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In memory of my late grandmother, Ada, who promised to wear a hat on the day I became a doctor.  

Today would be the day. 

Rest in peace. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Those who have a natural talent for calculation are generally quick at every other kind of 
knowledge; and even the dull, if they have had an arithmetical training, although they may derive no 
other advantage from it, always become much quicker than they would otherwise have been.” 

(PLATO, 375BC) 

  



Abstract 
Although numeracy, next to literacy, is an essential skill in many knowledge based societies of 
the 21st century, between 5 and 10 % of the population suffer from more or less severe 
mathematics learning disorders or dyscalculia. However, mathematical ability is not a pure 
construct. Instead, mathematical ability maintains a complex relationship with linguistic 
abilities. This relationship has significant implications for the assessment of a person’s 
mathematical ability in multilingual contexts. The hereby presented research project addresses 
the consequences of that relationship in the context of Luxembourg, a highly multilingual 
country at the center of Europe. The aim of the project was to tackle psychometric issues that 
arise when the test taker does not master the language of the test sufficiently and to offer an 
alternative solution to available assessment batteries based on verbal instructions and tasks. In 
the first study, we demonstrate the role of reading comprehension in the language of instruction 
on third grader’s performance in mathematics in Luxembourg and show that non-native 
speaker’s underachievement in mathematics can be largely or entirely explained by their 
lacking reading comprehension in the language of assessment. In the next study we report on 
the two first pilot studies with NUMTEST, an assessment battery that aims to measure 
children’s basic mathematical competence by replacing verbal instructions and task content 
with video instructions and animated tasks. The findings of these studies show that children’s 
basic mathematical competence can indeed be reliably assessed using this new paradigm. 
Opportunities and limitations of the paradigm are discussed. The third and final study of this 
project addresses the psychometric characteristics of this newly developed assessment battery. 
Its findings show that the NUMTEST battery provides for good reliability and concurrent 
validity all while being language neutral. In summary, the presented project provides for an 
encouraging proof of concept for the video instruction method while offering preliminary 
evidence for its validity as an early screener for math learning difficulties. 
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Introduction 
 

Numbers and mathematics are all around us and determine most aspects of modern life. At what 

time do I have to leave? How many days left until my birthday? How many servings should I buy 

for dinner? Can I afford to go to the restaurant tomorrow? Most aspects of life are quantifiable, the 

more so since the rise of digital computers and their panoptic role in many societies of the 21st 

century. With numbers playing such an important role throughout the strata of daily life, it comes 

as no surprise that, next to literacy, being able to handle numbers is one of the most if not the most 

important skill for predicting educational achievement (Chiswick, Lee, & Miller, 2003; Duncan et 

al., 2007; Watts, Duncan, Siegler, & Davis-Kean, 2014). Further than educational attainment, good 

numeracy skills during childhood have a significant positive impact on life outcomes such as 

wealth, good health and general quality of life (Gilmore, Göbel, & Inglis, 2018). However, many 

people struggle with learning and using numbers and mathematical reasoning as effectively as 

others. According to the 2015 PISA results, an international average of 23% of students do not 

attain level 2 proficiency in mathematics, which is considered the minimum skill requirement for 

being able to fully participate in a knowledge-based society (OECD, 2016). Hidden behind this 

average are very extreme cases on both ends, with 90% of students attaining this level in Hong 

Kong, but only fewer than 10% do in the Dominican Republic. In Luxembourg, where the hereby 

presented research project is located, students perform just below OECD average and thus 27% of 

15-year-old students do not reach this minimum proficiency level. These results are corroborated 

by Luxembourg’s very own school monitoring data from 2011 through 2013, which shows that 

already in third grade, between 26 and 30% of students do not reach the performance levels that 

are considered to be sufficient for progressing further into the curriculum (R. Martin, Ugen, & 
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Fischbach, 2013). Even further down the performance spectrum, between 5 and 10% of people 

suffer from dyscalculia (Kaufmann & Aster, 2012), a mathematical learning disorder that will be 

discussed in the third chapter of this thesis. Due to the hierarchical structure of mathematical 

knowledge (von Aster & Shalev, 2007), learning difficulties in mathematics and dyscalculia need 

to be discovered and addressed very early in the school curriculum as shaky foundations can only 

result in patchy numerical representations that are difficult to correct later in the school curriculum. 

Indeed, most people’s difficulties in mathematics start at an early age and their skills as young 

children cast a long shadow over their abilities as they grow older. But what brain magic underlies 

performance in mathematics? What is it that makes it so hard for some people to grasp and use 

numbers? The mental representations and mechanisms of mathematical ability have gained 

increased attention in recent years and have been thoroughly studied in the field of numerical and 

mathematical cognition. While there is no definitive answer, the available literature is plenty and 

traditionally distinguishes between domain-specific and domain-general factors when trying to 

explain the cognitive foundations of mathematical thinking.  

Concerning the domain-general brain mechanisms involved, available evidence shows that 

performing well on numerical reasoning is correlated to the performance of a multitude of brain 

modules. First, there is considerable evidence for a positive link between good executive 

functioning and mathematics achievement (Bull & Lee, 2014; Clements, Sarama, & Germeroth, 

2016; Verdine, Irwin, Golinkoff, & Hirsh-Pasek, 2014). Of all executive components, working 

memory has received the most attention. Both visuo-spatial and verbal working memory 

performance (Baddeley & Hitch, 1974) have been found to be related to mathematics achievement 

(Alloway & Passolunghi, 2011; Friso-van den Bos, van der Ven, Kroesbergen, & van Luit, 2013; 

Hornung, Schiltz, Brunner, & Martin, 2014; Mou, Berteletti, & Hyde, 2018; Raghubar, Barnes, & 
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Hecht, 2010) and seem to be particularly relevant for subtraction (Caviola, Mammarella, 

Lucangeli, & Cornoldi, 2014). The exact role of working memory subcomponents in various 

mathematical tasks remains unclear. Some studies have found that visuo-spatial working memory 

performance was especially predictive of mathematics performance during the early stages of 

mathematics acquisition while verbal working memory was more predictive of mathematics 

performance in later grades (De Smedt et al., 2009; Van de Weijer-Bergsma, Kroesbergen, & Van 

Luit, 2015). However, other studies have suggested the inverse order of correlation (e.g. Alloway 

& Passolunghi, 2011). Beyond visuo-spatial working memory, the role of general visuo-spatial 

skills in mathematics performance has been investigated. Several longitudinal studies have been 

able to highlight the importance of early visuo-spatial ability in later mathematics achievement 

(Casey et al., 2015; Mix et al., 2016; Verdine et al., 2014), seemingly more so in girls than in boys 

(Laski et al., 2013). Reasoning abilities have also been shown to be related to early numerical skills 

(Hornung et al., 2014) and to predict later arithmetical reasoning (Stock, Desoete, & Roeyers, 

2009). Especially fluid reasoning  (Cormier, Bulut, McGrew, & Singh, 2017; Green, Bunge, 

Briones Chiongbian, Barrow, & Ferrer, 2017; Hornung et al., 2014) and processing speed (Cormier 

et al., 2017) have been identified as strong and reliable predictors of mathematics achievement 

throughout the school curriculum. All in all, the current state of research suggests that 

mathematical thinking and number competence seem to draw on a multitude of cognitive functions 

with considerable variety depending on the task. Finally, there is a growing research focus on the 

role of different language skills in mathematics acquisition and assessment. Gilmore and 

colleagues state that language skills play both a general and various specific roles in mathematics 

(Gilmore et al., 2018). The complex and, as I will show, often damaging relationship between 

language and mathematics will be discussed in chapter two. Chapter three will be dedicated to 
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dyscalculia, the problems that language brings about in the curricular and psychometric assessment 

of mathematical ability as well as the solution that I explored in the context of the hereby presented 

research project. The final introductory chapter will then address the domain-specific 

competencies that have been shown to have the strongest predictive power for later mathematics 

achievement and how the solution I proposed was designed around these fundamental numerical 

skills. 
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Chapter 2 
Mathematics and language: A complicated 

relationship 
 

While formal mathematics use their own symbolic language, it has been known for a long time 

that, nevertheless, learning and using mathematics taps into language skills, both at the general 

and at specific levels. References to the more general aspects can be found in educational research 

papers dating back to the 1970es. For example  in 1979, Austin and Howson state that ‘In the 

teaching and learning of mathematics, language plays a vitally important role’ (Austin & Howson, 

1979). Indeed, it is difficult to imagine a classroom that does not use common language to instruct 

and communicate about mathematics or that mathematical concepts could be acquired without 

sufficient language competence. Beyond this general role, the more specific relationships between 

different aspects of language and mathematics have been studied. In 1996, Ellerton & Clarkson 

stated that ‘Although language factors have long been recognized as having an important influence 

on mathematics learning, possible frameworks for researching the nature and extent of that 

influence have only been developed relatively recently.’ Over twenty years have passed since this 

statement, and there has been a vast body of research on the different ways in which language 

influences the acquisition and the use of mathematics. This chapter will focus on these aspects by 

providing an overview of the different angles under which these questions have been investigated. 
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Number-word structure 

A first aspect that has been studied for potential relationships between linguistics and mathematics 

is the structure of number words. In that context, one distinguishes between languages that use a 

transparent number system and those that use an intransparent, inverted number-naming system. 

In a transparent number word system, the structure of the number word follows the decimal 

structure of the number it represents. English for example follows a transparent number-word 

structure: in the word forty-two, the decade precedes the unit just as in the Arabic symbolic form 

42. German on the other hand uses an intransparent number word structure: 42 is written as 

zweiundvierzig, which, if literally translated into English, would be said „two and forty“, thus 

inverting the decade-unit structure of the Arabic symbolic form. Other facets of language 

transparency in the context of mathematics include the use of irregular number words for some 

numbers. In French for example, the numbers 11, 12, 13…16 have proper, intransparent names: 

onze, douze, treize…seize. Starting from the number 17, a transparent system is used: dix-sept, dix-

huit, dix-neuf, which translates into ten-seven, ten-eight, ten-nine. This system is then used up to 

and including 69, which is transparently named soixante-neuf. Arriving at 70 though, the French 

language switches to an intransparent naming system again: 70 is named soixante-dix, literally 

meaning sixty-ten and has no word for 70 per se. Following numbers are then named according to 

the system used for 11, 12, 13 etc.: 71 becomes soixante-et-onze, literally meaning sixty-and-

eleven. This system is used up to and including 79. Starting from 80, another, new naming system 

is then used which refers to the vigesimal numeral system: 80 is called quatre-vingt, literally four-

twenty and the following numbers are then named accordingly. 81 becomes quatre-vingt-un, 

translated as four-twenty-one and numbers up to and including 89 use this structure. But, there’s 

more! As the French language doesn’t have a specific word for ninety either, the structure used for 
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the seventies is now used again for numbers from 90 to 99, but with a twist! Instead of being based 

on the decimal system used for 70 to 79, the naming structure for the nineties now follows the 

vigesimal system used for the preceding eighties: 90 becomes quatre-vingt-dix, 91 becomes 

quatre-vingt-onze etc1. Similar but less extensive irregularities are found in the English language 

for the numbers eleven and twelve which, if the system used transparent number naming would be 

called oneteen and twoteen, just like their successors thirteen, fourteen etc. While there are 

historical and etymological reasons behind convoluted naming systems like the French one, a 

reader unfamiliar with the French language will have little trouble understanding the problems this 

naming system can produce in the context of learning numbers and mathematics. In fact, the 

cognitive effects of intransparent number naming systems on performance in mathematics have 

been investigated by numerous studies. Some have suggested that the use of an intransparent 

number-word system requires additional working-memory resources when compared to a 

transparent system (Zuber, Pixner, Moeller, & Nuerk, 2009). The same authors also report a study 

conducted in a Czech sample. The Czech language is the perfect candidate for studying the effects 

of transparency of the numberword structure as it features both a transparent and a nontransparent 

system. They found that the intransparent numberword structure lead to a majority of inversion 

related errors which were practically absent in the transparent variant (Pixner, Zuber, et al., 2011). 

Similar effects have been found by Imbo and colleagues when comparing French (transparent) 

with Dutch (intransparent) (Imbo, Vanden Bulcke, De Brauwer, & Fias, 2014). Krinzinger and 

colleagues found that intransparent number-word structure had negative effects on writing Arabic 

numbers from dictation, but found no such effect on number recognition (Krinzinger et al., 2011). 

                                                           
1 Some variations of the French language use a somewhat more transparent naming system when it comes to decades. 
Belgian French uses septante instead of soixante-dix and nonante instead of quatre-vingt-dix. Curiously, eighty is still 
named intransparently: quatre-vingt. No trace of the vigesimal number system remains in Swiss French however, 
which uses octante for eighty. 
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However, others have found that an intransparent number word structure had detrimental effects 

on place-value processing, even with nonverbal Arabic symbolic digits (Moeller, Shaki, Göbel, & 

Nuerk, 2015; Pixner, Moeller, Hermanova, Nuerk, & Kaufmann, 2011). Taken together, currently 

available research seems to suggest that transparent number word systems provide an easier setting 

for children who are learning transcoding skills. The observed detrimental effects of an 

intransparent number-word system can be substantial and as such, the use of a completely 

transparent number-word structure as found in mandarin Chinese and many other Asian languages 

has been proposed as the source of superior performance in mathematics by Asian children: Using 

a transparent number-word system could indeed give them a running start in manipulating basic 

numerical concepts (Siegler & Mu, 2008). 

Word problems  

The most intuitively obvious offenders when it comes to links between language and mathematics 

are traditional word problems. Failure in solving a word problem can be due to two main reasons. 

On one hand we have a potential failure to understand the verbal components of the problem, 

leading inevitably to difficulties in deriving the latent mathematical problem. On the other hand, 

we have a failure to successfully solve the mathematical problem itself. Research suggests that the 

former is more often the case than not. In a study conducted in the Philippines on Filipino-English 

dual language learners, researchers have found that students performed better in word problems 

when they were formulated in their first languages and that when student’s performance improved, 

the improvement was mostly due to an improvement in their text comprehension (Bernardo, 1999). 

In a similar vein, Vilenius-Tuohimaa and colleagues investigated the relationship between word 

problem performance and reading comprehension in a sample of 225 fourth grade children 

(Vilenius‐Tuohimaa, Aunola, & Nurmi, 2008). They found that performance on word problems 
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was strongly related to reading comprehension: the more fluent a child’s reading skills, the better 

it performed on mathematical word problems. Kempert and colleagues came to similar conclusions 

after studying the effects of reading comprehension in a sample of third graders that included both 

German monolinguals as well as Turkish-German bilinguals. (Kempert, Saalbach, & Hardy, 

2011). They found that the more proficient a student was in the language of instruction and 

assessment, the better he was at solving word problems. Another study by Sepeng and Madzorera, 

aimed at identifying the sources of difficulty in solving word problems in a sample of grade 11 

students in South Africa, found that the prevalent source of difficulty was related to deriving 

algebraic terms from the textual source and comprehension of the instructional vocabulary (Sepeng 

& Madzorera, 2014). Wang and colleagues tell the same story after investigating a group of 701 

second graders in the United states. When investigating the best predictors for solving word 

problems, they found that after initial arithmetic and word-problem solving skills, language 

competence and verbal working memory were significant and meaningful predictors of word 

problem performance (Wang, Fuchs, & Fuchs, 2016).  

Mathematical vocabulary 

More recently, other researchers have investigated the dependency on vocabulary for solving word 

problems more closely with the aim of disentangling the role of general reading comprehension 

from that of specific mathematical vocabulary knowledge in mathematics performance. 

Mathematical vocabulary refers to quantitative words and concepts such as more, many, less, few, 

fewest etc. (Purpura, Napoli, & King, 2019). Indeed, Mou and colleagues for example have shown 

that already in preschool, general word and letter knowledge is a meaningful predictor of 

performance in mathematics (Mou et al., 2018). Other studies further showed that above general 

vocabulary, preschoolers performance in basic numerical tasks is specifically related to knowledge 
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of mathematical vocabulary, above and beyond general vocabulary knowledge (Hornburg, 

Schmitt, & Purpura, 2018). However, the relationship was only significant for some tasks, while 

there was no such relationship for purely numerical tasks such as subitizing or formal addition (see 

also (Peng & Lin, 2019)). Corroborating these findings, Purpura and colleagues have found not 

only similar results in a sample of 4 year old preschoolers, but they also found that children whose 

parents had less than a college level education knew significantly less mathematical words than 

their peers (Purpura & Reid, 2016). These results indicate that already at a very early stage, before 

or during the preschool years, many children have already acquired a significant amount of 

mathematical vocabulary which in return allows them faster access to numerical concepts during 

preschool and early primary education. Based on these observations, it has been suggested that 

training mathematical vocabulary specifically during these early years is essential for the 

successful development of mathematical skills later on (Riccomini, Smith, Hughes, & Fries, 2015). 

Bilingual studies 

Another angle under which the relationship between mathematics and language have been 

investigated are studies on bilinguals (see (Poncin, Van Rinsveld, & Schiltz, 2018) for a review).  

Bilinguals are an interesting population to study the effects of language on knowledge retrieval as 

their behavior and performance can be compared between languages in the same person. 

Language-dependent memory effects have been shown for general fact retrieval (see e.g. (Marian 

& Fausey, 2006)) but also for mathematical knowledge. In that sense, a line of studies has been 

able to show that mathematical representations are not stored in a language independent format. 

Saalbach and colleagues report a study in which bilingual high-school students were trained on 

subtraction and multiplication problems over four days in one language (German or French) and 

then assessed in the other one (Saalbach, Eckstein, Andri, Hobi, & Grabner, 2013). They found 
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significant cognitive costs due to language switching, indicating that the newly learned material 

was stored in the language of instruction and that translation to the language of assessment comes 

with additional effort (see also (Kempert et al., 2011) for similar findings in a population of 

Turkish-German students in Germany). Another study by Spelke and colleagues found that 

Russian/English bilingual college students that were trained on items containing both exact and 

approximate numerical information in both languages retrieved information more accurately when 

the language of acquisition matched the language of retrieval, but only for exact numbers (Spelke 

& Tsivkin, 2001). No such effect was found for approximate numerical information, suggesting 

that exact, large number representations are stored in a language-specific format. In the same line 

of studies, Van Rinsveld and colleagues have been able to show that in Luxembourgish dual-

language learners, providing linguistic context improved their performance in solving arithmetical 

problems, but only when the problems had to be solved in their second language, which is also the 

language of instruction (Van Rinsveld, Schiltz, Brunner, Landerl, & Ugen, 2016). These findings 

suggest that the bilingual brain defaults to the language in which knowledge has been acquired 

during retrieval and that retrieval in another language constitutes a bigger effort that can be 

facilitated by providing linguistic context in this second language. Similarly to the previous study, 

participants were faster when solving arithmetical problems in their first language of instruction 

(German) than in their second (French) (Van Rinsveld, Dricot, Guillaume, Rossion, & Schiltz, 

2017). Behavioral findings such as these have been further corroborated by neuro-imagery studies. 

Van Rinsveld and colleagues for example have found that in highly proficient German/French 

bilinguals, fMRI activation patterns resulting from solving complex arithmetical problems differed 

between their two languages (Van Rinsveld et al., 2017). Lin and colleagues however found that 

activation patterns between languages in a population of Chinese/English bilinguals were largely 
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identical, but found higher activation levels when problems were solved in the participants second 

language, again suggesting that when language of instruction and language of retrieval differ, 

switching comes at a cost.  

Reading comprehension, mathematics and the language of instruction 

The literature presented so far points to the conclusion that sufficient language competence is 

necessary for succeeding in many but not all mathematical tasks. While numerical representations 

are largely independent of language (but see (Salillas & Carreiras, 2014) for findings that suggest 

otherwise), it is in the construction and retrieval of these representations that language plays a 

significant role (Gelman & Butterworth, 2005). It is thus no surprise that reading comprehension 

and mathematics achievement have been shown to share considerable covariance at different levels 

of the school curriculum. Gjicali and colleagues have shown that linguistic competence measured 

at a very young age (1,5-3,5 years) in language minority and low income pupils predicts 

arithmetical competence at preschool age (4,5-6,5 years) (Gjicali, Astuto, & Lipnevich, 2019). 

Similar observations were made by Zhang based on a study conducted on preschoolers in Hong 

Kong (Zhang, 2016). The author concludes that written language is an essential building block for 

children’s acquisition of number concepts at an early age. Beyond the early stages of acquisition, 

other studies have shown that reading comprehension and mathematics achievement are 

consistently related throughout the curriculum. For example, Korpipää and colleagues have found 

that reading and arithmetic skills share significant covariation both in grade 1 and in grade 7 in a 

sample of 1335 Finnish students (Korpipää et al., 2017). The correlation between reading 

comprehension and arithmetic performance is on average .55 and very consistent, as is shown by 

a meta-analysis conducted by Singer & Strassen on 68 individual study samples (Singer & Strasser, 

2017). Moreover, Vukovic and Lesaux have found that language ability also predicts gains in 
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different mathematical fields, both for language majority and language minority speakers 

(Vukovic & Lesaux, 2013). It is in studies conducted on language minority students that the 

importance of good language comprehension not only becomes very clear, but also problematic. 

If the relationship between reading comprehension and success in mathematics is that consistent, 

then students that are less competent in the language of instruction and assessment of their school 

system will inevitably perform worse in mathematics than those who are competent users of the 

instruction language. Differences in language comprehension account for most of the performance 

differences between children with and without an immigration background (Kempert et al., 2016) 

in many areas including mathematics. In the same line of research, Paetsch and colleagues showed 

that performance differences in mathematics between children with a German background 

(language of instruction)  and those with a foreign language background disappeared entirely after 

controlling for reading comprehension (Paetsch, Radmann, Felbrich, Lehmann, & Stanat, 2016). 

In the context of the present thesis, I conducted a similar study (study report 1) on the 

Luxembourgish school population and found the same pattern of results: Language minority pupils 

performed worse than their native peers both in measures of reading comprehension in the 

language of instruction and in mathematics and we showed that the differences in mathematics 

performance are largely or even entirely mediated by differences in reading comprehension. 

The findings presented so far bring about a problematic situation when it comes to educational and 

psychometric assessment of mathematics in multilingual settings. If language competence is so 

closely related to mathematics performance, and if the tests evaluating mathematical skill draw 

heavily on verbal instructions and task content, then one can question how much of the 

performance in these tasks is effectively attributable to numerical reasoning and how much of the 

performance is due to varying levels of language competence. Beyond the empirical evidence 
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presented so far, the problem is very easy to illustrate. Imagine the following problem, written in 

Luxembourgish, a language that the international reader is very unlikely to understand: Zwee 

Schwéngercher gin an de Stall. Et komme nach zwee Schwéngercher dobäi. Wéivill 

Schwéngercher sin elo am Stall? This is a grade one level word problem. The underlying arithmetic 

problem is very simple: How much is two plus two. However, you could not solve it. It must mean 

that you are terrible at arithmetic, right? Of course, that is not the conclusion that you would draw 

as a reader. Sadly, it is the conclusion that many children with a foreign language background are 

faced with in multilingual settings in which their first language doesn’t match the language of 

instruction and assessment. This realization isn’t exactly new as a few authors have pointed to it 

before (e.g. Abedi, 2002; Abedi & Lord, 2001; Hickendorff, 2013). While the issue has been 

considered in educational settings, similar considerations arise when it comes to psychometric 

assessment and the diagnostics / screening of mathematical learning disabilities and dyscalculia. 
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Chapter 3  
The (Mis)diagnosis of Dyscalculia 

 

Dyscalculia is a learning disorder whose definitions are yet relatively unclear. The ICD-10 (World 

Health Organization, 1992) didn’t use the word dyscalculia yet and spoke instead of a ‘specific 

disorder of arithmetical skills’ that ‘involves a specific impairment in arithmetical skills, which is 

not solely explicable on the basis of general mental retardation or of grossly inadequate schooling. 

The deficit concerns mastery of basic computational skills of addition, subtraction, multiplication, 

and division (rather than of the more abstract mathematical skills involved in algebra, 

trigonometry, geometry, or calculus.’ Two characteristics stand out in this definition. First, it’s a 

specific disorder of only arithmetical skills. It must be independent from general mental 

retardation. Second, it’s a disorder that affects only basic arithmetical skills and not the more 

complex mathematical concepts. This definition is relatively old and at the time of writing this 

text, but the 11th revision of the ICD is in the works. In an online preview version of the new 

classification (https://icd.who.int/browse11/l-m/en), the term dyscalculia still isn’t used. Instead, 

it is now defined as a ‘developmental learning disorder with impairment in mathematics’ and 

described as a disorder that ‘is characterized by significant and persistent difficulties in learning 

academic skills related to mathematics or arithmetic, such as number sense, memorization of 

number facts, accurate calculation, fluent calculation, and accurate mathematical reasoning. The 

individual’s performance in mathematics or arithmetic is markedly below what would be expected 

for chronological or developmental age and level of intellectual functioning and results in 

significant impairment in the individual’s academic or occupational functioning. Developmental 

learning disorder with impairment in mathematics is not due to a disorder of intellectual 



17 
 

development, sensory impairment (vision or hearing), a neurological disorder, lack of availability 

of education, lack of proficiency in the language of academic instruction, or psychosocial 

adversity.’ Several differences with the previous definition exist. First, the listing of affected 

competencies has been broadened and specified. Second, there is now a normative criterion 

concerning the relative performance of the affected person when compared to normally developing 

peers. Lastly and most importantly for the present thesis, the exclusion criteria have been widened 

and now include ‘lack of proficiency in the language of instruction’. I will come back to this, but 

first I want to present the definitions of dyscalculia as offered by the two commonly used versions 

of  the Diagnostic and Statistical Manual of Mental disorders, the de-facto classification system 

used in Psychology and Psychiatry around the world. In the fourth and still commonly used edition 

of the DSM (American Psychiatric Association, 1998), the term dyscalculia is also not used. 

Instead, it defines the Mathematics disorder, whose diagnostic criteria are established as follows: 

A. Mathematical ability, as measured by individually administered standardized tests, is 

substantially below that expected given the person’s chronological age, measured 

intelligence, and age-appropriate education. 

B. The disturbance in Criterion A significantly interferes with academic achievement or 

activities of daily living that require mathematical ability 

C. If a sensory deficit is present, the difficulties in mathematical ability are in excess of 

those associated with it. 

The two main characteristics of this definition are the normative criterion assessed by a 

standardized test on one hand and, indirectly, the exclusion criterion of general mental retardation. 

In that sense, the definition is similar to the one in ICD-10 while remaining rather imprecise when 

it comes to symptomatic manifestations of the disorder. Similarly to the ICD, the DSM has been 
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recently revised and a fifth edition was published in 2013. In this new version (American 

Psychiatric Association, 2013), a search for the term dyscalculia finally yields a result. The former 

Mathematics disorder is now classified as a Specific learning disorder with impairment in 

mathematics. Symptoms include problems with the person’s number sense, memorization of 

arithmetic facts, accurate or fluent calculation and accurate mathematical reasoning. Dyscalculia 

is defined in a note stating that it is an alternative term used to refer to a pattern of difficulties 

characterized by problems processing numerical information, learning arithmetic facts, and 

performing accurate of fluent calculations. While the complete diagnostic criteria of specific 

learning disorders as defined in the DSM-V are too voluminous to be reported here, two criteria 

are specifically related to mathematics: 

1. Difficulties mastering number sense, number facts, or calculation (e.g., has poor 

understanding of numbers, their magnitude, and relationships; counts on fingers to add 

single-digit numbers instead of recalling the math fact as peers do; gets lost in 

the midst of arithmetic computation and may switch procedures). 

2. Difficulties with mathematical reasoning (e.g., has severe difficulty applying mathematical 

concepts, facts, or procedures to solve quantitative problems). 

Another criterion of importance for all specific learning disorders including mathematics is that 

‘the affected academic skills are substantially and quantifiably below those expected for the 

individual’s chronological age, and cause significant interference with academic or occupational 

performance, or with activities of daily living, as confirmed by individually administered 

standardized achievement measures and comprehensive clinical assessment.’ The most visible 

change from other definitions presented so far is that the exclusion of general mental retardation 

is not part of the diagnostic criteria in this newer definition. 
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Definitions of dyscalculia are thus manifold and comprise varying degrees of specificity. The 

common denominator, as pointed out by Gilmore and coauthors (Gilmore et al., 2018), is that a 

diagnosis of a mathematical disorder, or dyscalculia, is ‘nearly always based on an individual’s 

performance on a standardized mathematical achievement test’, while other explicatory factors 

for underachievement in mathematics need to be ruled out.  

However, when looking at available psychometric test batteries for screening and diagnosing math 

learning difficulties, one can quickly see that all of them are based on verbal instructions and verbal 

task content to varying degrees. In Luxembourg, commonly used tests include but are not limited 

to the Eggenberger Rechentest (ERT) (Schaupp, Holzer, & Lenart, 2007), the Osnabrücker Test 

zur Zahlbegriffsentwicklung (OTZ) (van Luit, van de Rijt, & Hasemann, 2001), the 

Neuropsychologische Testbatterie für Zahlenverarbeitung und Rechnen bei Kindern (ZAREKI) 

(von Aster, Bzufka, & Horn, 2009), the Test diagnostique des compétences de base en 

mathématiques (TEDI-MATH) (Noël, Grégoire, & Nieuwenhoven, 2008) or the 

Rechenfertigkeiten- und Zahlenverarbeitungs-Diagnostikum (RZD) (Jacobs & Petermann, 2014).   

While these tools are of good quality when used appropriately, several issues arise when they are 

used in multilingual contexts. As should be clear after the literature presented so far, mathematical 

competence is far from independent from language proficiency ,which is further underlined by the 

inclusion of ‘lack of proficiency in the language of instruction’ as an exclusion criteria in the 

definition provided by ICD-11. In other words, when the tested person doesn’t master the language 

of the test sufficiently, the test can be considered as neither objective, sensitive, reliable or 

generally valid in any form. For a more detailed critique of how this situation affects the classical 

quality criteria of a psychometric tests, I will refer the reader to the introduction of the last study 

report in this thesis. Above and beyond the language bias, a definition of a disorder that is vaguely 
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based on some standardized test battery is problematic. In practice, this leads to a situation in which 

there are as many different definitions of what does and what does not constitute dyscalculia as 

there are assessment batteries. While efforts have been made to propose a less dependent definition 

of math learning difficulties and dyscalculia (Geary, 1993, 2010), the problem persists and leads 

to large differences in the reports on the prevalence of dyscalculia, ranging from 1.3% to 10.3% 

(Devine, Soltész, Nobes, Goswami, & Szűcs, 2013) . This significantly hampers comparability 

between children, as a child could be diagnosed with dyscalculia using one battery while another 

conclusion could be derived using a different battery. The obvious ethical issues aside, this 

situation can have a dramatic impact on a child’s access to intervention and support programs 

provided by any given educational system and might lead to circumstances in which a child might 

be assessed with different methods until some test provides the necessary criteria for inclusion. 

Finally, a vague definition of dyscalculia also leads to comparability issues when it comes to 

research on the normal and deviate development of mathematical abilities during childhood: Every 

study that targets a sample of dyscalculic children uses its own inclusion criteria, sometimes based 

on the standardized assessment of participants using a chosen test-battery during data collection, 

but most often based on reports of the diagnosis by participants which in turn are based on very 

different and incomparable test results. This severely limits the generalizability of many studies’ 

results and constitutes a roadblock in the way of elucidating the factors underlying math learning 

difficulties. 

Houston, we have a problem. And a solution! Faced with this situation, two possibilities for 

remediation come to mind. The first, theoretically ideal one, would be to have each test available 

in each and every language and to train highly polyglot practitioners. But one must quickly 

recognize that even only targeting this ideal would be hardly feasible both for practical and 
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financial reasons. The other solution is to remove language factors from standardized mathematics 

assessment altogether and thus, as the title of this thesis suggests, to remove language from the 

equation. This was the core idea that gave birth to the hereby presented research project and its 

resulting application. The objective of the project was twofold. First, by removing verbal 

components from the assessment process, the often adverse effects of language competence should 

diminish or vanish entirely, thus providing a less linguistically biased measure of basic number 

competence. Second, by developing an assessment method for basic number competence that is 

independent of the language skills of the assessed and the language context of its administration, 

I could provide a tool that can be used in many multilingual countries and provide a basis for 

interpersonal and international comparison of results. We choose to do this by developing 

NUMTEST, a web-application for tablet computers that replaces verbal task instructions and task 

content by video instructions and animated tasks. The basic principle underlying the method is that 

children get shown a video of a hand completing the task correctly, which is shown by a green 

happy smiley that appears at the end of each item. After watching the video, children then get to 

practice on their own on similar items before the actual assessment starts. For a more detailed 

description on how this works, I invite the reader to have a look at the methods sections of both 

the second and third study reports in this dissertation. In line with the main message of this thesis, 

I have also edited a video about the method and the project which can be watched under the 

following address (https://www.youtube.com/watch?v=S1JhWr5DspE).  

Now that that it should be clear why I chose to develop an entirely nonverbal test battery for basic 

number competence, the remaining question is that of ‘How?’. What should be measured in this 

test? What are the most reliable predictors of math achievement at the beginning of the school 

https://www.youtube.com/watch?v=S1JhWr5DspE
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curriculum? Which of these can be assessed by using our novel methodology and the given 

technological framework? These questions will be addressed in the next chapter. 

  



23 
 

Chapter 4  
Domain-specific predictors of mathematics 
achievement and NUMTEST task design 

 

The tasks in the NUMTEST assessment were designed according to three guidelines. First, we 

wanted to include tasks for which there was empirical evidence that they would provide the best 

possible predictive power over later mathematics achievement. As stated before, mathematical 

knowledge is built hierarchically with its foundations in basic number skills learned during a 

child’s preschool years. The currently most referenced theoretical model for children’s 

development of numerical abilities is the four-step developmental model (von Aster & Shalev, 

2007). The model describes the evolution of a child’s numerical abilities, starting in its infancy 

before moving to preschool and into the first year of formal mathematics education. In this model, 

the development of numerical representations starts with genetically inherited core representations 

of magnitude and its related functions, namely subitizing and large quantity estimation. These 

functions are also often referred to as the number sense (Dehaene, 2011), a brain module designed 

to precisely account for quantities up to and including 4 (subitizing) and to estimate quantities 

above that threshold. The current state of empirical evidence suggests that this module is of 

ontogenetic origin and that humans share it with many other species ranging from closely related 

to humans like primates (Matsuzawa, 2009) to less related species like lions (Benson-Amram, 

Gilfillan, & McComb, 2018), fish (Agrillo, Dadda, Serena, & Bisazza, 2009), chicken (Rugani, 

Vallortigara, Priftis, & Regolin, 2015) and even insects like the honeybee (Howard, Avarguès-

Weber, Garcia, Greentree, & Dyer, 2019). The model stipulates that, as working memory capacity 

evolves during early childhood, new mathematical knowledge is built upon these core 
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representations as they provide for the first basic meaning of number. In the next two steps, these 

core representations are then extended by two symbolic systems, one of verbal nature by providing 

number words for the core representations, another one in the form of the Arabic digits. In the final 

step, these symbolic representations provide the core for the development of what is called the 

mental number line ‘in which ordinality is represented as a second (acquired) core principal of 

number’ (von Aster & Shalev, 2007). According to this model, math learning difficulties and 

dyscalculia can result from deficient development of any of these four steps.  

In the context of this theoretical framework, research in numerical cognition has tried and 

succeeded at identifying several of these basic numerical competencies that have high predictive 

power for later mathematics achievement. Indeed, there is a large body of evidence showing that 

the best predictor for mathematics achievement throughout the school curriculum and later life is 

performance on basic numerical tasks during or around the preschool years (Aunio & Niemivirta, 

2010; Aunola, Leskinen, Lerkkanen, & Nurmi, 2004; Duncan et al., 2007; Hornung et al., 2014; 

Jordan, Glutting, & Ramineni, 2010; Krajewski & Schneider, 2009; Locuniak & Jordan, 2008; R. 

B. Martin, Cirino, Sharp, & Barnes, 2014; Nguyen et al., 2016; Watts et al., 2014). More 

specifically, these preschool competencies include counting ability (Aunola et al., 2004; Bartelet, 

Vaessen, Blomert, & Ansari, 2014; Hornung et al., 2014; R. B. Martin et al., 2014; Mou et al., 

2018; Nguyen et al., 2016; Passolunghi, Lanfranchi, Altoè, & Sollazzo, 2015), seriation/ordering 

as measured for example by the number-line task (see (Schneider et al., 2018) for a meta-analysis 

of evidence) as well as symbol knowledge (Göbel, Watson, Lervåg, & Hulme, n.d.; Purpura, 

Baroody, & Lonigan, 2013) and symbolic magnitude comparison (Bartelet et al., 2014; De Smedt 

et al., 2009; Hawes, Nosworthy, Archibald, & Ansari, 2019; Lyons, Price, Vaessen, Blomert, & 

Ansari, 2014; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013; Sasanguie, Van den Bussche, & 
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Reynvoet, 2012; Schneider et al., 2017; Vanbinst, Ansari, Ghesquière, & Smedt, 2016) . 

Additionally, there is a long-standing debate on the role of the approximate number system (ANS) 

(Feigenson, Dehaene, & Spelke, 2004) in the development of exact mathematical representations. 

While several studies found a statistically significant relationship between magnitude estimation 

abilities an later mathematics achievement (e.g. (Bartelet et al., 2014; Hornung et al., 2014; Mou 

et al., 2018)), recent meta-analyses of the available evidence (Chen & Li, 2014; Schneider et al., 

2017) show that while the association exists, the correlations are much smaller than for symbolic 

magnitude comparison (Gilmore et al., 2018). 

The second driving factor for NUMTEST’s task design was that it should provide a measure of 

those skills that are defined in Luxembourg’s governmental targets for the end of preschool 

(MENFP, 2011).  The list overlaps with most of the basic number competencies listed so far such 

as counting, ordering and magnitude comparison, but also states that children should be able to 

perform basic non-symbolic arithmetic (addition & subtraction) based on images or tangible 

objects.  

The last factor in designing tasks for our new approach to test instructions was the technological 

framework. NUMTEST was developed on the basis of OASYS, a proprietary large-scale 

assessment framework developed by the Luxembourg Centre for Educational Testing. OASYS is 

a web-based software framework that is used to build questions and provide a choice of answers 

for the standardized assessment of high-school students. As the project did not foresee a dedicated 

developer, I choose this option as it had been successfully used in similar research projects for 

developing educational and psychometric assessments. However, the framework also came with 

constraints. It originally provided tools only for building written questions accompanied by a 

multiple choice of answers but lacked any interactivity features for the user. The ability to 
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automatically display video stimuli instead of static questions, or the ability to drag & drop objects 

as a means of answering the questions, for example, were worked into the framework specifically 

for this project. Given these theoretical foundations and the technological constraints, several tasks 

were developed over three years of development, piloting and adaptations, resulting in what can 

be considered as the first (study report  2) and second (study report 3) version of the NUMTEST 

battery (See appendix for images of the different versions of the tasks.). All in all, I aimed for a 

battery that comprises a measure of magnitude comparison, magnitude ordering and simple non-

symbolic and non-verbal addition and subtraction tasks while providing language-neutral 

instructions and tasks. As you will read in the second and third study report of this thesis, several 

other tasks were developed but are not part of the latest version of the battery. 

Research Questions 

In summary, the hereby presented research project aims to answer three main questions, each 

addressed by a different research paper. 

The first study (The role of home language and comprehension of the instruction language in non-

native speaker’s relative underachievement in mathematics in a multilingual education system.) 

in this thesis revolves around the role of language comprehension in third grade mathematics 

performance in Luxembourg. Using linear regression and mediation analyses on the 

Luxembourgish national school monitoring data, I explored the relationship between home 

language, competency in the language of instruction and mathematics achievement. I hypothesized 

that non-native speakers would perform below native speakers both in measures of language 

comprehension and mathematics (1), that language comprehension would be a significant and 

relevant predictor of mathematics performance (2) and that the performance differences in 
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mathematics between native and foreign speakers could be largely or entirely explained by 

differences in language comprehension (3). 

After providing evidence for the impeding role of language comprehension in mathematics 

assessment in the multilingual context of Luxembourg, the second report (Taking Language out of 

the Equation: The Assessment of Basic Math Competence Without Language) revolved around the 

two pilot studies conducted at the beginning of the NUMTEST project. Can verbal instructions 

and task content be replaced by video instructions and animated stimuli? Do children in first grade 

reliably understand and solve tasks that use this new paradigm? And consequently, what are the 

strengths and limitations of the method? The second report tries to answer all the above questions 

and provides a proof of concept for the validity of the video instruction method. 

Finally, based on the results of the two pilot studies, a second version of NUMTEST was designed 

and presented to a second sample of children at the beginning of first grade. While the pilot studies 

focussed on the methodological aspects of the video instruction, this study was designed to address 

the psychometric aspects of the tasks and explores the possibility of using NUMTEST as an early 

screening tool for basic math competence. Do NUMTEST’s tasks provide valid, objective and 

reliable measures of basic numerical competence? How does the battery fare when compared to 

existing screening tools? What is the relationship between performance on NUMTEST and a 

standardized measure of symbolic arithmetic? Are the tasks of adequate difficulty or too easy or 

too difficult for screening at the lower end of the performance spectrum? These questions are 

addressed and answered in the final study report of this thesis, titled Assessing basic math 

competence without language: First steps towards psychometric validation. 
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Study report 1: The role of home language and comprehension of the instruction language 

in non-native speaker’s relative underachievement in mathematics in a multilingual 

education system. 

(in preparation) 

Max Greisen, Caroline Hornung & Christine Schiltz 

Abstract 

The aim of the hereby presented study was to examine the role of a series of domain-general 
predictors in children’s mathematics performance in third grade in Luxembourg, a highly 
multilingual country with a multilingual education system. As available research in other countries 
with comparable school demographics suggested that children’s performance in early fundamental 
school mathematics was highly related to their verbal abilities in the school’s language, we decided 
to investigate this relationship in data provided by Luxembourg’s national school monitoring 
program. The results suggest not only that reading comprehension in the language of instruction 
is the strongest of all considered domain-general predictors for mathematics performance in third 
grade, but that reading comprehension largely or completely mediates performance differences in 
mathematics between native and non-native speakers. Implications for practice and policy making 
are discussed.  
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Introduction 

Mathematical reasoning is not a purely abstract computational skill. Instead, it is at least partially 

determined by verbal abilities. The idea that performance in mathematics depends on language 

competence has been supported by a vast body of correlational research (see (Singer & Strasser, 

2017) for a meta-analysis).  Language proficiency is of essence when learning and exchanging on 

mathematics in and beyond school. In practice, the content of the mathematical curriculum is most 

often transferred orally from the teacher to the pupils, while training and assessment of the 

curriculum are done through textbooks and written assessments. Whereas core representations and 

computational skills seem to be less affected by language (Gelman & Butterworth, 2005), in many 

circumstances the mathematical problem needs to be derived from oral or textual input. This is 

naturally the case for de facto word problems (Hickendorff, 2013; Peng & Lin, 2019; Vilenius‐

Tuohimaa, Aunola, & Nurmi, 2008) but extends to any situation in which a mathematical problem 

is presented verbally. Insufficient mastery of the language of presentation will thus inevitably lead 

to difficulties in solving the mathematical problem. While this is true for any school population, 

the relationship between linguistic and mathematical ability becomes a true cause for concern in 

multilingual settings.  

Indeed, linguistic competence in the language of instruction and assessment of mathematics varies 

significantly between native and immigrant populations (see e.g.(Bos, Tarelli, Bremerich-Vos, & 

Schwippert, 2012) for data from Germany or (R. Martin, Ugen, & Fischbach, 2013) for data from 

Luxembourg). These differences are consistently reported from around the globe. In South Africa 

for example, it has been shown that pupil’s proficiency in English, which was not their native 

language, was a strong predictor of their performance in mathematics (Howie, 2003). Similar 

effects have been reported in Spanish-English dual language learners in the United states as early 
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as preschool (Méndez, Hammer, Lopez, & Blair, 2019). A German study by Saalbach and 

colleagues found that proficiency in the instructional language was an important predictor of 

mathematics achievement especially for pupils of low socio-economic status, which was 

confounded with having an immigration background, (Saalbach, Gunzenhauser, Kempert, & 

Karbach, 2016). Another study in Germany has led to the conclusion that not only performance in 

mathematics, but also learning gains over two years (i.e. grade four to grade six) are predicted by 

pupil’s reading comprehension (Paetsch, Radmann, Felbrich, Lehmann, & Stanat, 2016). 

Moreover, differences in mathematics achievement between native and non-native speakers 

disappeared once performance in reading comprehension was controlled for. The results of these 

studies suggest that non-native population’s underachievement in mathematics is the result of 

insufficient mastery of the vehicle language rather than insufficient mathematical reasoning 

abilities.  

The hereby presented study sought to further explore the relationship between reading 

comprehension and math performance by examining this link in the context of multilingual school 

system. To this aim we conducted the current study in Luxembourg. Luxembourg is a highly 

multilingual country, using three official languages (Luxembourgish, German & French) for press, 

administrative, judicial and everyday communication. Beyond the three official ones, many more 

languages are spoken in Luxembourg’s population due to a high immigration rate (47.5% 

foreigners in 2019, (STATEC, 2019)). These demographics are equally reflected in Luxembourg’s 

public-school system. Indeed, only 36% of Luxembourg’s school population speaks 

Luxembourgish at home (Ministère de l’Education nationale et de la Formation professionnelle, 

n.d.), with the second most spoken language being Portuguese (28%). On the other hand, primary 

education is held predominantly in German and Luxembourgish, an originally German dialect that 
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has since drawn significant influence from French, leading to an increasingly difficult language 

situation for most of the school population.  

Reports from the EPSTAN Program and the Ministry of Education have repeatedly shown that the 

immigrant population consistently underachieves not only in learning the languages taught in 

school, but also in every other subject when compared to the Luxembourgish reference population, 

which achieves the best educational outcomes across the board (R. Martin et al., 2013; Ministère 

de l’Education nationale et de la Formation professionnelle, n.d.). This leads to a situation where 

immigrant children are prone to grade-retention  (Organisation for Economic Co-operation and 

Development, 2015; Tillman, Guo, & Harris, 2006) and are more often oriented towards vocational 

curricula (28,9% vs. 17,9% of Luxembourgers, (Lenz, 2015)), thus restricting their access to higher 

education and limiting their chances of emancipation from a low socio-economic status. While 

this pattern has so far been attributed to the traditionally consistent relationship between SES and 

school achievement and the fact that immigrated populations are mostly located in the lower parts 

of the socio-economic spectrum in Luxembourg (R. Martin et al., 2013), the research presented so 

far suggests that competency in the school language(s) might play a greater role in the achievement 

differences than the unfavourable socio-economic starting situation.  

Following up on these findings, we found it interesting and necessary to explore the 

aforementioned relationships between home language, school language and mathematics 

achievement in the multilingual setting of Luxembourg, using  data from Luxembourg’s national 

school monitoring program (Épreuves standardisées, EPSTAN, (R. Martin et al., 2013)). More 

specifically, we examined the influence of children’s language profile on their language and math 

performances in third grade. Concretely, we compared the performance of three language groups 

(French, Portuguese and South-Slavic) to the Luxembourgish reference population on measures of 
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listening comprehension (German), reading comprehension (German) and mathematics (taught in 

German). Based on previously reported studies conducted in predominantly monolingual school 

systems, we hypothesized that non-native speakers compared to native speakers would 

underperform in German listening and reading comprehension as well as mathematics, that reading 

and listening comprehension would be crucial non-specific predictors of math performance and 

that the performance gaps in mathematics between native and non-native speakers would be driven 

to a large extend by differences in listening and reading comprehension in the language of 

instruction (German). 
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Methods  

Measures 

All measures stem from the EPSTAN national school monitoring data. Every student in 

Luxembourg participates in this large-scale assessment in first, third, fifth and ninth grade. In this 

study, we are looking at the data from pupils that were in first grade in 2014 and in third grade in 

2016. This dataset was limited to students that did not repeat a grade from first to third grade. The 

EPSTAN metrics use a common scale with an average of 500 points and a standard deviation of 

100 points for assessing all competencies. Assessment batteries were constructed by a group of 

experts including psychometricians and teachers based on the governmental learning goals for 

each grade and competence level. 

HISEI. Highest socio-economic index of both parents. An ISEI-88 (Ganzeboom, De Graaf, & 

Treiman, 1992) Questionnaire was administered to both parents during data collection. HISEI 

reflects the highest of both parent’s scores. 

Reading comprehension (READ). Scores on standardized EPSTAN reading comprehension 

assessment. The reading comprehension assessment was comprised of a series of text-based short 

stories followed by multiple choice questions. 

Listening comprehension (LIST). Scores on standardized EPSTAN listening comprehension 

assessment. The listening comprehension assessment was comprised of a series of pre-recorded 

short stories followed by pre-recorded multiple-choice questions. Answers were given on a paper 

booklet that contained answer choices for each question. 

Mathematics (MATH G1). Scores on standardized EPSTAN mathematics assessment, first 

grade. 

Mathematics (MATH G3). Scores on standardized EPSTAN mathematics assessment, third 

grade. 
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Language background. This variable was assessed by a student-questionnaire and reflects the 

language spoken with the student’s mother. The questionnaire is comprised of a single question 

(Which language do you speak most with your mother?) and offers multiple choices. Only the 

Luxembourgish (LUX), French (FRE), Portuguese (PORT) and South Slavic (SLA) language 

groups were retained for this study. Other language groups were not sufficiently represented in the 

sample for robust analysis. 

Sample   

In the initial dataset we counted 3941 students. First, we removed all students that had missing 

values in the language background, which left us with 3506 students. We then removed all students 

belonging to language groups other than Luxembourgish, French, Portuguese and South Slavic. 

This left us with a sample of 3156 students. Finally, all cases with missing data on any measure 

we considered for analysis were deleted listwise, leaving 2649 cases for analysis. 

Analyses 

Regression modelling was done using JASP (JASP Team, 2018). Mediation analyses were 

completed using the PROCESS Macro for SPSS (Hayes, 2017). 
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Results 

  
TABLE 1. DESCRIPTIVES 
 HISEI (G3) Listening comprehension (G3) Reading comprehension (G3) Mathematics (G3) 

   SLA  FRE  LUX PORT  SLA  FRE  LUX  PORT  SLA  FRE  LUX  PORT  SLA  FRE  LUX  PORT  
Mean   38.005   54.849   52.604   35.990   470.421   477.705   548.543   438.257   474.265   488.286   575.148   430.514   482.420   514.500   529.004   472.579   

Std. Deviation   12.273   14.010   14.608   13.702   64.667   75.935   70.112   72.306   114.967   127.929   129.444   108.297   95.905   100.864   104.830   94.280   

Skewness   0.894   -0.663   -0.399   0.760   0.215   0.355   0.051   0.230   0.206   0.163   -0.139   0.477   0.311   0.275   0.152   0.213   

Kurtosis   0.729   -0.783   -1.105   0.168   0.669   0.439   0.857   -0.012   0.195   0.356   0.043   0.501   -0.193   0.089   0.685   0.384   

N (Valid)  126  433  1367  749  176  499  1536  923  176  500  1540  918  177  501  1544  925  
Mean age (years)  8.43  8.33  8.35  8.39  -  -  -  -  -  -  -  -  -  -  -  -   

  
FIGURE 1.1 & 1.2: HISEI, PERFORMANCE IN GERMAN LISTENING AND READING COMPREHENSION & MATHEMATICS BY LANGUAGE 

BACKGROUND. 

  

A first look at the descriptive performance summaries revealed large differences in mean 

performance relative to language background for each assessed competence: The Luxembourgish 

native population outperformed the French language group, followed by the South-Slavic language 

group and finally the Portuguese language group. HISEI distribution followed the same pattern, 

except for the French language group which has a higher HISEI score than the Luxembourgish 

reference population. In a first step, using stepwise multiple linear regression, we examined the 

predictive role of German listening comprehension, reading comprehension, socio-economic 

status and language spoken with the mother on mathematics performance in third grade. 

Additionally, as the best predictor for future performance is previous performance, we included 

mathematics performance in grade one in order to provide the most complete regression model. 
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TABLE 1.1: MODEL FIT MEASURES 
 

Overall Model Test 

MODEL R R² Adjusted R² AIC BIC RMSE F df1 df2 p 

1 
 

0.62 
 

0.39 
 

0.39 
 

30601.34 
 

30618.98 
 

79.66 
 

1682.81 
 

1 
 

2637 
 

< .001 
 

2 
 

0.64 
 

0.42 
 

0.42 
 

30487.16 
 

30510.68 
 

77.93 
 

938.26 
 

2 
 

2636 
 

< .001 
 

3 
 

0.72 
 

0.52 
 

0.52 
 

29993.61 
 

30023.00 
 

70.95 
 

935.86 
 

3 
 

2635 
 

< .001 
 

4 
 

0.72 
 

0.52 
 

0.52 
 

29981.52 
 

30016.79 
 

70.76 
 

708.91 
 

4 
 

2634 
 

< .001 
 

5 
 

0.72 
 

0.52 
 

0.52 
 

29959.09 
 

30012.00 
 

70.38 
 

413.08 
 

7 
 

2631 
 

< .001 
 

 
  

  

 

TABLE 1.3: MODEL COEFFICIENTS      
MODEL Predictor Estimate SE T p Stand. Estimate 
1 Intercept 151.81 8.96 16.94 < .001  
 MATH G1 0.70 0.02 41.02 < .001 0.62 
2 Intercept 121.58 9.20 13.22 < .001   
 MATH G1 0.66 0.02 38.87 < .001 0.59 
 HISEI 1.04 0.10 10.89 < .001 0.17 
3 Intercept 87.09 8.50 10.24 < .001   
 MATH G1 0.52 0.02 31.22 < .001 0.46 
 HISEI 0.35 0.09 3.87 < .001 0.06 
 READ 0.27 0.01 23.33 < .001 0.37 
4 Intercept 66.03 10.17 6.49 < .001   
 MATH G1 0.51 0.02 31.11 < .001 0.46 
 HISEI 0.30 0.09 3.26 0.001 0.05 
 READ 0.24 0.01 16.14 < .001 0.32 
 LIST 0.08 0.02 3.75 < .001 0.07 
5 Intercept 27.99 12.61 2.22 0.027   
 MATH G1 0.51 0.02 30.89 < .001 0.46 
 HISEI 0.38 0.10 3.84 < .001 0.06 
 READ 0.24 0.01 16.62 < .001 0.33 
 LIST 0.13 0.02 5.47 < .001 0.11 
 FRE 16.68 4.20 3.97 < .001 0.06 
 PORT 18.96 4.11 4.61 < .001 0.08 
 SLA 17.91 6.87 2.61 0.009 0.04 

  

In the first model, we included only mathematics performance (grade 1) as predictor, resulting in 

39% explained variance in third grade mathematics performance. In the second model, we added 

socio-economic status, leading to 42% explained variance. In the third model, we added reading 

comprehension to the prediction, leading to a 10% increase in explained variance. In the fourth 

and fifth model, we added listening comprehension and background language to the prediction, 

resulting in a statistically significant but only minimal increase in explained variance (<1%). The 

results of the final model (5) showed that after prior mathematics performance, reading 

comprehension was the strongest predictor of math performance in grade 3. Listening 

comprehension is the third largest predictor of math performance, but, due to its strong correlation 

TABLE 1.2: MODEL COMPARISONS 
MODEL   Model ΔR² F df1 df2 p 
1 

 
- 

 
2 

 
0.03 

 
118.64 

 
1 

 
2636 

 
< .001 

 

2 
 

- 
 

3 
 

0.10 
 

544.31 
 

1 
 

2635 
 

< .001 
 

3 
 

- 
 

4 
 

0.00 
 

14.10 
 

1 
 

2634 
 

< .001 
 

4 
 

- 
 

5 
 

0.01 
 

9.50 
 

3 
 

2631 
 

< .001 
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(r=.7, p<.001) with reading comprehension, it did not improve the model by a relevant amount. 

All other predictors (background language, socio-economic status) were statistically significant, 

but their contribution to the prediction was only minimal once mathematics performance in first 

grade as well as reading and listening comprehension in third grade have been controlled for. A 

closer look at the average performance of each language group revealed that performance 

differences were much smaller in mathematics than they were in reading and listening 

comprehension. Considering that the mathematics tasks in third grade were presented with German 

written instructions, we tested if the differences in mathematics performance relative to language 

background would be mediated to some extend by performance in reading comprehension. 

Based on the final regression model, we then estimated a mediation model with background 

language as predictor, reading comprehension as mediator and mathematics performance (G3) as 

outcome variable.  

TABLE 2: MEDIATION MODEL    

Indirect effects Effect Bootstrapped SE Bootstrapped LLCI Bootstrapped ULCI 

PORT  READ MATH* -66.09 2.84 -71.84 -60.67 

FRE READ MATH* -39.75 3.14 -46.05 -33.85 

SLA  READ MATH* -46.16 4.45 -55.11 -37.58 

 
Direct effects Effect SE LLCI ULCI 

PORT  MATH* 9.57 3.90 1.91 17.22 

FRE MATH* 25.31 4.43 16.63 33.99 

SLA  MATH -1.24 6.76 -14.48 12.01 

Notes: *= p<.05; Unstandardized effects; 5000 Bootstrap samples for indirect effects. 

 

The resulting model showed that there is was significant negative indirect effect of background 

language on mathematics performance, mediated by performance in reading comprehension. The 

indirect effect was larger than the direct effect for each language group. The indirect effect was 

strongest for the Portuguese language group, followed by the South-Slavic and finally the French 

language group. For the Portuguese and French language groups, there remained a significant 



38 
 

positive direct effect of language background while no significant direct effect remained for the 

South-Slavic group. 

Discussion 

Summary of findings 

The aim of this study was to explore the predictive power of German reading and listening 

comprehension on mathematics performance in third grade in a sample of students that were in 

first grade in 2014 and third grade in 2016, i.e. who did not repeat a grade during their first two 

years of schooling. Concerning our first hypothesis, we found that the average performance of 

non-native speakers was below performance of their Luxembourgish peers in German listening 

and reading comprehension as well as mathematics. Performance differences were larger in the 

linguistic measures than they were in mathematics. Based on these observations and previous 

research (Méndez et al., 2019; Paetsch et al., 2016; Saalbach et al., 2016) we hypothesized that 

linguistic measures would be significant and relevant predictors of mathematics performance. 

Using stepwise multiple linear regression, we showed that after controlling for prior mathematics 

performance, reading comprehension was the sole statistically significant and practically relevant 

predictor of mathematics performance in third grade. While background language, listening 

comprehension and socio-economic status were statistically predictive, their contribution to the 

prediction of mathematics performance in third grade can be considered residual. Finally, we 

hypothesized that the differences between mathematics performance of non-native language 

speakers and Luxembourgers would be driven by performance differences on measures of reading 

and listening comprehension in the language of instruction and assessment. After the initial 

regression model, we thus estimated a mediation model with background language as predictor, 

reading comprehension as mediator and math performance in grade three as outcome variable. Due 
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to its strong correlation with reading comprehension and its marginal improvement of the 

regression model, listening comprehension was not included in the mediation model. 

The results of the mediation showed that the relationship between language background and 

mathematics performance was indeed mediated by performance in reading comprehension across 

all non-native language groups. The mediation was complete for South-Slavic speakers as no 

significant direct effect of background language on grade three math performance remained. There 

remained a significant positive direct effect for French and Portuguese speakers after the mediation 

through reading comprehension. At first glance, this result was surprising as it suggests that after 

controlling for the indirect effects of reading comprehension, French and Portuguese speakers in 

this sample would outperform Luxembourgish native speakers in grade three mathematics. 

However, considering the fact that this sample only included those children that went from grade 

one to grade three without grade repetition and that being of foreign language background is a 

strong predictor for grade repetition (Lenz, 2015; Organisation for Economic Co-operation and 

Development, 2015), our results suggested that non-native speakers in our sample must have 

compensated their a-priori disadvantage by relying on other cognitive resources to succeed in 

school. In other words, the non-native speakers in our sample seemed to be inherently stronger in 

mathematics than their average Luxembourgish peer, an advantage that was in sum supressed by 

the dominating negative effect of reading comprehension. This observation will be easy to verify 

once the complete dataset including grade-repeaters becomes available for analysis. 

Our results thus corroborated previously presented studies which have shown that competency in 

the school’s language(s) is a significant and strong predictor of mathematics performance and that 

this relationship is especially unfavourable for non-native speakers (Méndez et al., 2019; Paetsch 

et al., 2016; Saalbach et al., 2016) . Additionally and in line with (Paetsch et al., 2016), we have 
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shown that performance differences in mathematics were heavily reduced (Portuguese and French 

speakers) or disappeared entirely (South-Slavic speakers) when reading comprehension was 

controlled for. In other words, differences in grade three mathematics performance between non-

native speakers and native Luxembourgers seem to be largely or entirely due to their 

underachievement in German reading comprehension.  

Implications and future studies 

Finally, and strikingly, our results seem to suggest that only non-native speakers that show above 

average competency in mathematics succeed in Luxembourg’s primary education without grade 

repetition, while still underperforming due to the suppressing effects of their reading 

comprehension in German. While our sample only included grade non-repeaters, we hypothesize 

that the damaging effects of instructional language (in)comprehension are likely to be stronger in 

grade-repeaters and that they contribute significantly to grade repetition itself. Indeed, many 

studies have shown that children with an immigration background and/or low socioeconomic 

status have less vocabulary knowledge in the language of instruction than their native peers 

(Biemiller & Slonim, 2001; Hart & Risley, 1995; Perfetti, McKeown, & Kucan, 2010; Rathvon, 

2008). The same children are also largely overrepresented in grade retention, both in Luxembourg 

(Klapproth & Schaltz, 2015; Lenz, 2015; R. Martin et al., 2013) as well as internationally 

(Organisation for Economic Co-operation and Development, 2015; Tillman et al., 2006).   In future 

studies, it would thus be crucial to identify the skills and strategies used by those that succeed 

despite their linguistic shackles in order to improve educational outcomes for all foreign speakers 

in multilingual educational settings. 

More generally and beyond mathematics, it is easy to imagine that linguistic competence plays a 

similar role in many other school subjects across the elementary and secondary curriculum and 
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that insufficient mastery of the school’s vehicle language can have long lasting and severe negative 

effects on motivation to learn and to participate. Indeed, a study conducted in a large sample 

(N=3261) of American high school students found that grade retention had negative effects on 

academic self-concept, self-esteem, homework completion and presence in school (A. J. Martin, 

2011).  

Conclusion 

Taken together, available research and our own results have shown that insufficient mastery of the 

language of instruction leads to academic underachievement both in measures of reading 

comprehension as well as mathematics. Immigrant populations are most affected and are thus 

overrepresented in grade retention. Sadly, grade retention leads to lower self-esteem and 

motivation to take part in the learning process. The resulting situation is a negative feedback loop 

that originates in insufficient language mastery and culminates in overall worse educational 

outcomes for those that speak a different language than their school.  Considering that a democratic 

school system should aim to counteract disadvantageous starting conditions, significant 

investments in matching non-native speaker’s performance in the language of instruction before 

and during primary education is thus likely to result in cumulative beneficial effects on non-native 

speaker’s academic achievement and overall well-being and motivation during their school 

curriculum.  
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Study report 2: Taking language out of the equation: The assessment of basic math 

competence without language1 

(published in Frontiers in Psychology, Developmental Psychology, 2018) 

Max Greisen, Caroline Hornung, Tanja Gabriele Baudson, Claire Muller, Romain Martin & 

Christine Schiltz 

Abstract 

While numerical skills are fundamental in modern societies, some estimated 5–7% of children suffer from mathematical learning difficulties (MLD) 

that need to be assessed early to ensure successful remediation. Universally employable diagnostic tools are yet lacking, as current test batteries for 

basic mathematics assessment are based on verbal instructions. However, prior research has shown that performance in mathematics assessment is 

often dependent on the testee's proficiency in the language of instruction which might lead to unfair bias in test scores. Furthermore, language-

dependent assessment tools produce results that are not easily comparable across countries. Here we present results of a study that aims to develop 

tasks allowing to test for basic math competence without relying on verbal instructions or task content. We implemented video and animation-based 

task instructions on touchscreen devices that require no verbal explanation. We administered these experimental tasks to two samples of children 

attending the first grade of primary school. One group completed the tasks with verbal instructions while another group received video instructions 

showing a person successfully completing the task. We assessed task comprehension and usability aspects both directly and indirectly. Our results 

suggest that the non-verbal instructions were generally well understood as the absence of explicit verbal instructions did not influence task 

performance. Thus we found that it is possible to assess basic math competence without verbal instructions. It also appeared that in some cases a 

single word in a verbal instruction can lead to the failure of a task that is successfully completed with non-verbal instruction. However, special care 

must be taken during task design because on rare occasions non-verbal video instructions fail to convey task instructions as clearly as spoken 

language and thus the latter do not provide a panacea to non-verbal assessment. Nevertheless, our findings provide an encouraging proof of concept 

for the further development of non-verbal assessment tools for basic math competence. 

                                                           
1 The prettier, published print version of this report is available here: 
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01076/pdf 
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Introduction 

Basic counting and arithmetic skills are necessary to manage many aspects of life. Although 

primary education focuses on these subjects, 5–7% of the general population suffer from 

mathematical learning difficulties (MLD) (Butterworth, Varma, & Laurillard, 2011), often leading 

to dependence on other people or technology.  

Early diagnostic is key to remedying MLD (Gersten, Jordan, & Flojo, 2005). Basic mathematical 

skills, e.g., counting, quantity comparison, ordering, and simple arithmetic are the strongest 

domain-specific predictors for mathematical performance in later life (Desoete, Ceulemans, 

Roeyers, & Huylebroeck, 2009; Hornung, Schiltz, Brunner, & Martin, 2014; Jordan, Glutting, & 

Ramineni, 2010; LeFevre et al., 2010). Valid MLD assessments exist in various forms and for all 

ages (Aster, Bzufka, & Horn, 2009; Haffner, Baro, Parzer, & Resch, 2005; Noël, Grégoire, & 

Nieuwenhoven, 2008; Ricken, Fritz, & Balzer, 2011; Schaupp, Holzer, & Lenart, 2007; van Luit, 

van de Rijt, & Hasemann, 2001). However, all of them rely on verbal instructions and (in part) 

verbal tasks.  

This is a problem. First, performance in mathematical tests is predicted by the pupils’ proficiency 

in the instruction language (Abedi & Lord, 2001; Hickendorff, 2013; Paetsch, Radmann, Felbrich, 

Lehmann, & Stanat, 2016). Others have shown that the complexity of mathematical language 

content of items is predictive of performance (Haag, Heppt, Stanat, Kuhl, & Pant, 2013; Purpura 

& Reid, 2016). Diagnostic tools for MLD relying on language may therefore significantly bias 

performance in test-takers that are not proficient in the test language, leading to invalid results (see 

Ortiz & Dynda, 2005; Scarr-Salapatek, 1971 for similar considerations concerning intelligence 

testing). Furthermore, the match between math learners’ language profiles and the linguistic 
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context in which mathematical learning takes place plays a critical role in the acquisition and use 

of basic number knowledge. Matching language contexts improve bilinguals’ arithmetic 

performance in their second language (Van Rinsveld et al., 2016), and neural activation patterns 

of bilinguals solving additions differ depending on the language they used, suggesting different 

problem-solving processes (Van Rinsveld, Dricot, Guillaume, Rossion, & Schiltz, 2017).  

In linguistically homogeneous societies, where the mother tongue of most primary school children 

matches the language of instruction and assessment tools, this is less of a problem. It is however 

critical in societies with high immigration and, therefore, linguistically diverse primary school 

populations. In Luxembourg, for instance, where the present project is located, currently 62% of 

the primary school students are not native Luxembourgish speakers (Ministère de l’éducation 

nationale de l’enfance et de la Jeunesse, 2015). Due to migration, multilingual classrooms are 

steadily becoming the rule rather than the exception (e.g. from 42% foreign speakers in 2004 to 

62% in 2014) (Ministère de l’éducation nationale de l’enfance et de la Jeunesse, 2015), likely 

increasing the urgency of the problem in the future. 

Even in traditionally multilingual contexts, diagnostic tools for the assessment of basic numerical 

abilities in early childhood are available in a few selected languages only, usually those that are 

best understood by most, yet not necessarily all students. As described above, this leads to invalid 

conclusions about non-native speakers’ ability. In addition, comparisons between different tools 

and even different linguistic versions of the same tool are difficult because the norms they are 

based on are usually collected in linguistically homogenous populations and can thus not be 

extrapolated to populations with different linguistic profiles.  



47 
 

The present study originated in a project that aims to develop a test of basic numerical 

competencies which circumvents linguistic interference by relying on nonverbal instructions and 

task content. In the field of intelligence assessment, the acknowledgement of language interference 

has led to the development of numerous nonverbal test batteries (Cattell & Cattell, 1973; Feis, 

2010; Lohman & Hagen, 2001; Naglieri, 2003). However, these tools tackle only the problem of 

verbal tasks, not of verbal instructions. The same is true for numeracy assessment. Although many 

test batteries   (e.g. Tedi-MATH, Zareki-R, ERT0+, OTZ, Marko-D, to name a few) use nonverbal 

and non-symbolic tasks (e.g., arithmetic, counting, or logical operations on numbers), they still 

rely on verbal instructions, which may limit the testee’s access to the content. Linguistic 

simplification of mathematics items can improve performance for language minority students 

(Haag, Heppt, Roppelt, & Stanat, 2014). However, we think that for many simple tasks, verbal 

content and instructions can be avoided altogether. These tasks that children of (above-) average 

ability usually solve easily are crucial to the diagnosis of MLD, as they allow for a differentiation 

of children’s numerical abilities at the bottom end of the ability distribution. Hence, nonverbal 

assessment of basic mathematical skills may help identify children in need of intervention at an 

early age and independently of their linguistic abilities, thus reducing the bias that common 

assessments often suffer from. Comparable approaches have been taken in the field of intelligence 

testing for the hearing-impaired, in which pantomime instructions for the Wechsler performance 

scale have been explored (Braden & Hannah, 1998; Courtney, Hayes, Couch, & Frick, 1984). 

With this goal in mind, using available test batteries and the official study plan (MENFP, 2011) as 

a reference for task content and design, we developed different task types for which a valid 

nonverbal computerized implementation was possible. Governmental learning goals for preschool 

mathematics include but are not limited to: Ability to represent numbers with concrete material, 
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ordering abilities (range 0-20), definition, resolution & interpretation of an arithmetical 

(addition/subtraction) problem based on images and mental addition/subtraction (range 0-20). 

The tasks we developed encompass and measure all the above competencies: Quantity 

representation, ordering abilities as well as symbolic and non-symbolic arithmetic. We chose to 

add a quantity comparison task as it has been found to be one of the most consistent predictors of 

later math performance (e.g. Brankaer, Ghesquière, & De Smedt, 2017; De Smedt, Verschaffel, & 

Ghesquière, 2009; Nosworthy, Bugden, Archibald, Evans, & Ansari, 2013; Sasanguie, Van Den 

Bussche, & Reynvoet, 2012; see Schneider et al., 2017 for a meta-analysis). Instead of using verbal 

instructions, we convey task requirements with the use of videos that show successful task 

completion and interactions with the tasks from a first-person point of view. Prior research has 

shown improved performance in a computerized number-line estimation task for participants who 

viewed videos of a model participant’s eye gaze or mouse movements, compared to control 

conditions both with and without anchor points (Gallagher-Mitchell, Simms, & Litchfield, 2017).  

The aims of the present study were to evaluate whether basic math competence can be assessed on 

a tablet PC without language instructions and whether the mode of instruction affects performance. 

To this end, we designed a set of computerized tasks based on validated assessments measuring 

basic non-symbolic and symbolic mathematical abilities, which were administered either 

nonverbally (using computer-based demonstrations; experimental condition) or traditionally 

(using verbal instructions; control condition). Because young school children’s attention span is 

limited (Pellegrini & Bohn, 2005), some of the tasks were administrated to one sample (Sample 1) 

in a first study and the remainder to another sample (Sample 2) in a second study 5 months later. 

First, considering that the nonverbal mode of instruction was new, we examined possible 

difficulties both directly (understanding of feedback and navigation) and indirectly (repeated 
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practice sessions). Second, though tasks were derived from field-tested assessments, performance 

on the new tasks was correlated with performance on two standardized and one self-developed 

measure in order to ensure task validity. Third, we examined students’ performance compared by 

condition and overall. Considering the novelty of the nonverbal task administration, we did not 

specify directed hypotheses but examined this question exploratively.   
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Methods 

Participants  

 

Table 1 shows participant demographics, language background and socio-economic status. The 

ISEI is the International Socio-Economic Index of Occupational Status, used in large scale 

assessments. It ranges from 16 (e.g. agricultural worker) to 90 (e.g. judge). An average ISEI of 50 

will thus indicate above average socio-economic status. As we could not directly assess socio-

economic status in our studies, ISEI was estimated based on the communes in which the studies 

took place. This data is publicly available and in Luxembourg the communes average ISEI ranges 

from 35 to 65.  All participants were recruited from first grade in Luxembourg's primary schools 

with the authorization of the Ministry of Education and the directors of the participating school 

sectors. Participants from the first sample were tested after 5 weeks of schooling while participants 

from the second sample were tested after 28 weeks of schooling. Teachers interested to participate 

in the study with their classes received information and consent letters for the pupil's legal 

representatives. Only pupils whose parents consent was obtained participated in this study. All 

children in Luxembourg spend two obligatory years in preschool and about a third of them 

participate in an optional third year of preschool prior to the two mandatory years (Lenz, 2015).  
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Materials 

Figure 1. Example Images of the experimental tasks

 

Experimental Tasks. As mentioned, the two samples received different types of tasks. In the 

following, all task types will be described in order of their administration. The number in 

parentheses after each task name indicates the sample it was administered to. Example images for 

each task are presented in figure 1. 

Quantity correspondence (S1). The first task required determination of the exact quantity of the 

target display and choosing the response display with the corresponding quantity (both ranging 

from 1 to 9). Each item consisted of a target quantity displayed at the centre of the screen 

(stimulus). The nature of the quantity was varied and was either non-symbolic (based on real 

objects [fruit], abstract [dot collections]) or symbolic (Arab numerals). In the lower part of the 

screen, three different quantities were displayed to the participant from which he/she was to choose 

the one corresponding to the stimulus (multiple-choice images). The item pool consisted of five 

subgroups of items containing four items each: 
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1. Non-symbolic, identical objects for stimulus and multiple-choice images 

2. Non-symbolic, different objects for stimulus and multiple-choice images 

3. Non-symbolic, collections of black dots of variable sizes and configurations 

4. Symbolic, Arab numerals in both stimulus and multiple-choice images 

5. Mixed (combinations of the preceding characteristics) 

Image characteristics (object area, total occupied area, etc.) were manually randomized but not 

systematically controlled for.  

Quantity comparison (S1). The second task required determining and choosing the larger of two 

quantities (range: 1–9) displayed at the centre of the screen. The nature of the quantities was varied 

similarly to the first task: 

1. Non-symbolic, each quantity being composed of different objects (4 items) 

2. Non-symbolic, each quantity being composed of collections of black dots of variable sizes 

and configurations (4 items) 

3. Symbolic, at least one of the two displays showing an Arabic numeral (4 items)  

Ordering (S1). The third task required reordering 4 images by increasing quantities (range 1–9). 

The characteristics were divided into 2 subgroups, represented by 4 items each: 

1. Ordering based on non-symbolic quantity 

2. Ordering based on numerical symbols (Arabic digits) 

Non-symbolic addition (S2). The first task required to solve a non-symbolic addition problem. 

Participants saw an animation of 1–5 pigs entering a barn. The barn door closed. Then, the door 

opened again, and 1–5 more pigs entered the barn. The door closed again. The result range included 

the numbers from 3 to 8 only. In the non-symbolic answer version of this task (3 items), 
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participants were then presented with three images containing an open barn with pigs inside. Their 

task was to choose the image showing the total number of pigs left in the barn. In the symbolic 

answer version of the task (3 items), participants selected the correct number of pigs from an array 

of numerals from 1 to 9 in ascending order to choose from.  

Non-symbolic subtraction (S2). The second task required solving a non-symbolic subtraction 

problem using the same pigs-and-barn setting described above. Participants were shown an 

animation of an open barn containing some pigs, after which some pigs left and the barn door 

closed. The minimum number of pigs displayed in a group was 2, the maximum was 9. The result 

range was from 1 to 6. Symbolic and non-symbolic answer versions (3 items each) were the same 

as above.  

Crossmodal addition (S2). The third task for Sample 2 required solving a crossmodal addition 

problem using visual and auditory stimuli. Participants saw an animation of coins dropping on the 

floor, each one making a distinctive sound. A curtain was then closed in front of the coins. More 

coins dropped, but the curtain remained closed. Participants could only hear but not see the second 

set of coins falling. Their task was to choose the total amount of coins on the floor, both the ones 

they saw and heard and the ones they only heard but did not see falling. The minimum number of 

coins displayed / heard was 1, the maximum was 5. The result range was from 3 to 7. In the non-

symbolic answer version of this task (3 items), participants were presented with three images 

showing coins on the floor with an open curtain. Their task was to choose the image showing the 

total number of coins that are now on the floor. In the symbolic answer version of the task (3 

items), participants were presented with an array of numerals from 1 to 9 in ascending order to 

choose from. 
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This task aimed to assess numerical processing at a crossmodal level, requiring a higher level of 

abstraction than unimodal tasks like the non-symbolic addition and subtraction tasks where only 

visual information is processed before answering the question. The addition of discrete sounds as 

stimuli adds a layer of abstraction that is not present in the other addition tasks (symbolic or non-

symbolic) and ensures that responses must be based on a truly abstract number sense, capable of 

representing any set of discrete elements (Barth, Kanwisher, & Spelke, 2003), independently from 

its physical nature and prior cultural learning of number symbols. 

Symbolic arithmetic: addition & subtraction (S2). In this task, participants had to solve 

traditional symbolic arithmetic problems in the range of 0 to 9, both addition (6 items) and 

subtractions (6 items), shown at the centre of the screen. The answer format in this task was 

symbolic only, i.e., participants were presented with an array of numerals from 1 to 9 in ascending 

order below the problem to choose their answer from. 

Observation and Interview Sheets 

To examine the usability of instructions and task presentation, test administrators collected 

information about participants’ behaviour during testing through semi-structured observation and 

interview sheets. Of special interest were the observations about the general use of the tablet and 

the tool's navigational features as well as participants' understanding of both video and verbal 

instructions and feedback elements in both groups. 

The following questions (yes-no format) were answered for each participant and task: (1) Did the 

participant understand the purpose of the smiley? (2) Did the participant understand the use of the 

blue arrow as a navigational tool? To this aim, the test administrators asked the participants to 
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describe the task, the role of the smiley, and the role of the arrow and evaluated that answer as a 

‘Yes’ or a ‘No’. These questions were followed by empty space for comments.  

Demographics and Criterion Validation Tasks 

After completion of the digitally administered tasks, all children received a paper notebook 

containing a demographic questionnaire as well as some control tasks. The questionnaire collected 

basic demographic data (age, gender, language spoken with mother). Control tasks were included 

to examine the criterion validity of the experimental tasks and were administered to both samples. 

The paper pencil control tasks were: 

• TTR (Tempo Test Rekenen) (De Vos, 1992): a classical standardized measure of speeded 

arithmetic performance. Participants had 60 seconds for each subtest. Arithmetic difficulty 

increased systematically within each subtest list, with operands and results in the range of 

1–100. As multiplication and division were not part of the participant’s curriculum at that 

age, we used the addition and subtraction subtests only. 

• "How many animals?"(Counting and transcoding): Since all of our experimental task 

assume basic counting skills, we included this self-developed counting task, in which ten 

paper sheets displaying a randomly arranged variable number of animals (range: 3–19) 

were presented successively to the participants, who reported how many animals they saw. 

Their oral answer was noted on a coding sheet by the test administrators. Furthermore, 

participants wrote down their answer on a separate coding sheet included in the participant 

notebook. This resulted in two separate measures: one for counting (oral) and one for 

transcoding ability (written). 
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• SYMP (Symbolic magnitude processing test) (Brankaer et al., 2017): a standardized 

measure of symbolic number comparison performance (1- and 2-digit, ranging from 1–10 

and from 12–99, respectively). It includes a motor speed control task requiring participants 

to cross out the black shape in pairs of black/white shapes. Participants had 30 seconds for 

each subtest. Although number comparison abilities assessed by the SYMP test do not 

strictly constitute a measure of curricular learning goals, we choose to include it due to its 

well-recognized power to predict later differences in standardized mathematical tests and 

distinguish children with MLD from typically developing peers (see Schneider et al., 2017 

for a meta-analysis). In contrast to the TTR scales and the counting task, correlation with 

the SYMP does not inform on the ability of our tasks to predict children’s achievement on 

higher level learning goals but allows to compare performance in our tasks to another low-

level predictor of later math competence. 

Design and Procedure 

Experimental Design. To evaluate comprehensibility and effectiveness of the video instructions 

in comparison to classical verbal instructions, we implemented a between-group design in the two 

samples. All children solved the tasks on tablet computers, but under two different conditions. In 

the experimental condition (“nonverbal condition”), instructions were conveyed through a video 

of a person performing specific basic mathematical tasks, followed by a green smiley indicating 

successful solution of the task. Importantly, children did not receive any verbal instructions in the 

experimental condition. In the control condition (“verbal condition”), children received verbal 

instructions in German, the official instruction language for Mathematics in elementary schools in 

Luxembourg. Analogous to usual classroom conditions, test administrators read the instructions 

aloud to the children. In both conditions, tasks were presented visually on tablet computers, either 
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through static images or animated “short stories”. In both samples, one group was allocated to the 

experimental “nonverbal” condition without language instructions and the other group was 

assigned to the “verbal” condition, respectively. 

Task Presentation. The three main tasks for Sample 1 were presented on iPads using a borderless 

browser window. Two children were tested simultaneously. They were connected to a local server 

through a secured wireless network set up by the research team at each school to store and retrieve 

data. The tasks were implemented using proprietary web-based assessment-building software 

under development by the Luxembourg Centre for Educational Testing. Sample 2 worked on 

Chromebooks instead of iPads. The advantage of Chromebooks is that they are relatively 

inexpensive, are optimized for web applications, and provide both touchscreen interactivity and a 

physical keyboard when necessary. Four children were tested simultaneously to speed up data 

collection.  

After the initial setup of the hardware (server, wireless connection), participants were called into 

the test room in groups of two (Sample 1) or four (Sample 2) and seated individually on opposite 

sides of the room, allowing to run multiple test sessions simultaneously. Participants were 

randomly assigned to one of two groups. A trained test administrator supervised each participant 

during the test session. Since the tasks for Sample 2 used audio material, participants were 

provided with headphones, which they wore during the video instructions and the tasks. 

Both samples were presented with either nonverbal or verbal instructions. In the nonverbal 

condition (experimental group), each participant was shown three items, with the exception of the 

comparison task, where ten instruction items were given to account for the less salient nature of 

the implicit "Where is more?" instruction. The video also clarified how to proceed to the next item 
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by the person touching a blue arrow pointing rightwards on the top right corner of the screen, after 

which a new item was loaded. In the verbal condition (control group), the test administrator read 

the standardized oral instructions to the participant in German, thus mimicking traditional teaching 

and test situations. The instruction was repeated by the test administrator while the first practice 

item was displayed to facilitate the hands-on understanding of the task. After the instruction, 

participants were given three practice items with the same smiley-type feedback they had just 

witnessed (a happy green face for correct answers, an unhappy red face for wrong answers). After 

successful completion of the three practice items, the application moved on to the test items. If one 

or more answers were wrong, all three practice items were repeated once, including those that had 

been solved correctly in the first trial. At the end of this second run, the application moved on to 

the test items, even if one or more practice items had still been answered incorrectly. After each 

practice session, an animation showing a traffic light switching from red to green was displayed 

to notify children that the test was about to start. 

At the end of the three tasks, a smiley face was displayed thanking the participants for their efforts. 

At the end of the individual testing sessions, all participants were regrouped in their classroom to 

complete the pen-and-paper measures instructed orally by the test administrators. 

Scoring. Scores from symbolic and non-symbolic subgroups of items in most experimental tasks 

were averaged and operationalized as POMP (percentage of maximum performance) scores 

(Cohen, Cohen, Aiken, & West, 1999), giving rise to two scores in each task. The exception was 

the symbolic arithmetic task in Sample 2, which by its nature included only symbolic answer 

formats, but offered both addition and subtraction items, producing one score for each operation 

type. All scores from the criterion validation tasks are expressed as POMP scores. 
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Results 

In line with our research questions outlined in the introduction, we will first report findings on 

participants' difficulties by experimental condition, as usability represents an important 

prerequisite. Results on the directly assessed difficulties will focus on understanding of feedback 

and navigation, whereas indirectly assessed difficulties comprise findings on repeated practice. 

This is followed by descriptive analyses including scale quality, tests of normality, and scale 

intercorrelations. As we also examined the convergent validity of our tasks (another prerequisite), 

which were based on existing measures, we subsequently report findings on the correlations with 

the external measures, i.e., the paper pencil tests (see Materials section). Finally, we will compare 

performance by experimental condition. 

Observation data 

Directly assessed difficulties: understanding of feedback and navigation. The following results 

are based on the observation sheets for each task. Table 2 shows the number of participants that 

understood the smiley as a feedback symbol and the number of participants that understood the 
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arrow as a navigational interface element. Discrepancies in the total number of participants are due 

to missing data points for some participants.  

Summarily, we observed that all but a few participants had correctly understood the feedback 

symbols and the navigation arrow from the start. 
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Indirectly assessed difficulties: practice repetition. As an indirect measure of usability, we 

examined whether the number of participants that repeated the practice session of each task 

differed by experimental condition. Table 3 presents contingency tables and χ2 tests of association. 

Figure 2 presents percentage of repeaters per condition and task. 

 The number of participants that repeated the practice session did not vary significantly between 

conditions in the Quantity correspondence task, the Non-symbolic subtraction task and the 

Symbolic arithmetic task. Fewer participants repeated the practice session in the nonverbal 

condition of the Ordering, Non-symbolic addition and Cross-modal addition tasks. Inversely, 

more participants repeated the practice session in the nonverbal condition of the quantity 

comparison task. 
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Task Descriptives 

Internal consistency. Internal consistency of the experimental tasks in the first sample ranged 

from good to questionable (see Table 4). Only the Ordering task with non-symbolic answers 

showed unacceptable internal consistency. Due to the low number of items in each task, we 

estimated internal consistency without differentiation as to answer format in the second sample. 

While the Symbolic arithmetic task provided acceptable (Subtraction) to good (Addition) internal 

consistency, the three other tasks only reached poor to questionable consistency.  

Tests for normality. All task scores showed ceiling effects (somewhat less pronounced in Sample 

2), independently from experimental group or the symbolic nature of the task, thus deviating 

significantly from the normal distribution (statistical tests for all subtests are reported in Table 4). 

Skewed distributions were expected considering the test was designed to differentiate at the bottom 
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end of the ability distribution. Consequently, the Shapiro-Wilks tests showed substantial non-

normality. Therefore, we conducted non-parametric analysis of variance to examine possible group 

differences in task performance. 

Scale intercorrelations. In Sample 1 performances on almost all experimental tasks correlated 

significantly among each other (see Table 5). The exception was the Quantity comparison task 

(symbolic format), which did not correlate significantly with the Quantity correspondence task 

(non-symbolic format) and with the Ordering task (both formats). 

The reported correlations in the following paragraph are all significant (see Table 6). Letters in 

parentheses indicate the answer format (NS=non-symbolic; (S)=symbolic). In Sample 2, 
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performances in Symbolic arithmetic (addition and subtraction) correlated with each other and with 

performance in all other tasks having a symbolic response format (i.e. Non-symbolic addition, 

Non-symbolic subtraction and Cross-modal addition). Performance in Symbolic arithmetic did not 

correlate with performance in tasks requiring non-symbolic output, except for the Non-symbolic 

subtraction task. Performances in Non-symbolic addition and subtraction (S) correlated with 

performance on all other tasks. Performances in the two Non-symbolic arithmetic (NS) did not 

correlate with each other. Performance in Cross-modal addition (S) correlated with performance 

in all other tasks, except Non-symbolic arithmetic (i.e. Non-symbolic addition and Non-symbolic 

subtraction) with non-symbolic response formats. Performance in Cross-modal addition (NS) 

correlated with performance in all other tasks, except Symbolic arithmetic. 

Criterion validity  

In Sample 1, average performance (all experimental tasks combined) correlated significantly with 

all criterion validity tasks (see Table 7) except with the two-digit SYMP test. 

In Sample 2, average performance (all experimental tasks combined) correlated significantly with 

all criterion validity tasks. 
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Comparison of task performance: Verbal versus nonverbal instructions  

Analyses of variance (Kruskal-Wallis) on task scores with experimental group (verbal versus 

nonverbal) as between-subjects factor revealed no significant differences in any of the tasks, 

neither in Sample 1 nor in Sample 2 (see Table 4). Overall performances were very high in the 

nonverbal and in the verbal condition (ranging between 57% and 96%), indicating that children 

succeeded comparably well in both conditions.     
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Discussion 

The purpose of the present study was to explore the possibility of measuring basic math 

competence in young children without using verbal instructions. To this aim we developed a series 

of computerized tasks presented on tablet-computers either verbally, using traditional language 

instructions or nonverbally, using video instructions repeatedly showing successful task 

completion and assessed whether the instruction type influenced task performance. 

Usability aspects 

To check whether this new mode of instruction was effective, we assessed the comprehensibility 

of the tasks both directly and indirectly. Regarding the prior, the feedback symbols (the green 

happy and the red sad smiley faces during the instruction and practice phase) were easily 

understood by most if not all participants. The same is true for the navigation symbol (the arrow 

to both save the answer and switch to the next item). 

As an indirect assessment of task comprehension, we examined differences in the number of 

participants that repeated the practice session of each task. Given the low difficulty level of the 

tasks presented during instruction and practice, we assumed that children who did not get the 

practice items right in their first attempt had not understood the purpose of the task at first and 

therefore needed a second run. In three tasks (Quantity correspondence (S1), Non-symbolic 

subtraction (S2) and Symbolic arithmetic (S2)), the number of repeaters did not vary significantly, 

suggesting that nonverbal instructions can be understood as well as verbal ones. On the other hand, 

we observed significantly less repeaters in three other tasks (Non-symbolic addition (S2), Ordering 

(S1) and Cross-modal addition (S2)) when children were instructed nonverbally, implying that 

nonverbal instructions can be more effective than verbal ones in these situations. This tendency 
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was especially pronounced in the Ordering task. Finally, we found an inverse difference in 

repeaters in the Quantity comparison task. Significantly more participants repeated the practice 

session of the Quantity comparison task when they received nonverbal instructions. Conveying 

“choose the side that has more” through a video showing successful task completion repeatedly 

seems to have worked less well than simply giving the participants an explicit verbal instruction 

to do so, even though we displayed more repetitions in this task than in the other tasks. This shows 

that not every task instruction can be easily replaced by nonverbal videos without adding 

unnecessary complexity. This result stands in stark contrast with our observations concerning the 

Ordering task, which was understood much better following non-verbal instructions. Because the 

verbal instruction requested to order items from left to right, the extreme difference in repeaters 

(91% vs. 18%) could possibly be attributed to the fact that reliable left /right distinction has not 

been achieved by children of this age. Notwithstanding, this observation illustrates well that a 

single word in the instruction can lead to a complete failure to understand the task at hand and that 

this can be easily avoided by using nonverbal video instructions. Taken together, our results based 

on the repetition of practice items suggest that nonverbal instructions are an efficient alternative 

to the classically used verbal instructions and might in some cases even be more direct and 

effective. However, they do not provide a universally applicable solution, because on rare 

occasions they fail to convey task instructions as clearly and unequivocally as spoken language. 

Anecdotally, it appeared that children were generally highly motivated to complete our tasks and 

many asked if they could do them again. This might be due to the video-game-like appearance of 

the assessment tool, which differs considerably from the paper-and-pencil material that they 

encounter in everyday math classes, which probably helped to promote task compliance and 

motivation (Lumsden, Edwards, Lawrence, Coyle, & Munafò, 2016).  
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Validity aspects 

Scale intercorrelations indicate that performance in the three tasks assessed in Sample 1 (i.e. 

Quantity correspondence, Quantity comparison, Ordering) largely correlated, which may reflect 

the fact that they rely, at least in party, on the same basic numerical competences. While 

performance on the non-symbolic version of the Quantity comparison task did correlate with 

performance on most other experimental tasks, performance on the symbolic version of the 

Quantity comparison task shows less consistent correlations with performance on other tasks. Most 

strikingly, the latter does not correlate significantly with performance on the Ordering task, both 

symbolic and non-symbolic versions. This stands in contrast with most findings in recent literature 

that report strong correlation between performance on tasks measuring cardinality (Quantity 

comparison task) and ordinality (Ordering task) (e.g. Lyons, Price, Vaessen, Blomert, & Ansari, 

2014; Sasanguie, Lyons, De Smedt, & Reynvoet, 2017; Sasanguie & Vos, 2018). This might be 

due to reporting correlations for the whole sample without distinguishing instruction type: a large 

proportion of participants in the video condition of the task did not seem to correctly understand 

its purpose, which could explain the absence of correlation between its performance and any other 

task.  Accordingly, the Quantity comparison task will need to be adapted in future studies. Sample 

2 consisted of calculation tasks that were either presented in classical symbolic or more unusual 

non-symbolic and/or cross-modal format (i.e. Symbolic addition and subtraction, Non-symbolic 

addition and subtraction, Cross-modal addition). In this sample, performance in symbolic 

arithmetic correlated with performance in those tasks having a symbolic response format, but not 

those requiring non-symbolic answers. This points towards a special role of number symbol 

processing, in line with the importance of this ability for mathematics (e.g. Bugden & Ansari, 

2011; Bugden, Price, McLean, & Ansari, 2012). Interestingly, and in line with the importance of 
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number symbols, performance in non-symbolic arithmetic tasks with symbolic output formats also 

correlated with all calculation tasks of Sample 2. While validating the main expectations 

concerning our task and their properties, conclusions concerning scale intercorrelations remain 

provisional at this stage, since all tasks could not be correlated with each other in the present design 

due to two different participant samples.  

Considering the overall medium reliability of our experimental tasks, special care should be taken 

to include more items assessing performance in the different tasks in further developments of this 

project. 

Finally, we observed that average performance of all experimental tasks combined correlated 

significantly with performance in most (Sample 1) to all (Sample 2) control tasks. The control 

tasks were chosen to cover the most established measures of basic math competences in young 

children, known to predict latter differences in standardized mathematical tests and distinguish 

children with mathematical learning difficulties from typically developing peers. We therefore 

included tasks assessing children’s abilities to count (Geary, Hoard, & Hamson, 1999; Goldman, 

Pellegrino, & Mertz, 1988; Hornung et al., 2014; Passolunghi, M & Siegel, L, 2004; Willburger, 

Fussenegger, Moll, Wood, & Landerl, 2008), to compare symbolic magnitudes (Brankaer et al., 

2017; De Smedt et al., 2013, 2009) and to calculate (De Vos, 1992; geary, 1993; Geary, 2010; 

Klein & Bisanz, 2000; Locuniak & Jordan, 2008). The non-significant correlation between 

performance of the tasks in the first sample with performance in the two-digit symbolic number 

comparison task can be attributed to participant’s lack of knowledge on two-digit numbers at the 

time of data collection (approx. 5 weeks of schooling) (Martin, Ugen, & Fischbach, 2013; MENFP, 

2011).  
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Task performance compared by experimental group 

Type of instruction prior to the test did not affect participants’ performance in any of the 

experimental tasks. We observed high average performance in both samples and similar 

performances in both experimental conditions. This leads us to conclude that instruction type does 

not seem have an observable effect on future task performance. In other words, explicit verbal 

instructions can be replaced by videos showing successful task completion for children to 

understand the functioning and purpose of the numerical and mathematical tasks. This is an 

important result when put in the context of multilingual settings in particular, where the language 

of instruction can have considerable negative effects on task performance. Indeed, video 

instructions seem to work as well as traditional verbal instructions while taking language out of 

the equation.  

At this point, we want to stress that we do not claim that mathematics and language can be assessed 

independently (Dowker & Nuerk, 2016). Indeed, prior research has shown that while the logic and 

procedures of counting are stored independently from language, the learning of even small number 

words relies on linguistic skills (Wagner, Kimura, Cheung, & Barner, 2015). Also, languages 

inverting the order of units and tens in number words negatively affect the learning of number 

concepts and arithmetic (Gobel et al., 2014; Imbo, Vanden Bulcke, De Brauwer, & Fias, 2014; 

Zuber, Pixner, Moeller, & Nuerk, 2009). Other studies have highlighted that proficiency in the 

language of instruction (Abedi & Lord, 2001; Hickendorff, 2013; Paetsch et al., 2016; Saalbach, 

Gunzenhauser, Kempert, & Karbach, 2016) and, more specifically, the mastery of mathematical 

language are essential predictors of mathematics performance (Purpura & Reid, 2016). It also 

becomes increasingly clear that test language modulates the neuronal substrate of mathematical 

cognition (Salillas, Barraza, & Carreiras, 2015; Salillas & Carreiras, 2014; Van Rinsveld et al., 
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2017). On the other hand, we do claim that a testee’s access to the assessment tools should not be 

limited by proficiency in a certain language. Although most existing tasks already use images to 

minimize linguistic load, they still rely on some form of verbal instruction or vocabulary that needs 

to be fully understood to solve the task correctly. We thus think that it is not sufficient to minimize 

language load in mathematics items, but that it would be preferential to remove linguistic demands 

altogether. Our results show that this can be achieved by using implicit video instructions that rely 

on participant’s nonverbal cognitive skills. 

Limitations and future studies  

A first limitation for the interpretation of our results are the medium internal consistency scores of 

many of our tasks. We aimed to explore as many tasks as possible using nonverbal instructions, 

while keeping total test time under 40 minutes due to children’s limited attention span (Manly et 

al., 2001). This led to some psychometric compromises by offering only a few items per task and 

subscale (i.e. symbolic and non-symbolic answer format), especially for the tasks in the second 

sample. In the future, we will select the tasks with the highest potential of differentiating in the 

lower spectrum of ability and supplement them with more items.  

To further differentiate experimental conditions, it would have been possible to present only word 

problems and exclude all animations in the verbal instruction group whenever possible. For 

example, instead of showing pigs moving into a barn, the animation could be replaced with a 

written/spoken story on pigs going into a barn before offering three possible answers. We expect 

that such a contrasted design would lead to more significant differences in task comprehension 

and would be particularly interesting to investigate differences in item functioning in relationship 

to the participant’s language background. In order to provide a robust proof of concept for the valid 
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use of video instructions we decided here to adapt a more conservative approach with minimal 

differences between the video and verbal conditions. However, it would be interesting to use also 

more contrasted conditions in future studies.   

Additionally, we anecdotally observed that touchscreen responsiveness seemed to be an issue with 

more impulsive participants. Indeed, when the touchscreen did not react to a first touch by showing 

a bold border around the selected image, these participants switched to another answer. We 

speculate that they interpreted the non-response of the tool as a wrong answer on their part and 

choose to try another one. This is an unfortunate but important technical limitation that will be 

addressed in future versions of the application, as impulsivity and attention issues are strongly 

correlated with mathematical abilities, especially in the target population for this test (LeFevre et 

al., 2013). Finally, we want to stress the difference in participant’s age between the two sets of 

tasks presented here. In future developments of this project, homogenous groups of children from 

the first half of the first grade should be targeted.  

Conclusion 

Taken together, these preliminary results show that explicit verbal instructions do not seem to be 

required for assessing basic math competencies when replaced by instructional videos. While 

variations depending on the task and the quality of experimental instructions are present, video 

instructions seem to constitute a valid alternative to traditional verbal instructions. In addition, the 

video-game-like aspect of the present assessment tool was well received, contributing positively 

to children’s task compliance and motivation. All in all, the results of this study provide an 

important and encouraging proof of concept for further developments of language neutral and fair 

tests without verbal instructions.   
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Study report 3: Assessing basic math competence without language: First steps towards 

psychometric validation. 

(Submitted to Psychological and Educational Measurement)  

Max Greisen, Caroline Hornung, Tanja Gabriele Baudson, Claire Muller & Christine Schiltz 

Abstract 

The present study’s aim was to assess the psychometric characteristics of NUMTEST, a language- 
neutral assessment battery for basic math competence that replaces verbal instructions and task 
content with instructional videos and animations. In this study, we investigated task and item 
performance, scale and test reliability as well as concurrent validity. Additionally, we provide an 
overview of NUMTEST’s classification performance when compared to a validated screener for 
basic math competence. Additionally, we investigate if the claim of language-neutrality can be 
upheld on the basis of the data we collected in this sample. In summary, the results show that the 
battery is of adequate difficulty, that it provides good to excellent reliability and that it is highly 
and significantly correlated to a standardized measure of arithmetic. Detection performance of the 
battery is comparable but not identical to that of existing screeners. Bayesian performance 
comparison between language groups provides evidence to the claim that performance on 
NUMTEST is independent from the home language of the test taker. The results of this study 
constitute a first essential and encouraging step in the validation of the NUMTEST battery, while 
future studies will need to assess missing aspects such as predictive validity.  
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Introduction  
 

 
Basic arithmetic skills are fundamental to independent adult living in most societies. Yet an 

estimated 5–10 % of people (see (Devine, Soltész, Nobes, Goswami, & Szűcs, 2013), for a review 

of prevalence studies) suffer from numerical learning difficulties. This often leads to dependency 

on other people and technology in many walks of life, ranging from grocery shopping to personal 

finance, time management, or even voting (see (Geary, 2011) for a review). Early diagnostic and 

intervention are therefore essential to counteract these learning difficulties and their cumulative 

effects. 

While diverse diagnostic tools exist, all of them share the verbal nature of their instructions and 

task content. However, mathematical and linguistic abilities are not independent from each other, 

and their complex relationship has been thoroughly studied on different levels. Whereas core 

representations of number seem to be independent from linguistic influence (see (Gelman & 

Butterworth, 2005) for a review; but see Salillas and Carreiras, 2015; Salillas et al., 2015) language 

plays a significant role in accessing and processing numerical representations (Brysbaert, Fias, & 

Noël, 1998; Macizo, Herrera, Román, & Martín, 2010). For instance, intransparent number-word 

structure  has detrimental effects on math performance (Göbel, Moeller, Pixner, Kaufmann, & 

Nuerk, 2014; Imbo, Vanden Bulcke, De Brauwer, & Fias, 2014; Lonnemann & Yan, 2015; Pixner, 

Moeller, Hermanova, Nuerk, & Kaufmann, 2011; Pixner, Zuber, et al., 2011; Van Rinsveld & 

Schiltz, 2016; Zuber, Pixner, Moeller, & Nuerk, 2009). In a similar vein, research on bilinguals 

has shown that arithmetic performance is closely related to the language in which it is performed 

(Van Rinsveld, Brunner, Landerl, Schiltz, & Ugen, 2015; Van Rinsveld, Schiltz, Landerl, Brunner, 

& Ugen, 2016). These  findings have been corroborated by neuro-imagery studies (Lin, Imada, & 

Kuhl, 2012; Van Rinsveld, Dricot, Guillaume, Rossion, & Schiltz, 2017; Venkatraman, Siong, 
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Chee, & Ansari, 2006), thereby underlining the notion that exact processing of numerical objects 

taps into language processing networks.  

The interdependence of math and language has further been corroborated by correlational studies 

on the link between the performance during mathematics and language assessment in general 

(Chow & Ekholm, 2019; Chow & Jacobs, 2016; Korpipää et al., 2017; Singer & Strasser, 2017; 

Vukovic & Lesaux, 2013b; Zhang, 2016) and particularly in multilingual settings (Howie, 2003; 

Kempert, Saalbach, & Hardy, 2008; Méndez, Hammer, Lopez, & Blair, 2019; Paetsch, Felbrich, 

& Stanat, 2015; Paetsch, Radmann, Felbrich, Lehmann, & Stanat, 2016; Vukovic & Lesaux, 

2013a).  

Other studies highlight the importance of good knowledge of the language of mathematics beyond 

general language skills (Purpura, Napoli, & King, 2019; Purpura & Reid, 2016) and, more 

specifically, mathematical vocabulary (Riccomini, Smith, Hughes, & Fries, 2015). Especially 

performance in word problems is strongly affected by testees’ mastery of mathematical vocabulary 

(Hickendorff, 2013; Hornburg, Schmitt, & Purpura, 2018; Peng & Lin, 2019). It is closely related 

to reading comprehension (Vilenius‐Tuohimaa, Aunola, & Nurmi, 2008) and vocabulary 

knowledge (Sepeng & Madzorera, 2014), especially in multilingual settings (Kempert, Saalbach, 

& Hardy, 2011) 

Taken together, these discoveries have significant implications for the assessment of mathematical 

abilities in multilingual contexts because they indicate a potential negative bias towards 

populations that do not master the language in which mathematics are instructed and measured 

(Abedi, 2002; Abedi & Lord, 2001). For example, in Luxembourg, where primary school 

mathematics are taught and assessed in German, results of the national school monitoring program 
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(Martin, Ugen, & Fischbach, 2013) consistently show that foreign language speakers perform 

significantly lower in mathematics than their native-language peers.  

Traditionally, a standardized psychometric test’s quality relies on its objectivity, reliability, 

validity, and sensitivity (Eid & Schmidt, 2014). Considering the research presented so far, existing 

batteries that are based on verbal instructions in a language not mastered by the testees fail to meet 

several of these criteria. First and foremost, their validity comes into question when testees fail to 

understand the instructions to a task. Imagine being presented with a mathematical problem in a 

foreign language which you do not master: Would you conclude that your failure to resolve the 

task is due to your lack of mathematical abilities? Of course, you would not; yet in practice, this 

conclusion is common in multilingual societies like Luxembourg. Second, objectivity is affected 

by the fact that the testing situation is not the same for all testees. When neither the test nor its 

administrator can convey task instructions in a language that the tested person understands, 

performance depends on the (variable) compatibility between the testee’s and the test’s language. 

Additionally, test administrators faced with this situation might consciously or subconsciously be 

inclined to adapt the instructions to each testee, which further calls the tool’s objectivity into 

question. Consequently, the sensitivity criterion is not met either: A good test should reliably 

classify problematic (subnormal achievement) and unproblematic performance (i.e., in the normal 

range). However, if performance on verbal assessment tools can be attributed (at least partially) to 

failure of understanding the task at hand, gatekeeping occurs: The tested person is prevented from 

accessing the very content that is supposed to measure his or her ability, resulting in failure of the 

task for reasons unrelated to the primary aim of the assessment. This leads to false positives in the 

process of screening for sub-normal performance, ultimately producing invalid assessments and 

unhelpful intervention strategies that fail to address the real issues. Finally, as the different quality 
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criteria depend on each other, a test that fails to be objective can hardly be considered for reliable, 

sensitive, or even valid ability assessment. 

Faced with this situation, two possible solutions suggest themselves. The first one would be 

linguistic adaptation. This would, first, require the translation (and back-translation) of existing 

batteries into many different languages, second, proof that the different version are both equivalent 

and statistically invariant, and third, highly polyglot test administrators (see, e.g., Van de Vijver 

& Hambleton, 1996;). While this solution would be ideal, it has considerable limitations from an 

economical and practical point of view.  

The second solution, which we chose to explore, is that of removing linguistic barriers to 

assessment altogether. Building on the adage that a picture is worth a thousand words, we 

developed an alternative method for assessing basic mathematical abilities based on video 

instructions and animated task content. Our previous study (Greisen et al., 2018) showed that the 

method represents a valid alternative to traditional paper-and-pencil assessment using verbal 

instruction, even when testing first-grade children without or with little formal tuition on 

arithmetic. As the focus of the previous report lay on exploring the methodology, the results 

showed relatively poor overall reliability of the measures, calling for systematic selection and 

composition of the tasks regarding design and contents. This was the reason for the present follow-

up study in which we streamlined task design, aiming to pilot a first complete version of 

NUMTEST (Name of the project and working name of the test battery). 

The selection of task design and content was driven by two considerations. First, we wanted to 

include common task types which research has shown to be highly predictable of future 

mathematics performance in children and which thus represent ideal candidate items for screening 

purposes. One of these measures is symbolic and, to a lesser extent, non-symbolic quantity 
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comparison (see (Schneider et al., 2017) for a meta-analysis), which has been used, e.g., in the 

Numeracy Screener (Nosworthy, Bugden, Archibald, Evans, & Ansari, 2013), a test which was 

also included in the present study for validation purposes. Other studies (e.g., (Lyons & Beilock, 

2011; Lyons, Price, Vaessen, Blomert, & Ansari, 2014; Reynvoet & Sasanguie, 2016; Stock, 

Desoete, & Roeyers, 2009)) have shown that performance on numerical ordering tasks (a 

generalization and extension of the comparison tasks) is also predictive of mathematics 

performance in later grades, which led us to include an ordering task in this battery, too. However, 

to provide a more differentiated view on children’s basic numerical competence, we wanted to go 

beyond the content of classical screening measures. One common shortcoming of screeners like 

the Numeracy Screener is that they are limited to one single sub-competence, which, while 

statistically predictive, has limited its usefulness for practitioners aiming to identify a child’s 

strengths and weaknesses. In order to broaden the set of tasks, and taking into consideration 

Luxembourg’s governmental learning goals for preschool, which include the ability to solve 

image-based arithmetic problems in the range of 0 to 10, we therefore also included nonverbal 

addition and subtraction tasks, resulting in two sets of tasks in NUMTEST. A first set (comparison 

and ordering) is comprised of precursor abilities, while a second set (addition and subtraction) 

covers applied abilities. As this test’s purpose is to screen at the lowest ability range, we limited 

the content of each task to the range of 0 to 10. 

According to the most influential model of the development of children’s numerical cognition (von 

Aster & Shalev, 2007), children in the target population (i.e., at the beginning of first grade) should 

be able to represent numbers non-symbolically using concrete quantities. They should also be 

situated in the beginning stages of matching these non-symbolical representations to the Arabic 

digits that they will predominantly encounter during their primary schooling. Therefore, each task 
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included both non-symbolic and symbolic answering options, allowing children to answer the 

task’s demands at the best of their ability, regardless of their level of knowledge of Arabic digits. 

On the following pages, we will first describe the subtasks that were used and the modifications 

that we implemented after two previous exploratory studies (Greisen et al., 2018). We will then 

present the test’s quality criteria, an exploratory factor structure as well as its classification 

performance compared to the Numeracy Screener in order to provide evidence of NUMTEST’s 

psychometric validity. Finally, we will examine our core claim that NUMTEST’s language-

independent assessment provides for greater fairness. 
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Methods 

Participants  

Table 1: Participant demographics. 

N % girls Age (SD) Duration of Schooling Language ISEI 

    % NL % NNL  M (SD) 
158 51.9 7y3m (6m) 4–7 weeks into Grade 1 50.6 49.4  46.3 (6.41) 

Notes. % NL = percentage of native language speaking children (Luxembourgish and German). % 
NNL = percentage of children speaking non-native languages (Portuguese, French, Italian, 
Spanish, Slavic languages, English and others). ISEI = International Socio-Economic Index of 
Occupational Status. 

Table 1 shows participant gender, age, duration of schooling, first language, and socio-economic 

status. Participants were recruited on a voluntary basis in participating primary schools under the 

authorization of Luxembourg’s Ministry of Education. Teachers were contacted directly for 

participation by information letters. Upon acceptance of participation, they were sent further 

information and consent declarations to be signed by the participants’ legal guardians. Only 

children whose parents had provided consent were tested and included in the present sample. 

Participants’ age could not be inquired directly due to strict personal data privacy regulations. We 

instead reported their age in this study based on the average age of the population during the 

national school monitoring assessment, which happened to take place within two weeks of the 

present study. 

Materials 

Experimental Tasks. Tasks will be described in order of administration. Each task existed in a 

non-symbolic or a symbolic answer version. Both were based on identical quantities and 

operations. 



87 
 

Non-symbolic addition (NSADD). The first task required the children to solve a non-symbolic 

addition problem. Participants were shown an animation of 1–5 pigs entering a stable. The stable’s 

door was closed and then reopened for 1–5 additional pigs to move into the stable. Finally, the 

door closed again. In the non-symbolic answer version of this task (5 items), participants were 

subsequently shown three pictures of an open stable with a certain amount of pigs in it. The task 

was to select the picture showing the correct sum of all pigs in the stable. In the symbolic answer 

version of the task (5 items), the pictures with pigs in the stable were replaced by an array of 

numerals ranging from 1 to 9 from which participants chose their answer. The result range included 

the numbers from 3 to 8 only. Going up to 10 was not possible because cramming more than 8 

pigs into the small pictures made them difficult to read. 

Non-symbolic subtraction (NSSUB). The second task was similar to the previous one, with the 

difference that the animation started with an open stable showing pigs, some of which left the barn. 

The door was closed before the participants were asked to say how many remained. The range of 

pigs leaving the barn was 2-3. The result range (remaining pigs) was from 1 to 6. The non-symbolic 

answer version (5 items) again used pictures of pigs in a stable. The symbolic answer version of 

the task again used an array displaying numerals from 1 to 9. (5 items)  

Cross-modal addition (CMADD). The third task required solving a non-symbolic addition 

problem using visual and auditory stimuli. Participants watched coins dropping on a scene floor, 

each one accompanied by a distinctive sound. After a curtain closed, hiding the coins already 

dropped, more coins fell down behind the closed curtains such that participants could hear, but not 

see the second series of coins hitting the floor. They were then asked to select the corresponding 

sum of coins on the floor while considering both the coins they had seen and heard and those they 

had heard only. The number of coins at each step ranged from 1 to 5, with totals in the range of 3 
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to 7. Non-symbolic and symbolic answer versions of this task were designed identically to those 

of the previous tasks. 

Ordering (ORD). The fourth task required reordering 4 pictures by ascending numerosity. 

Pictures showed numerosities non-symbolically (dot arrays, 5 items) or symbolically (Arab digits, 

5 items) in a range from 1 to 9.  

 Quantity comparison (COMP). This task required children to choose the larger of two 

numerosities, ranging from 1 to 9 and displayed in the middle of the screen. The type of numerosity 

(non-symbolic vs. symbolic) was varied in the same way as in the other tasks but represented by 

6 items for each type to symmetrically counterbalance correct answers in the left /right side of the 

screen. 

The tasks were similar to those developed for the first “proof of concept” study of the NUMTEST 

(Greisen et al., 2018) but methodologically improved for the present version. First and foremost, 

stimulus design was streamlined and reduced in variability across all tasks. For instance, while the 

first version of the tasks often used different depictions of objects (fruit, people, school accessories, 

etc.) as non-symbolic stimuli, we limited them to depictions of arrays of more abstract black dots 

in this revised version to minimize task-irrelevant distraction. Moreover, we increased the number 

of items per task to five to increase each scale’s reliability, except for the comparison task, which 

required 6 items for left-right counterbalancing of correct answer positions, as mentioned above. 

The animations used in the first three tasks were also slowed down significantly to allow 

participants more time for evaluation, thereby reducing the task’s demands on rapid visual 

processing. Finally, the comparison task was entirely redesigned to facilitate the understanding of 

task instructions. In doing so, we limited the stimuli to depictions of dot arrays and Arabic digits 



89 
 

and used only the easiest ratios between the left and right stimulus during the instruction and 

practice phase 

Criterion Validation Tasks 

After completing each of the aforementioned tasks, participants received a paper notebook 

containing questions on demographics (gender, language background) as well as tasks for the 

criterion (concurrent) validation of the NUMTEST. The following pen & paper tasks were 

administered in the following order: 

• TTR (Tempo Test Rekenen) (De Vos, 1992): The TTR assesses mental arithmetic 

performance under time constraints (60 seconds) through 8 subsets of symbolic arithmetic 

problems with increasing difficulty for each subsequent set and operands in the range of 1 

to 100. We only used the addition scale as symbolic subtraction, multiplication and division 

have not yet been taught at the beginning of grade 1. The tool’s reliability has been 

established in several studies (Desoete, 2008; Ghesquière & Ruijssenaars, 1994). 

• Quantity comparison: The Numeracy Screener (Nosworthy et al., 2013) is a validated and 

reliable (Hawes, Nosworthy, Archibald, & Ansari, 2019) screener for future mathematics 

performance. It requires participants to cross out the larger of two numerosities in a total 

of 2 x 56 numerosity pairs. The test comprises two parts, Part 1 using non-symbolic dot 

arrays and Part 2 using symbolic digits for rapid numerosity comparison. Participants were 

given 1 minute to correctly solve as many items as possible. We used the results to compare 

performance classification of the Numeracy Screener with that of our experimental test 

battery. 
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Procedure 

Participants were seated in front of touchscreen computers and given headphones to wear. 

Instructions were administered in the same way for each task. First, a video was displayed showing 

the same computer that the participants were using with an item on display. Participants then saw 

a hand pushing on the correct answer in the following screen, followed by a green smiley face. 

This was shown three times altogether with different items. The instruction video also showed that 

pushing a blue arrow in the corner of the screen confirms the given answer and proceeds to the 

next item. Participants then moved on to the first of three practice items that were similar, but not 

identical to the ones they had seen in the video. In this phase, participants received the same 

smiley-face feedback as seen in the instruction video if their answer was correct and a red frowning 

face if the answer was wrong. Since the instruction video showed correct answers only in order 

not to confuse participants, the red frowning face could be discovered upon error during the 

practice phase only. If the participants had solved three practice items correctly, the application 

proceeded to the actual testing part. In case of one or more incorrect answers, a second run 

including all practice items was offered to the participants. After this, the application started the 

test phase, regardless of participant’s performance in the second practice run. To make the 

transition clearer, a traffic light switching from red to green was shown to inform participants that 

the test session was about to start. During the test phase, participants received no feedback on the 

correctness of their answers. 

After completion of each task, an image was displayed thanking the children for their participation. 

Finally, the children completed the notebooks comprising the demographics questions and the 

remaining tasks (TTR, Numeracy Screener) in a group setting with a test administrator.  
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Results 

Results will be presented according to the criteria of classical test theory: objectivity, reliability, 

and validity. Furthermore, fairness was assessed to examine the impact of children’s first language. 

Objectivity 

NUMTEST’s objectivity is ascertained by its automated and standardized computerized 

administration without any verbal instructions. Except for occasional encouragement, the test 

administrators did not interact with participants during task completion. 

Reliability 

Table 2 shows the average scores on the experimental tasks, expressed as POMP scores 

(percentage of maximum performance, i.e. the number of correct answers divided by the total 

number of answers)(Cohen, Cohen, Aiken, & West, 1999) and Cronbach’s alphas for the subscales 

and the full scale. As they were constrained in time, only total performance was considered for 

validation tasks and is reported as raw value sums. Detailed item statistics are given in Appendix. 

All item and scale statistics were calculated using Jamovi (Love, Dropmann, & Selker, 2019). 
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Table 2. Scale reliability and performance 

 α Average  
performance 

(SD) 

Empirical range Theoretical 
range 

Skew Kurtosis 

Experimental tasks: Non-symbolic answers 
NSADD .69 66% (32%) 0-100% 0–100% -.60 -.78 
NSSUB .68 67% (31%) 0-100% 0–100% -.60 -.75 
CMADD .69 70% (30%) 0-100% 0–100% -.77 -.49 
ORD .81 77% (30%) 0-100% 0–100% -1.40 .96 
COMP .84 94% (18%) 0-100% 0–100% -3.23 10.27 
NUMTEST 
(NS) 

.86 75% (19%) 16-100% 0–100% -.68 -.21 

Experimental tasks: Symbolic answers 
NSADD .82 50% (38%) 0% 100% 0–100% -.05 -1.54 
NSSUB .79 52% (37%) 0% 100% 0–100% .02 -1.44 
CMADD .71 48% (34%) 0% 100% 0–100% .07 -1.19 
ORD .81 87% (25%) 0% 100% 0–100% -2.22 4.35 
COMP .82 93% (19%) 0% 100% 0–100% -2.95 8.48 
NUMTEST 
(S) 

.88 66% (22%) 17% 100% 0–100% -.34 -.88 

Validation tasks 
TTR Addition 5.06 (2.83) 0 12 0–40 0.21 -0.48 

Numeracy 
Screener 

29.43 (7.3) 5.5 44 0–56 -0.86 0.58 

Note. NS = Non-symbolic answer; S= Symbolic answer 

Validity 

Face validity 

Face validity was established by expert discussion between the authors and colleagues working on 

the standardized mathematics assessment for Luxembourg’s school monitoring program (Martin 

et al., 2013) and confirmed through feedback from participating teachers. 

Convergent validity 

Convergent validity was shown by significant correlations between the NUMTEST total score and 

two validated measures of basic number competence (TTR (Additions): r=.56, p<.05, Numeracy 

Screener: r=.46, p<.05). Table 3 shows the correlations between NUMTEST subtask and average 
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scores (for the non-symbolic and the symbolic version, respectively) and the TTR as well as with 

the Numeracy Screener. 

Table 3. Sub-scale correlations with validation tasks 

Non-symbolic answers NSADD NSSUB CMADD ORD COMP NUMTEST 
(NS) 

TTR Addition .33* .37* .33* .42* .34* .53* 

Numeracy Screener .20* .35* .23* .33* .31* .41* 
Symbolic answers NSADD NSSUB CMADD ORD COMP NUMTEST 

(S) 

TTR Addition .41* .41* .41* .35* .33* .55* 

Numeracy Screener .35* .31* .28* .40* .34* .46* 
Note. * p<.05; NS = Non-symbolic answer; S= Symbolic answer 

 

Factorial Validity 

In order to explore NUMTEST’s factor structure we performed exploratory factor analysis. Two 

tasks (ordering and comparison) showed strong ceiling effects (see table 2), performance on the 

three other tasks approximated normal distribution. In order to avoid the resulting bias in 

exploratory factor analysis, we subjected the performance data of each task to a log10 

transformation. Because some participants scored 0 one some tasks and log10(0) is not defined, the 

following formula was used: score_log = log10(1+brute_score). These transformed scores were 

used for exploratory factor analysis. The resulting model is significantly better than the nullmodel 

(χ2= 20.84, df = 11, p<.05) and proposes four factors that line up perfectly with our tasks. Factor 

1 (arithmetic: addition) underlies both non-symbolic addition tasks (NSADD and CMADD), factor 

2 (quantity comparison) underlies the comparison task (COMP), factor 3 (quantity ordering) 

underlies the ordering task (ORD) and finally factor 4 (arithmetic: subtraction) underlies the non-

symbolic subtraction task (NSSUB). Table 4.1 shows factor loadings while table 4.2 shows factor 

correlations. Model goodness-of-fit tends towards good (RMSEA = .079, TLI = .935) but closely 
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misses the criteria. Although the sample was technically too small for a robust factor analysis, we 

nevertheless decided to include these results at this stage of test development to obtain an indicator 

of what to expect in the next test development phases. 

Table 4.1: Factor Loadings  
   Factor 1  Factor 2  Factor 3  Factor 4  Uniqueness  

NSADD (NS)   0.876   .   .   .   0.386   
NSADD (S)   0.891   .   .   .   0.160   
CMADD (NS)   0.540   .   .   .   0.613   
CMADD (S)   0.583   .   .   .   0.534   
COMP (NS)   .   0.787   .   .   0.304   
COMP (S)  .   0.973   .   .   0.142   
ORD (NS)   .   .   .   0.674   0.438   
ORD (S)   .   .   .   0.876   0.319   
NSSUB (NS)  .   .   0.898   .   0.276   
NSSUB (S)   .   .   0.656   .   0.412    
Note.  Applied rotation method is promax. The number of factors was determined 
through parallel analysis. NS= non-symbolic answers; S= symbolic answers. 
 
 

Table 4.2: Factor Correlations  
   Factor 1  Factor 2  Factor 3  Factor 4  

Factor 1   1.000               
Factor 2   0.388   1.000           
Factor 3   0.715   0.320   1.000       
Factor 4   0.554   0.509   0.588   1.000    
   

 Comparison of performance classification 

We compared NUMTEST’s performance classification with the performance rankings of the 

Numeracy Screener to shed light on its screening capabilities at this stage of development. We 

choose to look at the 7% and 25% lowest performers according to the performance classification 

proposed by David Geary (Geary, 1993, 2010) 
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13 participants were identified by the Numeracy Screener performance as the 7% lowest 

performers. As this score is averaged based on both non-symbolic and symbolic numerical 

processing, we used the NUMTEST average performance with no distinction between the non-

symbolic and symbolic answer performance. From these 13 participants, 4 ranked within the 7th 

percentile on NUMTEST scores. 6 more ranked within in the 25th percentile. The 3 remaining ones 

ranked over the 25th percentile on NUMTEST scores and even had good to excellent performance 

(68, 94 and 96% correct answers respectively). 

Fairness: Language-independence of NUMTEST Performance 

The major objective of NUMTEST is to provide language-independent results, due to the 

language-free video instruction. In order to examine this claim, we compared two groups: first, 

those speaking a native language at home (Luxembourgish and/or German, native group; n = 79), 

which is also the language of instruction of mathematics of our sample, and second, those that 

speak a foreign language (all others, non-native group; n = 77). As frequentist inference cannot 

conclude on the absence of a difference, we performed a Bayesian independent samples t-test using 

JASP (JASP Team, 2018) on total NUMTEST performance to compare the aforementioned 

groups. Tables 5.1 and 5.2 show the results. 

Table 5.1:  Descriptives 
 95% Confidence Interval  

   Group  n  M  SD  SE  Lower  Upper  
NUMTEST total performance  Native   79   0.700   0.188   0.021   0.658   0.742   

    Non-native  77   0.714   0.202   0.023   0.668   0.760    
  
Table 5.2:  Bayesian Independent Samples t-Test  

   BF01  error %  
NUMTEST total performance  5.316   7.478e -6    
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A Bayes factor (BF01) of 5.32 indicates that it is more than five times more likely that our data 

supports the null hypotheses (no difference) than it is to support the alternative hypothesis 

(performance difference between language groups). We thus have moderate evidence that total 

performance on NUMTEST is independent from the language of the assessed. 

Discussion 
 
The aim of the present study was to establish the first psychometric validation step for the tasks 

and the total scale of the computer based NUMTEST screening of early mathematical abilities 

and to provide evidence for its fairness for young students from different linguistic backgrounds.  

 Summary of the findings 

  Performance and reliability 

Overall performance on the NUMTEST subscales was high (Non-symbolic addition, Crossmodal 

addition, Non-symbolic subtraction) to very high (Ordering and Comparison), which is a positive 

sign for a screening at the lower end of the ability spectrum. For screening purposes, some of the 

more difficult items could even be removed in future versions of the tasks. However, care must be 

taken to not diminish the test’s reliability in the process, which was overall excellent for the full 

scale and ranged from good to excellent when looking at the subtask-based scales. On one hand, 

performance on the non-symbolic versions was generally higher than on the symbolic versions, as 

is to be expected considering the developmental stage of our test population. On the other hand, 

the non-symbolic tasks seem to be of lesser (though comparable) reliability. We included non-

symbolic versions of each task in the battery because the children in our sample were in an 

intermediate stage of their numerical development  (von Aster & Shalev, 2007) . The higher 

performance on non-symbolic versions suggests that some children were not yet competent in 

using Arabic digits to convey their representation of number and thus performed better when 



97 
 

offered concrete, task-dependent answer possibilities. This observation was corroborated by the 

high standard deviation in TTR performance, which is a symbolic arithmetic task: While some 

children already have adequate knowledge on number symbols at the beginning of the first grade, 

some are still acquiring it. According to the literature, performance on symbolic tasks of basic 

math competence is more predictive for future performance on mathematics (Schneider et al., 

2017; Schwenk et al., 2017) . Nevertheless, in the context of early screening for math learning 

difficulties, we think that it is necessary to allow participants to express their response at the best 

of their abilities. Additionally, a better performance on the non-symbolic than the symbolic answer 

version of the same scale could be interpreted in terms of a child being in a certain developmental 

stage. However, low performance on both versions of the same scale could be interpreted as 

indicative of developmental delay. In conclusion, NUMTEST will comprise both non-symbolic 

and symbolic answer formats in the future. 

Even though performance on the three arithmetic tasks (NSADD, CMADD and NSSUB) was 

average to good, performance on the ordering and comparison (ORD and COMP) task was 

showing ceiling effects. The design of both tasks was constrained by the limited range of numbers 

that could be expected to be known by participants of that age. One way of increase the variability 

in performance on these tasks would be to add a time constraint, similarly to the approach taken 

in the Numeracy Screener. So far, it was not possible to use time-constraints or measure reaction 

times in the current implementation of the tasks due to technical limitations of the framework that 

was used but will be implemented in future versions. This will considerably improve the predictive 

validity of the battery. Research has indeed shown that not only performance, but also solving 

speed is a robust predictor of later performance in mathematics (Schwenk et al., 2017). 
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The crossmodal addition task (CMADD) was included as an experimental alternative to the other 

non-symbolic addition task (NSADD). The objective was to design a task that took advantage of 

the tablet-computer used to present the task with both visual and auditory stimuli as operands of 

an addition in order to evoke a truly crossmodal and consequently abstract addition computation 

process. However, performance on both addition tasks was very similar. Additionally, item design 

for the CMADD seems heavily constrained by the limits of children’s phonological working 

memory span. Indeed, average performance on the item 3 + 4 was the lowest of all items in both 

versions of the task, suggesting that presenting 4 consecutive sounds was already too demanding 

for many children of that age. Moreover, there was a 22% performance difference when comparing 

non-symbolic and symbolic answer versions of the CMADD task, the largest of all observed 

differences, suggesting that although item content was identical, the two versions of the task could 

be measuring different things. Finally, the CMADD tasks presents a much lower factor loading for 

the addition factor than the NSADD tasks, again suggesting that performance on this task is 

determined by more than arithmetic competencies, at least when compared to the NSADD tasks. 

In conclusion, we consider this task, while interesting in nature, to be ultimately redundant and too 

complicated for screening at the lower range of the performance spectrum. It will thus be discarded 

in future developments of the NUMTEST battery. 

Validity 

We examined different facets of scale validity in this study and the results were overall very 

satisfying. Convergent validity with the TTR and the Numeracy Screener was very good as both 

versions of the scale correlate highly and significantly. Predictive validity and test sensitivity could 

not be measured in the current study but are essential for complete psychometric validation of 



99 
 

NUMTEST as a screening tool. This will be tackled in a future and final validation study using a 

larger sample. 

Factor structure 

According to the results of the exploratory factor analysis, performance on NUMTESTs total scale 

is based on four underlying factors, which we labelled according to the tasks that presented high 

factor loadings. As was noted before, existing screeners are limited to certain sub competencies 

that, while statistically predictive of future math performance, have limited usefulness to 

practitioners aiming to assess a child’s strengths and weaknesses.  While these results are limited 

by the relatively small sample size for factor-analysis, they provide preliminary evidence that 

NUMTEST reliably measures four different subskills of basic numerical competence. 

Performance classification 

We compared performance classification on NUMTEST with rankings on the Numeracy Screener 

and found that NUMTEST identified less participants as performing poorly than the Numeracy 

Screener. Surprisingly, three participants identified by the Numeracy Screener as performing very 

poorly had good to excellent performance on NUMTEST. We attribute these differences to the 

fact that the Numeracy Screener was completed at the very end of the testing session, which lasted 

around 1 hour. This, in combination with the less attractive paper and pencil format used might 

have contributed to underestimating the participants’ real performance, which could explain why 

some participants that were identified as ranking in the 7th percentile on the Numeracy Screener 

performed significantly better in our experimental tasks. In the next study, order of administration 

will be counterbalanced in order to address this issue and we are confident that performance 

classifications will then be more aligned. 
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Language independence 

Finally, the major objective of this project was to avoid performance differences due to 

incompatibilities between the language of test instruction and the language of the testee by 

removing verbal instructions and task content. According to our results, this claim can be safely 

upheld at this point of NUMTEST’s development, since no performance differences between 

native and non-native language groups could be observed using Bayesian analyses. Literature 

indicates that language-based performance differences are mostly seen in word-problem type 

tasks. By presenting problems without words and including visual information only, the tasks we 

designed indeed thus allowed to measure basic math competence without language interference. 

This finding has considerable implications, as it lays the foundation for universally valid 

assessment methods of which performance is largely independent of its linguistic context. It could 

also contribute to the establishment of a standardized criterion for math learning disability, which 

at this point is dependent on the country and assessment tool that is used (see (Devine et al., 2013) 

for a discussion of the issue), hampering comparability between experimental studies and 

performance on existing assessment tools. 

 Conclusion 

NUMTEST’s development was driven by two main goals. First, we wanted to provide a measuring 

tool for basic numerical skills at the lower end of the performance spectrum that provides reliable 

results independently from the first language of the assessed. Although there is room for 

improvement, our findings suggest that this target has been met: NUMTEST is reliable and its 

performance doesn’t seem to depend on the first language of the test-taker. Moreover, the 

automated computer-based assessment allows for a highly standardized test-situation in which the 

language spoken by the test administrator is equally irrelevant. Next, we wanted to design a 
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screening tool that includes measures beyond the ones used by available screeners to provide a 

more diversified image of the assessed competencies for practitioners. Our findings concerning 

NUMTEST’s factor structure suggest that this target has been met as well. 

Considering the importance of early identification of math problems and the problem that linguistic 

abilities affect the validity of available test’s results, the evidence for NUMTEST’s overall quality 

in general and its language neutrality are promising for future refinement of the test and its 

application in practice. 
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Appendix 

Item statistics  

Non-symbolic Addition (non-symbolic answers) 
Item M (SD) Corrected 

item-total 
correlation 

α if item 
dropped 

Scale α 

2+3 .67 (.47) .53 .6 .69 
4+4 .68 (.47) .50 .62 .69 
3+3 .72 (.45) .46 .64 .69 
4+2 .58 (.5) .36 .68 .69 
1+4 .65 (.48) .39 .66 .69 

Non-symbolic Addition (symbolic answers) 
Item M (SD) Corrected 

item-total 
correlation 

α if item 
dropped 

Scale α 

2+3 .5 (.5) .64 .78 .82 
4+4 .44 (.5) .60 .79 .82 
3+3 .56 (.5) .62 .79 .82 
4+2 .46 (.5) .55 .8 .82 
1+4 .54 (.5) .66 .77 .82 

 

Non-symbolic Subtraction (non-symbolic answers) 
Item M (SD) Corrected 

item-total 
correlation 

α if item 
dropped 

Scale α 

4-2 .81 (.39) .38 .66 .68 
5-2 .65 (.48) .47 .62 .68 
3-1 .71 (.46) .45 .63 .68 
4-3 .68 (.47) .47 .62 .68 
5-3 .5 (.5) .43 .64 .68 

Non-symbolic Subtraction (symbolic answers) 
Item M (SD) Corrected 

item-total 
correlation 

α if item 
dropped 

Scale α 

4-2 .64 (.48) .50 .77 .79 
5-2 .5 (.5) .68 .71 .79 
3-1 .54 (.5) .50 .77 .79 
4-3 .46 (.5) .54 .76 .79 
5-3 .45 (.5) .63 .73 .79 
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Crossmodal addition (non-symbolic answers) 
Item M (SD) Corrected 

item-total 
correlation 

α if item 
dropped 

Scale α 

3+2 .7 (.46) .31 .69 .69 
2+3 .7 (.46) .53 .59 .69 
3+3 .67 (.47) .48 .62 .69 
4+3 .82 (.38) .50 .62 .69 
3+4 .63 (.48) .41 .65 .69 

Crossmodal addition (symbolic answers) 
Item M (SD) Corrected 

item-total 
correlation 

α if item 
dropped 

Scale α 

3+2 .53 (.5) .48 .65 .71 
2+3 .48 (.5) .48 .65 .71 
3+3 .54 (.5) .50 .64 .71 
4+3 .47 (.5) .50 .64 .71 
3+4 .37 (.48) .35 .7 .71 

 

Ordering (non-symbolic answers) 
Item M (SD) Corrected 

item-total 
correlation 

α if item 
dropped 

Scale α 

3 2 5 4 .83 (.38) .57 .76 .80 
6 4 3 5 .85 (.35) .67 .73 .80 
5 6 4 7 .80 (.4) .58 .76 .80 
5 7 6 8 .79 (.4) .69 .72 .80 
6 9 8 7 .59 (.49) .43 .82 .80 

Ordering (symbolic answers) 
Item M (SD) Corrected 

item-total 
correlation 

α if item 
dropped 

Scale α 

3 2 5 4 .82 (.39) .34 .84 .80 
6 4 3 5 .88 (.35) .65 .74 .80 
5 6 4 7 .86 (.35) .60 .75 .80 
5 7 6 8 .89 (.31) .67 .73 .80 
6 9 8 7 .89 (.31) .70 .72 .80 

Note. Item denominations refer to the starting configuration. 
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Comparison (non-symbolic answers) 
Item M (SD) Corrected 

item-total 
correlation 

α if item 
dropped 

Scale α 

4 3 .95 (.22) .51 .83 .84 
6 5 .95 (.22) .55 .82 .84 
4 6 .93 (.27) .72 .79 .84 
3 5 .93 (.26) .49 .84 .84 
7 2 .93 (.26) .75 .78 .84 
3 8 .96 (.21) .67 .80 .84 

Comparison (symbolic answers) 
Item M (SD) Corrected 

item-total 
correlation 

α if item 
dropped 

Scale α 

4 3 .95 (.22) .49 .80 .82 
6 5 .92 (.28) .39 .83 .82 
4 6 .93 (.26) .52 .80 .82 
3 5 .91 (.29) .67 .77 .82 
7 2 .94 (.24) .68 .77 .82 
3 8 .93 (.26) .77 .75 .82 

Note. Item denominations refer to displayed number / quantity pairs.  
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Discussion 
 

The aim of the hereby presented research project was twofold. On one hand, we wanted to explore 

a new language-neutral methodology for assessing basic number skills in children. If proven 

successful, the other aim of the project was to evaluate if this new methodology could be used to 

reliably assess basic number competence in children entering the formal school curriculum. 

Current models of normal and problematic development of numerical abilities in children (e.g. von 

Aster & Shalev, 2007) suggest that the disorder is of developmental nature and takes root in the 

primary numerical and logical representations acquired during the preschool years. Indeed, the 

findings presented in the introduction show that performance in preschool number competence is 

the best and most reliable predictor of later achievement in fundamental school mathematics. It is 

thus important to detect developmental shortcomings as early as possible in order to remediate 

efficiently. In practice, this detection is accomplished by using standardized test batteries for 

number competence. A multitude of different tools exist and are used in practice, however, they 

come with caveats in view of their verbal load. Research on the interaction between linguistic and 

numerical abilities suggests that language competence influences performance in mathematics 

assessment in various ways (Dowker & Nuerk, 2016). These influences become problematic when 

the language competence of the assessed person is not sufficient for understanding the 

assessment’s instruction or task content. Moreover, the negative influence of insufficient linguistic 

competence becomes dramatic in highly multilingual school contexts. 
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The relationship between home language, school language and mathematics 

achievement in a multilingual school setting 

To demonstrate how far reaching this influence can be, I started off the project by analyzing 

available large-scale data from the school monitoring program of a highly multilingual country, 

Luxembourg. Luxembourg has three official languages: German, French and Luxembourgish, a 

language rooted in a German regional dialect. The language of teaching and assessment in 

Luxembourg from grade 1 to 6 is German. Nevertheless, during preschool, Luxembourgish is the 

language of instruction for classroom communication and teaching. German is introduced during 

first grade. This is not problematic for Luxembourg’s native speakers. The Luxembourgish 

language being very close to German, a quasi-automatic transfer from Luxembourgish to German 

can be assumed (although this assumption lacks any empirical evidence as of now). However, only 

36% of Luxembourg’s school population in 2018 speaks either German or Luxembourgish at 

home. This leads to an increasingly challenging learning environment for the majority of pupils in 

which they do not only have to learn a new language (Luxembourgish) in preschool, but also need 

to acquire knowledge in this new language at the same time. This challenge becomes more difficult 

as they enter the first grade of formal schooling and are required to learn a similar, yet different 

language and yet again need to acquire new knowledge through this new language while not 

benefitting from the same assumed language transfer that natives do.  

The consequences of this challenging learning environment become clear when looking at 

performance metrics of the language populations. The data presented in the first study report 

showed that non-native speakers not only underperform in German reading comprehension, but 

also in mathematics. The results indicated that the achievement differences in mathematics 

between native and non-native speakers are largely or entirely mediated by their lacking reading 
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comprehension in the language of instruction and the language of the instructions. They also 

suggested that only non-native speakers with above average skill in numerical reasoning can 

progress without grade repetition in a multilingual school curriculum. In other words, if the 

children in the presented sample had similar levels of reading comprehension than the 

Luxembourgish natives, they would tend to outperform them in mathematics. These findings have 

considerable implications for teaching policies. If the biggest barrier to non-native speaker’s 

success in mathematics is their lacking language competence, then policies should address this by 

first making sure that foreign speaker’s competence in the school language is sufficient before 

integrating them into the regular curriculum with their native peers. While such policies might lead 

to longer curricula for foreign speakers than for their native peers, it should however enable them 

to fully participate in all school subjects during their career and to build the foundation for later 

educational success and quality of life.  However, research findings are seldom easy and fast to 

implement in practice and policy making. In the meantime, I explored a complementary angle of 

attack in the context of the hereby presented thesis. Instead of trying to better match the language 

of the testee with the language of the assessment, I designed an assessment method that works 

without verbal content and whose outcomes should be less or not biased by linguistic factors. The 

first two studies on this new assessment method were presented in this thesis, the first one focusing 

more on the methodology itself, while the second one aimed to gather data on the psychometric 

properties of the tasks, its items and the battery as a whole.  

NUMTEST and the video-instruction: a possible alternative? 

Video Instructions 

NUMTEST’s instructions work by showing, rather than explaining, how a task is performed 

correctly. In the second study report, I evaluated the efficacy of this method from different angles. 
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First, I compared performance between participants using this novel method and participants that 

used a version of the experimental tasks that did not include video instructions. Instead, I 

formulated a standard instruction in German, the school language, which was read to the 

participants by test administrators. I compared performance on the tasks in both groups with the 

hypothesis that if the video instruction failed to convey task instructions effectively, then one 

should expect a significantly lower average performance in the video group. I did not find a 

significant difference between performance in both groups, providing primary support for the idea 

that the video instruction seems to work as well than the verbal instructions. In hindsight, I would 

have approached this differently. Between the two experimental groups, only the nature of the 

instruction was controlled, not the task content per se. For some tasks however, like the nonverbal 

addition and subtraction tasks or the crossmodal addition task, I could have gone further by 

replacing the animated word problem by a verbal one. Indeed, in the case of word problems, the 

task content can be viewed as an integral part of the instruction and replacing all visual content by 

verbal content would have provided an interesting opportunity for observing potential differences 

between the groups where none were observed in this study. Indeed, I collected information on 

participant’s language background and, while not reported in the published article, I found no 

significant performance differences between native speakers and non-native speakers in any of the 

tasks, neither in the verbal group nor in the video group. By translating all visual content into 

words and considering the findings from the first study report, I would have expected non-native 

speaker’s performance to be lower in the verbal group than in the video group, further 

corroborating the problematic influence of language skills on mathematics performance.   

Nevertheless, we used an additional measure for evaluating the efficacy of the video instruction, 

namely the repetition of the practice session. After the video instruction, participants could 
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complete three practice items with feedback allowing them to test if they understood the task as 

intended. This practice session was repeated once in its entirety when the participant gave a wrong 

answer on at least one of the three practice items. I thus categorized participants into groups of 

repeaters and non-repeaters with the idea that a participant who did not repeat the practice session 

and solved all items immediately after the video instruction must have understood the tasks 

correctly. The only other explanation would be that the participant would have had to choose the 

correct answer randomly three times in a row, which is rather unlikely. I then looked at the 

percentage of participants that repeated the practice session for each task and in each group (video 

or verbal) in order to test for differences. Summarily, in most tasks, a higher percentage of 

participants repeated the practice session when they were offered a verbal instruction than in the 

video instruction group. In some cases, there was no significant difference and, concerning the 

quantity comparison task, the pattern was reversed. This led to the redesign of the comparison task 

which will be discussed later. The case of the ordering task is also interesting to point out. Indeed, 

the difference between the percentage of repeaters in the video and verbal group for this task was 

much larger than for all other tasks. While this is the result of a suboptimal design choice 

concerning the verbal instructions (see study report 2 for the explanation), it provided for an 

excellent example as to how a single word in the instruction of a task can have overwhelming 

effects on the way it is interpreted and realized. The fact that most of the time, viewing a video 

instruction instead of hearing a verbal instruction led to less people repeating the practice session 

is another strong indicator that the video instruction works at least as well as an explicit verbal 

instruction. Taken together, these two findings provided for a good proof of concept for the video-

instruction method. Video instructions seemed to be equivalent or better than verbal instruction, 
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both in terms of subsequent performance on the tasks and in terms of rapidity of comprehension, 

all while providing a way of assessing participants without language interference. 

Practice phase 

As stated before, after the children viewed the video instruction for each task, they were presented 

with three items to try themselves. These items were very similar in difficulty to those seen during 

the instruction phase. After a correct answer, they were presented a green smiling face, whereas 

an incorrect answer is followed by the display of a red, unhappy smilie. We expected that children 

at the beginning of first grade would intuitively understand the meaning of the smilie faces as they 

are commonly used both in classrooms and software designed for children to signify good and 

bad. Our expectations were confirmed during the pilot studies, in which I asked the children to 

explain the meaning of the feedback symbols to me. Almost all children could convincingly 

explain to me or the other test administrators what they meant. The same is true for the little blue 

arrow on the top right of the screen, which the instruction showed as a mean to confirm your 

answer and to move on to the next item in the task. Again, there was hardly any child that could 

not explain the function of the arrow to me. However, I observed that a few more children did not 

understand the role of the arrow in the first task in the verbal group. This was probably due to the 

fact that the video instruction showed not only what the task was about, but also how to use the 

application in general as it showed a hand confirming the answer and moving to the next item by 

touching the blue arrow. The part on how to use the application was not present in the verbal 

instruction I gave to the children, which explains why some of them could not say what the arrow 

was about after the first task. Still, most children could intuitively explain the function of the arrow 

even without seeing it in action.  
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Generally speaking, the practice phase thus worked as intended. It provides an opportunity for the 

participants to experiment with their understanding of the instruction before moving to the part 

where their competence is effectively assessed. Nevertheless, the fact that all items were repeated 

in case of a single mistake has led to confusion in some children. Why would they have to repeat 

an item although there was a green smilie? From observation I know that some children changed 

their correct answer to an incorrect one, likely because the application asked them to reply again 

on the same item.  This was a design constraint of the OASYS framework as it does not provide 

for real test-branching capabilities. The software is designed to present the same test to all 

participants in a linear manner. The programmer of OASYS  managed to implement a work-around 

for checking intermediate answers and adapting the next steps of the test as a function of the 

answers given by the participant. We used this method to provide for very basic branching: Either 

the participant provided only correct answers, and the application would move on to the assessment 

items, or, the participant replied incorrectly to at least one of the presented items, leading to the 

repetition of the entire practice block. This solution is far from ideal and should be improved in a 

future version of the NUMTEST battery. The way I imagine the instruction / practice interplay 

ideally is as follows. Participants are shown the video instruction, but at the rate of one item at a 

time. After each video-item, they would see a practice item to try themselves. If they reply 

correctly, a second practice item would appear, just to confirm that their first answer was not due 

to chance. If answered correctly, the application would then move on to the assessment part. In 

case of a wrong answer on the first practice item, the application would then show a second video 

instruction, again followed by another practice item. This would go on for as long as the participant 

is unable to solve two practice items correctly in a row. Compared to the paradigm used in the 

current version of NUMTEST, this would allow for a more dynamic and customized approach to 
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the instruction and practice phase of the test. Participants that require more trials before grasping 

the task at hand could have as many as they need, while children that are faster to understand the 

task would not be presented with unnecessary repetitions of items that they solved correctly before 

and would be able to move on to the assessment part faster. One could also imagine a way for 

children to replay an instruction video on their own. Indeed, in the current version, the three 

instruction videos are being played consequentially without possible stops between items. This 

provides for strict standardization of the instruction and practice phases but in practice we observed 

that children are not always ready to focus when we expect them to focus, and therefore some 

children miss the first instruction item, turn around to ask what to do, leading to them missing the 

next item and finally not grasping the task altogether. While this was a rare occurrence during the 

three studies using NUMTEST, it could be easily avoided by allowing children more control over 

the timing of the instructions. All in all, the instruction and practice phase worked as planned, but 

there is much space for improving the efficiency of the procedure in the future. 

Changes to tasks and the battery over the course of development 

Over the course of NUMTEST’s development, two different versions of the battery existed and, 

in this part, I want to present the rationale behind the modifications to both the tasks and the 

composition of the battery. The first version was designed with two aims in mind. The first aim 

was to offer not only different tasks but also many variations of the same task to check which ones 

would be understood best and how much abstraction I could expect from children of that age. 

Many different stimuli were used in all tasks, ranging from depictions of different fruits to 

depictions of people, black dots, tools or shapes. The primary idea behind this colorful presentation 

was to provide for interesting and thus engaging content for the children. In some tasks however, 

varying the form of the stimulus was also integral to the construct I aimed to measure: Numeracy 
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is an inherent property of any collection of objects and as such, the nature of the objects does not 

matter. However, with children this young, I quickly noticed that they would regularly lose focus 

on the numeracy aspect of the presented tasks and preferred to tell me which fruit they liked best.  

Two tasks are worth mentioning specifically in this context. First, I want to discuss the quantity 

correspondence task. As the reader will have noticed in the second study report, there were five 

different variations of the same task. While the purpose of the task was always to match a centrally 

presented quantity with one of three quantities presented in the answer section, the nature of the 

stimuli varied so heavily that it was difficult for many children to grasp the essence of the task on 

the basis of three video demonstrations as these could only depict three of the five possible 

scenarios. Moreover, the task was in fact not always the same. For example, while using identical 

objects in the center and in the answers, the task measures counting ability and the principle of 

one-to-one correspondence. Another set of items still used only non-symbolical quantities but used 

different objects for the stimulus than for the answer choices. While the task still measures 

counting and one-to-one correspondence, it does so at a higher level of abstraction than the 

previous set. In another set, I mixed non-symbolic quantities with Arabic digits. The task is similar 

yet different to the previous one: Count the objects and point to the same numerosity. However, 

the numerosity was now represented as a digit in the answer section and required an additional 

cognitive function, that of transcoding the numerosity from one format into the other. That is a 

different task than the previous iteration in which no transcoding or symbolical knowledge was 

required. Moreover, no measure of the principle of one-to-one correspondence was present in this 

variant. The various item sets of this task could thus not be measuring the same skill. For this 

reason, and because cuts had to be made to the second version of NUMTEST due to time 
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constraints, the task was put aside for the second version of NUMTEST but should be revisited 

and optimized in future versions. 

The high variability of stimuli in NUMTEST’s pilot tasks lead to many difficulties in transmitting 

a clear instruction through the video-method in other tasks. One task of note in this context is the 

comparison task. In the first version of the task, children were shown ten repetitions of a hand 

pushing on the larger of two numerosities before being offered the practice items. However, the 

ten repetitions they were shown figured collections of very different objects or even a single 

collection of objects on one side of the display and an Arabic numeral on the other display. The 

idea was again to show that no matter the nature of the quantity, you should touch the side with 

the greater numerosity. This did not work as intended as the high variability in the examples shown 

lead to participating missing the primary intent of the task. As such, considerably more participants 

repeated the practice session of this task in the video-instruction group than in the verbal group. 

Implicitly identifying the instruction for this task was simply not as effective as being told to push 

on the display that contains more. Another consequence of the high variability of the items 

presented in this first version of the tasks was that their reliability was questionable. The items 

seemed to measure something different in each participant and could thus hardly be considered for 

screening purposes in their current form. I didn’t consider this to be problematic, since the  purpose 

of this first version was to evaluate if tasks of the type I designed could in principle be understood 

by providing only implicit video instructions, without emphasizing the psychometric aspects of 

the items themselves. My observations on these two tasks nevertheless led me to the conclusion 

that the variability and colorfulness of the items were causing too many problems and so I decided 

to streamline the design of not only the problematic tasks, but of all tasks. 
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Indeed, in the second and most recent version of NUMTEST, all colorful images were removed 

and only two different formats of each task are presented: A symbolic response format (Arabic 

digits) and a non-symbolic response format, represented by black dots or, depending on the task, 

by objects identical to the ones used in the question.  Almost no modifications were applied to the 

non-symbolic addition / subtraction tasks or the crossmodal addition task after the pilot studies, as 

their formats were less variable to begin with. I slightly adapted the length of the animations and 

the size of the answer images after the pilot studies revealed that for some children, the animations 

played too quickly and that the objects in the answer fields were difficult to see from a reasonable 

distance. The ordering task was similarly redesigned, with many image variants being removed 

and replaced by non-symbolic representations (black dots) and Arabic digits. Finally, the first 

version of NUMTEST included a symbolic arithmetic task. While it worked well and was correctly 

solved by most participants, it provided no visible added value over a paper and pencil arithmetic 

task (such as the Tempo Test Rekenen) and when cuts had to be made for time constraints, it was 

removed from the battery. 

NUMTEST as a screener for early numerical competence 

The two pilot studies lead me to conclude that the video instruction method works very well with 

all but a few children and that it constitutes a solid basis for building an assessment battery. In the 

next step, I then completed a preliminary validation study in order to evaluate the psychometric 

structure of the tasks once the teachings from the pilot studies had been implemented into the 

second version of NUMTEST. The results of this study were reported in the third and final study 

report in the present thesis. In summary, the tasks and the battery provide for good to excellent 

inter-subject reliability, correlate strongly and significantly with standardized measures of 

arithmetic performance (TTR, (De Vos, 1992)  ) and deliver similar performance classification  
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than existing screeners for math learning difficulties (Numeracy Screener, (Nosworthy, Bugden, 

Archibald, Evans, & Ansari, 2013)). Additionally, the NUMTEST battery provides a more diverse 

picture of a child’s basic numerical abilities than existing screeners. Preliminary factor analysis 

showed that the tasks in the NUMTEST battery seem to measure four distinct competencies that 

overlap with the four different tasks in the battery. However, while these preliminary results are 

promising, this study was only the first step towards complete psychometric validation. On one 

hand, the sample I could measure for this study was rather small and does not permit the drawing 

of robust conclusions on the validity aspects of the battery. Moreover, while I could provide 

encouraging data on the concurrent validity of NUMTEST, external predictive validity could not 

be established yet. Measuring and establishing predictive validity is of essence in order to use 

performance on NUMTEST as a valid predictor for later mathematics achievement. However, 

establishing predictive validity is not the only future step in my vision of NUMTEST’s further 

development, which leads me to final part of the hereby presented thesis: What is next? 

General conclusions and the future of NUMTEST 

Before I conclude, I want to discuss the many possible ways in which NUMTEST should be further 

developed and prepared for being used as a language-neutral screener for basic math competence 

in multilingual contexts.  First, the second version of the test battery takes longer to complete than 

it should, considering the still relatively short attention span of our target population. One way to 

cut down on completion time would be the elimination of certain items from the pool. Data 

provided by the validation study showed that many items were correctly solved by almost all 

participants while others were completed by only a few. While setting an exact criterion for 

necessary and sufficient item difficulty would have to be determined according to the needs of the 

context in which NUMTEST would be deployed, many items could be removed from the battery 
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without significantly compromising the battery’s reliability. Other time savings would be possible 

by switching to a dynamic branching system for the instruction and practice phases of NUMTEST 

as described earlier in the discussion of NUMTEST methodology. While the proposed solution 

would lengthen the duration of the procedure for some participants, I am confident that most of 

them would be faced with a shorter instruction and practice phase than in the current 

implementation. After all, a large majority of children don’t have math learning difficulties and 

immediately understand tasks like the ones presented in NUMTEST. 

After implementing the proposed modifications, a new version of NUMTEST would then have to 

be submitted to a new, large sample for evaluating different facets of validity. As was explained 

before, predictive validity for primary school mathematics achievement could not be measured 

during this project. This is an essential requisite before using NUMTEST as a screener in practice 

and should be completed by linking participant’s performance on NUMTEST with a standardized 

measure of mathematical achievement, both at the time of collection (concurrent validity) and at a 

later time point during the curriculum (predictive validity). Another important endeavor in such a 

future study would be to measure the battery’s test-retest reliability over time in order to 

complement inter-subject reliability as measured in my first validation study. Additionally, reverse 

validation should be considered in the future. For such an undertaking, children that were 

previously properly diagnosed as dyscalculic with an existing standardized battery would be asked 

to complete the NUMTEST battery in order to evaluate if it would draw a similar conclusion.   

After these studies, NUMTEST would then be technically fit the minimum criteria for being 

employed as a screener for math learning difficulties in Luxembourg. However, a claim of this 

project is to provide a language-neutral tool for universally assessing a child’s basic math 

competence, independently from its language background. Anecdotally, the application was 
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presented on a science fair in Luxembourg in 2018. During the fair, a visiting Russian family with 

their 7-year-old daughter stopped at our booth. Without any incentive or instruction, the girl sat in 

front of a NUMTEST tablet and went on to flawlessly complete the entire battery on her own. 

Beyond this anecdote, the data on participant’s language background that was analyzed in the third 

study report provides first evidence to the claim of NUMTEST’s universality. Nonetheless, further 

substantiating this claim would require the administration of the NUMTEST battery to different 

samples of children at the beginning of first grade in different countries. As shown in the 

introduction, a standardized, linguistically unbiased measure of basic number competence than can 

be deployed in any country would significantly contribute to establishing an objective, universal 

definition of dyscalculia or less severe math learning disorders. 

Going further, as previously noted, task design was not only driven by theoretical considerations 

about the predictive value of each measured competence, but also by what was and was not 

possible to implement given the technology I had at my disposal. Ideally, NUMTEST should be 

professionally redesigned from scratch as a standalone web application while using the existing 

product as a blueprint. This would provide for higher customizability of the proposed tasks, 

improved graphics and animation quality and generally more freedom when it comes to developing 

dynamic tasks that go beyond the question-answer format I used so far. For example, for quantity 

correspondence, one could imagine a task displaying an animated balance with a given quantity 

on one side while the participant has to put as much (be it as many discrete objects, for a non-

symbolic form, or an Arabic digit symbolizing the equivalent quantity for a symbolic version) on 

the other side in order to maintain the balance’s equilibrium. Another tasks that was a promising 

candidate for inclusion in the NUMTEST battery in the beginning stages of development was the 

number-line estimation task, of which certain variants constitute solid predictors for later 
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mathematics achievement (Schneider et al., 2018). However, the technical limitations of the 

OASYS framework made such a task impossible to implement and it was thus discarded. On 

another note, the focus of the current NUMTEST battery lays on assessing children’s answer 

accuracy, but offers no measure of answer time. Indeed, most available batteries share this focus 

although research has shown that children with mathematical learning disorders often do manage 

to solve the problems we present to them, but it takes them significantly longer to do so (Kaufmann 

& Aster, 2012). I did not delve into this aspect during NUMTEST’s development, again because 

the technical framework I used so far could not provide for reliable time measurement without 

significant additional programming work. 

Finally, one could consider adapting the method and the battery to older populations by extending 

the numerical range of its items. Although the research I presented clearly points to preschool-

level basic number competence as the root of all evil, in practice it is not uncommon to observe 

that although children with mathematics learning disorders have problems in understanding basic 

concepts of magnitude and it’s symbolizations , they will nevertheless acquire factual and 

procedural knowledge in the lower ranges through repeated exposure and training over time. In 

this case, a child’s or even an adult’s difficulties would only become apparent when confronted 

with a higher numerical range and problems that have not been learned by heart. These are just a 

few examples of how NUMTEST could evolve, but many other ideas could be implemented using 

NUMTEST’s methodology for task instruction, with the only limiting factor being the amount of 

dedicated resources.  

In conclusion, the research presented in this thesis provides important foundations for the future 

development of language-neutral assessment paradigms. As multilingual societies tend to become 

the norm rather than the exception in a globalized world, dependence on competence in multiple 
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languages for many aspects of life will become an increasingly widespread issue. My research 

shows that for assessing basic numerical concepts in children, it is possible to do without language 

and instead use a quasi-natural method of conveying information. After all, what do you do when 

you want to communicate with someone that doesn’t speak your language? Instead of talking, you 

will try to use signing and symbols. You will try to decouple meaning from its symbol, or, to use 

Ferdinand de Saussure’s jargon, you will try to return to the immediate meaning of the signified 

while bypassing the signifier. I operationalized and formalized this approach by replacing words 

with videos and animations that show rather than explain what to do. Never would I have thought 

that it works so well. 
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Appendix  

NUMTEST Item examples 

1. Counting & correspondence 

 

2. Comparison (Version 1) 

 

3. Comparison (Version 2) 
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4. Ordering (Version 1) 

 

5. Ordering (Version 2) 

 

6. Non-symbolic addition 
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7. Non-symbolic subtraction 

 

 

8. Crossmodal addition 
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