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“If you wish to improve, be content to appear clueless or stupid in extraneous

matters—don’t wish to seem knowledgeable. And if some regard you as important, distrust

yourself.”

Epictetus, Enchiridion, 13a



Abstract
The exponential growth of car generated data, the increased connectivity, and

the advances in artificial intelligence (AI), enable novel mobility applications. This dis-

sertation focuses on two use-cases of driving data, namely distraction detection and

driver identification (ID). Low and medium-income countries account for 93% of traffic

deaths [1]; moreover, a major contributing factor to road crashes is distracted driv-

ing [2]. Motivated by this, the first part of this thesis explores the possibility of an

easy-to-deploy solution to distracted driving detection. Most of the related work uses

sophisticated sensors or cameras, which raises privacy concerns and increases the cost.

Therefore a machine learning (ML) approach is proposed that only uses signals from

the CAN-bus and the inertial measurement unit (IMU). It is then evaluated against a

hand-annotated dataset of 13 drivers and delivers reasonable accuracy. This approach

is limited in detecting short-term distractions but demonstrates that a viable solution is

possible. In the second part, the focus is on the effective identification of drivers using

their driving behavior. The aim is to address the shortcomings of the state-of-the-art

methods. First, a driver ID mechanism based on discriminative classifiers is used to find

a set of suitable signals and features. It uses five signals from the CAN-bus, with hand-

engineered features, which is an improvement from current state-of-the-art that mainly

focused on external sensors. The second approach is based on Gaussian mixture models

(GMMs), although it uses two signals and fewer features, it shows improved accuracy.

In this system, the enrollment of a new driver does not require retraining of the models,

which was a limitation in the previous approach. In order to reduce the amount of train-

ing data a Triplet network is used to train a deep neural network (DNN) that learns to

discriminate drivers. The training of the DNN does not require any driving data from

the target set of drivers. The DNN encodes pieces of driving data to an embedding space

so that in this space examples of the same driver will appear closer to each other and

far from examples of other drivers. This technique reduces the amount of data needed

for accurate prediction to under a minute of driving data. These three solutions are

validated against a real-world dataset of 57 drivers. Lastly, the possibility of a driver ID

system is explored that only uses floating car data (FCD), in particular, GPS data from

smartphones. A DNN architecture is then designed that encodes the routes, origin, and

destination coordinates as well as various other features computed based on contextual

information. The proposed model is then evaluated against a dataset of 678 drivers

and shows high accuracy. In a nutshell, this work demonstrates that proper driver ID

is achievable. The constraints imposed by the use-case and data availability negatively

affect the performance; in such cases, the efficient use of the available data is crucial.
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If you don’t work on important problems, it’s not

likely that you’ll do important work.

Richard Hamming

1
Introduction

The number of road deaths has reached 1.35 million per year in 2016 and continues

to climb. It is the leading cause of death among children and young adults aged 5–

29 [1]. Last year in Europe, over 25,000 lost their lives in road collisions; in the United

States, that number was over 40,000. European Union (EU) is committed to Vision

Zero, a multi-national road safety project aimed to achieve a road traffic system with no

fatalities [4]. European Union (EU) aims to reduce road death to almost zero by 2050.

Although the EU’s preventive actions resulted in a 21% decrease between 2010 and 2018,

this decrease has stagnated, and European countries missed their interim targets for the

2011–20 period [5]. For instance, in the United Kingdom, distraction or impairment

was a contributory factor to 24% of fatal accidents in 2014, which has grown to 27%

in 2017 [2]. A recent study shows that drivers use their phones in about 88% of their

journeys [6]. Mobile phone increases the likelihood of a crash by fourfold [7]. Another

critical contributory factor to fatal crashes is drowsy/fatigued driving. Fatigued driving

increases the risk of involvement in crash or near-crash by nearly four times [8, 9]. Sleep

deprivation can increase the risk of a crash by eight times [10], this should not come as a

surprise since even moderate sleep deprivation impairs cognitive and motor performance,

equivalent to legally prescribed levels of alcohol intoxication [11]. Is it possible to detect

distracted driving using a system that is affordable and easy to deploy?

Drowsiness and fatigue are especially common among commercial long-haul drivers.

Sleepiness/fatigue increases the involvement likelihood of a commercial vehicle in a fatal

collision [12]. Many countries have put forward regulations to prevent long-haul truck

1



Introduction 2

drivers from overwork. In Europe, the regulation (EC) No 561/2006 [13] defines driving

time and rest periods, and it is enforced using analog and smart tachographs introduced

by directive 165/2014 [14]. Meanwhile, a poll conducted by a union uncovers that in the

month before the poll, 40% of drivers had been asked to exceed their duty hours, this is

even worse among self-employed drivers [15]. Another study finds that over 70% of drivers

work more than 11 hours daily, and 43% indicated that “sometimes to always” violate the

working hours [16]. These drivers not only risk their own lives; they also endanger other

road users. There are also indications that drivers tamper with these tachographs [17].

Is there a tamper-resistant way of enforcing these regulations? Perhaps tachographs that

can recognize the drivers based on their driving style.

Ride-sharing applications such as Uber, Lyft, Bolt, have revolutionized transporta-

tion by providing a level of comfort that once deemed unimaginable, but they have issues

of their own. There have been many reports of sexual assault and various other crimes

by ride-sharing drivers [18]. Drivers commit fraud or cheat the system by creating fake

global positioning system (GPS) traces, initiating ride requests from stolen accounts,

and more [19]. Introduction of background checks by the ride-sharing companies—now

mandatory in some jurisdictions—has reduced the crime rates, but new workarounds

emerge. Some drivers use stolen accounts or share the same account, which enables a

myriad of problems. Similar challenges exist for on-demand delivery services such as De-

liveroo, and even traditional fleets. What if fleets were able to verify the driver’s identity

based on their driving style?

These are just examples of open issues that we believe we can undertake. Several

enablers make this the right time to approach these issues. Cars are no longer mechanical

products with electronics in them; they are—as it is fashionable to call them—“computers

on wheels.” Modern cars contain in the order of hundreds of embedded processors, and

this number is proliferating. This increase in the number of electronic control units

(ECUs) is partly due to Moore’s law [20], but more importantly, driven by the demand for

the comfort provided by cyber-physical systems (CPSs). For instance, the adaptive cruise

control maintains speed and longitudinal distance from the leading car, the lane-keep

assist (LKA) keeps the car between the road markings. The automatic braking brings

the car to a halt to avoid collisions. These cyber-physical systems (CPSs), require sensors

to perceive the world and powerful processors to make sense of it and act accordingly.

As a result, modern cars generate vast amounts of data (sensor measurements) and thus

require massive computing power.

More recently, this vast amount of data has become accessible to third-parties.

Car generated data is sent to the cloud through several means, such as the car’s telem-

atics units (2G, 3G, 4G/LTE, and 5G), on-board unit (OBU) (dedicated short-range

communications (DSRC)). Additionally, third-party aftermarket data collection devices

exist that add additional connectivity to cars with no telematics units. Such devices are
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installed in the vehicle often plugged into the OBD-II port—a mandatory diagnostics

port available in most cars manufactured since 1995. These devices (e.g., insurance don-

gles, black boxes) upload data to their corresponding servers via a cellular connection or

through a smartphone. Some manufacturers such as BMW, Mini and, Daimler provide

application programming interfaces (APIs) to third-parties to access car data in order

to provide services. Other companies are working to consolidate such APIs into a single

platform1.

This data abundance prepares a fertile ground for artificial intelligence (AI) appli-

cations. In particular, machine learning (ML) based methods, and more recently, deep

learning (DL) thrive at problems where vast amounts of data are available. AI is the

driving force behind state-of-the-art research in natural language processing (NLP) and

machine translation [21–24], image classification [25–27], object detection [28], image

segmentation, text-to-speech, speech recognition, recommendation systems [29], health

care, and autonomous driving.

The exponential increase in the amount of data generated by cars, and ease of

access to them because of connectivity, and advances in AI, grants us this unique oppor-

tunity to explore mobility applications that are not yet fully explored. Many telematics

applications have been made possible from the analysis of datasets collected from cars

and the usage of machine learning (ML) techniques, such as driving behavior analysis,

predictive maintenance of vehicles.

In particular, we want to explore two application areas, distracted driving detection

and driver identification.

1.1 Research Question

“How could we use machine learning to profile drivers reliably?”

The objective of this dissertation is to explore some of the applications of applying

machine learning methods to driving data. After careful consideration of a wide range of

alternatives, we decided to focus on two applications that have a high potential impact

on society, particularly distracted driving detection and driver identification.

First, we explore the possibility to detect distracted driving only using driving

behavior signals. Is it possible to detect distracted driving using driving behavior signals?

Knowing that every year, 1.35 million lose their lives in traffic crashes [1], and the fact

that up to 27% of crashes are partially caused by distractions [2], we establish that there

is a need for distracted driving detection solutions. However, the state-of-the-art mostly

focuses on solutions based on camera [30–33] or physiological responses [34]. The problem

with the camera-based systems is twofold: a) legal concerns due to the privacy issues and
1such as https://High-Mobility.com

https://High-Mobility.com
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compliance with the general data protection regulation (GDPR) b) user acceptance, the

presence of cameras induce a degree of discomfort. Moreover, privacy-conscious individu-

als resist such systems. The physiological systems often require sensors to be attached to

the body, which renders them impractical and intrusive. Moreover, these approaches re-

quire dedicated sensors, which incurs additional cost and limits their deployment. Since

high-income countries only constitute 7% of road traffic deaths [1, pg. 7] it is essential to

propose an affordable solution. Therefore to avoid expensive sensors and maximize ease

of deployment, the ideal solution would be to use commonly available driving signals

from the car’s internal network (e.g., controller area network (CAN)-bus).

Second, we dedicate a more significant portion of this thesis to find out how may

we most effectively identify drivers based on their driving behavior? The prevalence of

connected vehicles and new mobility paradigms have propelled the need for accurately

identifying who is behind the steering wheel on any driving situation. Depending on the

use-case and available data, driver identification (ID) can be either used to replace tradi-

tional authentication methods—such as fingerprint readers—or as a secondary identifica-

tion method in conjunction with the conventional approaches. Driver ID is an essential

building block for new smart mobility services such as dynamic pricing for insurance,

customization of comfort features, and pay-as-you-drive services. However, state-of-the-

art solutions are inadequate. Moreover, since there is no high-quality public dataset

suitable for driver ID, current literature is somewhat fragmented. Each work often uses

signals with sample-rates that are not accessible by the rest of the research community;

therefore, the results are not comparable. Common issues in the literature are the un-

realistic set of signals that are not available in standard cars on the market [35–39] or

use too many signals, which limits deployment [40, 41] or some works mistakenly model

the state of the car rather than the driver [42–45]. Complex preprocessing that often

requires hand annotation of data [46, 47], scalability issues [37–40, 42, 44, 48], and the

need for large amounts of data for training and prediction [49, 50]. In the second part

of the thesis, we aim to narrow the gap and address the issues mentioned above.

1.2 Methodology

Data is essential to any ML approach. The first concern is to obtain the relevant driving

datasets. There are two general categories of driving data: a) CAN-data, often high sam-

ple-rate, usually collected from car’s internal network (e.g., CAN-bus), OBD-II dongles.

b) FCD provided by global navigation satellite systems (GNSSs), usually low sample-rate,

obtained from smartphones, navigation systems, or external receivers. Driver ID or dis-

tracted driving detection problems are not suitable for simulation studies. We may be

able to simulate the driving environment, but we cannot yet adequately simulate the

human driver. Therefore we conduct our studies using real-life datasets.
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The first dataset that we used for four out of five studies in this work is a high

sample-rate real-life dataset of 105 drivers called Uyanik, which contains data from CAN-

bus, inertial measurement unit (IMU), and video feeds [51].

In this work, we aim to detect distracted driving and identify drivers using driver

behavior signals. These two problems are similar, and we can model them as a sequence

classification task. We use a sliding window approach due to its simplicity and flexibility.

In this approach, the sequential data is broken into smaller overlapping windows called

a frame, and then each piece is considered as a separate example.

To study distracted driving detection, we require an annotated dataset. In the

Uyanik dataset, participants perform secondary cognitive tasks while driving; we use

this to create our dataset. We use driver-facing videos to manually annotate a subset of

the dataset consisting of 13 drivers. We propose an ML approach based on discriminative

classifiers to detect driver distraction using data from CAN-bus and IMU.

We explore driver ID in more depth and use an incremental approach to address the

shortcomings of state-of-the-art methods. We propose three approaches using CAN-data,

all based on the sliding window approach. In the first study, we focus on finding the min-

imal set of signals and features that provides adequate identification performance, at the

same time, are available on most cars. In the second study, in order to improve scalability

and improve identification performance, we propose a model based on Gaussian mixture

models (GMMs), decrease the number of signals, and use a smaller feature-set. In the

third study, we propose a deep learning approach to driver ID, which we name the deep

driver model. The deep driver model is an architecture based on Triplet networks [52].

The deep driver encodes a block of driving data into a d -dimensional embedding vector,

which later is used for driver ID. We evaluate the CAN-data based driver ID methods

using the Uyanik dataset, investigating various aspects of the driver ID task such as the

influence of the amount of training and prediction data on accuracy.

Lastly, we touch on driver ID using floating car data (FCD). We propose a deep

learning architecture composed of embedding and recurrent neural network layers. The

input is a set of features, obtained from contextualized location data-points of a trip.

For the evaluation, we use a large driving dataset covering 678 drivers in the Greater

Region of Luxembourg.

1.3 Contributions

The first contribution is an ML-based distraction detection mechanism. We propose a

non-intrusive and privacy-friendly approach; it only uses five signals from CAN-bus and

three signals from IMU. The approach is then evaluated on a dataset of 13 drivers and
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provides decent performance. This approach is limited in detecting short-term distrac-

tions but demonstrates the possibility of distraction detection using driving data. This

contribution is presented in Chapter 4 and published in [53].

The second contribution is a driver ID approach based on discriminative classifiers.

This approach only relies on five standard signals available from CAN-bus. We discover

that the best features for driver ID are the spectral and cepstral features of driver-

operated controls such as steering wheel and the pedals. However this approach has

some limitations: a) the need to retrain the model after enrollment of a new driver,

b) large amounts of training and prediction data to achieve good accuracy (20 minutes

of training and 4 minutes of prediction data to obtain above 90% accuracy for 5, and 15

drivers, respectively). This contribution is presented in Chapter 6 and published in [54].

The third contribution is a driver ID algorithm based on GMM. This approach uses

spectral and cepstral features from 2 CAN-bus signals, namely, the gas pedal position and

the steering wheel angle. Moreover, vehicle speed (VS) can be used to estimate driving

route [55], since VS is not used, this approach is more privacy-friendly than our previous

contribution. The GMM approach has low complexity, produces compact models, and

is scalable, can also achieve above 90% accuracy with just 5 minutes of training data

and 3 minutes for prediction. This contribution is presented in Chapter 7 and published

in [56].

The fourth contribution is a deep learning approach to driver ID. In this contribu-

tion, we further reduce the amount of data needed for driver ID and, at the same time,

increase the accuracy of the system. The deep driver model is an architecture based on

the Triplet network [52], which encodes blocks of driving data into d-dimensional embed-

ding vectors. We can use these embeddings for driver ID, driver verification, and other

applications such as driver clustering that can be used to infer how many drivers have

driven a car. This contribution is presented in Chapter 8.

Our last contribution is a deep neural network (DNN) architecture that relies

only on GPS data and succeeds in accurately identifying the driver. Although it uses an

external web service to extract contextual metrics from the locations, this method stands

as an end-to-end driver ID solution. We also present an efficient way of encoding location

coordinates and road-network links using embeddings. This contribution is presented in

Chapter 9 and currently undergoing review as a journal article.

1.4 Manuscript Structure

Chapter 2 contains the details of the Uyanik dataset, which we use to validate the

approaches presented in this work (except for Chapter 9). We organize the rest of the

thesis in two parts, the first part is dedicated to the topic of distracted driving detection,

and the second part encompasses the work on driver ID.
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Part I begins with Chapter 3, which gives an introduction to distracted driving

detection and the state-of-the-art of the subject. Then in Chapter 4, we present a non-

intrusive approach to detect distracted driving.

Part II starts with Chapter 5, in which we introduce the problem of driver identi-

fication, its applications, and the main building blocks of a driver identification system.

Then we present a summary of state-of-the-art solutions and highlight the gaps in the

current literature on the subject. Chapter 6 proposes a driver ID method using discrimi-

native classifiers. In Chapter 7, we propose an improved scalable approach that is based

on GMM. Chapter 8 aims to reduce the amount of training data required to obtain high

accuracy models. It introduces a deep learning (DL) model based on the Triplet network

to significantly reduce the amount of training data required for driver identification. In

Chapter 9, we explore the possibility of driver identification only using low sample-rate

GPS data from smartphones.

In Chapter 10, we summarize our contributions, provide a final discussion, and

present future research directions.



Errors using inadequate data are much less than those

using no data at all.

Charles Babbage

2
Uyanik Dataset

IN this chapter, we present the Uyanik dataset, which we use to evaluate the CAN-

data approaches in this dissertation. It contains high sample-rate (up to 32Hz) sensor

measurements from sources such as CAN-bus, IMU, GPS receiver. This dataset contains

driving data from 105 participants driving the same route. The Uyanik dataset is col-

lected under the shared framework of Drive-Safe Consortium (Turkey) and NEDO (Japan)

international collaborative research [51][57]. The main application focus of Uyanik is

driving behavior signal processing, more specifically, applications ranging from driver

identification to driving environment personalization and driver assistance.

Partner universities developed and deployed sensor-equipped vehicles sharing re-

quirements to collect data on driving behavior under various driving conditions. The

Sabanci University of Turkey, under the shared framework laid jointly by the partners;

Equipped a Renault Megane with various sensors to measure the dynamic state of the

vehicle and its surrounding environment. Two cameras were installed to record the

driver in daylight and at night using night vision. Another camera installed in front of

the vehicle pointed at the road. A differential GPS receiver logs the vehicle location.

Four microphones capture the conversations carried on inside the vehicle. The IMU and

CAN-bus data were used to capture the vehicle dynamics and internal state of the car.

Additionally, pressure sensors were installed underneath the brake and gas pedals to

record pedal actuation accurately. There is also a laser rangefinder installed in front of

the vehicle that covers a 180° field of view. The complete list of available sensor signals

is presented in Table 2.1.

8
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Table 2.1: Sensor Data Available in Uyanik

Channel Source Details

Video facing the driver Retrofitted 15 fps, 480× 640
Video facing the road Retrofitted 15 fps, 480× 640
Driver close-talking microphone Retrofitted 16 kHz, 16-bit
Rear-view microphone Retrofitted 16 kHz, 16-bit
Cellular phone microphone Retrofitted 16 kHz, 16-bit
Steering wheel angle (SWA) CAN-Bus 32 Hz, ◦

Steering wheel relative speed (SWRS) CAN-Bus 32 Hz ◦s−1

Vehicle speed (VS) CAN-Bus 32 Hz, km h−1

Individual wheel speeds CAN-Bus 32 Hz km h−1

WSFR Wheel speed front right CAN-Bus 32 Hz, km h−1

WSFL Wheel speed front left CAN-Bus 32 Hz, km h−1

WSRR Wheel speed rear right CAN-Bus 32 Hz, km h−1

WSRL Wheel speed rear left CAN-Bus 32 Hz, km h−1

Percent gas pedal (PGP) CAN-Bus 32 Hz, %
Engine RPM (ERPM) CAN-Bus 32 Hz, rpm
Yaw rate (YR) CAN-Bus 32 Hz, ◦s−1

Clutch state CAN-Bus 32 Hz, 0/1 state
Reverse gear CAN-Bus 32 Hz, 0/1 state
Brake state CAN-Bus 32 Hz, 0/1 state
Clutch CAN-Bus 32 Hz, 0/1 state
Brake & Gas Pedal Pressure Retrofitted kg m−2

XYZ directional accelerations IMU 10 Hz, g
Angular rates (Roll, Pitch, Yaw) IMU 10 Hz, ° s−1

Laser rage-finder Retrofitted 1-2 Hz, 181°, cm

The experiments are designed to study driver behavior while performing various

secondary tasks. The data collection is done in Istanbul, Turkey. It consists of a 25 km

long stretch, which includes a short ride inside the university campus, a city traffic

driving, motorway traffic, a dense city driving, and, finally, the way back to the point of

departure. A typical trip lasts about 45 minutes. The whole journey is divided into four

segments, denoting different secondary tasks: a) Reference Driving b) Query Dialogue

c) Signboard Reading and Navigation Dialog d) Pure Navigational Dialog.

Details of these tasks are out of the scope of this work (refer to [51] for more details).

However, it is sufficient to know the first segment is normal driving while during other

segments driver is asked to perform some tasks.

The Uyanik dataset is perfectly suitable for our studies that use CAN-data. The

Uyanik is designed to be used for the study of driver distraction. The participants are

required to perform secondary cognitive tasks, which are real-life examples of distractions

such as mobile phone use, or conversation with passengers. Moreover, the chosen route

is composed of a diverse selection of road traffic situations. This is beneficial to both

distraction detection and driver ID problems. Because it resembles the traffic situations

in a daily commute, additionally, the large number of signals available can be used for

diagnostics and to study the driving context.
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2.1 Parsing Data

The Uyanik dataset, in its original conditions, is not usable. It consists of a single

directory per participant (driver), each of which consists of three directories, each of

these directories contains files related to audio, video and sensor measurements. The

sensor measurement directory contains separate files for CAN, IMU and GPS data, and

laser rangefinder. Data from CAN, IMU, and GPS are stored in text format, and there

are numerous inconsistencies in formatting and corruption are frequent. Moreover, there

are missing data, either from a particular sensor (e.g., GPS), is entirely or partially,

an issue that is probably occurred during data recording. We take several steps to

salvage as much quality data as possible. First, we use bash scripts to remove corrupted

data (garbled data). Then another script is applied to some of the files with slightly

different formatting to unify formatting. Lastly, a parser written in Python is used to

parse each file and store it in a more convenient format. The next step is to synchronize

data from each source. Files from each data source contain some timestamp, but each in

different formats and arrangements, which makes it especially tricky but not impossible

to put together and synchronize.

2.2 Sample-rate and Synchronization

Having the data in a more convenient format, and adequately timestamped is undoubt-

edly not enough. We considered to synchronize and upsample all the data sources to the

most frequent source, which is the CAN-bus with 32 Hz. However, we noticed that for

ten drivers, even CAN-bus is sampled at 10 Hz. Moreover, resampling and interpolating

other data sources are prone to introducing noise. Regardless of the challenges and risks

involved, we used the Pandas library [58] to upsample all sensor data to 32 Hz with linear

interpolation. It is worth mentioning later this decision was reversed, and instead, we

decided only to use drivers with 32 Hz CAN-bus data. This decision is motivated by

the fact that for the majority of the works in this dissertation, the only data source is

CAN-bus; therefore, there is no need to synchronize this data source with the others.

2.3 Data Quality

The Uyanik dataset is an invaluable resource for research, but it has some shortcomings.

We already mentioned the issue with the sampling rates. There are more irregularities

in the dataset. For instance, not all the recordings include brake and gas pedal pres-

sure sensors, and the ones that do are frequently noisy and unusable. We use several

techniques used to find quality issues in the dataset. Such as:

• Visual plots of location points on the map (Figure 2.2 shows a good example).
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• Programmatically find consecutive duplicate rows and manually inspect them to

ensure it is not a data recorder malfunction.

• Programmatically search for irregular timestamp values (big jumps, indicating

missing data).

• Plot the sensor measurements over time and visually inspect the plot. For instance,

Figure 2.5 depicts a reasonable example, in a faulty recording, all signals flatline

at the same time.

• Plot histograms of signals and more closely look into irregular patterns. Examples

with no variation are examples of erroneous data.

2.4 Exploratory Data Analysis

In the end, there are 57 drivers with flawless CAN-bus data at 32 Hz. Figure 2.1 shows

the length of each trip. Some trips are much longer than the others; this is mainly due

to the trip conditions. After checking the corresponding videos, we found that at the

time of the experiment, there was heavy rain, which apparently had resulted in heavy

congestion and significantly prolonged the affected trips. The median trip duration is

about 47 minutes, the shortest 33 minutes, and the longest 1 hour and a half; this

is evidence of how variable a daily commute experience can get, which poses further

challenges.

Figure 2.2 shows an example trip from the Uyanik dataset, which is one of the best

cases available in the Uyanik dataset; The GPS data is absent from recordings of many

drivers. From 57 drivers with useful CAN-data, 54 of them have usable GPS data, which

is quite noisy as well.

Figure 2.3 shows the histogram of some of the primary sensors from the CAN-bus.

The percentage gas pedal (PGP) sensor readings range from 0 to 100, but the majority

of readings are below 80. It does not follow a familiar distribution, and there is a peak

around 10%, which is probably the sensor reading when the foot is resting on the pedal

or a gentle gas is applied to maintain the speed. The VS is measured in km h−1 and

ranges from 0 km h−1 to 174 km h−1, speeds over 130 only happen once, probably one of

the participants got overexcited. There is a notable peak at 0, representing the vehicle

at a halt, such as stopping at red-lights or waiting for the traffic to make turns. There

are at least two other peaks at around 30 km h−1 and 76 km h−1, the former is probably

the average speed in streets and the latter the average speed in the highway. The engine

revolutions per minute (ERPM) is measured in revolutions per minute (rpm). This

signal is quite smooth, mainly because even though it is a function of driver depressing

gas pedal, but since it is combined with gear shifting and filtered by the limitations of
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Figure 2.1: Trip lengths, the trips range from 33 minutes to 1 hour and a half. The
median trip duration is about 47 minutes. Trips with exceptionally long duration are
due to traffic jams.
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Figure 2.2: A trip from the Uyanik dataset. It consists of a 25 km long stretch. The
trip starts at the university (top right on the map), after a short ride in the university
campus, a city traffic driving, motorway traffic, a dense city driving, ends back at the
point of departure.
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Figure 2.3: Histogram of main signals for all drivers - the dark blue line is drawn
using kernel density estimation with Gaussian kernel, it only serves as visualization
purposes. Plots for SWRS, SWA, YR are trimmed as there are a few outliers much
further than the currently depicted values.
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Figure 2.4: Histogram of PGP, SWA, VS for 5 drivers. To help comparison, x and y
axis are in the same range for all drivers. SWA is trimmed at -100 and +100 to improve
visualization.

the engine, the result is more diluted and reflects less of the driver itself. There is a

peak at around 900 rpm, which we suspect to be the idle engine rate. The other signals

presented in Figure 2.3 are steering wheel relative speed (SWRS), steering wheel angle

(SWA), and yaw rate (YR). These signals have a Gaussian shape; however, these many

outliers are not expected in a Gaussian distribution. The SWA is in ◦, and SWRS and

YR are measured in ◦s−1. The YR is slanted to the right and SWA to the left. This

pattern is because the route is followed in a counter-clockwise direction. Therefore the

majority of turns are left-turns, lead to having more negative SWA values than positive.

We see the opposite pattern in YR because left turns cause positive YR.

Figure 2.4 shows how different drivers express different histograms. The most

significant differences are visible in PGP and VS. For example, we see that the first two

drivers always keep some pressure on the pedal. However, the other three drivers have two

modes at around 10%. One probably corresponds to the idle pedal state, which is close

to 10% and another peak at around 13% (a gentle continuous pressure on the pedal). It

is also possible to see that the spread varies between drivers. The SWA histograms look

similar to each other. We notice that the first driver has a more spread out histogram

than the fourth driver. There is a clear distinction between the VS histograms. For

instance, the third and fourth drivers, drive faster, but with lots of variation at higher

speeds. On the other hand, the first driver seems to be more cautious and drives at the
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Figure 2.5: Example snapshot of raw sensor data for driver IM1048.

constant speed of around 70 km h−1 in the highway. Another interesting example would

be the second driver, who is driving at lower speeds than the other drivers. One should

be careful not to make judgments, only based on this histogram, because the very same

driver could be a driver that usually drives much faster. However, in this recording, due

to traffic conditions, they could not drive as fast as they usually would.

Figure 2.5 shows an example of raw CAN-bus data (IM1048), comprised of about

5 minutes from the beginning of the experiment. There are a few interesting things to

notice in this figure. For instance, SWA and YR mirror each other. The SWRS also

follows the SWA but appears to be noisy. We also notice a correlation between PGP

and ERPM, which is expected. There is also a slight irregularity at about 4:30, in which

ERPM drops to zero, it is likely that there is an issue, and the engine shuts off. However,

since it can be seen that SWA is still following reasonable measurements, this is not a

case of recording malfunction.
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What can be asserted without evidence can be dis-

missed without evidence.

Christopher Hitchens

3
Introduction to Distracted Driving Detection

NOWADAYS, Internet-enabled smartphones have become ubiquitous, and we all

witness the flood of information that often arrives with a notification. We im-

mediately divert our attention to our smartphones, even when we are behind the wheel.

Statistics show that distraction-related crashes are on the rise [2]. A recent study shows

that drivers use their phones in about 88% of their trips, an average of 3.5 minutes for

each hour of driving [6].

Mobile phone use increases the likelihood of a crash by fourfold [7]. Numerous

other research points out the dangers of distraction for passenger safety [9]. Cell phone

conversations significantly reduce reaction times and have other adverse effects [59, 60].

Moreover, contrary to popular belief, the use of hands-free devices is as detrimental as

hand-held devices [59–61]. Although most distractions are due to smartphone use or

conversations with passengers, manual or visual distractions are as essential and require

attention [62].

For years distracted driving and its repercussions have been a known threat to

passenger safety, and decision-makers have been trying to address this issue, these efforts

rendered futile. Currently, 150 countries have national mobile phone laws in place, and

145 of them prohibit the use of hand-held mobile phones while driving. However, there

is insufficient evidence on the effectiveness of legislation [1, pg. 45].

The most effective way of reducing distraction-related crashes is replacing the hu-

man driver with a computer program. However, even though car companies are rac-

ing to bring self-driving cars to the markets, it will take decades until they become

17
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widespread. A more reachable solution would be through advanced driver-assistance

systems (ADASs), in which we have seen lots of progress. Unfortunately, such life-saving

technologies are expensive, and the masses cannot afford them. Especially considering

that developed countries only account for 7% of road traffic death, not even ADASs will

have a significant impact on road safety at global levels.

3.1 State-of-the-art

Many attempts are made to formalize distracted driving, but there is no consensus.

Inattention is widely accepted as a major cause of unsafe driving and crash, Regan

et al. [63] define driver inattention as “insufficient or no attention to activities critical

for safe driving”. According to the latest driver inattention taxonomy from the United

States and EU Bilateral Intelligent Transportation Systems Task Force [64], drowsiness

and distraction are two significant causes of inattention. According to Lee et al. [65]:

“Driver distraction is a diversion of attention away from activities critical for safe driving

toward a competing activity.” Distraction affects driving in various ways. Dong et al.

[66] categorize them into three groups:

1. Driver Behavior Patterns - This category covers patterns of actions such as

rearview mirror checks or forward view inspection activities during driving. Drivers

engaged in demanding cognitive tasks, lessen or some even abandon the visual monitor-

ing of the mirrors or the instrument cluster Harbluk et al. [67]. More specifically, medium

or heavy cognitive loads reduce the average area of the visual field to 92.2 and 84.41%,

respectively [68]. These patterns are difficult to measure and, in most cases, require the

use of intrusive sensors such as cameras.

2. Physiological Responses - Physiological indicators such as electroencephalogram

(EEG), electrocardiogram (ECG) signals, skin conductance, and blinking rate fit this

category. It is shown that EEG workload increased with working memory load and

problem-solving tasks [69]. Researchers demonstrate that visual and cognitive distraction

leads to a temperature increase on the skin surface [70]. The main issue with such metrics

is the need for sophisticated sensors that are also uncomfortable or intrusive.

3. Driving Performance - Maintaining speed and lane-keeping are two examples of

driving performance metrics that are affected by distractions. Zhou et al. [71] show that

performing secondary tasks influence checking behavior (e.g., mirror checking) both in

frequency and duration, which leads to a lower rate of lane changing. In this example,

the decline in driving performance is a symptom of a change in driver behavior patterns—

which falls in the first category. Liang and Lee [72] establish that cognitive distraction

causes intermittent steering. Steering neglect and over-compensation are associated with

visual distraction and under-compensation with cognitive distraction. Although sophis-

ticated sensors are required to measure metrics such as headway distance—requiring



Introduction to Distracted Driving Detection 19

radar, available in cars equipped with adaptive cruise control (ACC)—or lane-changing

behavior—requiring road facing cameras, available in cars equipped with LKA—such

sensors are not intrusive towards the driver and are becoming more prevalent in the

high-end vehicles.

The distracted driving literature has focused only on one or a hybrid of the cat-

egories mentioned above. However, most of the studies take one of the first two ap-

proaches, driver behavior patterns or physiological responses; we suspect because these

approaches fit better in already established fields of medical and behavioral psychology

research. Besides, such metrics are already well defined and perceived to be more reliable

for distraction detection.

There is a large body of research that shows nomadic devices such as smartphones

can be used for driver profiling and to detect unsafe driving. These works mainly use

indicators such as harsh cornering or acceleration that can be obtained from smartphone

sensors1. Only a few of these works focus on distraction detection. It is essential not

to confuse unsafe driving with distracted driving, even though sometimes they manifest

similar symptoms (such as harsh braking). Distracted driving is unsafe, but unsafe

driving does not always constitute distracted driving. There are a number of ways that

smartphones can be used to detect distraction. For instance, You et al. [74] use dual

cameras on smartphones to detect drowsy and distracted driving. Bo et al. [75] use

the magnetometer and the accelerometer from a smartphone to detect texting while

driving. Lastly, Jiang et al. [76] show that wrist-worn smart devices can be used to

detect distracted driving.

Next, we present examples of distracted driving detection methods that are relevant

to our work. Wöllmer et al. [30] proposed to use head orientation to detect distractions,

which mainly consists of user interactions with the instrument cluster. Additionally, they

also use some of the vehicle operation signals such as pedal and steering wheel data as

well as some driving performance metrics such as deviation from the center of the traffic

lane and heading angle [30]. This rich set of signals were used as input to a long short-

term memory (LSTM) recurrent neural network, which results in a subject-independent

detection of distraction with up to 96.6% accuracy.

In a more relevant study, Jin et al. [77] develop two models based on support

vector machine (SVM) called NLModel and NHModel, which are designed to detect

low and high cognitive distractions, respectively. In this work, they only use data from

the vehicle’s internal network (CAN-bus) as input. Signals include vehicle operation

parameters as well as vehicle dynamics. They achieve an accuracy of about 73.8% and

a sensitivity of approximately 61.8%.
1For a survey of smartphone-based driver safety classification methods see [73].
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In another study, Tango and Botta [31] propose a subject dependent model based

on SVM that can achieve accuracy of up to 95%. They only use the dynamic signals

of the vehicle for classification; however, data annotation is done accurately with the

help of eye-tracking cameras and human supervision. The experiments are performed

in a mostly straight highway drive and at the speeds of around 100 km h−1. Such over-

simplifications raise questions regarding the robustness and reliability of the model in

real-world environments.

Lastly, Öztürk and Erzin [78] propose the use of GMM for distraction detection.

They extract cepstral features from the pressure on Gas and Brake pedals. Using GMM as

a classifier and a decision window of length 360 s, they achieve 93.2% success to recognize

non-distracted driving and 72.5% success in recognizing distracted driving [78].

In the next chapter, we propose a distracted driving detection mechanism that

can detect distractions and warn the driver and, at the same time, be accessible to a

considerable portion of car owners. Although this work is not the first attempt at solving

this problem, it follows a novel and ambitious approach. Current literature mostly uses

sophisticated sensors to detect distractions, sensors such as cameras for tracking head

orientation [30] or measuring the skin temperature [70]. However, we propose to use the

standard vehicle sensors; therefore, this method could apply to vehicles on the market.



Don’t be satisfied with stories, how things have gone

with others. Unfold your own myth.

Rumi

4
Non-Intrusive Distracted Driving Detection

Based on Driving Data

In this chapter, we present a distracted driving detection approach that does not use any

intrusive sensors, such as cameras or microphones; instead, we focus on driving data. We

aim to classify driving segments as distracted or not distracted driving. Such a system

can be used on-line to alert the driver in case of continuous distraction or off-line as a

metric to judge the driving performance or asses riskiness.

First, we use a sliding window (frame) to extract features from driving signals,

then using ML, we classify each window as distracted or not-distracted, then a decision

function decides whether a sequence of frames represents distracted driving or not. We

propose to validate this method using driving traces from 13 drivers chosen from a large

driving Uyanik dataset [51] (see Chapter 2). For evaluation, we present the performance

of the proposed method in terms of F1 score and area under the receiver operating

characteristic (ROC AUC). The remainder of the chapter is organized as follows, in

Section 4.1, we describe the proposed methodology and the evaluation strategy. In

Section 4.3, we present the evaluation results, and in Section 4.4, we discuss the obtained

results. Lastly, in Section 4.5, we summarize and present future directions.

21
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Figure 4.1: Distraction Detection Process

4.1 Methodology

We formulate the problem as a supervised learning problem. In which the input data is

a multivariate time series recorded from a vehicle, and the target is 0 for normal driving

and 1 for distracted driving. We denote a driving trace as (x(i), y(i))Ni=1, where x is the

sensor measurements from the car, y ∈ {0, 1} is the target label, and N indicates the

total number of measurements. We seek a function h that predicts ŷ for short driving

sequences. Since x is a multivariate sequence, it is not possible to apply classic machine

learning algorithms; therefore, we use the sliding window approach in order to apply

conventional ML algorithms [79]. We use window classifier hw to map each window

frame of length w into individual predictions. Let d = (w − 1)/2 be the half-width

length of the window, for a window frame at time t, hw makes prediction ŷt based

on window frame 〈xt−d, . . . , xt, . . . , xt+d〉. To reduce the computational complexity, we

make window predictions for every k = bw ∗ (1− r
100)c samples, where k denote step size

and r indicates the percentage of overlap between two consecutive window frames. This

results in M = N
k window frames. Since it is possible that a window frame cover both

distracted and non-distracted measurements, we label a window frame as distracted only

if more than 50% of the measurements are distracted. Each driving trace (x(i), y(i))Ni=1 is

converted intoM window frames, then hw is trained using feature vectors x computed for

each window frame and its corresponding label. Similarly to classify an unseen driving

trace x, it is first converted into window frames, then for each window frame at time t

feature vector xt is computed and hw makes the prediction ŷt based on x. Lastly, we feed

l consecutive window frame predictions (〈ŷt−l, ŷt−l+1, . . . , ŷt〉) to the decision function f

which produces the final prediction for the given sequence.

4.1.1 Evaluation Method

In order to utilize the entire driving tracesD = {(xi, yi)}Ki=1 for both training and testing,

we employ a K fold cross-validation method called leave-one-group-out. Each time we

train a model using data from K − 1 drivers and validate that on the data from the

remaining driver. In other words, each driver is considered a group; therefore, at each

fold, one driver is kept out of the training process, then hw is trained and scored based
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on its prediction performance over the remaining slice. This is a subject-independent

model because the model has no information about the driver that is being tested on.

We evaluate the proposed mechanism using data from 13 drivers; therefore, in this case,

K = 13.

Drivers typically drive attentively, but sometimes they get distracted by engaging

in secondary tasks. We see the same pattern in our dataset; on average, only 36% of the

measurements are labeled as distracted. Since the dataset is imbalanced in order to have

a better measure of the proposed model’s performance, we choose to report F1 score as

well as ROC AUC as the primary performance metrics. F1 score is the harmonic mean

of precision and recall:

F1 = 2 · 1
1

recall + 1
precision

(4.1)

Since our classification problem is binary, based on the application needs, we can

modify the decision threshold. In order to avoid introducing new parameters, we employ

the receiver operating characteristic (ROC), which demonstrates the diagnostic ability

of a binary classifier as its discrimination threshold is varied. In fact, we use ROC AUC,

which is a simple way of reporting an ROC plot using one numeric value (area under the

ROC curve).

4.2 Video Annotation and Synchronization with Sensors

This section describes how we hand-annotate the distractions in a subset of the Uyanik

dataset. It consists of two parts a) data annotation b) synchronization. The participants

of the Uyanik data collection perform secondary tasks during the trip. By watching the

videos from the driver-facing camera, we can mark the times the driver is engaged in

these secondary tasks, which we use as a proxy for being distracted.

From the drivers with valid CAN and IMU data, we select the ones with available

driver-facing video. We watched the videos and noticed that not all of them follow the

same protocol. Several drivers skip some secondary tasks, or the tasks they perform are

very different. This is particularly challenging because the conversations are in Turkish.

Since we do not speak Turkish, based on their similarity, we had to decide if they follow

the same protocol. The annotation consists of marking the beginning and end of each

secondary task.

Having the timestamps of the secondary tasks on the video is not enough because

the videos are not synchronized with the sensor data. To tackle the synchronization issue,

we took inspiration from a work by Fridman et al. [80]. The general idea is that in a

moving vehicle, turning the steering wheel results in lateral movements of the car. These

lateral movements are visible in the front-facing camera feed, and they should correlate

with steering wheel movements. Therefore if we find the time lag that maximizes the
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Table 4.1: Selected Signals for Driver Distraction Detection

Sensor 1st order CepstralDerivative

Percentage Gas Pedal (PGP) Yes Yes
Str. Wheel Angle (SWA) No Yes
Str. Wheel Rel. Speed (SWRS) No No
Vehicle Speed (VS) Yes No
Engine RPM (ERPM) Yes No
Pitch No No
Roll No No
Yaw No No

cross-correlation between the two signals, we can use it to synchronize the videos with

the other sensor data. To achieve this goal, first, we use the front-facing video feed to

estimate the vehicle’s lateral movements. A dense optical flow method based on Gunner

Farneback’s algorithm [81] is then applied to the video. The result is a two-channel

array representing the optical flow vectors. These vectors point to the direction of the

movement of image pixels. We take the average of the horizontal component of all pixels

and maximize its cross-correlation with the SWA. This method produces satisfying results

for the majority of the recordings. In this work, we annotate and synchronize data from

13 drivers, composed of 2 female and 11 male drivers.

4.2.1 Feature Extraction

In order to remove high-frequency noise, we apply a low pass filter to all the signals to

smoothen the signals. Then for some of the signals (Shown in Table 4.1) we derive the

temporal derivative of the signals. For both smoothing and computation of derivations,

we use an implementation of the Savitzky-Golay algorithm [82]. Figure 4.1 shows the

various stages that the signals go through before the feature extraction step. In this study,

we use eight signals, which are listed in Table 4.1. These signals are obtained from CAN-

bus or IMU. Then we apply a windowing function to all the signals, which takes two

parameters, w to determine the length of the frame and r to specify the amount of overlap

between the two consecutive frames. This will break down the signal into frames of size w

and is ready for the feature extraction stage. Per each signal, nine statistical features are

extracted from each frame. These descriptive statistics are selected to be representative

of the distribution of sensor values covered by the frame. This set includes minimum,

maximum, mean, median, standard deviation, kurtosis, skewness, and the number of

zero crossings. We also extract cepstral features from two signals, PGP and SWA, these

are the only vehicle operating inputs that are directly operated by the driver. Earlier

studies have shown that cepstral analysis is suitable for driver identification [35, 54], we

suspect that they are also useful for detecting distracted driving.
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The implementation is as follows; we multiply a Hamming window of length w to

limit the signal and also reduce the edge effects. We denote c(k) to be the first k cepstral

coefficients, and higher-order coefficients are discarded. The equation to derive c(k) is:

c(k) =
∣∣F−1 {log(|F {xtwt}|)}

∣∣ (4.2)

Where xt denotes signal values covered by the current frame, wt denote Hamming win-

dow with the same length as the frame and F , and F−1 denote discrete Fourier trans-

form (DFT) and inverse-DFT (IDFT) respectively. We extract cepstral features from

two signals, PGP and SWA, and keep the first k = 32 coefficients as cepstral features.

Table 4.2: Average Scores For Each Signal

Signal Mutual Info. F-Test

SWRS 0.517 0.084
ERPM Derivative 0.510 0.059
Pitch 0.490 0.056
PGP Derivative 0.475 0.035
Roll 0.470 0.012
PGP 0.436 0.060
ERPM 0.428 0.359
VS Derivative 0.427 0.088
Yaw 0.425 0.054
VS 0.415 0.792
SWA 0.228 0.061
Cepstral Coefficients PGP 0.029 0.036
Cepstral Coefficients SWA 0.025 0.026

4.2.2 Feature Importance

We analyze the extracted features to evaluate their fitness for our experiments. We

use two metrics for this purpose, the conventional ANOVA F-test and mutual informa-

tion (MI) [83, 84] as two metrics to evaluate the importance of the features as well as

some insights into which features or signals are more important for our classification

task. To get an idea that which signal is more important, first we compute the MI for all

features, we normalize it and compute the average importance for five best features from

each signal. Since we compute nine features for each signal, it is unrealistic to expect all

the features from a signal to be equally informative. Therefore we choose a number of the

best features per signal (in this case, 5) as a proxy for the importance of the signal. The

corresponding results are presented in Table 4.2. Since the methods based on F-test only

estimate the linear dependencies while MI captures linear and non-linear dependencies,

we sort the signals in descending order of their MI score. Among the signals, we can

observe that features extracted from SWRS have the highest MI score, and the cepstral

features are the worst.

We perform a similar analysis to assess which functions used for feature extraction

are the most informative. The corresponding results are presented in Table 4.3. We can
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Table 4.3: Average Scores For Each Function

Function Mutual Info. F-Test

Min 0.955 0.310
Max 0.933 0.289
Range 0.495 0.076
Median 0.136 0.309
Mean 0.092 0.314
Standard Deviation 0.053 0.067
# Zero crossings 0.040 0.166
Cepstral Coefficients 0.034 0.039
Skewness 0.032 0.041
Kurtosis 0.030 0.081

see that simple functions such as Min, Max, Range, Mean are more useful that Skewness

and Kurtosis.

4.2.3 Classification Algorithms

We select five classification algorithms to be used as frame classifier hw. The following

is the list of classifiers used in this study along with their corresponding parameters.

AdaBoost (AB). AdaBoost, as introduced by Freund and Schapire [85], suggests the use

of a collection of weak learners. As the number of weak learners increases, the algorithm

increases the weight for examples that are more difficult (are currently misclassified),

therefore improving the performance. We use the implementation from the scikit-learn

library [86], which uses the AdaBoost-SAMME algorithm [87]. We use a decision tree

with a maximum depth of 1 as weak learner [88]. Two hundred decision trees as a weak

learners, learning rate = 0.75.

Gradient Boosting (GB). Gradient boosting, iteratively combines weak learners into

a single strong learner. At each iteration, GB fits a tree to correct the mistakes of the

model from previous iteration. Therefore in principle, Gradient boosting fits models to

the residuals of the previous iteration. These residuals are equivalent to the negative

of the gradients [89]. 100 estimators, maximum depth = 6, maximum features = None,

maximum depth = 6, learning rate = 0.05.

Random Forest (RF). Random Forests were introduced by Breiman [90]. As the

name suggests, it consists of a combination of tree predictors. Each tree is trained on

a subsample of the examples, which is also known as bagging. Moreover, to further

reduce the correlation between the trees and avoid overfitting, each tree is fitted on a

subset of features. We use the implementation from scikit-learn package [86]. With

parameters: 200 estimators, maximum features = None, maximum depth = 7, class

weight = balanced.

Support Vector Machine (SVM). Lastly, we step away from tree-based algorithms

and attend to once upon a time king of classifiers, SVM. SVMs for some time were known

to be the best classifiers available. Vladimir Vapnik introduced the linear support-vector
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machines in 1965. SVMs are binary classifiers, in linear case SVM finds the maximum-

margin hyperplane that separates the two class. Cortes and Vapnik [91] in 1995 proposed

to use the kernel trick [92] and extended SVM to solve non-linear classification problems.

In this approach instead of dot products in SVM a non-linear kernel function is used.

Therefore the algorithm is able to fit maximum-margin hyperplane in a transformed

space, which allows for separation of non-linear feature boundaries. We use the SVC

classifier from scikit-lean library [86] which uses LIBSVM library [93]. RBF kernel, C =

0.1, γ = 0.01, class weight = balanced.

k-Nearest Neighbors (k-NN) k-nearest neighbors (k-NN) in order to classify an un-

labeled example finds the k closest examples in the training set and selects the majority

class. # neighbors = 5.

In our experiments, we use the implementations from the scikit-learn software

package. All other parameters are set to their default values as of scikit-learn version

0.19.2 [86].

4.2.4 Decision Functions

The decision function f determines the final prediction ŷ at time t based on the last

l frame predictions, we call this a decision window: 〈ŷt−l, . . . , ŷt−1, ŷt〉, therefore l is

the number of frames covered by a decision window. Below we introduce two decision

functions to obtain ŷ and evaluate their performance later in Section 4.3:

1) Majority vote (MV) Let d to denote count of the frames in the decision window

that are predicted as distracted driving. Then a decision window is classified as distracted

if dl > 0.5.

2) Maximum score (MS) Let d′ to be the cumulative classification score for the

distracted class. Then a decision window is classified as distracted if d
′

l > 0.5.

4.3 Model Performance

In this section, we present the results of our experiments. In each subsection, we focus

on one of the components of our proposed methodology and discuss its implications.

4.3.1 Frame-size Analysis

In order to find out the optimal frame-size, we try several sizes1 as well as overlap ratios2.

Since we do not want to have results influenced by choice and working mechanism of the

decision function, in these experiments, we do not apply the decision function f and

only consider the predictions from hw. The results are presented in Figure 4.2, the

reported numbers are the average cross-validated scores for each combination of r and w
1Frame-sizes of 4, 7, 10, 15, 20, 30, 45 and 60
2Overlap ratios of 0, 25, 50, 75 and 90 percent.
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Figure 4.2: The effect of frame-size on classification score. Both F1 and ROC AUC
follow a similar pattern. Increase in frame-size and overlap ratio improves the score.

parameters. The results improve as overlap r increases, this can be explained by the fact

that an increase in overlap also increases the number of frames and therefore having more

examples for the classifier to learn from. It is also evident that performance improves

as the frame-size w increases since our features are mostly descriptive statistics, having

larger frames filters out noise from the features; therefore, larger frames yield better

results. From this section, we can conclude that for both parameters r and w, it is best

to choose a larger value, however such choices have some drawbacks as well. Larger

values for r lead to an increase in the number of examples, and feature calculations,

therefore, becomes computationally more expensive. On the other hand, larger w results

on delays in the predictor, therefore w and r should be selected in a manner suitable for

application needs.
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Figure 4.3: Estimator Performance Comparison - w = 30s and r = 75%

4.3.2 Classifier Benchmarks

We run our experiments for all of the 5 selected classifiers and compare their performance

as hw, meaning we only score the classifiers for their ability to predict individual frames.

The results are presented in Figure 4.3 (obtained using w = 30s and r = 75%), when

considering ROC AUC score GB yields the best performance and RF takes the second

place.
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Figure 4.4: Estimators performance comparison for several frame-sizes - r = 75%.
Error-bars correspond to 95% confidence interval.

Table 4.4: Decision Function Performance - Results are for k-NN as classifier

Frame Decision Window (DW) Closest Frame-size Decision Function
Size (s) DW Len. DW Duration (s) Len. (s) ROC AUC ROC AUC MS ROC AUC MV

4 5 9.00 10 0.718 0.748 (+4.07) 0.718 (-0.09)
4 10 14.00 15 0.738 0.780 (+5.61) 0.759 (+2.80)
4 15 19.00 20 0.764 0.799 (+4.60) 0.782 (+2.34)
7 5 15.75 15 0.738 0.774 (+4.84) 0.751 (+1.74)
7 10 24.50 20 0.764 0.812 (+6.28) 0.799 (+4.57)
7 15 33.25 30 0.772 0.836 (+8.29) 0.825 (+6.92)
10 5 22.50 20 0.764 0.801 (+4.83) 0.760 (-0.58)
10 10 35.00 30 0.772 0.844 (+9.38) 0.814 (+5.44)
10 15 47.50 45 0.798 0.871 (+9.05) 0.846 (+5.89)
15 5 33.75 30 0.772 0.822 (+6.48) 0.802 (+3.89)
15 10 52.50 45 0.798 0.867 (+8.59) 0.855 (+7.09)
20 5 45.00 45 0.798 0.855 (+7.12) 0.822 (+2.96)

We also investigate how different classifiers exhibit different behaviors due to the

changes of frame-size w. Figure 4.4 depicts the average cross validated ROC AUC and

F1 scores for various frame-sizes and fixed overlap ratio of r = 75%. For example, k-NN

clearly benefits from a larger frame, because as it was discussed larger frames result in

smoother features. On the contrary SVM does not improve as much as other classifiers

do, this may improve by tuning the hyperparameters for every frame-size however it is

out of scope of this work.

4.3.3 Decision Function Benchmarks

Decision function f can be seen as a meta classifier which simply aggregates predictions

from l consecutive frames and outputs a single prediction. We investigate its performance

by running experiments using values of 5, 10 and 15 for l and similar combinations for w

as previous experiments. To compare the two proposed decision function a small sample

of results (Cases with DW Duration < 60s) is presented in Table 4.4. The column DW

Duration, in the table refers to the time-span covered by the decision function f to make

the prediction, these values are computed considering overlap ratio of 75% between the

consecutive frames.

In order to demonstrate the advantage of using the decision function, we also present
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the scores for individual frame predictions, to have a fair comparison for each row we

compare the decision function with the closest frame-size. For example, if w = 4s and

DWLength = 15, DW Duration is 19 seconds, meaning the decision function effectively

uses data from the past 19 s to make a prediction. We compare this instance with the

prediction results for hw (classifier without decision function) with the w = 20s, because

it is the closest frame-size to 19s that we have considered. In the table we can see that

in fMS results in between 4 to 9.3% (6.6% in average) improvements over not using a

decision function. fMV performs worse than fMS with average improvement of 3.58%.

4.4 Discussion

First of all, we would like to mention a limitation of the proposed approach. If we

consider how the data-set is annotated and the signals we use for classification it is not

expected to be able to achieve excellent results for detecting distractions. This is because

we mark a long stretch of driving as distracted driving, however although in that period

driver is engaged in a certain secondary task, this engagement is not uniformly present

throughout the stretch, therefore we are inadvertently injecting noise into our training

data. In fact one could perform the labeling more granularly and potentially improve

the results.

On the other hand, the proposed methodology is quite flexible and can be optimized

for the intended applications, generally one needs to find the right balance between the

quality of detection and delay in detection. For example, using GB classifier, w =

60, r = 0.75 and DW = 15 (DW Duration of 285s) we achieve ROC AUC of 98.7%. If

we need a shorter the detection time we get to ROC AUC of 92.7% with k-NN classifier,

w = 20, r = 0.75 and DW = 15 (DW Duration of 95s). For DW durations less than

60 seconds the results are presented on Table 4.4, for smaller DW durations, ROC AUC

decreases.

We should also point out that our evaluations are in a subject-independent manner

because the model is always trained on drivers that are not among the test set. This

indicates that distracted behavior is some degree similar among drivers. Tango and Botta

[31] indicate that subject-specific training—training a model for each driver—resulted in

about 20% improvement in the performance; however, since that approach is unrealistic

it was not explored in this work.

Moreover, we do not use any intrusive signals, not tracking the driver’s head ori-

entation nor the cabin sound, only sensor data from the car. Not only that, studies

such as [30] and [31] regardless of the intrusive sensors, they do use metrics that are not

readily available—such as distance from the center of the lane—and therefore limit the

deployability. However, our goal is to make a similar prediction without having access to

such information. With the current setup, we may not be able to address applications
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that require accurate spontaneous and momentarily distraction detection. Instead, the

system performs well at detecting long-lasting distractions, such as mobile-phone or in-

car conversations. Moreover, one can use such a system to characterize risky driving. It

is crucial for insurance, logistic, and public transport companies to keep track of their

customers’ or employees’ risky driving behavior. Such application is equally beneficial

for individuals who would like to keep track of their driving quality. For example, parents

who are concerned about the safety of their teen, would like to know whether or not their

child is a risky driver.

The results show that the performance is improving as the overlap and frame-size

increases. We perform experiments with a fixed set of overlaps for a fixed set of frame-

sizes. The cost of having a large overlap is a high computational cost; however, as the

frame-size increases, the frequency of calculation is significantly reduced. Therefore, to

improve the results, one could use larger frame overlaps. For instance, with a frame-size

of 30 seconds, 75% overlap amounts to 7.5 seconds stride. Therefore, increasing the

overlap to 90% should not be an issue, although it leads to more frequent computations

at the small frame-sizes.

To achieve a practical solution, we need to reduce the false-positives. The dataset

we used is small (13 drivers). A larger, precisely annotated dataset is needed to improve

the results. With enough time and resources, it is possible to use ML/DL approaches to

automate the annotation process, and annotate the rest of the Uyanik dataset. Moreover,

we focused on the subject-independent models because it is unrealistic to have access

to annotated data from the driver. An idea worth exploring is to adapt a subject-

independent model to the user’s driving style.

4.5 Summary

In this chapter, we have proposed a mechanism to detect distracted driving based on non-

intrusive vehicle sensor data. In the proposed method, eight different driving signals are

used. The data is collected, two types of statistical and cepstral features are extracted in

a sliding window process, next a classifier makes a prediction for each frame, and lastly,

a decision function takes the last l predictions and makes the final prediction for the

given frames. We have evaluated the subject-independent performance of the proposed

mechanism using a driving data-set consisting of 13 drivers. We analyzed the implications

of changing the size of the sliding window and its overlap ratio. We have shown that

the performance increases as the frame-size and decision window become larger. We

compared the performance of several classifiers. The best results were obtained using

GB classifier w = 60, r = 0.75, and DW = 15 (DW duration of 285 s), which yields ROC

AUC of 98.7%. We showed that it is possible to detect long-term distractions using

driving data. Such a solution can provide timely feedback to drivers and encourage them



Non-Intrusive Distracted Driving Detection Based on Driving Data 32

to drive safely, therefore reduce the traffic-related deaths. Moreover, since the proposed

method uses minimal sensors and is trained independently of the driver, it is suitable for

wide deployment.



Part II

Driver Identification
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If someone steals your password, you can change it.

But if someone steals your thumbprint, you can’t get

a new thumb. The failure modes are very different.

Bruce Schneier

5
Introduction to Driver Identification

IN this chapter, we clarify what what do we consider as driver ID. Then, we look into

some of the applications of driver ID. After that, we explore what factors affect the

design of a driver ID system. We review the state-of-the-art research and identify some

key points to address in this dissertation.

What is a driver ID system? When it comes to identifying individuals, biomet-

rics identifiers are the first to come to mind. These are systems that employ personal

traits, such as fingerprints, retina scans, voice, or facial features for identification. Bio-

metric methods are mature technologies, but they come with some limitations. As an

example, a facial recognition system requires the installation of a camera pointing to the

driver, which raises privacy concerns. Similarly, fingerprint scanners have proved to be

susceptible to copy [94, 95].

The research community has proposed several non-biometric solutions. For exam-

ple, Riener and Ferscha [96] propose to install sensors inside the driver seat to ID drivers

based on their posture and body structure, apart from the tremendous costs, drivers find

these sensors intrusive. Even if we accept the risks and discomfort, the wide deployment

of such systems is costly and cumbersome to maintain.

We define driver ID as the task of identifying a particular driver from a group

of known drivers based on their driving behaviors. We exclude conventional biometric

methods such as fingerprint or retina scans. Moreover, we are not interested in face

recognition as well as trivial radio frequency identification (RFID) tags, or smart-card

based solutions. Additionally, we aim to fill the gap where such conventional methods

34
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Table 5.1: Driving data sources and their merits

Data source Common sources Pros Cons

CAN-data
High sample-rate

CAN-bus
Black-boxes
Dongles

High utility
High processing load & storage
Wide range of vehicle sensors

Requires an external device
Or provided by the manufac-
turer
Vehicle dependent

FCD
Low sample-rate

Smartphone apps
Car API

Easy to collect
Vehicle agnostic
Contextual information such
as road profile can be obtained
from location trajectories

Lower reliability
No access to vehicle sensors

are inadequate. We can use driver ID in conjunction with the traditional identification

methods, in order to verify the claimed identity or trigger a more reliable identification

method when necessary. Therefore we think the focus should be on driver ID based on

driver behavioral features.

Driving is a complex task that manifests various indicators such as route choice,

lane preferences, braking, and acceleration patterns. Some features are direct driver

input, such as pedal operation or steering, some are inferred data, like vehicle dynamics,

such as acceleration patterns or speed profiles. Driver-related differences are the result

of behavioral, learned driving habits, and even anatomical features of drivers. We can

use these differences to identify the driver. These metrics must be sufficiently stable,

meaning they should not change daily and stay consistent for months and even years.

Driver ID methods in the literature rely on two categories of data: 1) CAN-data,

often with high sample-rate, and a large number of features. This kind of data is usually

collected from CAN-bus, using OBD-dongles, black-boxes or external sensors. 2) FCD

provided by GNSSs. Usually lower sample-rate and noisy data which can be provided

by smartphones, car-navigation system or external receivers. Automotive manufacturers

have access to both these data categories, and some even provide APIs to third-parties to

access such data. Although original equipment manufacturers (OEMs) can use the high

sample-rate data internally, because of data transmission and storage costs, third-parties

can only access low sample-rate data.

In the near future, third-party service providers may get access to CAN-data for

applications that are deployed on the infotainment systems, perhaps through Android

Auto or Apple CarPlay. As an example, Daimler has recently launched a platform going

into this direction1. Without manufacturers’ support access to the CAN-data requires

installation of external devices to collect data from the onboard diagnostic (OBD)-II

port or set up external sensors. Such a solution is vehicle specific which adds complexity

to the system. On the other hand, FCD is more convenient to obtain, either through
1https://developer.mercedes-benz.com/apis

https://developer.mercedes-benz.com/apis


Introduction to Driver Identification 36

an externally mounted receiver or a smartphone application (less reliable). Table 5.1

summarizes the pros and cons of each data category.

We can identify the drivers in several ways. We propose three category of features

that can be used to characterize human driving:

1. Spatial features, refers to the information that we can extract based on knowing

the geospatial location of the vehicle, origins and destinations and the routes taken

by the driver.

2. Temporal features, refers to temporal aspects of a trip, that is, the hours of the

day or day of the week. Imagine a working mother who commutes to work every

morning at 7 o’clock, and returns home at around 6 o’clock. Now consider her

spouse, who stays home to take care of the baby and only leaves the house for

occasional grocery shopping. It is easy to distinguish between the two only based

on the hours of driving.

3. Behavioral features, we consider a feature behavioral when it does not fit in any

of the above categories, such as acceleration patterns, pedal actuation, steering

actions, choice of speed and over-speeding, overtaking habits.

5.1 Applications of Driver Identification

Here we present an overview of the potential applications of the driver ID to motivate

exploring this subject. This list is by no means exhaustive, instead it is a selection of

applications.

Fleet Monitoring

Ride-sharing apps such as Uber, Lyft, Bolt, have revolutionized transportation by pro-

viding a level of comfort that once deemed unimaginable, but they have issues of their

own; There have been many reports of sexual assault and various other crimes by ride-

sharing drivers [18, 97], in addition there are cases that drivers commit fraud or cheat

the system. They create fake GPS traces, create ride requests from stolen accounts and

more [19]. Introduction of background checks by the ride-sharing companies, which is

now mandatory in some jurisdictions, has reduced the crime rates, but new workarounds

emerge. In such cases, your Uber driver may not be who you think they are. Uber has

a system in place that sometimes asks the driver to stop and authenticate themselves

using a selfie picture [98]. It is unclear how often or under what criteria it is triggered. A

similar challenge exists for on-demand delivery services such as Deliveroo, and even tra-

ditional fleets. Using driver identification your ride-sharing company could verify driver’s

identity based on their driving style.
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Sleepiness/fatigue increases the likelihood that a commercial vehicle involved in a

collision be fatal [12]. Regulations are in place to prevent long-haul drivers from over-

work. Meanwhile there are indications that drivers under the pressure of their employees

or on a voluntarily basis, disregard the regulations regarding the working hours [15, 16].

In Europe, instruments such as smart tachographs (directive 165/2014 [14]) were in-

troduced to enforce adequate rest periods. However there drivers tamper with these

tachographs [17]. Since overworked and sleep deprived drivers have much higher risk of

crash involvement [8–11] they also pose a risk to other road users. Driver ID using driver

behavior profiling can be a solution to this problem. Any company owning a fleet of

vehicles would benefit from a friction less way of verifying driver attribution to vehicles.

Usage-Based Insurance

Usage-based insurance (UBI) had a market size of 35 billion $ in 2017 and is estimated

to grow to 107 billion by 2024. UBI is also known as Pay-As-You-Drive (PAYD) or

Pay-How-You-Driver (PHYD), with the former emphasizing on charging based on the

mileage and the latter to focus on driving riskiness. A few examples of UBI services

are Allstate Drivewise, Aviva Drive, MetroMile, Progressive’s Snapshot, and Nationwide

SmartRide. UBI is enabled through various ways, OBD-II, smartphone, blackbox and

embedded telematics, which means that UBI providers have an infrastructure already in

place that can be used potentially for driver ID. Driver ID can enable novel products

in this space. For example, with driver ID, multiple drivers, sharing a vehicle can each

have their insurance policy. For instance, in the case of a family with a teen driver,

insurance companies can charge a higher premium for the teen and lower premiums for

the parents (assuming that the parents are safe drivers). We can extend this to shared

company cars.

Comfort Features

Another use-case arises in modern vehicles, where the number of comfort-related features

has increased substantially. Being able to identify different drivers can enable the au-

tomation of comfort settings (e.g., seats and mirrors position, air-conditioning, adaptive

driving-assistance system profiles). Therefore when a car is shared between a group of

drivers, when one starts to drive, the car detects the driver and applies the customizations

to that driver’s liking.

Suppose, a car that could intelligently adapt—in order to optimize the energy

efficiency of the engine—to the driver’s driving style. The first time this process may

require a few hours of driving data to construct a profile. Using driver ID, when a new

driver sits behind the wheel, the car can recognize the new driver, discard or shelf the old
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profile, and fit a new profile to the current driver’s driving style. Therefore, adaptively

optimize energy consumption and the driving experience.

Application Scenarios

To further solidify applications of driver ID, let us look at a few concrete scenarios:

• Bob purchases subscription to a service provided by the Acme company. This

service can detect stolen cars and inform the Police. Acme can get access to

the car data through the manufacturer’s infrastructure. A few months later, Bob

receives a text message from Acme that they suspect his car is stolen and they ask

his confirmation to inform the police. Bob remembers that he lent his car to Carol

without indicating it in the Acme’s app. Therefore he responds to Acme that the

car is not stolen, and there is no need to inform the authorities.

• A speed-trap captures a photo of a car speeding way above the limit, but the driver’s

face is not visible. Alice claims that she had borrowed her car to Bob. Since the

car is equipped with an insurance dongle, the Police, with the collaboration of the

insurance company, can get access to the data already uploaded to the insurance

company’s server. Using that data, they can confirm that Bob was driving at the

time.

• Alice and Carol rent a car, but since they do not want to pay extra for the second

driver they only specify Alice as the driver. After a few hours of driving, they stop

at a gas station, since Alice is already tired, Carol sits behind the wheel and drives

the car for the rest of the trip. Since the car rental company has equipped all their

vehicles with blackboxes when Alice and Carol return the car, the rental company

charges them with the fee for the second driver.

• Alice buys a new low-cost auto insurance policy, which only permits her to be the

driver. She considers herself to be a safe driver, so she also installs the insurance

company’s dongle in her car that allows her to qualify for further discounts. One

day she lends her car to a friend to run some errands. A few hours later, the

insurance company finds out about the unregistered driver and cancels Alice’s

insurance.

5.2 Driver Identification as a Privacy Issue

We introduced driver ID as a function that can be provided by third-party service

providers or car manufacturers. However, we can look at it from a different perspec-

tive. Suppose that a family of two who share the same car, allow a third party company

to collect floating car data, in order to provide suggestions as to when and where fill
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Figure 5.1: Generic driver verification system.

up the tank to minimize their costs. This company could perform driver identification

without the family’s knowledge in order to, for example, send targeted advertisements

according to the family member driving the car. The security and privacy research com-

munity would refer to this task as driver fingerprinting. To construct a fingerprint for

each driver that allows an adversary to identify (fingerprint) the driver in the future.

5.2.1 Threat Model

To continue further with security terminologies here, we establish the threat model cor-

responding to the problems we will consider in this work. We assume that the adversary

has access to the internal vehicle network (e.g., CAN bus) or obtains the dataset of

recordings previously uploaded to the server, this could be done using car’s telematics

unit or external data collection devices. Moreover, the adversary is a passive eavesdrop-

per. Therefore there will not be any interaction between the adversary and the car.

Because it has become more commonplace for car data to be shared and stored, this is

not far fetched. Although we assume and hope that companies are honest and abide

by the privacy regulations such as the GDPR. There are situations when a data breach

occurs or a company is subpoenaed to hand over the data to the authorities, therefore

even though data collectors may not wish to play an adversarial role, they may enable

others to achieve adversarial goals.

5.3 Elements of a Driver Identification System

Driver verification and identification are closely related. First, we introduce the major

components of a driver verification system. Then we explain how similar components

can be used to construct a driver ID system. The general approach to driver verification

consists of 5 steps: a) sensor data acquisition b) feature extraction c) pattern matching

d) decision making, and e) enrollment. A block diagram of such a system is shown in

Figure 5.1. The system has two phases, enrollment and prediction. In the enrollment

phase, the feature extraction stage maps a driving interval to a multidimensional feature
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vector. We seek features that exhibit high driver discrimination power, high inter-driver

variability, and low intra-driver variability. This feature vector is used to construct a

reference model λ for the driver, the details of this reference model are closely related to

the pattern matching algorithm used in the system. In the prediction phase, the feature

extraction stage maps a driving interval to a feature vector, similar to the enrollment

phase. The feature vector xi is compared or scored by the pattern matching algorithm.

This results in a match score zi for each feature vector i. The match score measures the

similarity of the input feature vectors to the reference model or pattern of the claimed

driver. Finally, a decision is made to either accept or reject the claimant according to

the match score or sequence of the match scores, which is a hypothesis-testing problem.

In a driver ID system, capable of identifying K drivers, at the enrollment phase, K

reference models are constructed, one for every driver. At prediction time, the pattern

matching algorithm outputs match scores zji for feature vector i and driver j. Lastly, the

decision-making stage, instead of the binary choice of accepting or reject, should select

the most likely driver. We can also design the system in a manner that, in case of low

confidence, the system selects the reject option. The reject option signals the lack of

confidence, or that the feature vector is not likely to belong to the drivers enrolled in the

system.

5.4 Design Constraints

Several factors affect the design of a driver ID system. We point out a few of the most

important issues.

5.4.1 Communication and Computation

Whether we can rely on communications between the car and a central server will affect

the design of the system. If no communication is possible or if the cost of downloading

data from the server is high, perhaps the ideal situation is to download the model to the

car, and the whole process must be done locally. Other considerations may be required

to see what is the best approach for training the model, can it be done locally? Is it

possible to extract features locally and send the compressed features to the server for

training? The amount of computational power available locally (in-car) limits the choice

of the algorithm and the model used in a driver ID system.

5.4.2 Data Availability

A more extensive set of signals and more frequent generally leads to a more accurate

and faster driver ID system. The use of spatial features demands location data. For

behavioral features, we need to collect high-frequency measurements from the vehicle,
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which is often obtained from the vehicle’s internal network (e.g., CAN-bus) or by in-

stalling blackboxes. Such efforts will incur costs and raise privacy concerns that need to

be addressed. Therefore, if we only have access to is 1 Hz FCD. We cannot use the most

accurate driver ID methods that require high sample-rate pedal operation data. Instead,

we should resort to a solution only using FCD.

5.4.3 Use-case Requirements

Depending on the use-case, some of the features are susceptible to errors. For example,

to detect a stolen car, one cannot just rely on temporal or spatial features. It is possible

the genuine driver in the morning, instead of going to the office, drives to the other side

of the city for a dentist appointment, in this case, spatial features will lead to a false

negative. While in another case, the car may be stolen and driven away at the same hour

as the driver regularly would commute to work, again, our model would end up with a

false negative. Therefore one must be mindful of the features used and what effects they

may have on the driver ID system.

5.5 State-of-the-art

In this section, first we give an overview of the methods used in the literature. Then

we briefly present some of the more notable works, first those using CAN-data and then

those that use FCD. Table 5.2 presents an overview of the driver ID literature, in terms

of the methodological approach, and results.

5.5.1 Taxonomy of Related Work

Early works on driver ID, suggest using car following models such as optimal velocity

(OV) and Helly [99]. Since the results were not promising, the focus was shifted towards

statistical models of driving signals. In terms of the models, several works use GMM

motivated by its success in fields of speech/speaker recognition [35, 36, 56, 78, 99]. Some

authors use traditional artificial neural networks (ANNs), namely multi-layer Percep-

tron (MLP) for driver identification [37, 42, 100, 101]. The extreme learning machine

(ELM) [102], an ANN method closely related to MLP, is used in [38, 39]. Fuzzy ANNs, in

particular, adaptive network-based fuzzy inference system (ANFIS) is proposed in [100].

SVM [91] that in the early 2000s was considered to be the state-of-the-art classification

method has its fair share in the driver ID literature [40, 41, 46, 101, 103–108].

Commonly, researchers experiment with a wide variety of classifiers, but we only

mention the best performing or popular methods. In the past few years ensemble meth-

ods, especially tree-based boosting and bagging methods are used quite often, for in-

stance, random forest (RF) is used in [40, 42, 43, 47, 49, 101, 106, 107, 109, 110], or
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some works used other variations of tree-based algorithms [42, 43, 46, 101, 107, 111].

Among the simpler algorithms, we can point to k-NN, used in [40, 42, 43, 46, 105, 107]

and naïve Bayes (NB), used in [40, 46]. Other approaches in the literature are linear

discriminant analysis (LDA), proposed in [112], some works propose to use an outlier

detection or rejection method [41, 108]. The use of dynamical models, such as hidden

Markov models (HMMs) is explored in [113, 114]. More recently, some authors suggest

DL-based methods [44, 45, 48, 50, 115].

A wide variety of data sources is used in the literature. The majority of research

uses data collected from the CAN-bus or OBD-II [38–45, 47, 49, 50, 56, 99, 104–106, 109,

111, 112, 116]. Some works use driving simulators or video games to collect data [35, 99,

103, 107, 113, 114]. Several works use the data from pressure sensors retrofitted under

the pedals in conjunction with CAN-bus data [35–38, 78, 99, 100, 117]. Some authors

use laser rangefinders that measure the distance to the leading vehicle [38, 39, 78]. IMU

is another data source that is commonly used for driver identification [38, 39, 46, 48, 101,

108]. Some works use GNSS receivers often retrofitted or integrated with in-vehicle data

recorders (IVDRs) [46–48, 108, 112], and some enrich the data using map data [48]. In

recent years, as smartphones become ubiquitous and more powerful, more attention is

paid to the potential use of smartphones for driver ID [43, 104, 110, 115, 118, 119].

In terms of the features, many works use the raw (unmodified) signals, but a more

conventional is the use of statistical features. Additionally, some researchers proposed

more complex features; for example, cepstral features that are common in speech pro-

cessing were first proposed by Miyajima et al. [35] and adapted by other researchers [36–

39, 56, 78, 104]. Spectral features—often known as fast Fourier transform (FFT) based

features—are also shown to be effective [38–40, 56, 103, 104, 113]. Discrete wavelet

transform (DWT) is used by [47, 100]. Some works use event-based features. They

extract features for specific events (e.g., a turn), or count the number of events (e.g.,

braking) [41, 47, 48, 50, 112]. Other researchers considered the origin, destination or

points of interest (POIs) [46], or the date and time [46].

5.5.2 Most Relevant Studies

Here we present a summary of some of the more significant works using CAN-data.

Wakita et al. [122] propose to identify drivers using behavioral signals captured during

the car-following task. They compare the identification performance of GMM against

physical models. In terms of features, they use the following distance (FD), VS, brake,

and gas pedal pressures. They show that GMM performs better than physical models.

In a follow-up work, Miyajima et al. [35] propose to use features based on cepstral

analysis of gas and brake pedals. Cepstral features, especially Mel-frequency cepstral
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Table 5.2: Summary of Driver Identification Literature

Reference Data-set Num. Sources Signals Features Best performing Result
Author/Year Drivers model

Meng et al. [113]
2006

Simulator 7 Virtual Steering,
Gas, Brake FFT HMM 80% for 7 drivers

Qian et al. [103]
2010

Simulator 7 Virtual Gas, Brake,
Steering

FFT, PCA
ICA SVM 85% for 7 drivers

Wakita et al. [99]
2006

Simulation,
CIAIR

12,
30

Virtual
Retrofitted

Gas/Brake
Headway distance Raw

Helly,
Optimal Velocity
GMM

Simulator:
81% 12 drivers
Real car:
73% 30 drivers

Miyajima et al. [35],
Nishiwaki et al. [36],
2007

Simulator,
CIAIR

12,
276

Virtual
CAN-bus
Retrofitted

Gas/Brake
Headway distance
velocity

Raw,
Cepstral

Optimal velocity
GMM

Simulator:
89.6%
Real car:
76.8% 276 drivers

Wahab et al. [100,
117] 2009

CIAIR 30 Retrofitted Gas/Brake GMM based,
DWT based

Adaptive network-
based fuzzy inference
system (ANFIS)

95% for 10 drivers

Öztürk and
Erzin [78] 2012

Uyanik 23 Retrofitted,
CAN

Gas/Brake
Headway distance Cepstral GMM 85.21% for 3 drivers

Del Campo et al.
2014 [37]

Uyanik 23 Retrofitted Gas/brake pedal Cepstral MLP 84.6% - 3 drivers

Martinez et al.
2015 [38]

Uyanik 23 CAN, IMU,
Laser-
scanner

19 CAN,
IMU based signals
headway distance

time & freq.
domain ELM 90.7% - 3 drivers

76% - 11 drivers

Martínez et al.
2016 [39]

Uyanik 23 CAN, IMU,
Laser-
scanner

12 based on CAN,
6 based on IMU,
headway distance

Cepstral
Spectral etc. ELM 96.95% for 3 drivers

84.36% for 11 drivers

Van Ly et al.
2013 [105]

Collected by
UCSD

2 IMU Gyroscope,
accelerometer Statistical SVM 80% - 2 drivers

Zhang et al.
2014 [114]

Simulator 20 Virtual Gas, Steering Raw HMM 85% for 20 drivers

Enev et al. [40] 2016 UCSD 15 CAN-bus
Powertrain,
Car dynamics,
Pedals, Steering

Statistical,
FFT, etc. RF 100% for 15 drivers

Hallac et al. [47]
2016

Audi AG &
Audi
Electronics

64
CAN
IMU
GPS

Steering, ERPM,
X-Y acc.,
Gas, Brake,
Throttle

Statistical,
DWT,PCA Random Forest 50.1% - 5 drivers

76.9% - two drivers

Kar et al. 2017 [41] Independent 24 OBD, GPS
Open/close doors,
Seatbelt,
etc.

Timings and sequence SVM 91% within 20s of
entering vehicle

Phumphuang
et al. [118] 2015

Independent Smartphone
Lat./Lon. Acc.
Speed, Heading,
Lat./Lon., Alt

PCA Eigen vectors 100% for 3 drivers

Zhang et al. [104]
2016

Independent 14 CAN-bus,
Smartphone

GPS, Acc, Gas,
ERPM

Statistical, Spectral,
Cepstral

SVM 79.88 Accuracy - 14
drivers

Burton et al.
2016 [107]

Independent 10 Simulator Velocity, Steer-
ing, Pedals

SVM 0.24 EER 10 drivers
0.147 EER 1 driver

Il Kwak et al.
2016 [42]

OCSLAB 10 CAN-bus Vehicle operation
Pedals & Steering Statistical Random Forest 0.995 Accuracy 10

drivers

Wang et al. 2017 [49] Independent 30 CAN-data VS, ERPM, GP,
SWA, lat. lon.

Statistical Random Forest 100%

Moreira-Matias and
Farah [46] 2017

The first
years
study [120]

242 Fami-
lies

Blackbox GPS, IMU
Time-derived,
POIs,
aggressiveness

Decision tree (C4.5) 71.7% per family

Tanprasert et al.
2017 [108]

[119] 10 Blackbox,
(GPS, IMU) X-Y Accelera-

tions.
- SAX + MLP 81% for 10 drivers

Fung et al.
2017 [112]

CanDrive
Study

14 GPS,CAN Lat/Lon, VS Acc/Decc events,
Statistical LDA 80% for 2/ 50% for

14 drivers

Wijnands et al.
2018 [48]

Insurance
company

3000 Blackbox Acceleration 1Hz,
GPS

Event count LSTM Unclear

Jeong et al. [50]
2018

Own-data 4 CAN-Bus

ACC, Brake,
SWA, SWR,
VS, TPS, ERPM,
Lat-Acc, Lon-Acc

- / Event Extraction DL, CNN, LSTM Up to 90% for 4
drivers

Ezzini et al.
2018 [43]

OCSLAB[42],
HCI-Lab,
UAH [121]

10
,10,
6

CAN,
EEG,
Smartphone

GPS,
Car state &
dynamics,EEG

Raw RF, ET
90%,
100%,
76%

Chowdhury et al.
2018 [110]

Independent 38 Smartphone GPS, Jerk Acc,
lat/lon Acc

Statistical Features Random Forest 82.3 for groups of
4–5

Hernández Sánchez
et al. [115] 2019

Independent 25 Smartphone 3-axis accelerom-
eter

Recurrence Plots,
Gramian Angular
Summation Field,
Gramian Angular
Difference Field

DL, ResNet-50 +
GRU layers

69.92% top-1

Lestyán et al. [109]
2019

Independent 33 CAN-bus Gas, Brake,
Velocity, RPM Statistical Random Forest 77% for 5 drivers

Virojboonkiate
et al. [101] 2019

Independent 3–13 GPS, IMU 3-axis accelera-
tion

Histogram MLP, KNN, DT, RF,
SVM

94–99%

Zhang et al. [44]
2019

OCSLAB[42] 10 OBD-II All signals Raw

DeepConv +
GRU-Attention,
LSTM-Attention,
GRU,
LSTM

0.9774 for 10
drivers

Chen et al. [45] 2019 OCSLAB[42] 10 OBD-II 10 out of 51 sig-
nals

NCAE + Softmax 99.65% 10 drivers
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coefficients (MFCCs) are widely used in speech and speaker recognition [123]. The

authors showed an identification rate of 76.8% using GMM for a field test with 276

drivers. This study obtains good results, but they were achieved using data from sensors

that are not available on commercial vehicles. Pressure on the pedals is sampled at a rate

of 1 kHz with high resolution, such data is not available on a standard vehicle; therefore,

the same accuracy is not likely to be reproducible in a practical scenario.

There are several works that use the same dataset as ours (Uyanik [51]). But

they are focused on a subset of 23 drivers that contain pedal pressure signals. Öztürk

and Erzin [78], follow the same approach as Miyajima et al. [35]. However, the highest

accuracy they achieve is 57.39% for 23 drivers, which is far lower than the reported

accuracy by Miyajima et al. [35] (76.8%) for 276 drivers. We can explain this large gap

in the accuracy by the low sampling rate of the signals in the Uyanik dataset.

Del Campo et al. [37] conduct a similar study as Öztürk and Erzin [78], but using

a methodology based on MLP with a focus on real-time identification for which they

also develop a hardware implementation. For a group of three drivers, they achieve an

accuracy of 84%. In [38, 39] they propose to use extreme learning machine (ELM) (Huang

et al. [102]) model and extract features from a broader set of signals from CAN-bus and

IMU. Then a feature selection stage selects the more relevant features for identification.

They obtain a 90% average accuracy for three drivers. Since the production cars are not

equipped with pedal pressure sensors, the practicality of these works is questionable.

Meng et al. [113] propose to use dynamical models to represent driving behavior

for driver identification purposes. They use three signals of SWA, gas, and brake pedals.

They collect data using a simple driving simulator. FFT is used as a feature extractor,

and they use the resulting feature vector to fit an HMM for each driver. They obtain

80% accuracy for 7 drivers. In another study using the same dataset, Qian et al. [103]

compare FFT, independent component analysis (ICA) and principal component analysis

(PCA) for preprocessing and feature extraction, and propose to use SVM for driver

identifications. They identify that FFT is more suitable than the alternatives, and

achieve an accuracy of about 85% for seven drivers. Zhang et al. [114] obtain steering

and speed data from a simulator and model it using HMM. They obtain an accuracy of

85% for two drivers.

Burton et al. [107] propose to use one-class SVM for driver verification and a multi-

class SVM solution for driver identification. They obtain an equal error rate (EER)

of 0.24 for ten drivers and 0.147 for the driver verification task. Zhang et al. [104]

use a window-based SVM for driver identification. They use data from OBD-II and

smartphones collected from couples sharing a car and obtain 75.83% using only phone

sensors, 85.83% using car sensors, and 86.67% with combined car and phone sensors.

Enev et al. [40] present a comprehensive work on driver fingerprinting. Although

their focus is on the security and privacy implications of driver ID, they achieve good
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identification results. For 15 drivers they achieve 100% accuracy. taking advantage of

three factors: a) a wide set of signals with high sampling rate (60Hz) from CAN-bus b) a

comprehensive set of spectral and statistical features, and. They conclude that brake

pedal and engine torque are among the most important signals for driver identification.

Van Ly et al. [105] take a different approach and use the IMU signals for driver

ID. They manually segment the driving session into events such as acceleration, brake,

turn, and then extract feature specifically for each event. They achieve an accuracy of

about 80% for two drivers.

Some works look at specific situations. For example, Kar et al. [41], create a

profile for each driver by modeling the order and the duration of actions they take after

entering and before driving, actions such as opening and closing the door and fastening

the seatbelt. They test this method on two groups of people and achieve good accuracy.

While manufacturers have access to sensors needed to implement such an approach, this

solution is highly vehicle-specific and challenging to deploy by third-parties. Moreover,

it is not difficult to imitate someone else in this context. In another work, Hallac et al.

[47] focus on the possibility of driver ID only using a single turn maneuver. They use

simple statistical features in conjunction with discrete wavelet transform (DWT) as a

feature extractor followed by PCA for dimensionality reduction, and use random forest

(RF) as the classifier. Although they do not achieve high accuracy (50% for five and

76.9% for two drivers) they show that even in a single turn, there is enough information

to discriminate between drivers (even with limited confidence).

There are a few works that focus on FCD. Moreira-Matias and Farah [46] use

location and accelerometer data to identify family members. They use location data to

construct clusters of locations and use the origin and destination clusters as a feature.

They use other features such as excessive maneuvers extracted from the accelerometer,

weekday, departure time, and trip duration. Then they use conventional ML algorithms

to identify the driver and achieve accuracy of about 70%. Even though Wijnands et al.

[48], focus on driver behavior change, they informally perform driver ID. They use a

large dataset of 3000 drivers provided by an insurance company, that contains location

and accelerometer data. From location data, they only use over-speeding events and

the rest of the features are obtained by binning (thresholding) the accelerometer data.

Chowdhury et al. [110] focus only on location data collected from smartphone, they

estimate many secondary signals from speed and heading (e.g., jerk, lateral acceleration,

and longitudinal acceleration). They compute 137 statistical features per trip and use a

RF classifier to identify the drivers. For groups of 4 to 5 they obtain average accuracy

of 82.3%.

In the past few years, we have witnessed an uptake in the number of research works

on driver ID. Moreover, automotive, technology, and insurance companies are showing

interest to this topic, either by providing datasets, funding or resources. Companies such
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as, Ford [49], Toyota [35], Samsung [42], Volkswagen and Audi [47], Yahoo, Microsoft,

Technicolor [104], General Motors [41], Insurance Box Pty [48], Tata [110]. However,

still a major hurdle in driver ID research is the lack of public datasets. There are only a

few driving datasets which are limited. We could get access to Uyanik [51] dataset, but

this dataset is not publicly available online. UAH-dataset [121] is one of the few publicly

available datasets. However, it only contains data collected by smartphones from 10

drivers. The only dataset containing CAN-data is provided by OCSLAB [42] but has

low sample-rate of 1 Hz. This particular dataset has already been used by the research

community but with unexpected side effects. Most of the literature models driver ID

as a classification problem. Some works such as [42, 44, 45] take every signal obtained

from OBD-II and use them for classification with no regard for what they represent.

As a result they mistakenly instead of modeling the driver behavior, they model the

vehicle’s state. Therefore we should be careful and make sure the signals we use are a

function of the drivers and their behavior, not some environmental factor such as ambient

temperature, humidity or slope of the road.

There are several shortcomings that are not yet addressed by the research com-

munity. The signals used in the current research are often not practical because they

use sensors that are not available on production cars ([35, 37, 38, 78]). Some works re-

quire tight integration with the vehicle and are car-dependent [41]. Many use data from

driving simulators or video games that may not adequately reflect real-world driving con-

ditions [103, 107, 113, 114]. Computational complexity and ease of deployment is often

ignored. More recent works often use ML methods such as SVM, bagging,or boosting

methods with decision decision trees. Such methods are discriminative classifiers. This

means that for each class (driver) we need to fit at least one model that discriminates

the driver from the currently enrolled drivers. Such approaches are not scalable, because

every-time a driver is enrolled, we need to retrain all the models.

5.6 What To Expect From The Following Chapters?

In the next four chapters, we aim to address some of the shortcomings in the state-of-

the-art. First, we intend to introduce a driver ID solution that is practical, in the sense

that it can be deployed to a wide variety of vehicles. We intend to achieve this by using

the minimum number of signals that are widely available in cars on the market. Second,

a driver ID solution should be scalable, enrollment of new drivers should require the least

effort (no retraining of previous models). Third, the current methods often require lots

of training data, and their performance drops significantly when the amount of data is

low. Therefore, we intend to reduce the amount of required training data.

We take an incremental approach to develop driver ID methods that each will

address some issues mentioned above. Chapter 6, proposes an ML method that only uses
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signals from CAN-bus, this means that such a method can be deployed on almost any

car in the market, conditioned on having access to the car’s internal network (CAN-bus).

This method used five signals from the CAN-bus. Chapter 7 offers two improvements. We

reduce the number of signals and the dimension of the feature vector per signal. We also

address the scalability issue in the earlier approach. Chapter 8 tackles another issue, we

further reduce the amount of data required for driver identification, this is only possible

using deep learning techniques. We also introduce the concept of driver embedding under

the name deep driver model, which we use for driver ID purposes. Chapter 9 looks into

the case that no CAN-data is available and investigates the possibility of accurate driver

ID using FCD, which in this case, is GPS data obtained from smartphones.



Genius is one percent inspiration, ninety nine percent

perspiration.

Thomas A. Edison

6
Driver Identification Using Discriminative

Classifiers

IN this chapter, we propose a driver identification methodology based on discrimina-

tive models. In order to guarantee deployability, we exclusively focus on sensors that

are already available in mass-market vehicles. Since we want this mechanism to provide

driver identification in real-time, we run a classification algorithm in fixed intervals and

to apply a decision function to define the driver’s identity. The proposed mechanism

extracts three category of features per each frame. The pattern matching algorithm is

a discriminative classifier, which we can easily swap for any other classifier. We exper-

iment with several classifiers and compare their performance. Lastly, we introduce two

decision functions to make a final prediction over the frames in the ongoing session. In

order to validate the proposed model, we use the Uyanik dataset presented in Chapter 2,

which consists of 57 people driving a single car along a pre-defined route. We present the

performance evaluation of the proposed mechanism in terms of the prediction accuracy.

We also study the effect of the amount of training and prediction data on accuracy.

The remainder of the chapter is structured as follows. In Section 6.1, we present the

proposed feature set, the classification algorithms, and decision-making rules to identify

drivers. Then, in Section 6.3, we present evaluation results and corresponding discussions.

Finally we summarize and present the next directions Section 6.5.

48
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Figure 6.1: Block Diagram of the Driver ID method using discriminative classifier.

6.1 Methodology

The goal of driver identification is to associate a driving trace x to its corresponding

driver. We limit the target drivers to a finite set and approach the driver identification

problem as a supervised classification task. In this chapter, we only consider the closed-

world scenario, which is the case that we have information on all drivers. For example,

when a car is shared in a family and the goal is to identify which family member is the

driver.

Therefore x is to be assigned to one of K drivers Ck where k = 1, . . . ,K. We search

for a function h, which once trained is able to predict the corresponding driver (ŷ) for any

unseen driving trace x. Since x consists of sequence of measurements (x1, x2, . . . , xτ ),

classical supervised ML methods are not directly applicable, therefore we apply the

concept of sliding windows to make this possible [79]. In this approach the sequential

data is broken down into smaller pieces (often called a window or frame) and then each

piece is considered as a separate example. We use a frame classifier hw to map each

frame of length w into individual predictions. We use the term frame and reserve the

term window to refer to a concept that will be introduced later in the chapter. Let

d = (w− 1)/2 be the half-width length of frame, then for a frame centered at time t, hw
makes prediction ŷt based on the frame 〈xt−d, . . . , xt, . . . , xt+d〉. Due to high sample-rate

of driving signals it may not be feasible to make predictions for every frame, therefore, we

make predictions for every m = bw(1− r)c samples, where m denote stride and r denote

the overlap ratio between two consecutive frames. This results in N = τ
m examples.

In summary, each driving trace (x, y) is converted into N frames, then hw is trained

using feature vector x computed for each frame and original label y. Similarly to classify

an unseen driving trace x, it is converted intoN frames, for each frame feature vector xi is

computed and hw makes prediction ŷi based on xi. Finally ŷ results from concatenation

of all ŷi. We require to assign x to only one driver therefore we define ŷ = f(ŷ) as

decision function which maps frame predictions to one single prediction for the whole

driving trace.
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Multiclass Classification

Since driver identification is performed among more than two drivers (generally a mul-

ticlass problem) therefore it constitutes a K-class problem. There are two general ways

of doing multiclass classification, one-versus-the-rest (OvR), in which K − 1 classifiers

are used and each of them solves the task of discriminating between Ck and the rest

of the classes. Another method is called one-verus-one (OvO), in which K(K − 1)/2

binary classifiers are used to discriminate between each possible pair of classes. Each

method has its own advantages, OvR is quicker to train, and more compact to store

K − 1 classifiers in compare to K(K − 1)/2 in OvO, however OvO generally attains bet-

ter accuracy (or perhaps any other performance metric of interest). OvO is also suitable

in cases when the classifier is not well suited for larger problem instances, such as times

there are too many examples, for example SVM is known to not scale well as number of

examples increase.

1st fold

2nd fold

3rd fold

...
...

8th fold

9th fold

10th fold

Total length of a driving session

Train set Validation set

Figure 6.2: Cross-validation scheme.

Evaluation Method

In order to address applications with different requirements we perform evaluations for

three driver set sizes of K ∈ {5, 15, 35}. Identification among drivers with similar driving

styles is more challenging therefore we repeat for each K the evaluation R = 30 times

and each time on a random subset of all drivers in dataset. For each instance, in order

to utilize the entire driving traces D = {(xi, yi)}Ki=1 for both training and testing, we

employ a 10-fold cross-validation method. Each driving trace (xi, yi) is sliced into 10

segments of equal length and evaluations are performed under leave-one-segment-out

train and test scheme. Therefore at each fold one segment from all driving traces is kept

out of training process, then h is scored based on its prediction performance over the

remaining segment, this scheme is depicted in Figure 6.2. Note that we always train on

same segments for all drivers and test on the same segment, for example we train on
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Table 6.1: Selected Signals for Driver Identification

Sensor Derivatives Cepstral & Spectral
1st 2nd

Percentage Gas Pedal (PGP) Yes Yes Yes
Steering Wheel Angle (SWA) Yes Yes Yes
Vehicle Speed (VS) Yes Yes No
Engine RPM (ERPM) Yes Yes No
Yaw Rate (YR) Yes Yes No

Driving 
Signals

Low-pass 
filter

Add 1st & 2nd 
order 

derivatives

Extract 
Statistical 
Features

Extract 
Spectral 
Features

+ feature 
vector

All Signals

PGP
SWA

Figure 6.3: Feature extraction block diagram.

segments 1–9 and test on the 10th segment. Since all drivers drive through the same

route, even though some drive slower than the others, we assumed in this case training

and testing would be done on similar parts of the trip for all drivers, therefore resulting

in a fair comparison.

We use accuracy to score h at each fold, which is defined as below:

α′ =
1

K

K∑
i=1

1(yi = ŷi) (6.1)

where 1 is the indicator function, ŷi and yi are respectively prediction and true driver

for ith driving trace.

The overall accuracy score for h is then obtained by calculating the mean accuracy of all

cases as follows:

hscore =
1

R · L
R∑
j=1

L∑
i=1

α′i,j (6.2)

where L = 10 is number of cross-validation folds and R = 30 is number of repetitions.

In the rest of the chapter we refer to this score as accuracy.

6.1.1 Preprocessing and Feature Extraction

In this work we only use 5 signals, all available in the car’s internal network (CAN-bus).

This decision was made for two reasons, to use the most trivial signals that are available

in majority of cars on the market, and to reduce the complexity of the system which will

affect the deployability. A signal refers to a stream of sensor measurement values. Two

kinds of signals are used for feature extraction: a) original signals b) derived signals. The
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original signals are the sensor values from CAN-bus, while derived signals are the first and

second derivative of the original signals. To motivate this choice let us take vehicle speed

as an example: its first and second derivative represent longitudinal acceleration and

jerk, which have shown to be representative of particular driving styles [124], therefore

we hypothesize that these signals are useful for discriminating drivers. Figure 6.3 shows

the various stages that the original signals go through before the feature extraction step.

The 5 original signals used in this study are listed in Table 6.1. First a low-pass filter

is applied to original signals to remove high frequency noise and smoothen the signals.

Then for each signal we use the Savitzky-Golay [82] filter to derive their first and second

order derivatives which results in two additional signals per each original signal. Then,

all the signals go through a framing function which takes two parameters, w to determine

the frame-size and r to specify amount of overlap between two consecutive frames. At

this point each signal is broken down into frames of size w and is be supplied into the

feature extraction stage. Next stage is where the features are extracted from each frame

and are used for training and later on for prediction in the identification process.

Three kinds of features are extracted from each frame:

Statistical features a set of descriptive statistics is selected to be most representative of

the distribution of sensor values covered by the frame. This set includes minimum, max-

imum, mean, median, standard deviation, kurtosis, skewness. This category of features

is extracted from all the signals.

Cepstral and spectral features Cepstral features have various applications and are

most widely used in speech and speaker recognition [125]. Studies have shown that cep-

stral features are suitable for driver identification [35, 37, 78]. Use of spectral features

for classification was first proposed by Agrawal et al. [126] in the context of querying

databases. The idea of using cepstral feature for identification comes from speech mod-

eling. In speech modeling we assume that the vocal cord excitations are filtered with

the vocal tract. Vocal cord vibrations are represented by the fine structures of spectrum

and the vocal tract by the spectral envelope. Unique variations in the vocal tract, result

in distinct spectral envelope. The analogy to driving is that action of depressing the

pedal or steering is filtered by driver model—since each driver has unique anatomical

characteristics—we can assume that different drivers express distinct spectral envelopes

which we can use to drivers by modeling the cepstral coefficients. By keeping the first

k = 8 cepstral coefficients and setting the remaining coefficients to zero we smooth the

spectrum and isolate the spectral envelope (see [35] for more details). We extract spec-

tral features only from two signals, PGP and the SWA and keep the first k = 8 cepstral

coefficients as features. As it is shown in Figure 6.5 signal from each window frame is

pre-emphasized1 to enhance higher frequency components, we compute log-magnitude-

spectrum of the signal. From here we perform two different set of operations to obtain
1y [n] = x [n]− βx [n− 1]
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Figure 6.4: PGP signal and visualization of corresponding features. Each row of
spectral and cepstral features are independently normalized to highlight the variations
in features. Bright colors have larger values. Swings in PGP results in higher values in
spectral features.
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Figure 6.5: Block diagram of computation of spectral and cepstral features.

two groups of features, spectral features and cepstral features. First we multiply the

frame with a Hamming window2[127] of length w to limit the signal and also reduce the

edge effects. Spectral features are derived from the spectra which is obtained from the

following equation.

X = log(|F {xw}|2) (6.3)

where F is the Fourier transform and w is the Hamming window. log-power-magnitude of

the spectra for each 1Hz range up to 8Hz however, since higher frequencies have smaller

magnitude we compress them in larger ranges, in this case 8–12Hz and, 12Hz and above.

We also include the sum of all energies as a separate feature, therefore, which sums up to

11 spectral features. To obtain cepstral features we take the discrete Cosine transform

(DCT)[128] to log-power-magnitude of spectra. We define c(k) to be the first k cepstral
2Hamming window is defined as: w(n) = 0.54− 0.46 cos( 2πn

M−1
) 0 ≤ n ≤M − 1
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coefficients and higher order coefficients are discarded.

c(k) = DCT
{
log(|F {xw}|2)

}
(6.4)

where DCT is discrete Cosine transform. In this work, we only keep the first k = 8

cepstral coefficients as features. Like spectral features, we also consider the sum of

energy among the cepstral coefficients as a feature. This will leave us with 9 cepstral

features. This results in a feature vector of dimension 20 per signal.

6.1.2 Classification Algorithms

We select four classification algorithms to be used as frame classifier hw. We benchmark

them and pick the best performing algorithm to conduct further experiments. In our

selection we favored ensemble methods because it has been shown that they generally

achieve better predictive performance [129]. The following is the list of classification

algorithms used in this study along with their corresponding hyperparameters.

AdaBoost (AB) - AdaBoost as introduced by Freund and Schapire [85] suggests

use of collection of weak learners, as the number of weak learners increases the algorithm

increases the weight for examples that are more difficult (are currently misclassified)

therefore improving the performance. In the implementations we use the scikit-learn

library [86] which uses the AdaBoost-SAMME algorithm [87]. We use a decision tree

with maximum depth of 1 as weak learner [88]. 1000 decision trees as weak learners,

learning rate = 0.75.

Gradient Boosting (GB) Gradient boosting, iteratively combines weak learners

into a single strong learner. At each iteration GB fits a tree to correct the mistakes

of the model of previous iteration (and all the iteration before). Therefore in principle

Gradient boosting fits models to the residuals of the previous iteration. These residuals

equivalent to negative of the gradients [89]. 1000 estimators, maximum depth = 15, min

samples split = 5, max features = 20.

Random Forest (RF) Random Forests as introduced by Breiman [90]. As the

name suggests it consists of a combination of tree predictors such that each tree is train on

a subsample of the examples, this is also known as bagging. Moreover to further reduce

the correlation between the trees and avoid overfitting, each tree is fitted on a subset of

features. We used the implementation from scikit-learn package [86]. With parameters

1000 estimators, maximum depth = 30, max features = 20, minimum samples split = 3,

bootstrap = True, class weight = balanced, criterion = entropy

Support Vector Machine (SVM) Lastly we step away from tree based algo-

rithms and attend to once upon a time king of classifiers, SVM. SVMs for some time were

known to be the best classifiers available. Linear support-vector machine was introduced

by Vladimir Vapnik in 1965. SVMs are binary classifiers, in the Linear case SVM finds
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the a maximum-margin hyperplane that separates the two class. Cortes and Vapnik

[91] in 1995 proposed to use the kernel trick [92] and extended SVM to solve non-linear

classification problems. In this approach instead of dot products in SVM a non-linear

kernel function is used. Therefore algorithm is able to fit maximum-margin hyperplane

in a transformed space, which allows for separation of non-linear feature boundaries. In

the implementations we used the SVC classifier from scikit-lean library [86] which uses

LIBSVM library [93]. RBF kernel, γ=0.001, C = 1000, class weight = balanced.

For ensemble learners in order to have a balance between prediction performance

and execution time we choose 1000 as the number of weak learners/trees. In our ex-

periments we use the implementations from the scikit-learn software package, all other

parameters are set to their default values as of scikit-learn version 0.18.1 [86].

6.1.3 Decision Functions

The decision function f determines the final prediction ŷ based on window predictions

ŷ. We define for each window k a vector ŷk = (α1 · · · αc) where αk,j corresponds to the

classification score on the window k for driver j. The term classification score refers to

the output of the classifier, which depending on the classifier could refer to probability

or distance to hyperplane (in case of SVMs). Below we introduce two decision functions

to obtain ŷ and evaluate their performance later in the chapter:

1) Majority vote (MV) For each temporal window k, we find the identifier of the

driver with largest classification score Ik = arg maxαi. Then We assign to each temporal

window a ranking score vector RSk =
(
βk1 , . . . , β

k
c

)
where βkIk = 1 and all other βki =

0. Finally ŷ is the identifier of the driver who most frequently obtains the highest

classification score, i.e., ŷ = arg maxi
∑
βki

2) Maximum score (MS) We set ŷ to be the identifier of the driver that has the

largest cumulative classification score, i.e., ŷ = arg maxi
∑N

k=1 αi

To motivate the introduction of the two decision functions let us take the following

example which consists of classification scores of three drivers for five windows:

(ŷk)
5
k=1 =


0.15 0.40 0.45

0.18 0.39 0.43

0.27 0.34 0.39

0.06 0.73 0.21

0.09 0.81 0.1


In MV we simply count how many times each driver has the highest score and choose

the most frequent as prediction:

ŷ = fMV((ŷk)
5
k=1) = arg maxi (0 2 3) = C3
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MV is sensitive to miss-classifications at hw. Suppose d2 is the true driver, for the first

three windows C2 and C3 are scored very closely but at window level choice is always

with C3. Looking at the next two windows and the whole picture C2 is more likely to be

the correct prediction. Next we compute the prediction based on MS:

ŷ = fMS((ŷk)
5
k=1) = arg maxi (0.75 2.67 1.57) = C2

While MV falls short at this example MS handles such instances more robustly.

6.2 Feature Analysis

We perform some feature analysis to obtain some insights into effectiveness of the pro-

posed set of features. We mainly use tree-based feature importance as a measure for fea-

ture importance [130]. Particularly the variant implemented in scikit-learn library, this

approach often called mean decrease impurity, and defined as total decrease in weighted

node impurity averaged over all trees in the ensemble. Total decrease in node impurity

is weighted by the probability of reaching the node, which is approximated by the pro-

portion of examples reaching that node. Since the features are extracted on a per-frame

basis, there is an interaction between features and the frame-size, therefore we perform

our analysis for various frame sizes. Since most features represent some aspects of the ve-

hicle dynamics there are features that positively or negatively correlate with each other.

Our goal here is to study the utility of each feature for driver ID. To obtain the most

efficient feature representation dimensionality reductions techniques such as PCA can be

used to eliminate collinear features.

6.2.1 Statistical Features

In order to evaluate effectiveness of statistical features we run a set of experiments using

only the statistical features of all original and derived signals and therefore exclude

spectral and cepstral features. The results are depicted in Figure 6.6. We can see min,

max, range, standard deviation perform well in compare to other features and their

effectiveness is stable across various frame-sizes. On the other hand we can see features

like mean and median, lose their importance as the frame-size increases. This could be

caused by the fact that the longer the frame, the closer the mean/median of a feature

is to global mean of that signal value which is probably the same for every driver. For

example SWA should have an average of 0 for every driver, as the mileage increases.

This interpretation however is not valid for every signal, for instance, mean of ERPM

should be quite informative as it reflects driver’s preference to drive on a specific range

of engine revs—some prefer lower engine revs and switch gears earlier than other drivers

that prefer to driver on higher revs and switch gears later (in case of increase in speed).
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Figure 6.6: Feature importances for statistical features. For this experiments spectral
and cepstral features are excluded and only the statistical features from all original and
derived signals are used. Some features such as min, max, and range maintain their
relative high importance for all frame-sizes. Some features such as mean and median
lose their effectiveness for larger frame-sizes. It is also interesting to see # of zero
crossings, becomes more importance for larger frame-sizes, as it is less likely to observe
significant number of zero crossing in for example 2s of driving data.
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Figure 6.7: Statistical feature importances for original and derived signals, for frame-
sizes of 2 (left) and 15 seconds (right). We can see that there is large variation between
the two frame-sizes. For frame-size of 2 seconds, mean max and median of YR, VS,
SWA and PGP are among the top features. For frame-size of 15, min, max of YR,
range and max of PGP, max and std. of PGP’, min of YR’ and num. zero crossings of
SWA” and PGP” are among the top features.



Driver Identification using Discriminative Classifiers 58

5 15 35
# drivers

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Signals
SWA
PGP
Both

Figure 6.8: Accuracy with respect to
feature-set. This experiment shows accuracy
in three cases, PGP or SWA alone or Both
toghether. PGP alone shows good results
but SWA by itself is not a good disciminator,
however together they show improved perfor-
mance. This improvement also shows itself
as reduction in variance of accuracy, which
means the system performs more robustly us-
ing two signals as opposed to PGP only.

Figure 6.7 shows how the effectiveness of statistical features changes with the

frame-size. For small frame-length simple features like min, max and mean of PGP,

SWA, VS and YR consistently have high feature-importance. But when the window

size is larger, the good features are more spread out. For PGP, max and range are the

best features, as well as standard deviation and max of its first derivative. Min and

max of YR and its first derivation are good features as well. ERPM is no longer a good

feature. Number of zero crossings of SWA is a good feature, this is in contrast to smaller

frame-lengths, as in small frame-sizes there is either no or one zero crosssing. VS is also

losing its importance, except its maximum. But in general PGP and YR seem to be the

best features. We can conclude that depending on the frame-size, the informativeness of

features varies.

6.2.2 Cepstral and Spectral Features

Some works in the literature such as [35, 37, 78] show that the cepstral features of gas and

brake pedal pressure signals improve the driver ID accuracy. Such signals are obtained

by fitting external sensors under the pedals and are not available in production vehicles.

Instead, we choose PGP and SWA that are available on unaltered vehicles from the car’s

internal computer network. We choose SWA because, similar to the pedals, the steering

wheel is also operated directly by driver and its movements potentially reflects some

unique characteristics of driver.

In order to validate the positive impact of the SWA signal on driver identification,

we conduct three experiments. First, we limit the features only to cepstral and spectral

features of PGP, then only to cepstral and spectral features of SWA, and lastly cepstral

and spectral features of both PGP and SWA. Results are depicted in Figure 6.8, as one

can see when each signal is used alone, PGP yields better results than SWA, however

when used together results significantly improve (8.98 to 36.56%) from the best single

signal case, this is particularly noticeable when the number of drivers increases. This

is probably because some of the drivers operate the gas pedal or the steering wheel

similar to one another; the use of PGP and SWA at the same time helps the classifier to

discriminate the drivers in this ambiguous cases.
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Figure 6.9: Feature importance for 3 different frame-lengths of 2, 5, and 15 seconds.
The colors indicate the category of features, begin spectral, cepstral or statistical. An
interesting observation is that for frame-size=2s there are quite a few spectral or cepstral
feature among the most important features, but as the frame-length increase they give
their position to statistical features.

6.2.3 Overall Feature Importance

In another experiment we evaluate the feature importance for all the features, which

includes the statistical of all signals, and spectral and cepstral of SWA and PGP. The

results for frame-sizes of 2, 5, and 15 seconds are depicted in Figure 6.9 (only top 60

features are included in the plot). The colors indicate the feature category, green cor-

responds to statistical features, blue for cepstral and the golden color is for spectral

features. An interesting observation that can be made from this figure is how spectral

and cepstral features dominate the top features for small frame-size of 2, and to some

extent for frame-size of 5 seconds, but on the contrary when the frame-size is 15 seconds,

statistical features occupy majority of the top features.
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Figure 6.10: Accuracy with respect to
frame-size. Smaller frame-sizes favor spec-
tral features, meanwhile statistical features
are more informative when they are obtained
for larger frames. As the frame-size increases,
spectral features lose their utility but statis-
tical feature become more in formative and
improve the accuracy—this effect is more pro-
nounced for 15 drivers.

6.2.4 Frame-size Analysis

Since the feature vectors are extracted from frames, a key parameter in our method

is the choice of w and r (stride). We perform experiments for frame sizes of 1 from

2 to 25 seconds, with r fixed at 1s. According to results shown in Fig. 6.10, as w

increases accuracy decreases until reaching its minimum at 10 seconds then starts to

slowly improve. We hypothesize that this is a symptom of interactions between the

features and frame-size, as we showed earlier, statistical features perform better for larger

frame-sizes while spectral and cepstral features perform better for small frame-sizes.

Therefore it is possible that at 10s all feature categories are at their worst discriminative

power, and moving away from that spot, with smaller frames, spectral and cepstral

features compensate, and for larger frames, statistical features dominate.

We also investigate the impact of stride (r). Experimenting with stride of 0.25

and 1 seconds, we observed that smaller stride generally improved the performance in

some cases by 1-2 percentage points, but at the same time it will increase the number of

examples therefore is computationally expensive. Since we intend to maintain reasonable

training times and considering that the gain in accuracy is not significant we will continue

using the stride of 1s. Earlier works such as [35] and [78] use window sizes of 0.8s and

0.32s, but they do not report how they arrive at these numbers. Enev et al. [40] perform

a similar experiment but they conclude that 3s results in the best performance, which

is close to our findings. This discrepancy however should not be seen as an issue, since

there are numerous factors involved in obtaining the optimal frame-size, including, the

choice of signals, features, sample-rate, and even the drivers and the driving route.

The choice of frame-size and stride is highly application dependent. Note that in

this experiment we used a fixed stride, in cases that computational resources are lim-

ited, one could employ larger frame-sizes in conjunction with larger strides, and therefore

significantly reduce the number of examples, hence reduce the amount of compute re-

quired. Such approach would most likely negatively affect the performance but for some

use-cases such compromise may be acceptable. For example in case a fleet manager wants

to validate the actual driver for a long trip a fairly large frame-size and small overlap
1 Frame sizes of length 2, 5, 10, 15, 20, 25 Seconds
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would be sufficient. On the other hand if it is desired to identify the driver as quickly

as possible, for example to customize the driving experience, then having a small stride

and reasonably small frame-size is preferable. One could even go one step further and

choose the stride adaptively.

6.3 Experiments

In this section, we present results of the experiments and their corresponding discussions.

Each subsection is focused on a certain component of the proposed method, therefore

in order to avoid repetition unless otherwise is stated experiments are performed using

configurations introduced in Section 6.1, with Adaptive boosting trees (AB) OvO as hw,

MS as f , w = 2s and r = 1s.
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Figure 6.11: Classifier identification performance comparison. The SVM and AB
used in one-versus-one configuration provide the best results.

6.3.1 Classifier Benchmarks

Identification results for various classification algorithms are depicted in Figure 6.11. The

OvO approach generally provides better performance than OvR. The best performance

belongs to SVM-OvO, with 98.86%, 97.62%, 94.61% accuracy for groups of 5, 15, and 35

drivers, respectively. The second best performance obtained with AB-OvO, with 98.86%,

97.15%, 93.92% accuracy for groups of 5, 15, and 35 drivers, respectively.

We suspect that with further hyperparameter tuning similar results, can be ob-

tained with other classifiers such as gradient boosting (GB), and RF. In the end the

right choice of classifier depends on other aspects such as available computation, train-

ing time, and dependability on hyperparameter tuning. We choose to continue the rest

of our experiments with AB because although it produces comparable results, it is faster

than SVM. The the results achieved using AB are better than earlier works in the liter-

ature, except for [40] in which authors achieve 100% accuracy for 15 drivers. However,

they use 15 signals from CAN-bus and perform spectral analysis on all signals, while
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we only use 5 signals and extract spectral and cepstral features from two of them. It

is worth mentioning that in this work we keep the study realistic therefore we do not

selectively filter out the sections of trip that are not the most informative. For example

in [37] authors only use the reference-driving segment of the trips, or in [35] they only

consider the times that the car is on the move. Such assumptions although suitable for

preliminary studies they do not reflect the real-world conditions.

Table 6.2: Comparison of decision functions

# drivers Test-size Decision function accuracy
MV MS

Minutes mean std mean std

5
1 0.961 (0.036) 0.960 (0.031)
2 0.972 (0.030) 0.969 (0.026)
3 0.980 (0.018) 0.981 (0.019)

15
1 0.908 (0.027) 0.908 (0.025)
2 0.933 (0.021) 0.934 (0.023)
3 0.961 (0.018) 0.957 (0.018)

35
1 0.880 (0.019) 0.866 (0.018)
2 0.918 (0.017) 0.910 (0.016)
3 0.936 (0.013) 0.922 (0.014)

6.3.2 Decision Functions

The final stage of the proposed methodology is the decision function f . To investigate

performance of each decision function we perform several experiments using MV and

MS and compare the results, for these experiments we use AB-OvO, as it was shown to

yield the best identification performance. Results are summarized in Table 6.2. We can

see that MV generally provides better performance, but not a significant improvement

with respect to MS. We conducted a similar experiment for other classifiers, generally

MS works better when classifiers are trained in OvR scheme, and MV provides better

performance in case OvO scheme is used. The implementation of MS assumes calibrated

probability outputs [131] from the classifier hw which may not be provided by the classifier

or require additional computational costs to be obtained. On the contrary, MV only

requires the prediction labels of each frame.

6.3.3 Sensitivity Analysis of Training-data

The amount of training data required for training ML models is quite important. Espe-

cially in driver identification we wish to be able to train our models with as little data

as possible. Therefore we conduct experiments in which we vary the amount of training

data used by the model. For example for each fold, if the total available data is say, 30

minutes, we only select the first 5 minutes for training the model. For this experiment

we use 3 minutes of driving data for prediction. In these experiments we test 6 instances

{5, 10, 15, 20, 25, 30} minutes. The corresponding results are depicted in Figure 6.12a.

We can see accuracy improves with increase in amount of training data. For 5 drivers
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Figure 6.12: On the left we can see how amount of training-data affects the perfor-
mance. 20 minutes of training data is required to achieve above 80% accuracy and 25
minutes to achieve 90% accuracy.

15 minutes of driving data is needed to cross 90% accuracy, while to achieve the same

accuracy for 15 drivers about 20 minutes and for 35 drivers about 25 minutes of driving

data is needed.

6.3.4 Sensitivity Analysis of Decision Window

Another important factor in driver identification is the amount of data needed to make

an accurate prediction. In an experiment we keep the amount of training data fixed (in

this case all available training data) and vary amount of data used to make a prediction.

We use range from 0 to a 180 seconds. The results are shown in Figure 6.12b, accuracy

in all cases quickly reach 80% with 30 seconds of data. As it is expected for smaller

number of drivers prediction accuracy improves very quickly and plateaus with about

1min of driving data. On the other hand for 15 or 35 drivers it takes longer to get to

accuracy of over 90% yet even with 2 minutes of data even though improvement slows

down it appears that results would still improve if more data was available.
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(b) Target driver 3
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(c) Target driver 4

Figure 6.13: Prediction over time. Visualization of normalized cumulative prediction
score for three cases. The driver with largest likelihood is predicted. (A) is case where
the system corrects itself after about 30 seconds. (B) shows an example of incorrect
prediction. (C) shows a case that although in the beginning the prediction is correct,
after larger amounts of data, we result flips to incorrect prediction.
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6.3.5 Real-time Identification

We also investigate how the incremental addition of more data samples impacts the

prediction performance. Figure 6.13 shows three identification cases. In these plots

the vertical axis denotes normalized cumulative prediction score for each driver and

horizontal axis denote time in seconds. Better prediction score should be interpreted as

higher certainty for the corresponding driver therefore as we advance in time and more

examples are available for prediction, we expect higher certainty for predicted driver.

Case A shows that although for the first 10 s, expected prediction could be wrong (C1
instead of C2) as more samples are collected, the prediction changes in favor of the correct

driver. Case B shows an example in which the very first 5 seconds predict the correct

driver, then at around 15 seconds, system makes a mistake, then again as more examples

are obtain reverts back to the correct prediction C3. Case C shows an unexpected

outcome, the model makes correct predictions right from the beginning and with high

certainty, but after about 2 minutes, prediction becomes uncertain and finally make the

wrong prediction (C0 instead of C4).

6.4 Discussion

We presented an ML-based approach to driver ID. We chose a sliding window approach

because it is flexible. One can set the prediction interval according to the available

processing power. In this approach, there is no need to maintain a long history, and only

the past prediction scores are enough to make a decision for the latest frame. Moreover,

we can start making predictions with as little as one frame, and update the prediction

as more data is collected.

We did not make any assumptions about the data, we used all data as it is, without

removing any of the data. Some works use data from specific parts of a trip, such as

turns, or remove parts of the trip that the car is not moving. We made this decision to

show that this method does not require extensive pre-processing and therefore suitable

to be used in practice. It easy to remove the pieces of information where the car is not

moving. However, it is not feasible to correctly detect and align each turn in production,

something that is done in [47].

We observed that statistical features are more effective when the frame-size increases—

over 10 seconds but less than 45—a better way of constructing feature vectors would be

to use two frame-sizes, a shorter frame to compute the spectral and cepstral features and

a longer frame for extracting the statistical features. Another idea would be to compute

spectral and cepstral features over small frames, and instead of their values, use their

statistics in larger frames (along with other statistical features). These ideas can be

explored in future work.
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Table 6.3: Summary of the results

train-data test-data # Drivers - Accuracy mean (std)
Minutes Minutes 5 15 35

5

1 0.575 (0.106) 0.438 (0.061) 0.367 (0.032)
2 0.589 (0.109) 0.470 (0.062) 0.415 (0.035)
3 0.594 (0.107) 0.494 (0.061) 0.431 (0.035)
4 0.597 (0.116) 0.509 (0.063) 0.439 (0.038)

10

1 0.743 (0.091) 0.617 (0.044) 0.537 (0.030)
2 0.775 (0.100) 0.674 (0.053) 0.600 (0.028)
3 0.788 (0.096) 0.697 (0.061) 0.624 (0.025)
4 0.795 (0.101) 0.714 (0.051) 0.640 (0.024)

20

1 0.905 (0.058) 0.796 (0.047) 0.721 (0.021)
2 0.921 (0.055) 0.857 (0.038) 0.790 (0.023)
3 0.929 (0.054) 0.888 (0.032) 0.825 (0.021)
4 0.943 (0.048) 0.908 (0.031) 0.851 (0.020)

30

1 0.953 (0.040) 0.886 (0.027) 0.839 (0.018)
2 0.963 (0.032) 0.924 (0.025) 0.888 (0.016)
3 0.977 (0.024) 0.955 (0.018) 0.917 (0.012)
4 0.983 (0.018) 0.970 (0.015) 0.942 (0.010)

A significant limitation of the proposed methods is due to use of discriminative

models. Discriminative classifiers learn to discriminate drivers; a driver’s model or tem-

plate is obtained by training on driving examples from every driver enrolled in the system.

Therefore, if we deploy a driver ID solution for K drivers, and decide to enroll a new

driver to the system, we would need to fit at least K + 1 new models and update the

models deployed on all vehicles. This is costly both in terms of computation and data

transmission (incurred by delivering K − 1 new models to each car).

6.5 Summary

In this chapter, we proposed a mechanism for driver identification based on driving signals

currently available in cars on the market. Therefore there is no need for any external

sensors. In particular, we use simple statistical features from the following 5 signals

and their first and second order derivatives: PGP, SWA,VS,ERPM,YR. Additionally

we also take advantage of more complex cepstral and spectral features that are only

obtained from PGP and SWA. The proposed methodology, uses an iterative sliding

window approach, and extract features from each frame and a classifier makes predictions

per frame. The the final driver identification result for an on-going driving session is

provided through a decision function that take into account the classification scores of

previous iterations.

We proposed an evaluation study based on a large driving dataset. We performed

extensive feature analysis to evaluate importance of each feature and signals and studied

how frame-size affects the features and prediction performance. The results show that

adding the spectral and cepstral features of SWA increases the identification performance

by 36.56% in average—for 35 drivers—in compare to only using the same features from

PGP. We experimented with a variety of classifiers shown that Boosting methods and

SVMs are suitable for this problem. Some of the best results have been achieved using
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AB-OvO with 98.86%, 97.15%, 93.92% accuracy for groups of 5, 15, and 35 drivers, re-

spectively (with 30 minutes of training-data and 4 minutes of prediction-data). Moreover,

experiments with variable amounts of training and prediction data we we showed that

using this methodology any increase in amount of either the training or the prediction

data monotonically improves the performance of the driver ID.

This architecture however has two major limitations a) sufficient amounts of data

is needed for training (about 30 minutes) b) enrollment of a new driver requires retraining

all models in OvR case, and training K new models in OvO case.. In the next chapter,

we propose a method based on Gaussian mixture models that aims to address these

limitations.



Your assumptions are your windows on the world.

Scrub them off every once in a while, or the light

won’t come in.

Isaac Asimov

7
Driver Identification using Gaussian Mixtures

IN this chapter we present a driver ID method that can address some of the shortcom-

ings of the method introduced in Chapter 6. The solution presented in the previous

chapter only used signals available from the car’s internal network (CAN-bus in this

case). Recall that vehicle speed (VS) is one of the five signals we used in Chapter 6 for

driver ID. Gao et al. [55] show that it is possible to infer the driver’s route and destination

only based on vehicle speed and the origin of a trip. For instance, an insurance provider

most probably has the home or work address of their customer on file. An adversary in

possession of this information and the vehicle speed can construct a profile of points of

interest (POIs) visited by the driver. This may not be an issue as the service provider

could have access to the location data from the car, but many do not want to share any

information more than it is required. Therefore we decrease the number of signals used

for driver ID from five down to two and focus only on the controls operated directly by

the driver. And as a result also reduce the computational complexity.

In order to solve the scalability issues of the previous approach, we need a solution

that the enrollment of new drivers has constant complexity. In other words, the cost of

enrolling new drivers should not depend on the number of drivers currently enrolled in

the system. Therefore, we propose to use Gaussian mixture models (GMMs) instead of

discriminative classifiers. In this approach, the enrollment of new drivers does not require

retraining of the previous driver models. As a result, the methodology introduced in this

chapter is scalable. We will also see that we can obtain superior identification accuracy

using a smaller amount of training and prediction data.

67
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Figure 7.1: Method Architecture

The remainder of the chapter is organized as follows: In Section 7.1, we describe

the proposed methodology and evaluation strategy. Section 7.2 presents a brief feature

analysis. In Section 7.3, we present experiments and their corresponding results. Sec-

tion 7.4 discusses the methodology. Lastly, in Section 7.5, we summarize and present

future directions.

7.1 Methodology

In this section, we describe the proposed methodology, which phases are depicted in

Figure 7.1. First we present the GMM for driver identification, and model fusion mech-

anism then we go over the feature extraction and analysis, and in the end the evaluation

strategy.

7.1.1 The Gaussian Mixture Driver Model

The goal of driver identification is to associate a driving to its corresponding driver. We

also assume that the set of target drivers is finite and that we have information about

all candidate drivers. We propose to use GMMs for driver identification as they are well

studied in the literature, in particular for speaker recognition [123, 132, 133].

Gaussian mixture model (GMM) denoted by λ is characterized by its probability

density function, which is a weighted sum of M component densities:

p (x|λ) =
M∑
i=1

φiNi (x) (7.1)

where x is a d -dimensional feature vector, Ni(x), i = 1, · · · ,M , are the component

densities and φi, i = 1, · · · ,M , are the mixture weights. Each component density is a

d -variate Gaussian of the form (Equation 7.2):

Ni(x)=
1

(2π)D/2|Σi|1/2
exp

{
−1

2
(x−µi)′Σ−1i (x−µi)

}
(7.2)
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where µi is the mean vector and Σi is the covariance matrix. The mixture weights should

satisfy the constraint
∑M

i=1 pi = 1. To train a GMM we need to estimate the following

parameters:

λ = {φi,µi,Σi} i = 1, · · · ,M. (7.3)

Therefore each Ck driver is represented by a GMM and is referred to by their model λk.

7.1.2 Driver Identification

For driver identification, a group of K drivers is represented by K GMMs, λ1, λ2, · · · , λK .

Here our goal is to find the model which has the maximum a posteriori probability for a

given set of observations (in our case observations are features extracted from each frame

of driving data).

ŷ = arg max
1≤k≤K

Pr(λk|X) = arg max
1≤k≤K

p(X|λk)Pr(λk)
p(X)

(7.4)

where X is vector of observations at prediction time (X = {xt}Ti=1). Assuming that all

the candidate drivers are equally likely to be the actual driver (Pr(λk) = 1/K) and taking

into consideration that p(X) is the same for all driver models, Equation 7.4 reduces to:

ŷ = arg max
1≤k≤K

p(X|λk) (7.5)

Assuming independence between measurements and using log to facilitate computations

and improve numerical stability, we have:

ŷ = arg max
1≤k≤K

T∑
t=1

log p(xt|λk) (7.6)

where p(xt|λk) is defined by Equation 7.1.

7.1.3 Model Fusion

We consider two signals, percentage gas pedal (PGP) and SWA. We choose these signals

because they are: 1) directly operated by driver 2) available through car’s internal net-

work (CAN-bus). Since these two signals come from two controllers that are operated

separately, we model each with a GMM. We use the notation λG to refer to gas pedal op-

eration model and λS for steering operation model. Moreover, because the two resulting

models (λG and λS) are not equally informative, we need to give a higher weight to the

model that is a better predictor of the driver. We use a parameter called α to indicate

the weight that we associate to each model. Then at identification time, we combine

their log-likelihoods by the ratio that is controlled by the parameter α. In this case, the
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Equation 7.6 becomes as below:

ŷ = arg max
1≤k≤S

{α log p(XG|λG,k) + (1− α) log p(XS |λS,k)} (7.7)

whereXG,XS refer to gas pedal operation feature vectors and steering operation feature

vectors respectively, and λG,k, λS,k refer to the kth driver’s gas pedal and steering models.

The idea is that using the right weight will improve the accuracy. We propose to find the

optimal α empirically in Section 7.3. Moreover, this separation will allow us to selectively

take into account only one of the two signals, or changing the ratio in which we combine

the log-likelihoods (α).

7.1.4 Evaluation Method

There are two important points we take into account in evaluating our method. Firstly,

since we perform identification in small sets of K drivers (i.e., 5, 15, 35), it is important

to account for unwanted side effects. For example, it could be that one set of 5 drivers

have very distinct driving styles and therefore be easily discriminated, while another set

of 5 drivers have similar driving styles and be difficult to discriminate. To prevent biasing

our results with such phenomena we repeat each experiment with 30 random samples

of K drivers. For each evaluation in order to use the whole data-set for both training

and testing, we employ a cross-validation approach. In particular hold-one-out cross-

validation, in which we first segment each trip into 10 slices. At each fold, we hold-out

one slice from each of selected drivers, train the models, and test on the held-out slice.

We use accuracy as the evaluation metric, as defined below:

acc =
1

k

k∑
i=1

1(yi = ŷi) (7.8)

where 1 is the indicator function, ŷi and yi are respectively predictions and true driver

for ith driving trace.

The overall accuracy score for an experiment is the average of all cases as follows:

accscore =
1

R · L
R∑
r=1

L∑
l=1

accr,l (7.9)

where L = 10 is number of cross-validation folds and R = 30 is number of repetitions.

In the rest of the work, we refer to this score as accuracy.

In our experiments we use notions of training window and decision window, the

former refers to the amount of data used for training and the latter refers to the amount of

data used for testing. Earlier we mentioned that we slice each driver’s trip into 10 slices,

and at each cross-validation fold 9 slices are considered to be part of training-set and 1
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Figure 7.2: Feature Extraction Process

slice part of the test-set. In order to perform various analysis sometimes we truncate the

train-set and test-set, for example, training window of 10 minutes and decision window

of 1 minute means that from the training-set we use the first 10 minutes of the trip for

fitting the models and from the test-set we use the first 60 seconds for predicting the

driver.

7.1.5 Feature Extraction

A sliding window approach is used for feature extraction. We use a 2 seconds long

Hamming-window and stride of 0.25 s. As it is shown in Figure 7.2 signal from each

window frame is pre-emphasized1 to enhance higher frequency components, we com-

pute log-magnitude-spectrum of the signal. From here we perform two different set of

operations to obtain two groups of features, spectral features and cepstral features.

For spectral features we consider log-power-magnitude of the signal for each 1Hz

range to be a feature, up to 8Hz however, because higher frequencies have smaller mag-

nitude we compress them in larger ranges in this case, 8–12Hz and, 12 Hz and above.

We also include the sum of all energies as a separate feature, therefore we would have 11

spectral features. To obtain cepstral features we apply DCT to log-power-magnitude of

signal and mean normalize it. In this work, we only keep the first 8 cepstral coefficients

as features. Like spectral features, we also consider the sum of energy among the cepstral

coefficients to be an extra feature as well. This will leave us with 9 cepstral features.

This results in a feature vector of dimension 20 per signal. We also scale features using

the following formula:

Xscaled =
Xraw − X̄raw

std(Xraw) + ε
(7.10)

to have each feature with a mean of close to zero and variance of one. ε is a very small

machine-dependent value added to avoid division by zero. In our experiments, we scale

the data only based on the training data, and apply the same scale to the test data.

7.2 Feature Analysis

In the initial experiments, we considered adding ∆ and ∆∆ of both cepstral and spectral

features. Delta cepstral features are well studied in speech recognition field. They have
1y [n] = x [n]− βx [n− 1]
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Figure 7.3: Normalized feature importance (larger the better), per feature category.
GP stands for gas pedal and SW for steering wheel. F refers to spectral features, and
C to cepstral features. No matter which notion of feature importance we use ∆ or
∆∆ features, are not informative. It is also evident that gas pedal features are more
important.

shown to improve accuracy by adding dynamic information to cepstral coefficients which

in turn helps explain temporal dependency between the frames [134, 135]. Addition of ∆

and ∆∆ will increase the number of features to 60 per signal. Here we perform analysis to

quantify and validate positive contribution of each of our signals and feature categories.

We use two measures, mutual information and random forest feature importance, for

both of which implementations from scikit-learn were used[86]. Results are presented

in Figure 7.3. We can observe that both signals are important however, it is clear that

percentage gas pedal (GP) presents higher importance. When it comes to comparing

feature categories, cepstral features show a slight advantage however the gap is not

significant. It is also clear that δ features do not play an important role and have low

importance. We also validated this in our preliminary results as we would usually get

better results without δ features. As a result we decided to remove them altogether for

the sake of simplicity and performance.

7.3 Experiments

In this section, we will evaluate our proposed methodology from various aspects and

analyze how model parameters affect the performance.

7.3.1 Model Parameters

We seek optimal values for two parameters M which indicated the number of GMM

components and α which is the ratio by which we linearly combine the likelihoods from

steering and gas pedal models. First, to determine the optimal number of GMM com-

ponents we perform a set of experiments by varying number of GMM components. We
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Figure 7.4: (A) When number of Gaussian components crosses 2, there is little effect
on the accuracy of the model. When looking more closely, there is a slight improvement
for 3 components, but after that accuracy plateaus. (B) We also measure the time
needed to fit a GMM (with full covariance matrix). We can see that fitting time
linearly increases with the number of components.

consider driver models with 1 to 9 Gaussian components and fixed α = 0.5, and evaluate

their performance. From the results presented in Figure 7.4a we can see that accuracy

plateaus starting from 2 GMM components and the best result is obtained with 3 GMM

components.

Depending on the application some time-constraints maybe need to be satisfied by

the driver identification solution (e.g., detecting fraud, personalizing car configurations

per driver). Therefore we also investigate the training time of the models. Figure 7.4b

shows the obtained results. As one would expect the fitting time increases with the

number of GMM components. So for each driver total training time would be the sum

of gas pedal (λG) and steering (λS) models. Similarly, for a scenario with 5 drivers, the

total training time is going to be approximately 5 times the fit time of a single driver.

Since withM = 3 the required computational time to train the models is still reasonable

in the following sections we always use models with 3 GMM components.

Second, to obtain the optimal combination of gas pedal and steering features, we

vary α from 0 to 1 and evaluate our method. Having α = 0 is equivalent to only using

λS and α = 1 would be equivalent to just using λG. This is done very similar to [35],

however here we are using different signals and features. The corresponding results are

presented in Figure 7.5. As it can be observed, the way α affects the results varies with

the number of drivers. It is clear that as the number of drivers goes up λS has a more

positive effect on the results, this is in line with the findings in our previous work [106].

Drivers operate the gas pedal and the steering wheel only at parts of their drive.

For instance, when the road is straight, no steering is required, and there are times that

driver lifts their feet from the pedal either to slow down or to keep a constant speed; At

such moments data from the corresponding signals is not quite informative. Therefore

we also considered dynamically switching between the models (λG and λS) based on
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activity in signals (average energy) however we did not observe significant improvements

in performance.
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Figure 7.6: The impact of the amount of training and prediction data on identification
performance. (A) We can see that even with five minutes of training data we obtain
close to 90% accuracy, and with 10 minutes, we get above 97.5% accuracy. (B) Accuracy
quickly improves with larger decision windows. 45 s prediction data is needed to obtain
accuracy of above 90%.

7.3.2 Sensitivity Analysis of Training-data

One of the important factors in driver identification is driver enrollment. In order to add

a new driver to the system, we need to collect sufficient amount of data from the driver

to fit a model. To find out how much data is enough we perform experiments by varying

the amount of train-data in 5-minute steps from 5 to 35 minutes of driving data and

measure the performance with a fixed 2 minutes of test-data. The results are presented

in Figure 7.6a. As one can see 5 minutes of training data yields poor results, however

starting from 10 minutes and above, performance crosses 90%. From this plot, we can
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conclude that with just 10 minutes of driving data we can obtain good accuracy and as

we collect more data from the driver it is possible to improve the model [136].

7.3.3 Sensitivity Analysis of Decision Window

Driving is a repetitive task, however, it takes a few minutes until one repeats various

maneuvers during a driving session. For example, consider driving on a straight stretch of

road, there is no steering maneuvers and only a few pedal operations. Therefore to obtain

more reliable results, a larger decision window is required. Moreover, in applications such

as theft detection and comfort, you would want to be able to accurately identify the driver

in the least time possible. Therefore we evaluate the impact of test-data on performance.

To do so we run experiments with a fixed training data of 20 minutes but with variable

sizes of decision window. We cover variations from 30 seconds to 5 minutes. A 60 seconds

long decision window leads to good results but starting from 90 seconds for all scenarios

we obtain more than 90% accuracy.

7.3.4 Overall Identification Performance

Here we present a summary of the results obtained in our experiments. The results are

presented in Table 7.1. We selected two cases, one with 15 minutes of training data to

fit the models representing a use case that not much of data from drivers is available and

one with 30 minutes of training data, representing a case with higher data availability.

For each case then we present accuracies for three decision window lengths, 1, 2 and 4

minutes. The choices are made to cover a wide range of applications and accuracies we

can get with our solutions under these varying conditions. We can see that even with

15 minutes of training data, after two minutes we can reach accuracies of over 95% for

5 and 15 drivers and 94% for 35 drivers. We also include extended experiments with

50 and 67 (the whole data-set). We can observe that with further increase in number

of drivers accuracy slightly decreases, however, this to large degree can be compensated

with collection of more data both for training and for prediction.

7.4 Discussion

Table 7.1 compares the identification accuracy of the GMM with the method presented

in the previous chapter. We improved the results significantly, primarily when a smaller

amount of training data is used. For instance, for the case with ten minutes of training

and three minutes of prediction data, the accuracy increase by 26.26, 42.32, 57.85 percent

for 5, 15, 35 drivers, respectively.

Moreover, we reduced the number of signals used down to two and used only 20

features per signal. Another significant improvement over the previous method is the
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Table 7.1: Comparison of the GMM with Discriminative approach.

Train-data Decision Accuracy - Mean (Std.)
Window 5 Drivers 15 Drivers 35 Drivers

Minutes Minutes Discrimi. GMM Discrimi. GMM Discrimi. GMM

5

1 0.575 (0.106) 0.883 (0.068) 0.438 (0.061) 0.853 (0.027) 0.367 (0.032) 0.802 (0.018)
2 0.589 (0.109) 0.909 (0.075) 0.470 (0.062) 0.894 (0.029) 0.415 (0.035) 0.863 (0.020)
3 0.594 (0.107) 0.918 (0.070) 0.494 (0.061) 0.906 (0.031) 0.431 (0.035) 0.876 (0.021)
4 0.597 (0.116) 0.933 (0.062) 0.509 (0.063) 0.913 (0.030) 0.439 (0.038) 0.879 (0.023)

10

1 0.743 (0.091) 0.953 (0.039) 0.617 (0.044) 0.929 (0.020) 0.537 (0.030) 0.903 (0.011)
2 0.775 (0.100) 0.989 (0.017) 0.674 (0.053) 0.978 (0.012) 0.600 (0.028) 0.971 (0.007)
3 0.788 (0.096) 0.995 (0.010) 0.697 (0.061) 0.992 (0.007) 0.624 (0.025) 0.985 (0.004)
4 0.795 (0.101) 0.997 (0.008) 0.714 (0.051) 0.992 (0.007) 0.640 (0.024) 0.985 (0.005)

20

1 0.905 (0.058) 0.975 (0.025) 0.796 (0.047) 0.956 (0.016) 0.721 (0.021) 0.939 (0.009)
2 0.921 (0.055) 0.995 (0.010) 0.857 (0.038) 0.987 (0.010) 0.790 (0.023) 0.985 (0.005)
3 0.929 (0.054) 0.999 (0.005) 0.888 (0.032) 0.997 (0.004) 0.825 (0.021) 0.994 (0.003)
4 0.943 (0.048) 0.998 (0.006) 0.908 (0.031) 0.998 (0.004) 0.851 (0.020) 0.995 (0.003)

fact that the addition of new drivers to the system is as easy as collecting training data

and fitting two GMMs. In the previous work, we had to retrain every time we enroll a

new driver in the system.

This method is also more privacy-preserving because only using the speed and

knowing the workplace or residential address of a person one could infer their destination

using only the speed [55]. Therefore with this method, we cannot learn anything more

than pedal or steering wheel operation patterns, which do not reveal much information

about a person’s lifestyle.

We examined several ideas that did not improve the results. One of these ideas is

the universal background model (UBM) [133]. In the context of GMMs, the idea is that

first, we compute a model (UBM ) for the general population, then for each individual,

we adapt the GMM components to fit the distribution of the feature vectors of a specific

driver. This has been shown effective in speaker recognition, but in our experiments, it

did not improve the results for the driver ID task. Since the idea is sound we suspect

the reason may be a lack of sufficient training data to construct a UBM.

7.5 Summary

In this chapter, we proposed a driver ID methodology that delivers excellent accuracy

while being computationally light-weight. We only used two signals (gas pedal position

and steering wheel angle) that are easily accessible from CAN-bus. Inspired by the

speech recognition research, we extracted cepstral and spectral features using a sliding

window mechanism. The resulting feature vectors were used to fit two GMM for each

driver (one per signal). At prediction time, feature vectors are extracted from the driving

data, and the driver is predicted based on the maximum likelihood estimation principles.

We linearly combine likelihoods from two models, for which we obtain the optimum

ratios (α) empirically. We provided analysis covering variations in model parameters,

training, and prediction conditions. We showed that with 30 minutes for driving data for



Driver Identification using Gaussian mixtures 77

training and 4 minutes of driving data for prediction, our proposed method achieves an

accuracy of over 99% for scenarios with 5, 15, and 35 drivers. This method has several

advantages. It is computationally light-weight. It is privacy friendly, because it does not

depend on data such as speed, which may lead to compromising the routes taken by the

driver [55]. Moreover, this approach is scalable because the enrollment of new drivers

does not require retraining of other models, which was the case for the method proposed

in the previous chapter and the majority of the related work.

For future work, we propose investigations on the portability of the GMM models

between the vehicles. Unfortunately, in our dataset all participants drive the same car.

However, it would be of interest to see if our proposed method will also work if the driver

changes the cars. This would be of interest to logistics companies when the driver is not

tied to a single vehicle or when an insurance customer buys a new car; ideally we should

be able to use the same model across various vehicles.

In the next chapter, we present a deep learning-based approach that allows us to

achieve excellent accuracy with little data.



Who then is invincible? The one who cannot be upset

by anything outside their reasoned choice.

Epicetus, Discourses, 1.18.21

8
Driver Embedding and Its Applications to

Driver Identification

IN the past two chapters, we approached the driver ID as a classification problem. We

showed that the discriminative classifiers limit the scalability, and require more than

20 minutes of training data to show good accuracy. On the other hand, the GMM model

solves some of the issues with the discriminative models and shows excellent accuracy.

However, still, we need about 5–10 minutes of driving data to be able to estimate a good

model that can accurately identify the driver. There are use-cases that require to obtain

high accuracy with little data, let us take the example of a car rental service. Since they

charge extra fee for each additional driver. They would like to construct a model before

the driver leaves their premises. This would mean that we need to construct a model

with less that a minute of driving data.

Recently, DL has shown a great promise in several areas of research. The main

issue with DL methods is the need for substantial amounts of training data. To reduce

the amount of data needed to construct a driver model, we propose a similarity learning

approach. We briefly outline the general idea, which we further expand and describe

in detail in this chapter. In this approach we train a DNN to encode an interval of

driving data into an embedding. Embeddings are n-dimensional real-valued vectors,

that often have some useful properties. They are often used as a compact method of

representing a complex concepts. For example, in natural language processing (NLP),

words are represented in form of embeddings, which allows the DL methods to capture

78
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the meaning and semantics of the words.

In our approach, we expect the embeddings from the same driver to be in a close

Euclidean distance from each other. On the other hand, we expect the embeddings from

different drivers to be far from each other. We can use this property to develop a driver

ID method. The significant advantage of this approach is that we do not need to train

the network using the set of drivers that we are interested in identifying. Therefore,

we can use any large driving dataset to train the network. Then, we feed driving data

from our target set of drivers to this pre-trained DNN. The resulting embeddings serve

as a compact driver representation, or a driver fingerprint. We use these embeddings in

conjunction with a k-NN classifier to construct a driver ID method.

Many have used the embeddings in contexts other than text and language process-

ing. There are a few works that have done the same in driving and mobility context. Hal-

lac et al. [137] propose a method they call Car2Vec which uses embeddings to represent

state of the car. Their focus is on compressing large number of sensor values (665) down

to a 64-dimensional real valued vector. Liu et al. [138] propose a method based on deep

sparse auto-encoder to visualize driving data. Liu et al. [139] apply the Word2Vec [21]

to road network to obtain road embeddings that are used to quantify complex traffic

interactions among roads and capture underlying heterogeneous and non-linear proper-

ties. In a more relevant work, the authors propose to use a Siamese network [140, 141]

in conjunction with an embedding net based on stacked LSTMs. They only operate on

left turn events. They validate their approach on a dataset of 32 drivers, each time 30

drivers are used for training and two for testing. They obtain ROC area under the curve

(AUC) of 0.753 in average Dang and Fürnkranz [142].

The rest of the chapter is organized as follows. First, in Section 8.1, we introduce

the deep driver model and the details of our approach. In Section 8.2, we describe

the evaluation setup. Then in Section 8.3, we present the results of the driver ID and

verification experiments. In Section 8.4, we visualize some of the resulting embeddings.

Next, in Section 8.5, we discuss some of the related works and potential applications of

the proposed method. Lastly, in Section 8.6, we summarize the work.

8.1 Methodology

In this section, we describe the proposed methodology. We start by presenting the

Triplet network architecture and the training process. Then we describe the data and

the embedding network, which is a deep residual neural network.

8.1.1 Deep Driver Model

Deep learning models have been successful at various classification tasks, such as image

classification. Although there have been attempts to interpret and utilize intermediate
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embedding net

embedding net

embedding net

xn

xa

xp

share weights

||f(xa)-f(xp)||2

||f(xa)-f(xn)||2

Comparator

Figure 8.1: Block diagram of Triplet network. Three duplicates of Embedding net with
shared weights encode each triplet examples. We compute the L2 distance between the
positive and the negative pairs. We optimize the network in order to reduce the distance
between the positive pair and increase the distance between the negative pairs.

representations in deep networks, these intermediary representations were only a side

effect of the main task of the deep network (i.e., image classification).

Starting with variants of Siamese Network that used a contrastive loss over the

representations used to discriminate between the pairs of examples perform tasks such as

signature or face verification [140, 143, 144]. Contrastive loss promotes a small distance

between pairs of the same label and a large distance when the labels are not the same.

Siamese networks are sensitive to calibration and are not suitable for classification [52].

We use a Triplet network, which was introduced by Hoffer and Ailon [52] as an alternative

for the Siamese network with better performance.

Before we describe the Triplet network, we determine the input data to use for

the driver ID task. The input to a face or signature verification system is trivial, it is

the image of a face or a signature. However, for driver ID, we face an endless stream of

sensor measurements, with no particular pattern. There are several ways to approach

this problem, such as using specific events as the input, for example, the interval of data

corresponding to left-turns, or harsh brakes. However, in short journeys, such events

may not occur frequently; moreover, isolating those events requires extra preprocessing.

For practical purposes, we consider the input to be a short interval of driving data that

may or may not correspond to any driving event. We refer to this interval as a maneuver,

and for simplicity, denote it by x.

In Triplet network architecture the goal is to find an embedding f(x) that maps the

input x into a space Rd in a way that L2-norm of the distance between all the maneuvers

of the same driver is small, while the L2-norm of the distance between pairs of maneuvers

from different drivers is large.

The embedding is represented by f(x) ∈ Rd, which embeds a maneuver x into a

d -dimensional Euclidean space. We want to ensure that a maneuver xai (anchor) of a

particular driver is closer to all other maneuvers xpi (positive) of the same driver that it

is to any maneuver xni (negative) of any other person (see Figure 8.2). We formalize this
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Learning

Anchor Anchor
Positive

Negative

Positive

Negative

Figure 8.2: Left, an exemplary triplet is shown, the distance between the anchor (blue)
to negative example (orange) may be smaller than the distance to the positive exam-
ple (green). After the learning process, the distance of the anchor to the positive
example is smaller than the distance to the negative example.

as:

||f(xai )− f(xpi )||22+α < ||f(xai )− f(xni )||22, ∀(xai , xpi , xni ) ∈ P. (8.1)

where α is a margin between the negative and positive pairs. P is the set of all possible

Triplets in the training set and has the cardinality of N . Equation 8.1 is also referred

to as the Triplet loss. We call this adaptation of the Triplet network architecture, which

maps the driving data to an embedding space, the deep driver model. Figure 8.1 depicts a

generic Triplet network. The main building block of the Triplet network is the embedding

network. The embedding network is a DNN and its architecture depends on the input

data. For simplicity, we defer presenting the embedding network architecture to the end

of this section.

8.1.2 Training

The training of a Triplet network architecture is nuanced. Depending on the number

of examples in the training dataset, the number of possible triplets will be very large.

Iterating over all the possible Triplets will take too long. Moreover, it is not efficient

because many of Triplets already satisfy Equation 8.1, and therefore iterating them will

not improve the model. To converge faster, we should select the Triplets that violate the

constraint in Equation 8.1. There are two main approaches to achieve this goal:

• Offline: To generate the Triplets periodically after n mini-batches, and find the

examples that violate the constraint the most.

• Online: To generate the Triplets online by selecting the hard examples from a

mini-batch.

Initially, we performed experiments with both approaches, but we decided to generate

examples online for each mini-batch. Because pre generating all Triplet for the whole

dataset is slow and time-consuming, moreover selecting the globally hardest examples

may lead to too much focus on the erroneous or poor quality examples. In our case,

this could be where the car is not moving, and there is no pedal operation; therefore, no

information to discriminate drivers.



Driver Embedding and its Applications to Driver Identification 82

The final process is as follows, for each mini-batch, we construct all Triplets con-

sisting of all possible combinations of anchor-positive pairs. However, for the negative

pair, we do not choose the hardest example (i.e., negative example closest to the anchor)

because Schroff et al. [145] found that, selecting the hardest negatives can quickly lead

to a local minima and result in a collapsed model, f(x) = 0, something that we also

experienced in the early experiments. Therefore to avoid a collapsed model, we select a

semi-hard example, defined by:

||f(xai )− f(xpi )||22< ||f(xai )− f(xni )||22 (8.2)

We use the Adam optimizer [146] with learning_rate of 0.005, a learning rate sched-

uler halves the learning rate every 20 epochs. We continue the training for 70 epochs

and perform an early stopping if the loss does not decrease for ten consecutive epochs.

The training is done using a Tesla V100 GPU, and the implementations are done in

PyTorch [147]. At the training time, we train five models with different random initial-

izations and at the end, proceed with the best model.

8.1.3 Input Data

We use the Uyanik dataset for validation, two signals are selected for feature extraction,

steering wheel angle (SWA), and percentage gas pedal (PGP) signals. These are the

minimal signals that are usually available to obtain from the car’s internal network. We

used the same signals in Chapter 7 and established their effectiveness. By re-using the

same signals, we focus on the new approach instead of the intricacies of signal and feature

selection.

From each signal, we extract the same features as used in Chapter 7. A sliding

window approach is used for feature extraction. We use a 2 seconds long Hamming-

window and stride of 0.25 s. First, we pre-emphasize1 the signal to enhance higher

frequency components. Then, to obtain spectral feature we compute the log-magnitude-

spectrum of the signal. For spectral features, we consider log-power-magnitude of the

signal for each, 1Hz range to be a feature, up to 8Hz; however, because higher frequencies

have a smaller magnitude, we compress them in larger ranges in this case, 8–12Hz and,

12Hz and above. We also include the sum of all energies as a separate feature, which

amounts to 11 spectral features. To obtain cepstral features, we take the DCT of log-

power-magnitude of signal and mean normalize it. In this work, we only keep the first

eight cepstral coefficients as features. Similar to the spectral features, we also consider

the sum of energy among the cepstral coefficients as an extra feature. This will leave us

with nine cepstral features. This results in a feature vector of dimension 20 per signal.
1y [n] = x [n]− βx [n− 1]
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To summarize, a frame consists of several consecutive sensor measurements. The

features are extracted per frame. The frames advance in time in strides of 0.25 s.

Therefore a feature vector of dimension 40 (20 per signal) is extracted every 0.25 sec-

onds (stride=0.25s). We call n consecutive feature vectors a block. We use n = 32,

therefore a block X ∈ R40×32, which covers 9.75 s of driving data. A block is the unit of

data that we input to the embedding network. Although a block can be thought of as

a two-dimensional image, it is a 40-dimensional time-series data of length 32, therefore

the neural network should treat it appropriately.

x

weight layer

F(x) weight layer

+F(x) + x

x identity

ReLU

Figure 8.3: A building block of residual learning

8.1.4 Embedding Network

We need to choose a deep neural network architecture that is suitable for the input

data. Several architectures exist for the common tasks such as image classification [25,

26], and language modeling [23, 148]. Unfortunately, not only there is no established

architecture for driving data, there are few works focused on temporal sensor data (d -

variate time-series). We propose a residual architecture inspired by ResNet [27], a well-

known architecture for image classification. The main difference is that we only use three

residual blocks and 1 -dimensional convolutions instead of 2 -dimensional convolutions.

Residual networks were introduced to solve the training accuracy degradation in

very deep networks. Residual networks are composed of residual blocks that each have

a shortcut connection that skips through from the beginning of the block and is added

to the block’s output. The idea is that if we hope that the block learns the mapping

H(x) it can as well learn F(x) := H(x)− x. The hypothesis is that it is easier to learn

F(x) + x than it is to learn H(x) itself (see Figure 8.3).

Each residual block consists of three 1 -dimensional convolutional layers. The first

layer has a Kernel size of seven, the second one five, and the last one three. The number

of the feature-maps (filters) is 64 in the first block and 128 in the last two residual

blocks. Similar to the main ResNet paper, each convolutional layer is followed by a

batch normalization (BN)[149] and a rectified linear unit (ReLU) non-linearity [150].

The residual blocks are followed by an average pooling layer and a fully connected (FC)

layer. This architecture is depicted in Figure 8.4.
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driving sample

1x7 conv, 64

1x5 conv, 64

1x3 conv, 64

1x7 conv, 128

1x5 conv, 128

1x3 conv, 128

1x7 conv, 128

1x5 conv, 128

1x3 conv, 128
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fc 48

Figure 8.4: Simplified rep-
resentation of the residual net-
work used in this work as
embedding network. Residual
blocks can be distinguished
by their color. Each resid-
ual block contains three 1 -
dimensional convolutional lay-
ers.

To confirm the capability of this network in solving the driver ID problem, we

perform an experiment. To use the embedding network as a classifier, we add a non-

linearity (ReLU), followed by an FC layer with Softmax activation to the end of the

network. We only test this case with the entire dataset of 54 drivers. We perform 10-fold

cross-validation and split each trip into ten segments, and at each fold, we leave out one

segment and train on the rest. The setup is generally similar to Chapters 6 and 7, except

that there is no random sampling of the drivers. We make predictions for every block

of data in the test set and make decisions based on the maximum sum of scores. The

model achieves the accuracy of 0.9931 with standard deviation of 0.0272. Even though

we performed this experiment to validate the efficacy of the architecture for modeling

driving data, it outperforms our earlier approaches, but we should note that this setup

is not scalable and requires complete retraining when we enroll a driver.

8.2 Evaluation

We evaluate the performance of the deep driver model for two tasks of driver ID and

driver verification. We use the Uyanik dataset for the evaluations. Although there are

slight variations the underlying setup is the same for both tasks.

8.2.1 Experimental Setup

There are 57 drivers in the Uyanik dataset. To obtain an accurate performance esti-

mation, we repeat the experiments several times. We do this at two levels. First level

is where we randomly sample drivers to use as test set. The second level is where we

randomly sample intervals of driving data to use as driver model, and test example.
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At each round, a set of K drivers (K ∈ {5, 10, 15}) is randomly sampled to take

part in the evaluations. We repeat all experiments R = 30 times with different random

subsets of K drivers. We consider these drivers as the validation set. Then we train the

DNN using data from the remaining drivers. Therefore, when we evaluate a driver ID

task of K = 10 drivers, 57 − 10 = 47 drivers remain for the training of the DNN. In

another example, when five drivers are selected in validation, 57 − 5 = 52 drivers are

left for training. Therefore, the model with ten drivers not only tackles a more difficult

task (discriminating twice the number of drivers) it also is at a data disadvantage, because

there is less data remaining for training.

The evaluation process is different from the previous chapters. To evaluate the

performance of this approach, we design a procedure to generate test scenarios. Each

scenario consists of sampling a model and L positive examples for each driver Ck. We

always make sure that there is no overlap between the model and the positive-examples.

We repeat this M times, to achieve a fair evaluation of the models. A model in this

case consits of one or more consecutive blocks. We introduce the variable model-size,

to denote the number of blocks used to construct a driver model. For example, the

model-size of five means that we use five consecutive blocks to construct a model. Here

we used the term construct, because we do not necessarily fit a model using this data.

A positive-example, refers to a sequence of consecutive blocks, used for prediction, the

number of these blocks are determined by the variable prediction-window. The model-

size and prediction-window are proxies for the amount of driving data used for the

enrollment (model-size) and the prediction (prediction-window). We experiment with

model-size ∈ {1, 5, 10, 15} and prediction-window ∈ {5, 10, 15}, M = 50, L = 50. We

use this procedure to generate datasets that we use in experiments presented in the next

section.

8.3 Experiments

8.3.1 Driver Identification

The deep driver model encodes a block into a d-dimensional embedding. In order to per-

form driver ID with such a mechanism, we need to extract embeddings from our training

and test data. Then each resulting embedding can be treated as an example, therefore

we can use any classifier such as k-NN [151] or SVM [91]. For our experiments, we use the

procedure presented in Section 8.2 to generate examples. We evaluate the performance

per scenario. We use the trained DNN to extract embeddings for all models and positive

examples. Then we use the model embeddings for training and the embeddings of the

positive examples for evaluation. We use the k-NN classifier because it is suitable for

problems where only few training example are available (model-size). k-NN in order to
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Figure 8.5: (A): Identification performance of Deep driver model, for 5, 10, and 15
drivers. We can see for all three cases, accuracy of over 0.93 achieved with less than
15 seconds of data. (B): Results from a GMM model under similar conditions. The
accuracy for all cases is only slightly better than random choice. GMM needs at least
a few minutes of training data to produce high accuracy.

classify an unlabeled example finds the k closest examples in the training set and selects

the majority class. Therefore driver ID works as follows, we use the model ’s embeddings

as labled examples to construct a classifier (model-size embeddings per driver). At pre-

diction time, given a positive example’s embeddings, the classifier can make prediction

per each embedding (depending on prediction-window) and final prediction is determined

by majority vote. We use k-NN classifier from scikit-learn software package [86], with

five neighbors and Euclidean distance metric. Since the same amount of examples are

sampled per each class (driver) we choose accuracy as the chosen performance metric.

We report the average accuracy accross scenarios and runs (experiments are repeated 30

times with random subsets of drivers).

This approach eliminates the need for retraining the DNN when new drivers are

enrolled in the system. For example, when we experiment with 5 drivers, the DNN

is trained with the data from all drivers except the 5 drivers selected for the ongoing

experiment. Therefore, to enroll a new driver, the only requirement is to obtain a few

blocks of driving data, which we feed to the DNN to obtain their embeddings. Then the

embeddings are used by the k-NN classifier.
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Figure 8.6: Deep driver model driver verification - EER

The results are presented in Figure 8.5a. The best results are achieved with model-

size and prediction-window of 15 blocks which is equivalent to 13.25s with accuracy of

0.99, 0.96, and 0.93 for 5, 10, and 15 drivers, respectively. We observe that the accuracy

increases proportional to model-size or prediction-window, which is expected.

We introduced the deep driver model to reduce the amount of training data re-

quired to achieve accurate driver ID. To confirm our hypothesis, we run experiments

with the exact same setup used here to evaluate the deep driver model but instead we

use the GMM model introduced in Chapter 7. Therefore, instead of the blocks of data

and their corresponding embeddings we use the feature vectors extracted from frames

that amount to same time duration, for example 13.25s in the case of model-size of 15.

The corresponding results are shown in Figure 8.5b, for the case with model-size and

prediction-window of 15, we only obtain the accuracy of 0.23, 0.13, and 0.093 for 5, 10,

and 15 drivers, which is only slightly more that uniformly random prediction.

At first it appeared that the results incorrect, but complementary experiments

showed that the only issue is the small amount of data used for fitting the GMMs (model-

size), and larger model-sizes (in order of minutes) will result in high accuracy. An inter-

esting observation here is that the increase in model-size slightly improves the accuracy

but the increase in prediction-window does not improve the accuracy at all, we confirmed

that even much larger prediction-windows did not improve the results. Since the data

used for fitting the GMMs does not adequately represent the distribution of driver’s fea-

ture vectors, no matter how much data is used in prediction-window the accuracy does

not improve.

8.3.2 Driver Verification

Even though driver ID and verification are closely related tasks in the previous chapters

we did not consider the driver verification task. Since the deep driver model is optimized

as a distance metric, it is a ideal for the driver verification. We consider driver verification

to be the task of confirming whether an example belongs to a certain driver or not.
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The same procedure as described in Section 8.2 used to sample examples. Similar

to driver ID, we extract embeddings from sampled model and positive example blocks. In

the verification case, for model-sizes or prediction-windows of more than 1, we merge all

their corresponding embeddings by averaging. Next, we need to produce model -example

pairs. In each scenario, assuming K drivers and L examples per driver. We produce all

the combinations of positive and negative pairs of model and examples. Each driver has

L positive pairs and (K − 1) ∗ L negative pairs. Then we obtain embeddings for each

pair. Next, we compute the square of the L2-norm of their difference.

||f(xmodeli )− f(xexamplei )||22 (8.3)

Based on this distance, a decision can be made to accept or reject the example. Since

verification is a binary classification task one may set the decision threshold at any

operating point, which will affect the false-positive and false-negatives. Depending on the

application a multitude of methods can be used to select a decision threshold that reflects

the designer’s needs (such as methods that associate a higher loss to false-positives).

We only report the EER, which is the value of the false rejection rate (FRR) or false

acceptance rate (FAR) at the operating point in which both of them are equal. The

results are shown in Figure 8.6. In the case of model-size 30 and prediction-window of

15—equivalent to 17 and 13.25 seconds of driving data, respectively—we obtain EER of

0.083, 0.101, and 0.107 for 5, 10, and 15 drivers.

8.4 Embedding Visualization

The deep driver model encodes blocks of driving data into embeddings. The main advan-

tage of the embeddings are their semantic meaning ([21, 139]). Even though the focus

of this work is to identify or verify the driver, these embeddings can also be used for

other purposes. We used the embedding dimension of 48, in order to visualize them we

use two common dimensionality reduction methods, PCA and t-distributed stochastic

neighbor embedding (t-SNE) [152] to project the embeddings onto two dimensions. We

visualize a random sample of embeddings from four experiments involving five drivers.

Figure 8.7 shows the corresponding results. Each row are the representations of the

same embeddings, the figures on the left are projected using PCA and the ones on right

are projected using t-SNE. Each point in the figure represents embedding of a block of

driving data, the color and shape of each point varies for each driver.

In most cases t-SNE projections show a clear separation between drivers. We did

not handpick the examples with good separation on the contrary we tried to find some

examples that are difficult to separate (at least using the PCA projections). This clear

separation enables even more applications such as infering number of drivers that used
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Figure 8.7: Visualization of embeddings for 4 experiments. Figures on each row are
from the same experiment. The figures on the left are PCA projections and the ones
on the right t-SNE projections.
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a vehicle, which can be achieved application of clustering algorithms. This can be useful

for example for car rental companies, they can know if the car was driven by two people

while the contract included only one eligible driver.

It is also possible that these embeddings contain information about driving style of

drivers. For instance, drivers that their embedding is close to each other probably have

similar driving styles, however more work needs to be done to validate this hypothesis. If

true, the deep driver model can be used by insurance companies to detect risky drivers.

8.5 Discussion

The deep driver model reduces the amount of data required for training and testing.

Using GMM we could achieve accuracy of over 90% only with five minutes of training

and about two minutes of data for prediction, using deep driver we reduce this to 10

seconds of training and prediction data. Since here we speak of the average accuracy,

certainly there are cases that 10 seconds training data is sampled from a part of trip

with no pedal interactions, therefore the model will be ineffective. However any driving

sample which includes reasonable amount of pedal or steering wheel interaction should

suffice.

The deep driver as presented in this chapter is built upon the work presented in

the previous chapters and the hand engineered feature-set that resulted from them, this

feature-set gives the embedding net a head start in discriminating the drivers, however it

does not mean that it only works with this particular set of features. An advantage o DL

approaches is that they do not need pre-defined features. DNNs, especially convolutional

networks, have the capability to learn features that are equally or even more effective

than hand engineered features. Therefore, in principle, instead of the current feature-

set we could just use the raw sensor data, the only downside would be that perhaps

more convolutional layers and more training data would be needed to achieve a similar

performance.

The deep driver model is agnostic to the embeddings network used in the archi-

tecture. One can swap out the proposed residual network with any DNN architecture

that can take a block of driving data in its input. More comprehensive architecture

search can be considered as a future work. An interesting idea worth exploring is the

treatment of a block as an image, and the use of standard image classification architec-

tures ([25–27]) as the embedding network. There are two advantages in using well-known

architectures, a) months if not years is spend crafting and studying such architectures

b) we can use pre-trained models to greatly improve the accuracy and reduce the training

time [153–155].

In an image classifier the first convolutional layers act as simple feature detectors,

such finding edges or corners. In the deeper layers, feature-maps detect more complex
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patterns such as grid-like patterns or textures. Therefore, we can take a model that

is pre-trained on the ImageNet ([156]) to classify object categories. Then we remove

the last few layers, and replace them with more suitable layers, and plug it into deep

driver model as the embedding network. Then we start training the last layers of the

network as we did before; this is called fine-tuning. In this approach early layers are

either frozen, meaning we do not update their weights or use very small learning rates.

Data augmentation can also be used to further improve the model in case there is not

enough data available for training.

We also identify some potential for further investigations of the semantic meanings

of the embeddings resulting from deep driver model. Perhaps these embeddings can

be used to construct a driver profile which encompasses driving style as well as driver

identification properties.

8.6 Summary

In this chapter, we introduced the deep driver model, based on the Triplet network

architecture. We introduced a residual DNN that is used at the part of the deep driver

model. The deep driver encodes a block of driving data into d -dimensional embedding

vectors. These embeddings then can be used for driver ID, driver verification and other

applications. We evaluate the performance of this method for driver ID task, best results

are achieved with model-size and prediction-window of 15 blocks which is equivalent to

13.25 s with accuracy of 0.99, 0.96, and 0.93 for 5, 10, and 15 drivers respectively. In case

of driver verification we obtain EER of 0.083, 0.101, and 0.107 for 5, 10, and 15 drivers

(using 17 seconds of training data and 13.25 seconds for prediction). For both tasks

better accuracy can be achieved as more data becomes available. We showed that deep

driver model can achieve the same accuracy as GMM with one-tenth (1/10) of data (30

seconds as opposed to 5 minutes).

Thus far, our assumption was that we have access to vehicle operation data, such

as PGP and SWA. However what if such data is not available? Is it still possible to

perform driver ID in absence of CAN-data? In the next chapter, we consider the case

that CAN-data is not available and provide a driver ID solution that only uses GPS data

from smartphone.



Live as if you were to die tomorrow. Learn as if you

were to live forever.

Mahatma Gandhi

9
Driver Identification Using GPS Data

from Smartphone

MOST recent research has dealt with the data from CAN-bus with high sample-

rates, sometimes attained in unrealistic scenarios such as using external sensors.

These solutions require specific hardware, powerful processors, and high data-rate, which

limits their deployability. There is then a real need for driver ID methods that are not

hardware-dependent, and that can guarantee high accuracy even with low-rate data,

which minimizes communication and storage costs. In this context, we consider in this

chapter the scenario of having location-data only of vehicles, and we investigate whether

this low-sample rate location data is sufficient for identifying drivers or not. Although we

use an external web service to extract contextual metrics from the locations, our method

stands as an end-to-end driver ID solution. In particular, we present an efficient way

of encoding location coordinates and road-network links using embeddings to be used

in DNN models. We evaluate the proposed method using a large set of driving data

covering thousands of different drivers being active for up to more than one year in the

Greater Region of Luxembourg.

The remainder of this chapter is organized as follows. Section 9.1 introduces the

dataset and the related terminology. In Section 9.2, we introduce the details of the

proposed methodology. Then in Section 9.3, we describe the experimental setup and the

baseline methods we used for comparison. Then in Section 9.4, we present the results.

In Section 9.5, we discuss the implications of this approach. Finally, in Section 9.6, we

92
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Figure 9.1: The relationship between different entities in the dataset. Each driver
makes multiple trips, each trip is composed of multiple location data-points. A map-
matching service maps a location data-point to one link, then a contextualizer service
assigns multiple attributes to each link. For each trip we extract multiple metrics which
take into account every location, their corresponding links and their attributes.

summarize.

9.1 Dataset

In this work, we use a dataset kindly provided by Motion-S SA1. During a data collec-

tion campaign, more than ten thousand participants downloaded a gamified smartphone

application to provide driving behavior tips, in exchange of receiving feedback on their

driving behavior (riskiness factors) and a chance to win a prize. The participants have

been collecting driving data in the background by detecting car start and stop using

Bluetooth connection events with their car infotainment system. We refer to such a

recording session as a trip. Conceptually a trip could be a commute to the work-place or

back, visiting the doctor’s office, or going to the mall for shopping. Additionally, there

are times that the participant either disables or chooses not to record specific trips, for

any possible reason.

During a trip, the app records timestamped locations updates every second. At the

end of each trip or whenever the Internet connection is available, the data gets uploaded

to a remote server. Location update, is comprised of latitude, longitude, altitude, speed,

bearing, and estimated accuracy. The dataset used for this study is free of all personally

identifiable and quasi-identifiers, we only use a pseudo-identifier to keep track of trips

that belong to a lambda individual.

Each trip is a sequence of timestamped location data. After collection, location

data are contextualized using Here.com2 maps layer for map-matching and data augmen-

tation. Map-matching is a process that associates a latitude, longitude coordinate to a
1https://www.motion-s.com
2Here.com https://api.here.com

https://api.here.com
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Figure 9.2: (a) Histogram of number of trips per driver. (b) Histogram of trip lengths
in km. There were few trips longer than 80km that are excluded. (c) Histogram of
active days, which is the interval between the first and the last trip made by each driver.
Some outliers with active period longer than 600 days are excluded.

segment of the road network, which we call a link and is represented by a unique integer

identifier. The data augmentation process can provide a broad spectrum of attributes

that characterize a particular link, e.g., slope, speed limit, administrative region, coun-

try, road roughness, points of interest, traffic signals, or whether it is a tunnel or bridge.

After obtaining link attributes we compute additional features (metrics), e.g., speeding

ratio, acceleration, and steering. An overview of these features is listed in Table 9.2.

Table 9.1: Dataset statistics

Statistic pre-processing
before after

Number of drivers 1385 678
Average trips per driver 261.51 297.06
Total trips 362198 201410

9.1.1 Preprocessing

To ensure quality, we filter the dataset according to the following heuristics. Short trips

are often faulty and do not contain enough information to be useful; therefore, the trips

shorter than five minutes are removed. Moreover, we calculate the trip-length as the

difference between trip-start and trip-end timestamps. There are times that although

the length is over five minutes, the trace is faulty and contains few location data points,

to filter such instances, we also drop trips with 100 or fewer data points. Trips having

constant speed is another pattern observed among faulty trips, so we decide to remove

them from the dataset. We filter out the cross-border or trips taking place outside

Luxembourg territory. Lastly, we exclude drivers that have fewer than 50 trips in their

records. Table 9.1 shows a summary of dataset statistics before and after preprocessing.

There are 1385 drivers in our dataset, each with 13 to 5066 trips, and a total of 362198

trips. After the preprocessing steps, the number of distinct drivers reduced to 678 and a

total of 201410 trips.
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Table 9.2: Metrics, and dimension of their corresponding feature vectors.

Metric Cont. Cat. Seq. Description

T
em

p
or
al Day of week - 1 (7) - Day of week

Hour - 1 (24) - Hour
Minute - 1 (4) - Minutes binned into 4 quarters
Temporal exposure 3 - - Slight, Serious, Fatal
Peak-hour - 1 (2) - if trip took place at peak hour.
Total time (s) 1 - - duration of the trip
daytimeproportion 1 - - daytime Proportion of trip

B
eh
av
io
ra
l RPA 1 - - Relative positive acceleration

Steering 1 - - high, Low
Brake & Acceleration 4 - - high, low
Acc./decelleration g-force 6 - - max, min and avg. of acc./decelleration g-force
Count illegal actions 3 - - turn, u-turn, direction
Average overspeed 3 - - -, curves, traffic

S
p
at
ia
l

Lat./Lon. of trip start/end 2×2 2×2(∼4k) - Latitude and longitude of start and end of trip
Link IDs - - varies sequence of links traversed during a trip
Bearing 1 - -
Distance 2 - - Haversine & Manhattan distance between orig. & dest.
Distance (km) 4 - - distance travelled in motorway, rural, urban areas
Count of road features 4 - - Bridges, Tunnels, Urban Areas, signals, POIs
Proportion (distance) 3 - - prop. of distance traveled in motorway, urban & rural
Proportion 5 - - FC1, FC2, FC3, FC4, FC5
Proportion 6 - - road-type (e.g. motorway, highway)
Border crossing 1 - - Number of times driver crosses the border
Number of traffic signs 6 - - Priority, yield, stop, lane-merge, pedestrian, overtaking
Count of road object 3 - - Bridges, roundabouts, tunnels
Count of location data points 2 - - Total count, valid count
Speed in traffic 1 - - Driving speed in relation to traffic
Time in traffic 1 - - Time spent in congested traffic

9.1.2 Features

The data set used in this chapter contains various variables describing many aspects

of each trip. For that reason, in order to improve their understanding, we propose to

categorize the features from two perspectives: semantic and technical. The semantic

perspective is related to the nature of the metric, while the technical perspective is

related to the expected type of output for that particular feature.

9.1.2.1 Semantic Categorization of Features

The act of driving implies that an individual is driving in a specific place, at a certain

point of time, and behaving in a particular manner. We semantically categorize the

features as follows:

Temporal: Features, derived from the date and time of the collection locations of the

trip.

Spatial: Features, merely derived from specific location coordinates and the route taken

by the driver.

Behavioral: Every other feature. The features that, to some extent, are a function of

the driver, such as the steering and acceleration patterns.

Note that this categorization is somewhat arbitrary. One could argue that the hour

of a trip should be considered behavioral because it is the driver’s choice. Since our

focus is driver ID and its applications, some use-cases cannot depend on every feature

category. For example, in the case of long haul truck drivers, if the truck is driven by

an illegitimate driver, since the destination and likely the route does not change, we

cannot rely on spatial or even temporal features. Therefore behavioral features are the

only possibility to discriminate between the two drivers. The semantic categorization of

the features is indicated on the left side of Table 9.2.
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Figure 9.3: A demonstration of location cross-features. A grid is laid over the Lux-
embourg city’s centre district. Each grid-cell can be thought of as a 2-d bucket that is
assigned an integer identifier. Then any location data-point anywhere in a grid-cell is
mapped to the grid-cell’s identifier.

9.1.2.2 Technical Categorization of Features

The technical categorization refers to the expected output type, because every data type

requires an appropriate model. There are three types of features that we are concerned

with: a) continuous b) categorical c) sequential.

Continuous features As presented earlier, for every trip, a number of metrics is

computed. We can represent real valued feature as X ∈ RM×N , where M is number of

trips and N is number of features. The continuous features are scaled as below:

Xn =
Xn −mean(Xn)

std(Xn) (9.1)

mean(Xn) is the mean of the nth dimension of the X across all trips of all drivers.

std(Xn) is the standard deviation of the nth dimension of the X across all trips of all

drivers. Number of continuous features per metric is indicated in continuous column of

Table 9.2.

Categorical these features, even though often represented as an integer type, their

numerical value carries little or no meaning. For example we treat hour as a categorical

feature, because the hours 23 and 0 even though they are farthest apart among hours of

day, they both represent midnight hours. Other examples are day of week consisting of

7 categories or peak hour having only two categories.

In particular, we propose to represent location coordinates of origin and destination of

a trip as a categorical feature. A location coordinate consists of continuous values for

longitude and latitude, X = (lon, lat), where X ∈ R2. However, we can also treat

them as a cross-feature, by binning the latitude and longitude in a grid on the map
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Figure 9.4: Architecture diagram

(see Figure 9.3). In this work we bin the coordinates to 0.003°. To do so, we assign a

unique number to each cell in the grid n ∈ N. Trip origin an destination coordinates are

then mapped to the correspondent cell identifier X 7→ N, therefore every coordinate is

represented by an integer. The number of categorical features are indicated in categorical

column of Table 9.2, the number of categories are indicated between parentheses.

Sequential The only sequential feature we consider is the sequence of links taken

by the driver. As described earlier in this Section each location is mapped to a link. In

other words this is a sequence of categorical features. We drop the repeated consecutive

links but still the length of the sequence varies and is trip dependent.

9.2 Methodology

The goal of driver ID is to associate a driving trip or its representation x to its actual

driver Ck from a known set of K drivers. We propose to model the driver ID task as

a supervised classification problem. Therefore we assume information on all possible

targets, which is also known as closed-world scenario, assuming that all examples are

from classes in the training data set. We choose a DL approach to tackle the problem.

The motivation behind this decision is the ability of simultaneous handling of multiple

data types. Moreover due to its modular design, more inputs of any kind can be easily

added to the model.

The main challenge of this scenario is to handle sparse and high dimensional cate-

gorical data. We have two instances of such data, links and location cross-features. For

instance, only in Luxembourg (where main part of our data is coming from) there are

about 60 thousand links. Categorical data is generally encoded using one-hot scheme,

which for a feature with n values creates a n-dimensional vector, when having features

with categories in orders of thousands, one-hot encoding is not effective. To tackle the

issue of high dimensionality we use a similar technique as word embedding [21]. Word

embedding is a technique used in NLP that maps vocabulary to vectors of real numbers.
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Table 9.3: Summary of model parameters for an example experiment with 50 drivers.
Auxiliary outputs are omitted.

Module Layer Kernel, Bias # params

Sequential recurrent_gru_orig (3,128),(128,) 98688
Sequential recurrent_gru_dest (3,128),(128,) 98688
Sequential embed_link (29166, 128) 3733248
Continuous cont_dense_1 (72, 256),(256,) 18688
Continuous cont_dense_2 (256, 128),(128,) 32896
Categorical embed_location (8201, 96) 787296
Categorical embed_minute (4, 6) 24
Categorical embed_hour (24, 12) 288
Categorical embed_dayofweek (7, 8) 56
out_branch out_dense_1 (602, 512),(512,) 308736
out_branch out_dense_2 (512, 128),(128,) 65664
out_branch out_dense_3 (128, 50),(50,) 6450

We apply this technique to every categorical feature. As an example, we consider links

to describe the method more in detail.

We can represent a trip as a sequence of links traversed, U = {u1, . . . ,uL}, where
ul is a one-hot vector in space ∆D representing link, D is total number of links in our

covered region and L is the number of links in the trip. Since D is large, learning in

∆D space is computationally expensive. Therefore we map links into an embedding

space. We call this link embedding, which is semantically similar to word embedding,

∆D 7→ RP , where P is the dimension of embedding space that can be between 32 to

128 depending on the hyper-parameters. After applying the map flink_emb : U 7→ V ,

becomes V = {ν1, . . . ,νL}, where νl ∈ RP . In practice this mapping is either pre-

trained (like word vectors used in NLP) or learned jointly with the model, we chose the

latter because due to relatively small amount of training data, learning an embedding

jointly with model allows us to learn an embedding specialized to discriminate between

drivers. On the other hand we hypothesize learning a pre-trained embedding on a large

corpus (millions of trips) that is then fine-tuned for target drivers should improve the

generalization and even reduce the amount of data needed for training, due to lack of

sufficient data we leave this for future work [157].

We can use a similar mapping for any other categorical data, with the difference

that P should be chosen proportional to the number of categories of the feature.

9.2.1 Neural Network Architecture

We propose a DNN architecture that consists of three modules, each with a different

feature vector, continuous, categorical and sequential. Figure 9.4 illustrates the proposed

architecture.
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Sequential Module

The upper part of Figure 9.4 models the link sequence, which is the only sequential

feature we consider in this work. To avoid having to handle long sequences of variable

length, we separately model the beginning and end of a link sequence. We introduce a

hyperparameter ρ that determines the length of the origin and destination sub-sequences.

Denoting L as length of link sequence, if L < 2ρ these sub-sequences may overlap and

if L < ρ the rest of the sub-sequence is filled with zeros. Each sub-sequence is passed

through an embedding layer, these layers share their weights. The embedding vectors

are initialized randomly and then trained to minimize the loss function. We feed the

embeddings to the recurrent neural network (RNN). We experiment with LSTM and

gated recurrent unit (GRU) cells [158, 159]. Then the output from two RNN units is

concatenated and merged back to the main network. We also branch out an auxiliary

output (aux_out1 ), which consists of a fully-connected layer with Softmax activation

function.

Categorical Module

For each categorical variable we create an embedding, the dimensions of this embedding

is proportional to the number of categories in the variable. It is calculated using the

Equation 9.2 for each categorical feature:

embed_dim = min((dlog2(vocab_size)e+ 1) ∗ κ, 50) (9.2)

where vocab_size is the number of categories and κ is a hyperparameter. The resulting

embeddings are then concatenated and passed through a fully-connected layer with ReLU

non-linearity [150] and merge back to the main branch. Similar to sequential branch to

facilitate learning, we also branch out an auxiliary output using a fully-connected layer

and a softmax.

Continuous Module

The continuous branch is the main branch. All the continuous features are fed into two

fully-connected layers and then the other two branches are merged (concatenated) in it.

Then they are followed with two other fully-connected layers, a softmax activation. We

concatenate outputs from these modules and feed them into two dense layers with ReLU

activation functions, followed by a drop-out layer. Softmax function is applied to the

output of the last drop-out layer.

Since we jointly train all modules to facilitate learning process we branch out

auxiliary outputs from sequential and categorical modules, indicated as aux_out_1 and
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2 in Figure 9.4. Our goal is to minimize the error:

min
f∈F

1

N

N∑
n=1

L (yn, f(Xn)) (9.3)

where y is the target (correct driver) and x is the input feature vector and L measures the

loss. Using the categorical cross-entropy and accommodating for the auxiliary outputs

we get:

J = − 1

N

N∑
i=1

∑
k∈outs

ωk(log pk[yi ∈ Cyi ]) (9.4)

where J is the cost, to minimize. ω is the output weight and outs consists of all outputs

{main_out, aux_out1, aux_out2}, we assign the weight 1 to the main output and 0.2

to the auxiliary outputs.

9.3 Experimental Setup

We evaluate the performance of the proposed model with real-life applications in mind.

We consider scenarios with K ∈ {5, 10, 20, 50, 100} drivers. Our data set contains 678

drivers, however each driver has different number of trips and their trip composition,

driving style varies. To cover a representative sample of drivers we repeat experiments

for 30 random subsets of drivers, each time with another random (no replacement) sample

of drivers. This will also account for the case that drivers in a certain sample may be

easy or difficult to discriminate.

Moreover in order to tackle the class imbalance in our data set, for every sampled

driver, regardless of their number of trips, we randomly sample 200 trips (with replace-

ment). This will lead to up or down sampling depending on how many trips a driver has

in the data set. We split the 200 trips into training and validation sets in a 90%-10%

ratio. Since the examples sampled for each experiment are balanced we use the accuracy

as the evaluation metric:

acc =
1

N

N∑
i=1

1(yi = ŷi) (9.5)

where 1 is the indicator function, ŷi and yi are respectively predictions and true driver

for the ith trip. Since for most experiments accuracy is close to 1 to improve readability

we use the error-rate (1−acc). For each experiment we report the average and standard

deviation of the error-rate across repetitions.

The neural network model is implemented using the functional API of Keras [160]

with Tensorflow backend [161]. For training we used, batch size of 64 per GPU and

optimized the model with Adam optimizer [146] for 50 epochs. The model often reaches
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Table 9.4: Hyper parameters of the model

Module hyper-parameter candidate values

Sequential

link embeddings {32, 48, 64, 96, 128}
recurrent unit {GRU, LSTM}
recurrent hidden units {64, 96, 128}
recurrent dropout rate {0.0, 0.3, 0.5}
ρ (sequence length) {10, 15, 20, 30}

fully connected {[256, 128], [128, 64],
[256], [128]}

Continuous fully connected {[512, 256], [256, 128],
[128, 128], [128, 64]}

dropout rate {0.1, 0.3, 0.5}

Categorical location embedding dims. {32, 48, 64, 96, 128}
κ (embedding coeff.) {1, 2, 3}

the lowest error-rate in 20 epochs. We stored the model parameters at each epoch, and

later picked the parameters with the best score on the validation set.

9.3.1 Hyperparameter Search

DL architectures have large number of hyperparameters and the search space to find the

optimal architecture is computationally expensive to cover. To find hyperparameters that

perform well we break the network down to its modules. For each module we perform a

separate hyper-parameter search then we use the optimal parameters for the full module.

Clearly with this approach we will not obtain the optimal parameters, but it should be

give us a close approximate. The full set of hyperparameters we experimented with is

given in Table 9.4 and the best performing parameters are indicated in boldface. We

performed the hyperparameter search only over one set of randomly selected 50 drivers.

9.3.2 Baseline Algorithms

Since there are no other works that we could directly compare our approach with, we

introduce two baseline algorithms. The first model is LightGBM and a HMM based

model, to have a reference for the sequential module of our architecture. We also consider

a meta model consisting of a combination of the two baselines as a comparable contender

for our proposed DNN architecture.

9.3.2.1 LightGBM

LightGBM is a variation of gradient boosting decision tree (GBDT) and the state-of-

the-art algorithm for structured data [162]. Although LightGBM can process categorical

data it cannot process sequential data, therefore we do not use the sequence of links with

this classifier. We use the following hyperparameters:
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• learning_rate=0.1

• max_depth=30

• min_data_in_leaf=20

• num_leaves=50

• num_round=500

the hyperparemeters were selected after running an extensive hyperparameter search.

9.3.2.2 HMM-based Model

To set a baseline for the recurrent module of our model, we use a sequence model based

on HMM. We adapt the approach used in [163] to our driver ID application. In that work

the assumption is that the trips are clustered in advance according to trip destination.

Their goal was to predict the destination by identifying the cluster (hidden state). We

consider the hidden state to be the driver, therefore our equivalent of the cluster is the

driver. The model makes use of link -driver co-occurrence matrix F . F ∈ Nm×n where

Fi,j is count of times driver j ∈ C in traversed link i ∈ L.
Having constructed F , we can compute p(l|C = c) and p(C = c|l) for any given driver

(c) and link (l) by employing the Equations 9.6 and 9.7.

p(l|C = c) =
#trips traversing l by driver c

# trips by driver c

=
Fl,c∑m
i=1 Fi,c

(9.6)

p(C = c|l) =
#trips traversing l by driver c

# trips passing via l

=
Fl,c∑n
j=1 Fl,j

(9.7)

Algorithm 1 shows how we perform the prediction. Pi represents likelihood of driver i

being the actual driver. Normalize is a routine that normalizes every Pi to be a valid

probability. T is total number of links in trip. It is possible that driver crosses a link

that she never has or there could be a mistake in map-matching, to avoid getting zero

probability for that presumably correct driver, the constant r is introduced alleviate this

problem.

9.3.2.3 Combined Model

We also evaluate the performance of a combined model of LightGBM and the HMM

model. We take a linear combination of their output probabilities and use the resulting

probabilities for prediction. We introduce a hyper-parameter α to be able to adjust the
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Algorithm 1 Driver prediction with drivers as hidden states
1: n← |C|
2: k ← 1
3: r ← 0.1
4: for i ∈ C do
5: Pi ← p(C = i|l1)
6: end for
7: while k ≤ T do
8: for i ∈ C do
9: Pi ← Pi · p(lk+1|C = i)

10: end for
11: normalize(Pi)i∈C
12: for i ∈ C do
13: Pi ← r

n + (1− r)Pi
14: end for
15: k ← k + 1
16: end while
17: return arg maxi∈C Pi

contribution of each model. Equation 9.8 demonstrates this:

ŷ = arg max
c∈C

{αhLightGBM (X) + (1− α)hHMM (X)} (9.8)

where hLightGBM and hHMM are the LightGBM and HMM models and X is trip feature

vector. Through experimentation we find the optimal value of α to be 0.7, and this is

the setup we used in evaluations.

9.4 Experimental Results

This section presents the experiments performed and their results. We compare the

proposed DNN architecture with baseline methods. Then we evaluate the effect of various

combinations of semantic feature categories to simulate how the model would perform

for various use-cases. We investigate the effectiveness of using the cross-features. And

lastly we investigate the effect of amount of training data on prediction performance.

9.4.1 Comparison with Baselines

In this experiment every algorithm is fed with the same data sets and the only difference

is in the features which is an artifact of inherent differences between the models. Partic-

ularly LightGBM model lacks the link sequence feature while HMM model only has the

link sequence as its input feature. Figure 9.5 shows the error rates of the proposed model

in compare to baselines. LightGBM and HMM models perform similarly for groups of 5

drivers, but as the number of drivers increases the HMM model significantly deteriorates
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Figure 9.5: Error-rate comparison between baseline and DNN. (a) and (b) are differ-
ent representation of the same results. HMM has the highest error-rate, LightGBM per-
forms much better than HMM. LightGBM/HMM combined model consistently provides
slightly better performance than LightGBM. It is clear that DNN approach outperforms
other approaches. We also observe that for 5 drivers, there is a large performance gap
between DNN and combined model, however this gap decreases as the number of drivers
increase to 100.

in performance. The combined model as expected has lower error-rate for every scenario

than LightGBM or HMM models. We can also see that the DNN model outperforms the

baseline models in every scenario.

9.4.2 Semantic Feature Categories

In this experiment we evaluate the importance the three semantic feature categories

that we introduced in Subsection 9.1.2.1. We compared all possible combinations of

feature categories. To depict the model performance under various circumstances and

applications. The corresponding results are presented in Figure 9.6. We can clearly

see that temporal features alone, perform the worst with about 40% error rate for 5

drivers that increases to 79.3% for 100 drivers, this shows that merely knowing the

time-of-day and day-of-week are not enough to discriminate between drivers. Second

best feature category is the behavioral, it performs reasonably well for small number of

drivers (19% error-rate for 5 drivers) but as the number of drivers increase the error rate

also increases. Since behavioral features are not directly route dependent, this shows

promise for applications such as theft detection or driver verification, because error-rate

would even decrease further when trained with a smaller set of drivers. Spatial features by

far are the best category, they provide error-rate of orders of magnitude lower than other
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Figure 9.6: Error-rate per feature-set. Using all features (STB) results in low error-
rate of 0.009 for 5 drivers and 0.152 for 100 drivers. Clearly the best single category is
spatial (S ), followed by behavioral (B).

feature categories, this is justified because each person only travels to a limited number

of POIs and it is not difficult to learn them. It is important to note that combinations

of feature categories always results in improved accuracy, this shows that all the feature

categories contribute to the predictions, but their contribution is not equal. Since the

contribution of temporal feature category is small we could remove them from the system

without significant increase in error-rate, with nothing to lose in terms of error-rate we

gain in being more privacy friendly.

Figure 9.7 shows the top 20 features obtained from LightGBMmodel corresponding

to a randomly selected experiment. Although the order may not completely correspond

to the contribution of each feature to our DNN model it will help to get an idea of the

most important features. We can see latitude and longitude of origin and destination

constitute the top 4 features. Then there are a number of behavioral features such as

a number of speeding related features and features derived from acceleration patterns.

The other group of features are those reflecting the composition of the route taken by

the drivers, the distance and the number of links.

Table 9.5: Effectiveness of location cross-features

# drivers
Error-rate - mean (std.)

Full model Excl. cross-features Excl. coordinates
5 0.019 (0.016) 0.0211 (0.02) 0.0218 (0.023)
10 0.0387 (0.018) 0.0456 (0.02) 0.0422 (0.02)
20 0.0571 (0.016) 0.0663 (0.017) 0.0594 (0.015)
50 0.0957 (0.015) 0.115 (0.017) 0.0998 (0.017)
100 0.135 (0.016) 0.149 (0.017) 0.139 (0.015)
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Figure 9.7: Top 20 most important features obtained from LightGBM. Spatial fea-
tures related to origin and destination dominate the top spots, followed by even mix of
spatial and behavioral features.

9.4.3 Effectiveness of Cross-features

We introduced location cross-features in Section 9.1.2.2 however knowing that in this

work accurate origin and destination coordinates are available, this approach may seem

unnecessary. Consider the case accurate coordinates are not available. This could be

either due to lack of accurate data or because of privacy considerations portion of be-

ginning and end of a trip is trimmed before upload to the server, or perhaps differential

privacy mechanisms are applied to the data (perturbing the origin, destination coordi-

nates) [164, 165]. Therefore in cases that we cannot rely on accuracy of location coor-

dinates binning may provide a better performance because we no longer assume that

coordinates are accurate measurements. To investigate effectiveness of these features we

compare the model performance under three circumstances: a) full model including both

origin, destination coordinates and cross-features b) full model excluding cross-features

c) full model excluding coordinates. The second experiment will show whether addition

of cross-features in presence accurate coordinates is unnecessary, and the third case will

examine whether the model can perform well in absence of accurate coordinates.

Table 9.5 shows the results of the above-mentioned experiments. We can see that

for any number of drivers removing the cross-features will increase the error rate. This

confirms that cross-features contribute toward better driver ID (about 10% reduction of

error-rate in average for 100 drivers). In absence of coordinates (3rd case) the model
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Figure 9.8: Error-rate for 3 experiments with 50, 100, 200 trips for training. We
can clearly see that increase in amount of training data greatly reduced the error-rate.
We can expect that even larger amount of training data would further decrease the
error-rate.

performs slightly worse than the full model but better than the case without the cross-

features, we believe this is due to the superior generalization capabilities of the embed-

dings. In future work, in order to further asses the robustness of the system we suggest

investigating how trimming the start and end of the trips would affect the performance.

9.4.4 Sensitivity Analysis of Training-data

We investigate how the amount of training data affects the model error-rate by experi-

menting with L ∈ {50, 100, 200} trips. In these experiments at each iteration, for each

driver we randomly sample L trips, and use this data set for training and validation. The

error-rate and its standard deviation decreases inversely proportional with L, however
this effect dampens as L increases. There are two explanations, 1) There is only so much

to learn, over that there is little information that the the model can learn from the extra

training data. 2) We do not have equal number of trips from each driver, it is possible

the fact that we sample the trips with replacement, negatively affects the performance

for the larger values of L, perhaps too many repeated samples.

9.5 Discussion

We motivated this work as if driver identification is a desired functionality. However one

can look at it from adversarial perspective. A system such as what we discussed here can

be used by an adversary as part of a surveillance system or for data de-anonymization.

Assume a dataset of anonymized GPS trajectories is published online. Now if the ad-

versary somehow gets access to identities for a subset of the dataset or even a disjoint

set, as long as there are individuals that have participated in both. In such cases, our

proposed DNN can be used to de-anonymize the dataset. We see the biggest potential in

driver identification only using behavioral features. Ride-sharing services such as Uber,
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Lyft need to verify driver’s identity to prevent fraud and ensure rider’s safety. In such

case, we cannot rely on spatial or temporal, unless we encounter an obvious anomaly, for

example a driver that always works between 9–17h, now starts taking rides at midnight,

or imagine a change in city or country. Other than such extreme examples, the focus

must be on behavioral features. Our approach achieved 81% accuracy for 5 drivers, better

results can be achieved for smaller number of drivers, or re-formulate the problem as a

verification task, which is a simpler problem. For the spacial case of ride-sharing drivers,

the cost of false positives is not high, a reasonable implementation can operate as follows.

The DNN fails to verify the driver, then it triggers a more reliable authentication method

such as facial recognition—Uber appears to already use this approach this although it is

unclear what triggers it[98]—verify driver’s identity, and based on that decide to escalate

or resolve the issue.

Furthermore to decrease the amount of training data one can explore pre-training

link embeddings on a large corpus or use techniques such as node2vec [166] that can be

applied to the road network. In node2vec, instead of using real driving data, we can

construct the graph representing the road network and use random walks on the graph

to learn representations (embeddings) for the nodes—which we would refer to as links in

our problem—of the graph. Lastly, it is worth exploring if it is possible to learn directly

from the location data for example by application of 1-dimensional convolutional neural

networks or RNNs to longitudinal and lateral acceleration estimated from speed and

bearing, which is available in location data obtained from smartphones.

9.6 Summary

In this work we presented an end-to-end driver ID framework. The input to the system

is location coordinates corresponding to a trip, sampled every second. This data is

easy to obtain, either through a Smartphone or from the car itself. This is especially

important because more and more car manufacturers are providing always on connection

for their cars, and upload car operation data to their servers. Some companies such as

Daimler and BMW provide APIs for third-parties to access to such data. The input is

then augmented and contextualized using an external service. The augmented features

have various data types, including continuous, categorical, as well as variable length

sequential data. Our proposed system can accept all the above mentioned features and

identify the drivers. We compare our system with three strong baselines and outperform

them. Since based on use-case it may not be desirable to use every feature categories,

therefore we evaluated our method using different feature sets; We conclude that spatial

features are most effective, then the behavioral features and the temporal features are

the least effective. We also investigated the effectiveness of location cross-features and

showed that while using numerical value of latitude, longitude of the origin, destination
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and their cross-features is the most effective. When using either one of cross-features

or numerical values, the former performs slightly better (up to one percentage point).

We also showed that our method improves as more data is collected, which is ideal for

a system that is constantly collecting more data per its usage. We obtain average error-

rate of 1.9, 3.87, 5.71, 9.57, 13.5% for groups of 5, 10, 20, 50, 100 drivers which shows a

great promise and enables other applications to be built on top of this system.



I refuse to answer that question on the grounds that

I don’t know the answer.

Douglas Adams

10
Conclusion

IN this thesis, we examined how to enable novel applications by leveraging ML and

driving data. We explored two applications, distracted driving detection, motivated

by its potential impact on reducing road crashes and driver ID, which, we believe, is an

enabling technology allowing a myriad of services to be built on top of it.

In Chapter 3, we introduced the distraction detection literature and identified a

need for a non-intrusive distracted detection method. In Chapter 4, we presented an

ML-based distracted driving detection method and showed that it is possible to detect

distractions using simple driving data.

In Chapter 5, we presented the topic of driver ID and an extensive literature review.

Then we proposed three driver ID methods that rely on CAN-data. First, in Chapter 6,

we presented a method based on discriminative classifiers. Second, in Chapter 7, we

improved upon the previous approach using a model based on the Gaussian mixture

model (GMM). Third, in Chapter 8, we presented a novel approach based on deep

learning. Then in Chapter 9, we presented a deep learning-based driver ID method that

instead of CAN-data uses FCD obtained from smartphones, which reduces, even more

the deployment complexity.

In this final chapter, we summarize our contributions, provide a final discussion,

and present future research directions.

110
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10.1 Summary of Contributions

At the beginning of this dissertation, we set out to answer the following research question:

“How could we use machine learning to reliably profile drivers?”

We decided to break this question into two more specific research questions—each

dedicated to one application area, distracted driving detection and driver ID.

10.1.1 Distracted Driving Detection

Is it possible to detect distracted driving using driving behavior signals? Our first contri-

bution, presented in Chapter 4, answers this question. We proposed a distracted driving

detection mechanism that operates using only five signals from CAN-bus and three sig-

nals from IMU. Unlike most current solutions, this approach does not use physiological

responses nor requires cameras for face/eye-tracking. The system uses a sliding window

approach; it extracts statistical and cepstral features from each frame, then a discrimi-

native classifier predicts distraction likelihoods for each frame. Then a decision function

takes the per-frame predictions for the last n frames (decision window) and makes a

final prediction. To evaluate the model, we annotated a subset of the Uyanik dataset,

consisting of 13 drivers (see Section 4.2). To emulate real-life applications, we evalu-

ated the model using a subject-independent scheme. Therefore the set of drivers used

for training is disjoint from testing. The proposed solution is customizable as one can

choose which classifier, frame-size, or decision window size to use. Experiments show

that larger frame-size and decision windows lead to better results, but also increases

the delay. This work shows that even with less than 10 hours of coarsely annotated data

and the use of vehicle sensor data, it is possible to detect distracted driving events. This

approach is limited in detecting short-term distractions. This contribution is presented

in Chapter 4 and published in [53].

10.1.2 Driver Identification

How may we most effectively identify drivers based on their driving behavior? Driver

ID techniques in the literature mainly use two categories of data: a) high sample-rate

CAN-data b) low sample-rate FCD . We mostly focused on CAN-data and proposed

three novel approaches that each incrementally addresses some of the shortcomings in

state-of-the-art methods. To evaluate them, we used the Uyanik dataset consisting of 57

drivers.

State-of-the-art CAN-data methods often disregard the practicality of their so-

lutions and use a large number of signals, or sensors that are not available on cars.

Therefore, as our second contribution, in Chapter 6, we focused on finding the minimal

set of signals and features that provides adequate identification performance at the same



Conclusion 112

time are available on most cars. We proposed a method based on discriminative clas-

sifiers that, unlike the majority of related work that uses unrealistic sensors, only uses

five signals from CAN-bus. This method uses an iterative sliding window approach and

extracts features from each frame, and a classifier makes predictions per frame. Sta-

tistical features are extracted from all signals, and spectral/cepstral are extracted from

the gas pedal position and steering wheel angle signals. The prediction for an ongoing

driving session is provided through a decision function that takes into account the clas-

sification scores of the previous iterations. We found that spectral and cepstral features

of controls operated by the driver—such as gas/brake pedals or steering wheel—are the

most suitable for driver ID. The best results achieved using AdaBoost classifier with

98.86%, 97.15%, 93.92% accuracy for 5, 15, 35 drivers, respectively (with 20 minutes of

training data and 4 minutes of prediction-data). However, this method has some limita-

tions, namely: a) the need to retrain the models when enrolling new users, b) the need for

large amounts of train and prediction data to achieve high accuracy. This contribution

is published in [54].

The third contribution, presented in Chapter 7 is a driver ID algorithm based on

GMM. By employing the findings from the previous approach, we decreased the number

of signals from 5 to 2 and only used spectral and cepstral features from the gas pedal posi-

tion and steering wheel angle. The smaller number of features (20 per signal) and the use

of GMM instead of discriminative classifiers results in a lower computational complexity.

Since the enrollment of new drivers only involves fitting two Gaussian mixtures (one per

signal), and enrollment cost are not dependent on the number of drivers currently in

the database, we claim this approach is also scalable. Moreover, the vehicle speed can

be used to estimate the driving route [55], since we do not use the vehicle speed, this

approach is more privacy-friendly than our previous contribution. This contribution is

published in [56].

The GMM approach provides near 100% accuracy. However, its major limitation

is the amount of data needed to achieve such good accuracy, both for training and at

prediction time. For instance, with 5 minutes of training and 2 minutes for prediction,

we obtain 90.9%, 89.4%, and 86.3% accuracy for 5, 15, and 35 drivers, respectively. To

further reduce the data needs and as our fourth contribution, in Chapter 8, we presented

a deep learning approach to driver ID, called the deep driver model. The deep driver

model is an architecture based on Triplet networks [52]. It operates using the same

signals and features used in the GMM approach, but the input to the algorithm is a

block that consists of the concatenation of feature vectors from n frames. The deep

driver encodes a block of driving data into a d -dimensional embedding vector. These

embeddings can be used for driver ID, driver verification, and other applications. We

evaluate the performance of this method for the driver ID task, with equivalent to 13.25 s

of training and prediction data we obtained 0.99, 0.96, and 0.93 accuracy for 5, 10, and
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15 drivers, respectively. In the case of driver verification, we obtain EER of 0.083, 0.101,

and 0.107 for 5, 10, and 15 drivers (using 17 seconds of training data and 13.25 seconds

for prediction).

Our last contribution touches on the use of FCD for driver ID. An essential step

in the research since one of our goals was to work on practical and deployable solutions.

In Chapter 9, we proposed a deep learning architecture composed of embedding and

RNN layers that only relies on GPS data collected from smartphones. The input to

the system is location coordinates corresponding to a trip, sampled every second. We

contextualize each location data-points of a trip. Then we construct a set of continuous,

categorical, and sequential features to represent the whole trip. We also demonstrate

an efficient method to encode location-data and road-network links using embeddings.

For evaluation, we used a large dataset covering 678 drivers in the Greater Region of

Luxembourg provided by Motion-S1. This approach outperforms, LightGBM, and HMM-

based baselines. We obtain an overall error-rate of 1.9, 5.71, 9.57, 13.5% for groups of 5,

20, 50, 100 drivers. This contribution is currently undergoing review as a journal article.

This work demonstrates that accurate driver identification is achievable even with

low sample-rate data. The constraints imposed by the use-case and data availability neg-

atively affect the performance; in such cases, the efficient use of the available data is

crucial.

10.2 Final Discussion

The exponential increase in the amount of data generated by cars, the ubiquity of con-

nectivity, and advances in AI allows us to explore mobility applications that never been

possible. In this work, we explored two applications of ML in exploiting driving data.

First, we presented a low-cost, easy to deploy, distracted driving detection approach. We

motivated this work by the large share of low and medium-income countries of the road

deaths and significant contribution of distraction to accidents. We showed that it is

possible to detect long-term distractions using driving data. Such a solution can pro-

vide timely feedback to drivers and encourage them to drive safely, therefore reduce the

traffic-related deaths. Moreover, since the proposed method uses minimal sensors and is

trained independently of the driver, it is suitable for wide deployment.

Self-driving cars are already a reality—with some limitations—and one day they

may replace conventional cars, and render our work obsolete. We predict that this

transition takes decades. Moreover, countries that are the most affected by road traffic

crashes are the last to transition to self-driving cars—only due to inadequate road, and

telecommunication infrastructure, and, most importantly, the costs. The safety-related

ADASs can already compensate for some of the errors caused by distractions or make
1https://www.motion-s.com

https://www.motion-s.com
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them irrelevant through automation; however, even in high-income countries, most people

cannot afford them. Therefore, we believe, affordable safety measures such as distraction

detection should be pursued and perfected. Not only distraction detection can help

passengers of cars with no assistive technology. They could be used in conjunction

with semi-autonomous driving features. For instance, the car detects that the driver is

distracted; it assumes control in a supervisory mode, ready to take full control or take

corrective measures if required.

Second, we focused on the emerging topic of driver ID. The recent uptake in the

number of papers on driver ID confirms that there is a growing interest in this field.

Moreover, automotive, technology and insurance companies are showing interest in this

topic, either by providing datasets, funding, or resources. This includes companies such

as Ford [49], Toyota [35], Samsung [42], Volkswagen and Audi [47], Yahoo!, Microsoft,

Technicolor [104], General Motors [41], Insurance Box Pty [48], and Tata [110]. The

possibility to identify drivers based on their driving behavior is desired by fleet managers

to monitor their vehicles. Driver ID can be used for theft detection, law enforcement

of heavy vehicle driving times, and allows insurance and other third-party companies to

provide services that otherwise would not be possible. We explored driver identification

using two kinds of data, CAN-data and FCD. Each of which have their applications,

generally CAN-data approaches are more accurate and need smaller amounts of data

(in terms of time duration), but they need access to the car’s internal network (e.g.,

CAN-bus) on the other hand FCD can also be obtained from smartphones, in which

case no access to the car is required, and is easy to obtain. We presented two CAN-data

approaches that only need two common signals available in most mass-market cars. They

are scalable and need little training data to provide accurate predictions. The GMM

approach depending on the number of drivers, needs about 5–10 minutes of training-

data and 2–3 minutes of prediction-data to produce an accuracy of above 95%, which

is suitable for most applications. The deep driver model reduces the amount of data

needed for training to as low as 15 seconds. This improvement comes at the cost of more

computation, which is a trade-off to be considered. For instance, a car rental company can

construct a model before the driver leaves their parking facilities. Embeddings obtained

from the deep driver can also be used to provide other applications such as to infer how

many drivers have driven a car. For instance, car rentals can validate if the customers

respect the terms of their contracts.

It is noteworthy that both the GMM and deep driver approaches—presented in

Chapters 7 and 8—are iterative, and the algorithm is executed every 0.25 s, we can set

this interval according to available resources. Based on our experiments, larger intervals

result in small accuracy degradations.

We also showed that driver ID using low sample-rate FCD is feasible. Driver ID

using a smartphone (FCD) is particularly in demand because most insurance products,
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and gig economy companies such as Uber, and Lyft operate using a smartphone applica-

tion. Therefore they all can instantly use driver ID to either prevent fraud or introduce

new services such as flexible insurance policies. We obtained excellent accuracy using all

features, including the spatial features. If we only use the behavioral features—features

not directly related to the route—the results will be less accurate, but still practical;

especially, for the gig economy use-cases that require to verify the drivers. For instance,

driver ID can be used to trigger a more reliable secondary authentication method such

as voice or face recognition (on the smartphone). In such a use-case, false-negatives can

be tolerated.

With the decline in car ownership, more people rely on ride-sharing services such

as Uber, Lyft, and Bolt for their daily needs. This leads to a further increase in demand

for accurate driver ID solutions. Moreover, cars are becoming more and more connected,

and connectivity and storage costs drop significantly. Since electronics are becoming

cheaper, and the processors more powerful. There will be more room for sophisticated

and effective driver ID solutions.

In the long-term, with the penetration of higher levels of automation, driver ID

in the form presented in this work becomes more challenging. Perhaps techniques can

be developed to perform driver ID only when the automation systems are disengaged.

However, with level 4 and 5 of automation driver plays no role in driving, and practically

there is no human driver to ID. Moreover, some of the applications of driver ID lose

their utility if the car drives itself. Insurance coverage would only depend on the car’s

make, model, and perhaps software version! Furthermore, there would be no need to keep

track of the working hours of truck drivers if the trucks are driving themselves. Limited

forms of automation, such as ACC systems—equivalent to level 1 automation—were

commercially introduced more than 25 years ago; however, they are still not standard

equipment on cars. Even though the technology adoption rate has increased in recent

years, the automotive industry has proved itself to be extremely slow to adopt new

technologies. Considering these facts we argue that driver ID will stay relevant in the

future, and there is lots of value to be gained from this technology.

10.2.1 Privacy Considerations

Car manufacturers, insurance providers, and other third-party companies already collect

data from cars using telematics units, insurance dongles, and blackboxes. We are not

aware of any company that provides services based on driver ID. However, given the

amount of data at their disposal, they are capable of doing so. Even though we focused

on positive aspects of driver ID, as we mentioned earlier in Section 5.2, driver ID poses

significant privacy concerns. We acknowledge that adversaries may use it for driver

fingerprinting. However, our findings enable the research community to understand and
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mitigate such threats. Lastly, the privacy implications of driver ID should be investigated.

Driver ID has numerous benign applications, but how can we prevent the adversaries?

Perhaps federated learning [167] or secure multi-party computation protocols [168] can

be explored as a means to provide the same level of functionality without the model or

data ever leaving the car.

10.3 Future Research Perspectives

The distracted driving mechanism we presented is only the first step. To achieve a

practical solution, we need to reduce false-positives. Our work is limited in two aspects.

The dataset is small (13 drivers), and the annotations are not granular. A larger, more

granularly annotated dataset is needed to improve the results. With enough time and

resources, it is possible to use ML/DL approaches to automate the annotation process

and annotate the rest of the Uyanik dataset. Moreover, we focused on the subject-

independent models because it is unrealistic to have access to annotated data from the

driver. An idea worth exploring is to adapt a subject-independent model to the user’s

driving style. To further study the robustness of the proposed distraction detection

approach, it would be worth looking into how it performs under stress or information

overload. Such a study requires a rich dataset that includes contextual information such

as traffic conditions, road layout, road-works. Additionally, data collection should take

place in a naturalistic setup across many days to capture driving under various mental

states and conditions.

We showed that driver ID approaches presented in this work perform adequately

for groups of 35 or fewer drivers. However, due to dataset limitations, we cannot evaluate

how accuracy would be affected by a large increase in the number of drivers. Our results

show that with an increase in the number of drivers, the amount of data required to

achieve high accuracy also increases. Therefore, given a fixed amount of training data,

the maximum achievable accuracy is inversely proportional to the number of drivers.

Although measures can be taken to adapt these solutions to perform better for a larger

number of drivers, most applications only require identification among a small group of

drivers. This small group of drivers is perhaps family members, a limited set of drivers

eligible to drive a truck or bus over a long distance in shifts. Moreover, many use-cases

such as detecting stolen vehicles require detecting the illegitimate driver, in this case, we

do not need to know the thief’s identity (perhaps from millions of drivers) instead we

want to know whether the driver is one of the few authorized drivers or not. Therefore

it is rarely needed to identify a driver from a set of hundreds or thousands of drivers.

In this dissertation, we mostly considered the closed-world driver ID scenario.

However, in the real world, we often face with an open-world scenario. In this scenario,

the driver may not be in our database; therefore, instead of wrongly predicting the most
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likely driver in our database, it is desired to predict the reject class, which is to say we do

not recognize this driver. One way of tackling this issue is to use an anomaly detection

approach before performing the identification. A more straightforward solution would

be to make predictions only when a certain level of confidence is achieved.

In Chapter 8, we hypothesized that deep driver embeddings could have semantic

meanings; further research is needed to validate it. Moreover, although we showed that

the deep driver representations of each driver form a cluster, experiments should confirm

if it is feasible to infer the number of drivers from the deep driver embeddings.

In Chapter 9, we presented a driver ID method based on FCD. The model we

proposed makes predictions on a per-trip basis, which is not ideal. It is worth exploring

if it is possible to learn directly from the FCD. For instance, 1-dimensional convolutional

neural networks or RNNs can be used on the longitudinal and lateral acceleration es-

timated from the FCD. Additionally, the use of the accelerometer/gyro data from the

smartphone in conjunction with GPS data can be explored to increase the accuracy and

reduce the detection time. Although the smartphone-to-vehicle alignment is a challenge,

it is well a researched topic [73].

There are still some fundamental questions left for future research to answer. How

stable is driver behavior? For instance, to what extent driving behavior and hence driver

ID accuracy is affected by circumstances such as having a bad day or being late for a

meeting? Additionally, the effect of context on driving should be studied as well. Driving

conditions such as road-works and weather may influence the driving style. Moreover,

further research is needed to understand how the use of ADASs, such as ACC, affects the

driving style and potentially influences driver ID accuracy. Another research direction

to be explored is the model portability? Can we use the model obtained from driving car

A to identify the same driver driving the car B? Suppose an insurance customer buys

a new car. Ideally, one should be able to use the same model across vehicles. These

questions are vital to the development of a robust driver ID solution.
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