δ =

vδuδ.

Proof. First, we prove the following claim.
Claim. For any strong map u : A → B, the map qu : Γ(Aδ

ι ) → Γ(Bδ
ι ) defined by

qu(K) =
⋃
ũ(K) is (σ↓, σ↓)-continuous.

Proof of the Claim. First, we prove that qu(K) is a closed subspace of Bδ
ι for every

closed subspace K of Aδ
ι . Let y ∈ Bδ

ι such that y 6∈ qu(K). For every x ∈ K let Vx
and Wx be disjoint ι-neighborhood of ũ(x) and y, respectively. By continuity of ũ
and compactness of K, there is a finite subset F of K such that {ũ−1(�Vx) | x ∈ F}
covers K. It follows that W :=

⋂
{Wx | x ∈ F} is a ι-neighborhood of y that does

not meet qu(K).
Now, for any open subspace U of Bδ

ι , it is not difficult to prove that

qu−1(�U) = �ũ−1(�U).

The continuity of qu follows from the latter identity and strongness of u.

(1) By the Claim, the map qvũ is a (ι, σ↓)-continuous extension of vu. Then, we
obtain (1) by Theorem 4.5.

(2) By the Claim, the function w : Aδ
δ → Cδ

ι that maps every x ∈ Aδ to the only
element of qvũ(x) is continuous. Then, we obtain (2) by Proposition 5.3. �

Corollary 5.11. Assume that ι ⊆ δ and let A,B,C ∈ A.
(1) Any term function u := tA(sA1 , . . . , s

A
` ) is smooth and strong, and uδ =

(tA)δ((sA1 )δ, . . . , (sA` )δ).
(2) If u ∈ A(A,B) and v ∈ A(B,C), then vu is smooth and strong and (vu)δ =

uδvδ.

Proof. (1) The proof is obtained by induction on the construction of the term using
Example 5.2, Lemma 5.8 and Proposition 5.10 (2) since any term function is (ι, ι)-
continuous.

(2) The proof is an application of Lemma 5.8, Example 5.9, and Proposition
5.10 (2). �

5.2. A sample case: profinite completions of median algebras. In this sub-
section, we illustrate the previous constructions by considering that A is the variety
of median algebras, that is, A = ISP(2) where 2 = 〈{0, 1},m〉 is the algebra with a
single ternary operation m defined as the majority function on {0, 1}. This variety
is of special interest as (i) it is not lattice-based, (ii) it admits a strongly logarithmic
duality, and (iii) the dual category is locally finite. Hence, ι(Aδ) ⊆ δ(Aδ) for every
A ∈ A.
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5.2.1. A natural duality for median algebras. It is known [2, 14, 16] that the topo-
logical structure

2˜ = 〈{0, 1}, 0, 1,≤, •, ι〉

with two constants 0 and 1, the natural order ≤, and the unary operation • defined
by x• ≡ (x + 1) mod 2, yields a strong logarithmic duality for A. A topological
structureX = 〈X, 0, 1,≤, •, τ〉 is a object of the dual category X = IScP(2˜) providedthat 〈X,≤, ι〉 is a Priestley space with bounds 0 and 1, that • is an order reversing
homeomorphism that swaps 0 and 1 and that satisfies φ•• = φ, and φ 6≤ φ• for every
φ 6= 0.

There is an equivalent spectrum-based formulation of this duality that eases
computations. A subset φ of a median algebra A is prime convex if for every
x, y, z ∈ A, the element m(x, y, z) belongs to φ if and only if at least one of the sets
{x, y}, {x, z}, {z, y} is a subset of φ. A subset x of a structure X ∈ X is a disjoint
ideal of X if it is a downset set disjoint with x•. If in addition x is a clopen subset
of X, then x is called a continuous disjoint ideal. A (continuous) maximal disjoint
ideal of X is a (continuous) ideal that contains φ or φ• for every φ ∈ X.

It is not difficult to show that the map φ 7→ φ−1(0) is an isomorphism between
A∗ and the prime spectrum of A (i.e., the set of prime convex subsets of A)
equipped with inclusion order, ∅ and A as bottom and top element respectively,
set complementation as map •, and Zariski topology. If X ∈ X , then the dual X∗
of X is isomorphic to the set of continuous maximal disjoint ideals of X equipped
with the operation m inherited from the median operation defined on the powerset
of X as

m(x, y, z) = (x ∩ y) ∪ (x ∩ z) ∪ (y ∩ z). (13)

If A ∈ A, then Aδ is isomorphic to the set of the maximal disjoint ideals of A∗

equipped with the operation defined in (13).

5.2.2. Profinite completions of Boolean powers of 2. We can apply Theorem A.1 to
compute profinite completions of Boolean powers of the median algebra 2.

Proposition 5.12. If A is a median algebra that has a Boolean representation
A ↪→ 2X , then Aδ

ι is isomorphic (algebraically and topologically) to 2Xι .

Proof. The dual of 2 is depicted in Figure 1. Observe that for every nonempty
finite sets I and J , every a ∈ 2I and b ∈ 2J , identity

2∗ =
⋃
i∈I

[ai : 1] ∪
⋃
j∈J

[bj : 0]

holds if and only if
⋂
j∈J [bj : 1] ⊆

⋃
i∈I [ai : 1], that is, if and only if the following

condition is satisfied in 2 (for some j0 ∈ J),∧
j∈J

(bj = bj0)⇒
∨
i∈I

(ai = bj0).

The latter formula is also equivalent to∨
k,l∈J; i∈I

(
m(ai, bk, bl) = ai

)
.

We conclude the proof by applying Theorem A.1. �
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2

{0}

∅

{1}

[1 : 1] [0 : 1]

[0 : 0] [1 : 0]

Figure 1. Dual of median algebra 2

Corollary 5.14 is a surprising consequenc of Proposition 5.12. We say that a me-
dian algebra A = 〈A,m〉 is a Boolean if there is a Boolean algebra 〈A,∨,∧,¬, 0, 1〉
such that m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) for every x, y, z in A. Recall that
an algebra A = 〈A,m, ·c〉 of type (3, 1) is a ternary Boolean algebra [11] if 〈A,m〉
is a median algebra and the equation m(x, z, xc) = z holds in A.

Lemma 5.13 ([11]). A median algebra is Boolean if and only if it is the {m}-reduct
of a ternary Boolean algebra.

Corollary 5.14. Let A be a median algebra. The following conditions are equiva-
lent.
(i) Aδ is Boolean.
(ii) A is a Boolean power of 2.

Proof. (i) =⇒ (ii) Let A be a Boolean median algebra, and let A[ be a Boolean
algebra whose {m}-reduct is A. Then A[ can be represented as a Boolean power
A[ ↪→ 2X , where X is the Stone dual of A[. This Boolean representation still holds
between the {m}-reducts of A[ and 2X .

(ii) =⇒ (i) We know by Proposition 5.12 that we can identify Aδ with 2X .
Denote by ·c the operation defined on 2X by

xc(φ) ≡ 1 + x(φ) mod 2, φ ∈ X.

Then 〈2X ,m, ·c〉 is a ternary Boolean algebra, and we conclude the proof by Lemma
5.13 �

We conclude the section by giving an example of a smooth function which is not
a homomorphism.

Example 5.15. In the ∧-semillatice 〈A,≤〉 depicted in Fig. 2, any three elements
have an upper-bound whenever each pair of them is bounded above, and any prin-
cipal ideal is a distributive lattice. Hence, it is a median semilattice [15]. It follows
that the operation m defined on A as m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) turns
A into a median algebra A. This operation can be easily computed explicitly: for
every j, k, ` ∈ ω

m(aj , ak, a`) = a(j,k,`) m(aj , ak, b`) = a(j,k,`)
m(aj , bk, b`) = a(j,k,`) m(bj , bk, b`) = a(j,k,`),

where (j, k, `) denotes the median element of j, k, ` ∈ ω.
Clearly, the elements of A∗ are

Ai = ai↑, A•i = A \ ai↑, Bi = {bi}, B•i = A \ {bi}, i ∈ ω.
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a0

a1

a2

a3

b0

b1

b2

Figure 2. Graph of median algebra A

A

B•1B•2

A2

A3

B1 B2

A•3

A•2

A1

B•0

∅

B0

A•1

Figure 3. The dual A∗ of A.

Hence, the dual of A is depicted in Fig. 3.
The elements of the bidual of A are easily computed:

eA(bn) = An+1↓ ∪A•n↓ = B•n↓, n ∈ ω,

eA(an) = An+1↓ ∪A•n↓ ∪ {Bn}, n ∈ ω.
Then Aδ \ eA(A) = {∞} where

∞ =
⋃
{{A•n, Bn} | n ∈ ω}.

A simple computation shows that, up to identification of A with eA(A)

m(∞, am, bn) = m(∞, am, an) = m(∞, bm, bn) = am∨n, m, n ∈ ω.

Let us illustrate the inclusion ι ⊆ δ. For any φ ∈ A∗, the subasis clopen subsets
{x | φ ∈ x} and {x | φ 6∈ x} of Aδ

ι are respectively equal to Of and Og where
f = {φ} and g = {φ•} correspond to morphisms defined on the closed substructure
{φ, φ•} of A∗.

Now, let u : A→ 2 be the map defined by u(bi) = 1 and u(ai) = 0 for any i ∈ ω.
Clearly, the map u is not a median homomorphism (neither a ∧-homomorphism).
Let us denote by u′ the extension of u on Aδ that satisfies u′(∞) = 0. We prove
that u′ is (δ, ι)-continuous which implies that u is smooth by Proposition 5.3. We
have to prove that u′−1(0) = {∞, a0, a1, . . .} is a δ-open subset of Aδ. Consider
K = {∅, B0, B1, B2, . . .} =

⋂
i∈ω eA(ai). It follows from the continuity of • that

K ∪K• is a closed substructure of A∗. Hence, the map f : K ∪K• → 2 defined by
f(x) = 0 if and only if x ∈ K is a partial morphism on A∗. It is easily seen that
∞ ∈ Of ⊆ u′−1(0).
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6. Extensions of functions in ordered setting

Given a map u : A → B, Definition 4.2 provides a relation (or a multi-map)
ū ⊆ Aδ

δ ×Bδ
ι that extends u. In the case of bounded (distributive) lattices A and

B, the classical technique [5, 8] adopted to extend u to the canonical extensions
(i.e., profinite completions) of A and B provides two functions: the lower extension
uσ and the upper extension uπ. In this section, we reconcile these two approaches
and prove that in the context of bounded distributive lattices, the multi-extension
ũ enables us to recover uσ and uπ, but not conversely. Our approach leads to more
general results about varieties of algebras that are ι-locally semilattices (Definition
6.2).

Notation 6.1. Let ≤ be a fixed total order on M . We denote by ι↑, respectively
ι↓, the topologies formed by the upsets, respectively the downsets, of (M,≤).

We can use the total order ≤ defined on M to construct an upper and a lower
extension of any map u : A→ B.

Definition 6.2. Let A,B ∈ A and u : A → B. We define the maps uM : Aδ →
MB∗ and uO : Aδ →MB∗ by

uO(x) :=
∧
ũ(x), uM(x) :=

∨
ũ(x),

for every x ∈ Aδ. We call uM the upper extension of u, and uO the the lower
extension of u.

Lemma 6.3. If A,B ∈ A and u : A → B, then uO(x)(φ) =
∧

(̃φ ◦ u)(x) and
uM(x)(φ) =

∨
(̃φ ◦ u)(x).

Proof. The proof follows from Remark 4.6. �

Theorem 6.5 gives sufficient conditions for uM and uO to be valued in Bδ.

Definition 6.4. An algebra A ∈ A is a local meet-semilattice if for every b, c ∈ A

and every F b A∗, it holds (b ∧ c)�F ∈ A�F . Local join-semilattices are defined
dually. A local lattice is an algebra of A that is both a local meet-semilattice and
a local join-semilattice.

Theorem 6.5. Let A,B ∈ A and u : A→ B.
(1) The map uO : Aδ →MB∗ is a (δ, ι↑)-continuous extension of u.
(2) The map uM : Aδ →MB∗ is a (δ, ι↓)-continuous extension of u.
(3) If B is a local meet-semilattice, then the map uO is valued in Bδ.
(4) If B is a local join-semilattice, then the map uM is valued in Bδ.
(5) If B is a local lattice, then uO and uM are valued in Bδ.

Proof. (1) Let F b B∗ and α ∈MF . We obtain by Lemma 6.3 that

(uO)−1([F | ≥ α]) =
⋂
{φ̃ ◦ u

−1
(�Uφ) | φ ∈ F},

where Uφ := α(φ)↑ for every φ ∈ F . Then, the continuity of uO follows from
Theorem 4.5. The fact that uO is an extension of u follows from Proposition 4.4.

(2) is obtained from (1) by duality.
(3) Let x be an element of Aδ and let us prove that uO(x) is in the closure of B

in MB∗

ι . We proceed as in the proof of Theorem 4.5 and for any F b B∗ we choose
a δ-neighborhood W of x such that ũ(x)�F = u(W ∩A)�F . The family u(W ∩A)�F
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is finite, and since B is a local meet-semilattice, there is some c ∈ B such that
uO(x)�F =

∧
u(W ∩ A)�F = c�F . We have proved that any δ-neighborhood of x

meets B.
(4) is obtained from (3) by duality, and (5) follows from (3) and (4) . �

Given a map u : L→ L′ between two bounded distributive lattices L and L′, the
theory of canonical extension [8] provides with the upper extension uπ : Lδ → L′

δ

and the lower extension uσ : Lδ → L′
δ. The following corollary proves that they

can be recovered from the multi-extension ũ of u.

Corollary 6.6. If L and L′ are two bounded distributive lattices and u : L → L′,
then for every x ∈ L it holds uσ = uO and uπ = uM.

Proof. The proof follows from the application of Theorem 6.5 to the variety A of
bounded distributive lattices with M = {0, 1} ordered in the natural way. �

Example 6.7. Let L be the bounded distributive lattice made of ω and the finite
subsets of ω with inclusion order. The Priestley dual L∗ = ω ∪ {∞} is the one
point Alexandroff compactification of the antichain ω, with ∞ as top element.
Hence, Lδ = 2ω ∪ {>} is the power set of L∗ \ {∞} with an additional top element
> = L∗.

(1) We easily build functions u : L→ 2 that are smooth without being homo-
morphisms. Indeed let u be the non trivial permutation of 2 and φ ∈ L∗.
Then u ◦φ : L→ 2 is a smooth function that does not belong to L∗. Other
examples are given by the maps uA : L → 2 (for A ⊆ ω) that are defined
by uA(x) = 0 if and only if x ⊆ A. If A is infinite and co-infinite then uA
is smooth but not strong.

(2) The function u : L→ 2 defined by u(X) = |X|mod 2 ifX 6= ω and u(ω) = 1

is not smooth. Indeed, if X is an infinite proper subset of ω then ũ(X) =

{0, 1} = [uO(x), uM(x)].
(3) The function u : L→ 22 defined by

u(X) = (|X|mod 2, (|X|+ 1) mod 2), X 6= ω,

u(ω) = (1, 1),

is not smooth. Moreover, contrary to example (2), the set ũ(x) is not
determined by uO(x) and uM(x). Indeed, if X is an infinite proper subset
of ω then ũ(X) = {(0, 1), (1, 0)} while uO(x) = (0, 0) and uM(x) = (1, 1).

(4) For k ≥ 2 let uk : L → L be the function defined by uk(X) = (1 +

|X|mod k) × X for any X 6= ω and uk(ω) = ω. Then uk is not smooth.
Indeed, if X is a proper infinite subset of ω then ũk(X) = {X, 2×X, . . . , k×
X}. Moreover, we have ũl ◦ uk = ũl ◦ ũk if and only if l and k are coprime.

7. Concluding remarks and further research

In this paper, we have considered the question of extending functions between
algebras to their profinite completions in the setting of finitely generated quasiva-
rieties. Our answer is only partly satisfactory as we provide an extension which
is a multi-map rather than a function. This multi-extension has strong continuity
properties and there are interesting cases in which it turns out to be a function.
Moreover, the construction of the multi-extension shed lights (Corollary 6.6) on the
existence of two canonical extensions in the bounded distributive lattice setting.
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We now identify some topics of further research.
(1) Topology δ (Definition 3.1) is one of the possible topologies in which A can

be defined as the algebra of isolated points of X b(A∗,M˜) and is duality
dependent. A general study of the topologies that enjoy this property
would lead to other multi-extensions which could be ‘closer’ to a function
than the relation ũ considered in this work.

(2) Sufficient conditions for ũ to be smooth are needed.
(3) Canonical extensions have proved to be a useful tool to look for Kripke

complete modal logics. Fields of applications of the techniques developed
in this paper should be found outside the lattice-based setting

(4) Median algebras and median semilattices are equivalent. Natural extensions
of median algebras and canonical extensions of their median semilattices
[10] should be compared. This constitutes a topic of current investigation.
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Appendix A. Profinite completions of Boolean products

The generalization of Theorem 3.7 to Boolean products depends on the possibil-
ity to express emptiness in the dual space in terms of formulas in the algebra, as seen
in the next result. Recall the following notation: if a ∈ A and m ∈M we denote by
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[a : m] the set {ψ ∈ A(A,M) | ψ(a) = m}. The family {[a : m] | a ∈ A,m ∈M} is
a basis of clopen subsets of A∗.

The following theorem generalizes the developments in [12] about Boolean prod-
ucts of bounded distributive lattices.

Theorem A.1. Assume that M˜ yields a logarithmic duality for A and that M is
of finite type. Let A be a Boolean product of the family (Ai)i∈I of algebras of A. If
for every n ∈ N and every m1, . . . ,mn ∈M there is an open formula φ(x1, . . . , xn)

in the language of M such that for every i ∈ I and every a1, . . . , an ∈ Ai, it holds

A∗i =

n⋃
λ=1

[aλ : mλ] ⇐⇒ Ai |= φ(a1, . . . , an),

then Aδ is Aι-isomorphic to
∏
i∈I A

δ
i .

Proof. Let f : A ↪→
∏
i∈I Ai be a Boolean representation of the family (Ai)i∈I of

algebras of A. For every i ∈ I we denote by ρi the embedding (πi)
∗ : A∗i ↪→ q{A∗i |

i ∈ I} where πi denotes the projection map from
∏
i∈I Ai onto its i-th factorAi, i.e.,

ρi is the map defined by ρi(ψ) = ψ ◦ πi. Let X be the set
⋃
{ρi(A∗i ) | i ∈ I}. Since

M˜ yields a logarithmic duality for A, it is not difficult to see that
⋃
{ρi(A∗i ) | i ∈ J}

is isomorphic to q{A∗i | i ∈ J} for every finite subset J of I. It follows that X is a
(not necessarily closed) substructure of q{A∗i | i ∈ I} (such a verification involves
only finitely many terms ρi(A∗i )). In particular, X can be seen as

X = q{(A∗i )[ | i ∈ I}. (14)

We are going to prove that X can be equipped with a Boolean topology τ to
obtain a topological structure that is isomorphic to A∗ and that is embeddable into
q{A∗i | i ∈ I}.

We define the topology τ on X as the topology generated by the sets

[a : m] =
⋃
{[πi(f(a)) : m] | i ∈ I}, a ∈ A,m ∈M.

The topology τ is clearly finer than the topology induced on X by q{A∗i | i ∈ I}.
Let us show that 〈X, τ〉 is Boolean. It suffices to prove that it is compact. Assume
that X =

⋃
{[aλ : mλ] | λ ∈ L} for some aλ ∈ A and mλ ∈M. For every i ∈ I, the

family {[πi(f(aλ)) : mλ] | λ ∈ L} is an open covering of ρi(A∗i ) and there is a finite
subset Li of L such that

ρi(A
∗
i ) =

⋃
{[πi(f(aλ)) : mλ] | λ ∈ Li}. (15)

By hypothesis, for every i ∈ I there is an open formula formula φini with ni
variables (where ni denotes |Li|) such that identity (15) is equivalent to

Ai |= φini((πi(aλ))λ∈Li). (16)

Now, for every i ∈ I let Ωi be defined by

Ωi = {j ∈ I | Aj |= φin((πj(f(aλ)))λ∈Li)}.

The family {Ωi | i ∈ I} is an open covering of I. By compactness, there is a finite
subset J of I such that

I =
⋃
{Ωj | j ∈ J}. (17)

By combining (16) and (17), we obtain,

X =
⋃
{
⋃
{[aλ : mλ] | λ ∈ Lj} | j ∈ J},
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which is a finite open covering of X extracted from {[aλ : mλ] | λ ∈ L}.
Let us denote by g the restriction of f∗ to X. Hence, for any ρi(ψ) ∈ ρi(Ai), we

have g(ρi(ψ)) = ψ ◦ πi ◦ f . We aim to prove that g is an X -isomorphism between
〈X, τ〉 and A∗.

First we prove that g is a X [-embedding. We have to prove that if r represents
an n-ary relation or the graph of a (partial) operation in the language of M˜ and if
ψ1, . . . , ψn ∈ X, we have the following equivalence

(ψ1, . . . , ψn) ∈ rX ⇔ (g(ψ1), . . . , g(ψn)) ∈ rA
∗
. (18)

Let J be a finite subset of I such that {ψ1, . . . , ψn} ⊆
⋃
{ρj(A∗j ) | j ∈ J}. Let

us denote by Y the latter set. We have already noted that Y , considered as a
substructure of q{A∗i | i ∈ I} is isomorphic to q{A∗j | j ∈ J}. Since f : A ↪→∏
i∈I Ai is a Boolean representation of A, the map fJ : A →

∏
j∈J Aj : a 7→

(πj(a))j∈J is onto. Hence, the dual map f∗J : Y → A∗ is an embedding and is
clearly equal to the restriction of g to Y . Then, it follows successively

(ψ1, . . . , ψn) ∈ rX ⇔ (ψ1, . . . , ψn) ∈ rY

⇔ (f∗J (ψ1), . . . , f∗J (ψn)) ∈ rA
∗

⇔ (g(ψ1), . . . , g(ψn)) ∈ rA
∗
,

which establishes equivalence (18), as required.
Finally, since g is the restriction on X of a continuous map, it is a continuous

map for the induced topology on X. From the fact that τ is finer than the induced
topology we eventually conclude that g : 〈X, τ〉 → A∗ is an X -embedding. We
deduce that 〈X, τ〉 ∈ X .

For the last part of the proof, we show that the evaluation map

h : A→ X (X,M˜) : a 7→ h(a) : ρi(ψ) 7→ ψ(πi(f(a)))

is an isomorphism. It is clearly a homomorphism. Moreover, if a, b ∈ A and a 6= b

then there is an i ∈ I such that πi(f(a)) 6= πi(f(b)), i.e., such that eAi
(πi(f(a))) 6=

eAi(πi(f(b))). Let ψ ∈ A∗i with eAi(πi(f(a)))(ψ) 6= eAi(πi(f(b)))(ψ). It means
that ψ(πi(f(a))) 6= ψ(πi(f(b))) which proves that h is one-to-one. Moreover, since
h∗ = g and since g is an embedding, we deduce that h is onto and so, is an
isomorphism.

Hence, it follows successively that

Aδ ' X [(A∗,M˜) ' X [(X,M˜) ' X [(qi∈I(A∗i )[,M˜),

where we have used (14) to obtain the latter isomorphism. Then, we obtain

X [(qi∈I(A∗i )[,M˜) '
∏
i∈I
X [(A∗i ,M˜) '

∏
i∈I

Aδ
i

where the first isomorphism is obtained by partnership duality [4, Theorem 2.4])
and is also an Aι-isomorphism. �

Département de Mathématiques, Université de Liège, Grande Traverse, 12, 4000
Liège, Belgium

Email address: g.hansoul@uliege.be

Mathematics Research Unit, FSTC, University of Luxembourg, 6, Rue Coudenhove-
Kalergi, L-1359 Luxembourg, Luxembourg

Email address: bruno.teheux@uni.lu


