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Abstract—Android app developers recurrently use crypto-APIs
to provide data security to app users. Unfortunately, misuse of
APIs only creates an illusion of security and even exposes apps
to systematic attacks. It is thus necessary to provide developers
with a statically-enforceable list of specifications of crypto-API
usage rules. On the one hand, such rules cannot be manually
written as the process does not scale to all available APIs. On the
other hand, a classical mining approach based on common usage
patterns is not relevant in Android, given that a large share of
usages include mistakes. In this work, building on the assumption
that “developers update API usage instances to fix misuses”, we
propose to mine a large dataset of updates within about 40 000
real-world app lineages to infer API usage rules. Eventually, our
investigations yield negative results on our assumption that API
usage updates tend to correct misuses. Actually, it appears that
updates that fix misuses may be unintentional: the same misuses
patterns are quickly re-introduced by subsequent updates.

I. INTRODUCTION
Although software systems have greatly impacted the ef-

ficiency of transactions and communications in our digital
world, the security and privacy issues that they carry have
been raising concerns among all stakeholders. In this con-
text, the software development community is now urged to
implement means to protect user assets, most notably by
using cryptography for ensuring confidentiality of data and
transactions, as well as the authenticity of information. Un-
fortunately, several recent studies [1], [2], [3] have revealed
that developers often make mistakes when using cryptography
APIs (hereafter, crypto-APIs is used for short), even those
APIs implemented in widely used libraries such as the Java
Cryptography Architecture (JCA). These misuses, which may
lead to security mishaps [4], [5], actually carry an illusion
of safety for users and developers. Consequently, the research
community has started a new effort towards improving the
analysis and fix of crypto-APIs usage [6], [7].

To properly use crypto-APIs, developers must learn the
API usage rules. Similarly, to validate code, the research and
practice communities must build tools for checking API calls
against a database of the associated API usage rules. To the
best of our knowledge, there are three strategies commonly
adopted in the literature for the inference of general API usage
rules:
• manual specification: Recent literature on static analysis

for verifying crypto-API usages propose approaches that are
based on manually-written specifications [6], [8]. Although

such approaches offer a high degree of reliability, they may
require extensive security expertise, and do not scale to the
sheer number of cryptography libraries (and their associated
recurrent API updates).

• majority contest of usage patterns: A trivial approach
for systematically finding and updating API protocols is to
mine usage patterns in a representative dataset of developer
code [9], [10]. Most recurrent patterns are considered as
the correct protocol. Such approaches have been shown
effective in operating system code [11] where the majority
of developers have a significant level of expertise [12],
[13]. In the Android community, however, most developers
are novice and their usages of crypto-APIs are generally
incorrect [14].

• commit log mining: Recently, Paletov et al. [7] have
proposed to mine commit messages from software version
tracking systems to identify fixes of API usages and infer the
“correct” usages based on static code analysis. Theoretically,
this strategy is reliable (in contrast to simple popularity
voting of usage patterns). In practice, however, developers
often make uninformed updates, and it is now accepted
that commit messages are often less informative than what
researchers expect [15].
This paper. Our work is set in the context of the Android

development community where millions of apps are built and
regularly updated on markets. Our objective is to present
and investigate the suitability of an approach to infer crypto-
API usage rules based on developer updates. Although most
of Android apps are not associated with public source code
management systems, their different apk releases can be read-
ily reverse-engineered into intermediate representations (e.g.,
smali or Jimple) by using frameworks such as Apktool and
Soot [16]. These representations can then be statically analyzed
in a straightforward way for extracting usage instances, and
comparing usages across updates. Our approach will leverage
the AndroZoo [17] dataset where successive apk releases are
continuously crawled for the research community.

Our main assumption for inferring crypto-API usage rules
by mining code updates is that “API usage updates
generally transform incorrect usages into correct us-
ages”. Although this assumption is intuitively reasonable,
our investigations have yielded contradictory results. We
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thus report on the negative results of mining crypto-API
usage rules by mining Android app updates. We focus in
this study on the widespread JCA APIs used in 598,875
apk releases associated with 39,213 lineages of real world
Android apps.

II. BACKGROUND
We now provide details on the crypto-APIs studied in this

work as well as the tool chain leveraged for statically checking
API usages (i.e., to build the ground truth for the study).

A. Crypto-APIs
Cryptography is the science that yields algorithms for hid-

ing information from third-parties. Encryption and decryption
mechanisms are used to support authentication as well as to
guarantee the confidentiality of transactions and information
integrity. In software development, crypto-APIs are provided
as part of programming toolkits to accelerate the inclusion of
cryptography functionalities in developer code. For example,
in the Java realm, the Java Cryptography Architecture (JCA)
APIs, which are officially provided by Oracle [18], are widely
used by developers. Given that most Android apps are built
in Java, the use of JCA APIs is also widespread in the
Android community. Although some alternate crypto-APIs,
such as Apache Commons Crypto [19] APIs, do exist, they are
substantially less widespread. Therefore, our work is focused
on JCA to investigate the potential API misuses among real-
world apps.

Table I enumerates the 23 API classes implemented in the
JCA library, where each class was designed to address a spe-
cific cryptography functionality: for example, the MessageDi-
gest class includes algorithm implementations for computing
the digest of some information (e.g., text message) which can
be used to check its integrity after transmission.

TABLE I: Java Cryptography Architecture (JCA) APIs.
API Class: Description

java.security.AlgorithmParameters: maintainer for security parameters for specific
algorithms
javax.crypto.Cipher: provide encryption and decryption functionality
javax.crypto.spec.DHGenParameterSpec: parameters for generating Diffie-
Hellman parameters for DH key agreement
javax.crypto.spec.DHParameterSpec: parameters used for DH algorithm
java.security.spec.DSAGenParameterSpec: parameters for DSA parameter gener-
ation
java.security.spec.DSAParameterSpec: parameters used for DSA algorithm
javax.crypto.spec.GCMParameterSpec: parameters for cipher using
Galois/Counter Mode
javax.xml.crypto.dsig.spec.HMACParameterSpec: parameters for the XML sig-
nature HMAC algorithm
javax.crypto.spec.IvParameterSpec: Initialization Vector for block cipher
javax.crypto.KeyGenerator: generate keys for encryption-decryption
java.security.KeyPair: holder of a publicprivate key pair
java.security.KeyPairGenerator: create publicprivate key pairs
java.security.KeyStore: a memory storage to maintain keys and certificates for later
usage
javax.crypto.Mac: Message Authentication Code for message integrity protection
java.security.MessageDigest: a one-way hash for messages
javax.crypto.spec.PBEKeySpec: specification of a Password Based Encryption key
javax.crypto.spec.PBEParameterSpec : parameters for password based encryption
java.security.spec.RSAKeyGenParameterSpec: parameters for RSA key pair gen-
eration
javax.crypto.SecretKey: a symmetric secret key
javax.crypto.SecretKeyFactory: convert key into key specification and vice-versa
javax.crypto.spec.SecretKeySpec: specification of a symmetric secret key
java.security.SecureRandom: generate secured pseudo-random numbers
java.security.Signature: digital signature

Implementation-wise, to perform a cryptography-related
task, an object associated with the relevant JCA class must
first be instantiated. Subsequently, a sequence of the object
methods is invoked in a specific order of steps. Listing 1 shows
a usage example of API PBEKeySpec retrieved from a human
resource management app named com.successfactors.android.
The code snippet is written in Jimple, the intermediate repre-
sentation of Soot, which we leveraged in this work to reverse
engineering Android apps.

First, the password (i.e., $r3) and salt (i.e., $r0) pa-
rameters of the constructor of PBEKeySpec are initialized
with the passed-in arguments (lines 7-10). Then, an object
of PBEKeySpec is constructed with the password and salt
(lines 11-12). There are 2 extra constants of type int used
when instantiating the object (line 12): the first one, (1 000 in
this example), is used to specified the iteration number, the
second one (i.e., 256) is used to specify the key length. The
PBEKeySpec object is used to further generate a SecretKey
object (line 13-14). After using the PBEKeySpec object, for
security consideration, the password is cleared from the mem-
ory (line 15). The rest part of the example is to create a
SecretKeySpec by using the previously generated objects and
return it for other utilizations.

1 private static javax.crypto.spec.SecretKeySpec
deriveEncryptrionKey(char[], byte[])

2 {
3 javax.crypto.spec.PBEKeySpec $r2;
4 javax.crypto.SecretKeyFactory $r5;
5 javax.crypto.SecretKey $r6;
6 javax.crypto.spec.SecretKeySpec $r7;
7 byte[] $r0;
8 char[] $r3;
9 $r0 := @parameter1: byte[];

10 $r3 := @parameter0: char[];
11 $r2 = new javax.crypto.spec.PBEKeySpec;
12 specialinvoke

$r2.<javax.crypto.spec.PBEKeySpec: void
<init>(char[],byte[],int,int)>($r3, $r0, 1000,
256);

13 $r5 = <com.sybase.persistence.SharedDataVault:
javax.crypto.SecretKeyFactory secretKeyFactory>;

14 $r6 = virtualinvoke
$r5.<javax.crypto.SecretKeyFactory:
javax.crypto.SecretKey
generateSecret(java.security.spec.KeySpec)>($r2);

15 virtualinvoke
$r2.<javax.crypto.spec.PBEKeySpec: void
clearPassword()>();

16 $r7 = new javax.crypto.spec.SecretKeySpec;
17 $r0 = interfaceinvoke

$r6.<javax.crypto.SecretKey: byte[]
getEncoded()>();

18 specialinvoke
$r7.<javax.crypto.spec.SecretKeySpec: void
<init>(byte[],java.lang.String)>($r0, "AES");

19 return $r7;
20 }

Listing 1: JCA API Usage Example (Jimple code representation)

In this example, there are several code locations where
developers can make mistakes that would lead to misuses of
the PBEKeySpec API:
• (line 9) - Security strength of a password is heightened when

salt is properly generated in a random way. In practice,
however, developers commonly hard code their salt value.
In the example code, salt is specified as parameter of
method deriveEncryptrionKey (line 1) and then stored in



$r0. So, a misuse could happen if a constant is passed to
deriveEncryptrionKey in the second parameter.

• (line 10) - Often, developers use a String object to hold
the password and then use toCharArray() to convert to the
required type (i.e., char[]) when necessary. However, the in-
tention of designing PBEKeySpec constructor to only accept
char[] instead of String is to avoid using String, since String
object is immutable, therefore, they cannot be destroyed or
modified after instantiation until garbage collection revokes
the memory. Given that garbage collection occurs randomly
and is out of the control of developers, the password can
survive in memory for a long time, increasing the risk of
being exploited by attacks.

• (line 12) - Documentation of JCA recommends an iteration
number above 1 000. It is however common to have cases
where developers, with little expertise, assign a smaller
iteration rate.

• (line 15) - Password information should be kept in memory
only for the duration it is needed, in order to minimize
attack opportunities. Thus it should not be held in a String
object and must be cleared immediately after the use of
the PBEKeySpec object. Developers unfortunately often
overlook the call to the clearPassword() of PBEKeySpec.
In this example code, the method clearPassword in line 15
is correctly called, so there is no misuse.

1 F i n d i n g s i n Java C l a s s : com . umeng . common . u t i l . h
2
3 i n Method : j a v a . l a n g . S t r i n g a ( j a v a . l a n g . S t r i n g )
4 C o n s t r a i n t E r r o r v i o l a t i n g CrySL r u l e f o r MessageDiges t
5 F i r s t p a r a m e t e r ( w i th v a l u e "MD5" ) s h o u l d be any of {SHA−256, SHA−384,

SHA−512}
6 a t s t a t e m e n t : $ r2 = s t a t i c i n v o k e <j a v a . s e c u r i t y . MessageDiges t :

j a v a . s e c u r i t y . MessageDiges t g e t I n s t a n c e ( j a v a . l a n g . S t r i n g )>("MD5" )
7
8 T y p e s t a t e E r r o r v i o l a t i n g CrySL r u l e f o r MessageDiges t
9 Unexpec ted c a l l t o method r e s e t on o b j e c t o f t y p e

j a v a . s e c u r i t y . MessageDiges t . Expec t a c a l l t o one o f t h e f o l l o w i n g
methods d i g e s t , u p d a t e

10 a t s t a t e m e n t : v i r t u a l i n v o k e $r2.< j a v a . s e c u r i t y . MessageDiges t : void
r e s e t ( ) >()

Listing 2: CogniCrypt SAST Report Example

B. Static API usage checker
We leverage CogniCryptSAST [20], a static analyzer of the

CogniCrypt [21] framework, for detecting JCA API misuses
in Java programs. This analyzer was selected as it has been
extended to be compatible with Android apps as well [20],
a static analyzer of the [22]. CogniCryptSAST checks JCA
APIs against a set of rules that were manually specified by
security experts using CrySL [6] (CogniCrypt Specification
Language). We consider CrySL rules as a reliable and accurate
oracle for deciding whether a JCA API is misused or not.
Concretely, given an Android apk, CogniCryptSAST iden-
tifies all instances of the 23 JCA API classes and checks
the usage against the CrySL rules to generate a report on
all detected misuses. Listing 2 showcases an example of a
report generated by CogniCryptSAST where misuses are
hierarchically grouped by classes and methods. In this exam-
ple, 2 misuses are found in method java.lang.String of class
com.umeng.common.util.h of app com.lovinc.radio:

• The first misuse, a ConstraintError of API Messagedigest,
is reported in line 4, with details indicating that argument

“MD5” is not recommended when invoking API method
getInstance(java.lang.String).

• The second misuse (TypestateError error) also relates to
the same API object $r2 and occurs in the same method.
It specifies that the misuse is caused by the fact that the
MessageDigest object had not been in the state to call
method reset(), instead, method digest or update should be
invoked before.
As demonstrated by this example, a single JCA API usage

instance can suffer from multiple misuse errors. Table II
enumerates and provides brief explanations on 6 misuse types
detected by CogniCryptSAST . Actually CogniCryptSAST ’s
reports may include ImpreciseValueExtractionError notifica-
tions, which indicate that CogniCryptSAST cannot obtain all
the information for the analysis, and thus no clear conclusion
can be given. We do not discuss such cases in this study.
Nevertheless, given that we must be able to assess whether a
misuse has actually been fixed in an app update, we must be
able to enumerate all usage locations. To that end, we have
developed on top of Soot [16] a dedicated tool for supporting
the extraction of JCA API usage instances.

TABLE II: CogniCrypt Misuse Types.

Type Explanation
Example

ConstraintError Unrecommended arguments are given.
e.g., MD5 as hashing algorithm.

RequiredPredicateError Arguments are not properly created.
e.g., constant values are used while values are required to be randomly generated.

TypestateError A JCA API object is not in the right state to
invoke a certain method

e.g., a method reset() of a MessageDigest object is invoked before passing any
information into it via calls to methods digest or update.

IncompleteOperationError Tasks are not completed using JCA API
objects.

e.g., a MessageDigest object is instantiated by invoking the getInstance method, but no
further method invocation on this object is performed. The digest task will therefore not
be achieved.

ForbiddenMethodError Unrecommended API methods are invoked.
e.g., PBEKeySpec(char[] password) is one of the constructor of JCA API PBEKeySpec
for deriving cryptographic keys from a given password. Since a key generated without
salt has been proven to be weak, this constructor should be used in specific scenarios.

NeverTypeOfError Certain types are forbidden when storing
sensitive information.

e.g., password value for PBEKeySpec should never be store as type String, but char[].
Since object String is immutable in Java, password information in this type cannot be
explicitly freed from memory. The garbage collector is in charging of deleting it, yet it
is unpredictable from a user standpoint, opening opportunities for password leakage.

Finally, we have implemented a crawler for collecting on
Google Play some metadata (e.g., category, rate, etc.) asso-
ciated to AndroZoo apks. These metadata are leveraged in
criteria for comprehensively dividing the dataset into relevant
subsets for further investigations.

III. SCOPE OF THE STUDY
In this section, we state the study problem along with the

research questions that we intend to investigate, and describe
the dataset of the study.

A. Problem Statement and Research Hypothesis
Given a crypto-API usage location, it is possible, with

security expertise, to assess whether there is a misuse or
not. Manual specification of usage rules however is tedious
to collect over a large set of APIs. Previous studies have
also shown that using a majority voting on usage patterns to
conclude on the correctness of crypto-API usages will lead



to poor results given that wrong usages are widespread in
Android apps. Our intuition however is that, as time goes by,
developers of a given app learn to fix API misuses. Thus,
it should be possible, by analysing code updates in an app
lineage (i.e., the series of apk versions released for a given
app), to infer crypto-API usage rules.

Our hypothesis is thus that: “updates in API usages across
an app lineage will tend to fix misuses”. Consequently, if
an extensively large set of app lineages can be collected in
the wild, it would be possible to retrieve a substantially large
and diverse set of crypto-API usage fixes. Then, by assessing
recurring patterns, we could infer API usage rules.

This work is about empirically assessing the validity of our
hypothesis for the case of the JCA APIs within Android apps.

B. Research Questions
The empirical study mainly aims at (re)investigating the

following questions:
1) To what extent do Android developers misuse crypto-APIs?

The literature claims, often based on few example apps, that
developers regularly make mistakes in using crypto-APIs.
We attempt to provide a thorough picture of the state of
crypto-API usages across a representative dataset of real-
world Android apps.

2) Are crypto-API usage updates fixing misuses? Investigating
actual API usages with an oracle, based on security expert
manual specifications, will eventually help to conclude
on the validity of our research hypothesis. We ensure in
this study, that the cases of specific app categories (e.g.,
high rating apps, financially sensitive apps, etc.) are also
analysed in comparison with the general trends.

3) What are the impacts caused by API usage updates? This
question investigates how crypto-API usages get updated,
in an attempt to derive explanations on the statistical results
obtained in the previous question. Concretely, we study the
proportions of updates that either successfully fix misuses,
or (re)introduce mistakes in correct usages, or that fail to
fix misuses.

C. Dataset
We leverage the largest repository of real-world Android

apps, AndroZoo [17], to collect data for our experiments.
AndroZoo is a growing repository where automated crawlers
continuously harvest Android apps from various app markets
including the official Google Play store. At the time of writing,
it was reported to contain over 8 million Android apks [23],
the most diverse dataset available to the research community.
Since AndroZoo continuously collects any apks that it has
never seen before, it generally includes successive versions
(i.e., apk releases) of the same app, which are relevant for
reconstructing app lineages.

1) App Lineage Reconstruction: To identify app lineages
from AndroZoo, we follow the approach proposed by Gao
et al. [24] and illustrated by the four steps in Fig. 1: (1)
extraction of application IDs, (2) app clustering by certificate,
(3) app clustering by the market, and (4) app sorting by version
code. This process was applied on a snapshot of AndroZoo

in September 2018. Out of the 8 million apps, we only
considered lineages which include at least 10 apk releases. The
lineage reconstruction yielded 43 365 app lineages accounting
for 745,101 apks. This lineage dataset is twice as large as the
dataset presented by Gao et al. in [24] .

2) Misuse detection: We assess crypto-API misuses based
on the reports of the CogniCryptSAST static checker. This
tool, which implements analysis based on expert manual spec-
ifications of API usage rules, is used to collect the oracle to
support our empirical assessment. Analyses are performed on
a High-Performance Computing (HPC) platform [25]. Overall,
we leveraged 142 HPC instances, each utilizing 24GB of
memory, to successfully parse all 745 thousands apks in 5
days.

AndroZoo 
Dataset

App IDs 
extraction

App Clustering 
by Certificate

App Clustering 
by Market

App Sorting 
by Version

App lineages
- Facebook lineage
- Maps lineage
- etc.

1 2 3 4

Fig. 1: App Lineages Re-construction Process [24].

3) Dataset Curation: We took steps to remove from our
study all irrelevant cases of apks or misuses reported by
CogniCryptSAST .
• Apk releases with no JCA API usages are excluded from

our study. Thus, 18% of our initial dataset is left out.
• Apk releases on which CogniCryptSAST fails to generate

a final report are also dropped from the study. Such cases
often occur when the process runs out of memory. While the
recommended memory size for CogniCryptSAST is 8GB,
we allocate 24GB in our experiments. Nevertheless, a few
apk analyses are not able to be completed.

• Obfuscated apk releases are left out from the study. Since
developers recurrently rely on obfuscation techniques to
prevent reverse engineering of their apps, static checkers
such as CogniCryptSAST are challenged in their analyses:
CogniCryptSAST reports ’?’ for erratic character series
that appear as class names. Given that our study of API mis-
uses leverages class names as the basic unit for localisation,
such unidentified class names constitute noise. Thus, after
analysis, when the generated report contains any unlocalised
class name, the corresponding apk is dropped.

TABLE III: Number of APKs and lineages in the Dataset

# lineages # APKs
initial dataset 43 365 745 101
remove because JCA API is not used -3 882 -135 752
remove due to CogniCrypt failures -108 -9 374
remove because of obfuscation -7 -1 100
remove due to combination of the 3 conditions1 -155
final dataset 39 213 598 875

Eventually, 146,226 apks are excluded from the dataset of
apks. Table III summarizes some statistical details about our
dataset. An apk is removed when the one of the situations
above occurs. However, an app lineage is only removed when
all its app versions are excluded.

Fig. 2 shows the distribution of the dex size of apks for
the initial and the final dataset. Our statistical tests indicate

1e.g., an app lineage of 10 app versions, 5 app versions could be removed
because of tool failure while the rest could be caused by obfuscation



no difference between the two distributions, implying that our
final dataset is still representative of the initial dataset (at least
w.r.t app sizes).

0 5 10 15 20 25 30 35
Dex Size in MB

Before

After

Fig. 2: Distribution of Dex Size before-after dataset curation

Metadata Collection. Some of our investigations require
up-to-data metadata (e.g., category, rating, number of installs)
from markets. Because GooglePlay implements location re-
strictions (only apps targeting a country’s users are made
visible in that country), we were able to collect metadata for
around 60% of the lineages.

IV. METHODOLOGY OF THE STUDY

We carry experiments to assess the hypothesis behind re-
lying on usage updates to mine crypto-API usage rules. We
explore usage updates:

• with an analysis of pairwise comparisons among apks
successive releases within the lineages in our dataset;

• with an overall lineage-wise study of the recurrence of
misuses in an app across its entire lineage.

We further investigated updates for selected subsets of apps to
confront the general trends against specific cases for popular
apps, or sensitive apps.

A. Pairwise comparisons of apks from the same lineage
Given an app lineage li, its associated apk releases are

combined into pairs (apkj−1, apkj), where 1 < j ≤ n, for
the purpose of checking differences between misuses in apkj
and apkj−1. The comparison takes into account only usage
instances that are found at the same code location in both
apps and that are relevant to the same API. In this study, a
code location (lo) is represented by both the class and method
in which the API usage is found. We consider the following
cases which may occur:

• misuse fixing (MF) update: the CogniCryptSAST anal-
ysis flags an issue with a usage in apkj−1 but not with
the usage at the same location in apkj . We conclude that
the misuse has been fixed by the update.

• misuse introducing (MI) update: the CogniCryptSAST

analysis flags an issue with a usage in apkj but not with
the usage at the same location in apkj−1. In contrast to
a MF update, such an update introduces misuses.

• misuse fixing and introducing (MFI) update: the
CogniCryptSAST analysis flags an issue with a usage at
a given location in both apkj and apkj−1, but the misuses
are different. This suggests that developers corrected the
previous misuse during the update, but somehow made
another mistake.

• none update: the CogniCryptSAST analysis flags the
same issue with a usage in apkj−1 and apkj at the same
location. We conclude that the developers did not notice
the issure during app updates.

To distinguish among different usages of the same API
at the same location, one should take into account variables
names associated to instantiated objects from API classes.
In practice, however, the reverse-engineering of apks assigns
random names to variables, making these names differ across
the pair of apps. We use simple heuristics to match relevant
pair of usage instances and iteratively start with identifying
none update cases, then MFI updates, before MF updates and
MI updates.

MI update and MFI update constitute two cases of mis-
updates, as they result in API misuses in the most recent
version of the app.

B. Investigations of updates across lineages
We investigate the overall evolution of a given app w.r.t.

its misuses of crypto-APIs. We then study the trends of usage
issues in app lineages. To that end, first, for each app version
apkj in an app lineage li, we compute a misuse ratio rj defined
in equation 1.

mj ← total number API misuses(apkj)
uj ← total number API usages(apkj)
rj :=

mj

uj

(1)

We consider the ordered ratio list Ri of app lineage li
as Ri := {r1, r2, · · · , rn}, a list of misuse ratio of all apk
releases included in li with r1 being the misuse ratio of the
first apk of li, r2 the misuse ratio of the second apk, etc.
We then compute the slope si = linear regress(Ri) of the
regressed between all points of Ri. In this study, si is used
to characterize the misuse trend: a negative si indicates that
lineage li is evolving towards a better usage of crypto-APIs,
while a positive si suggests that the usage of crypto-APIs
is worsening with app updates. A null si indicates a status
quo. The bigger the value of |si|, the faster the evolution in a
lineage.

V. STUDY RESULTS

We now provide experimental results obtained while inves-
tigating the research questions enumerated in Section III-B.
In particular, we show statistics on crypto-API misuses in
the wild, summarize the success rates in API misuse updates
between apk releases, reveal the evolution of misuses across
lineages, and eventually discuss the difference between the
whole dataset and selected categories of apps.

A. RQ1: Crypto-API misuses in Android apps

0 5 10 15 20 25 30 35 40
# of usage per APK

Fig. 3: Distribution of JCA API usages in the study dataset

Crypto-APIs are widely used in Android apps. Statistics
presented earlier (Table III) indicated that over 80% (or 598
thousands apks) of the app versions in our sample dataset
of 745 thousands apks include code with JCA API usages.
Fig. 3 further shows the distribution of JCA API usages in
our dataset of 598k apks. The usage statistics are collected
from the analysis reports of CogniCryptSAST . On median



average, 10 JCA API usage instances can be identified per
app, while 75% of apks include at least 5 usage instances.

Table IV summarizes the statistics on API misuses among
the apks that include JCA API usages. 96% of apks include
misuses, and 97.6% of lineages include at least an apk version
with a misuse. On average 1 misuse is found among 6 usages
of JCA APIs.

TABLE IV: Statistics on API Misuses in the dataset apks

Types Numbers Related Information
Percentage of APKs
with misuse

96% number of APKs without mis-
uses is 24,880

Percentage of app lin-
eages with misuse

97.6% number of lineages without
misuses is 942

misuse to usage ratio 1 : 5.53 total number of API usages
is 23,281,216 and misuses is
4,210,667

We detail the misuse spread in Fig. 4. As shown by the
misuse distributions in apks represented in Fig. 4a, a given apk
contains commonly between 2 to 9 misuse cases. On median
average, 4 misuses can be found per app. We further show
in Fig. 4b the distribution of the ratio (as defined in Eq.1)
between misuses and usages within apks. Interestingly, there
are cases with the ratio is bigger than 1, i.e., there are more
misuse instances than usages. This suggests that developers
can make several mistakes when using a single crypto-API.
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Fig. 4: API Misuse Distribution
The preponderance of the different APIs to be affected

by misuses is detailed in Fig. 5. Over 60% of apks include
instances of the MessageDigest crypto-API with a misuse.
This is due to the widespread issue of using weak hashing
algorithms. While the percentage for Cipher, the API in the
second place, is around 21% for which the main misuse is
incompleted operation indicating that some further method
calls (e.g., update, doFinal) are expected but never achieved.

Table V further provides statistical details on the types of
errors that are raised by CogniCryptSAST as well as on
the top API methods that are concerned by misuses. Method
getInstance(java.lang.String) of crypto-API MessageDigest
takes as argument a String specifying the hashing algorithm.
This algorithm must offer a strong protection and thus should
be one of the recommended algorithms (e.g., SHA-256, SHA-
384 and SHA-512). When weak algorithms are used (e.g., MD5

or SHA-1), it represents a ConstraintError which makes the
app exposed to attacks.
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Fig. 5: Misuse Ranking based on JCA APIs

TABLE V: Ranking of Misuses

Ranking by Types
Type % Misuse #
ConstraintError 60.93% 2,565,892
RequiredPredicateError 14.63% 615,921
TypestateError 12.27% 516,758
IncompleteOperationError 11.64% 490,157
ForbiddenMethodError 0.51% 21,565
NeverTypeOfError <0.01% 374

Top 10 by API Methods
API Method % Misuse #
MessageDigest.getInstance(java.lang.String) 48.43% 2,039,428
Cipher.getInstance(java.lang.String) 8.80% 370,354
MessageDigest.reset() 8.06% 339,305
SecretKeySpec.<init>(byte[],java.lang.String) 3.79% 159,594
MessageDigest.digest() 3.78% 159,205
Cipher.init(int,java.security.Key, .... 2 2.95% 124,274
IvParameterSpec.<init>(byte[]) 3 2.92% 122,749
Cipher.init(int,java.security.Key) 2.50% 105,208
Signature.getInstance(java.lang.String) 1.99% 83,704
Signature.initVerify(java.security.PublicKey) 1.80% 75,705

Nevertheless, we find that although MessageDigest is the
API with the overall highest number misuses, it is not the
most misuse-prone API. Crypto-API PBEKeySpec has a higher
misuse ratio. Table VI ranks the JCA APIs based on such
a ratio. We provide details of misuse ratio distributions for
each API in Fig. 6. The median value of misuse ratio for
most of APIs is 0. For these APIs, only IvParameterSpec,
KeyGenerator and SecretKeySpec are showing clear boxes and
whisker lines while the rests only show outliers (which is not
shown in the figure for clearity reason). This suggests that
mistakes are quite rare for such APIs. In contrast, 5 APIs show
relatively high misuse ratios. Based on their median values,
PBEParameterSpec is the most error-prone (0.67), followed
by PBEKeySpec (0.5), MessageDigest (0.24) and Cipher (0.9).

We further investigated PBEKeySpec and PBEParameter-
Spec as they stand out in terms of misuse ratio distributions.
For PBEKeySpec, we found that the main misuse type is
IncompleteOperationError which is mainly caused by missing
of calling method clearPassword() to clear the password from
the memory. PBEParameterSpec misuses only occur with
type ConstraintError(80%) or RequiredPredicateError (20%).
ConstraintError generally refers to the small iteration numbers
as discussed in Listing 1.

2init(int,java.security.Key,java.security.spec.AlgorithmParameterSpec)
3Note: method <init> is the constructor of the class while method init is

a common method of the class
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Fig. 6: Misuse Ratio Distribution based on APIs

Three JCA APIs (namely, SecretKey, HMACParameterSpec
and DSAGenParameterSpec) are missing from the API us-
age list of our dataset. Four other APIs (namely DHGen-
ParameterSpec, DHParameterSpec, DSAParameterSpec, and
RSAKeyGenParameterSpec) although they have usage cases in
our dataset, no misuses have been reported for them. Further
investigations suggest that these four APIs are actually seldom
used, and their usage rules are in any case straightforward.
Indeed, except DHParameterSpce, these APIs are ranked at
the bottom of the API usage ranked list. Their usage rules are
only about the invocation of constructors with a number of
constraints. Although other APIs, such as GCMParameterSpec
and KeyPair, having similar simple rules, can be found with
misuse cases, the occurrences are very low. In conclusion,
these findings suggest that, since developers cannot avoid
using crypto-APIs, simplifying the usage rules during API
design could be an effective way to avoid misuses.

TABLE VI: JCA API Misuse to Usage Ratio Ranking. The misused
apk % is calculated by number of apks containing the misuse divided
by number of apks containing the relevant API usage.

API Misuse Ratio Misused APK %
PBEKeySpec 0.462098 55.50%
MessageDigest 0.287114 93.02%
Cipher 0.271808 50.77%
PBEParameterSpec 0.251944 57.26%
Signature 0.204835 23.76%
KeyGenerator 0.171380 27.74%
IvParameterSpec 0.102394 27.58%
SecretKeySpec 0.070372 27.81%
Mac 0.067249 3.05%
KeyStore 0.028322 9.12%
GCMParameterSpec 0.008141 0.79%
KeyPairGenerator 0.005865 0.60%
SecretKeyFactory 0.003974 0.35%
AlgorithmParameters 0.003307 3.46%
SecureRandom 0.003244 0.94%
KeyPair 0.000019 0.01%

The JCA APIs for implementing cryptography are widely
misused across Android apps. Usage mistakes range from
issues with parameter initialisation to mishaps with the se-
quence of API method invocations. Nevertheless, all crypto-
APIs are not similarly affected by misuse cases.

B. RQ2: Impact of crypto-API usage updates on misuse cases

From our dataset of 39,213 lineages accounting for about
598K apks, we collected 559,662 apk pairs (apkj−1, apkj),
where apkj is the updated version of apkj−1. From these apk
pairs, we were able to extract 3,291,723 crypto-API usage

pairs that fall into the four categories defined in Subsec-
tion IV-A: MF update, MI update, MFI update, and none
update. Among 559,662 apk pairs, around 75% (or 410,587)
of them fall into the none update category. This situation is
even worse if we count the none update rate at the crypto-API
uasge pair level, over 95% of the 3,291,723 misuses are not
touched by app developers during the evolution of Android
apps. This finding suggests that app developers are unlikely
to update crypto-API usages when updating their apps or may
not be even aware of the misuses in their app code.

For the remaining 162 970 crypto-API usage pairs involved
with developer updates (e.g., not in the none update cat-
egory), surprisingly, only 76,341 of them (less than 47%)
have successfully fixed the misuse issues (i.e., falling into the
MF update category). Over half of the crypto-API updating
attempts fall into either MI update category (e.g., 72,143,
around 44%) or MFI update category (e.g., 14,486, around
9%). At the apk level, the MF, MI, and MFI attempts are
53,030, 50,183, and 4,483, respectively, resulting in still over
50% of mis-update rate. This surprising result indicates that
even in the cases that app developers are aware of crypto-API
misuse and are attempting to fix such misuses, most of them
do not have the right knowledge to properly fix the misuse
issues. As a result, our previous assumption on mining crypto-
API usage rules from the evolution of Android apps cannot
be easily realised in practice.

Because the overall dataset leveraged, although very big,
is collected from various sources, we hypothesise that the
selected datasets (or app lineages) contain a broad set of apps
with varying quality. Consequently, the large mis-update rate
might be impacted directly by the selection of poor quality
apps. If we focus our experiments on high-quality apps only,
we might be able to observe clear trends that app developers
are recurrently and successfully fix crypto-API misuse issues.
To this end, we resort to two specific subsets to reconduct our
empirical experiments.
• Reputed Apps. Updates of reputed apps are selected only

within lineages where the app has high rates (i.e., ≥ 4.5)
and large installs (i.e., ≥ 1 000 000). With this subset, we
assess whether widely used apps are similarly affected by
crypto-APIs misuses.

• Finance Apps. Updates of finance apps are focused on
app lineages tagged in GooglePlay as being for financial
services. In this case, we again constrain this selection
to apps with high rates and large installs as the case of
Reputed apps. Because finance apps are critical to security



issues, with this subset, we assess whether app developers of
finance apps have special treatment to crypto-API misuse.
Table VII summarises the experimental results we observed

for the different sub-datasets. For comparison purpose, we also
present the Overall results representing the statistics computed
for the whole dataset of apks. Following the same strategy, we
also provide data on the number of MF, MI and MFI updates.
The statistics are computed at the apk level (i.e., given a pair of
successive apks in a lineage, how many of these pairs contain
at least one MFI update, at least one MF update, etc.) and at
the usage level (how many updates turned out to be a MF, a
MFI case, etc., i.e., we count the number of MF update, MFI
update, etc.). Unfortunately, compared to the mis-update rates
of the Overall set, the results observed on that of the selected
subsets do not suggest any substantial difference, only about
1 out of 2 updates will yield a correct fix for a crypto-API
misuse.

TABLE VII: Misuse Update Statistics

MF MI MFI Mis-update
Rate

Overall APK level 53,030 50,183 4,483 50.76%
Usage level 76,341 72,143 14,486 53.16%

Reputed APK level 4,300 3,934 446 50.46%
Usage level 5,809 5,204 1,862 54.88%

Finance APK level 179 153 30 50.55%
Usage level 232 192 195 62.52%

Fig. 7 further illustrates the distribution of slopes (i.e.,
misuse trends as defined in Subsection IV-B) across the
different subsets. We consider the evolution of misuse rate
across each app lineage. When the mis-update rate is stable
across the lineage, the slope metric evaluates to 0. A negative
slope implies that the situation is getting better along the
lineage: latest updates in the lineage are more successful. In
contrast, a positive slope suggests that the situation is getting
worse along the lineage.

Fig. 7: Distribution of Slopes (Misuse Trend)

We observe that, for all three datasets, the distribution of
trend slopes presents more or less a symmetric pattern around
a median value at 0. The fact that the distribution spans
are relatively narrow further suggests that for most lineages,
crypto-API usage updates are rather stable. In the overall
dataset, we can find 10,316 (26.31%) lineages with a negative
trend of misuse update. Nevertheless, the successful cases in
recent updates are still not more numerous: the mis-update
rate amounts to 53.66% when we consider these lineages apps
altogether.

Based on Table VII, it is noteworthy that the MI update
(i.e., where a mistake is made on a usage that was previously

correct) cases are the major contributors to the mis-update rate.
There are often as many MI updates as MF updates in each
dataset. We further investigate the recurrence of misuses across
the different datasets and found 19,392, 1,332 and 65 recurrent
misuse cases respectively in the overall, reputed and finance
datasets. Concretely, we consider a misuse to be recurrent
when, within an app lineage, an update has eliminated it (i.e.,
MF update), and then it has been later introduced (i.e., MI
update). Overall, we find that 25% of MI updates actually
represent recurring misuses, suggesting that the associated MF
updates may have been unintentional (which made them likely
to be reintroduced).

Table VIII details the misuse update results for the different
APIs with their rankings. Even at the level of each API,
MF and MI updates appear to compensate each other. This
can be observed by the similar numbers of updates as well
as their ranks across the API list, with APIs Cipher and
MessageDigest leading the statistics (consistently with the
misuses preponderance shown in Table V).

TABLE VIII: Misuse Update Ranking by APIs

API MF MI MFI
# Rank # Rank # Rank

Cipher 20,574 1 21,751 1 2,549 2
MessageDigest 17,668 2 20,451 2 1,283 3
IvParameterSpec 14,300 3 14,150 3 17 10
SecretKeySpec 14,085 4 14,126 4 71 7
KeyGenerator 3,372 5 3,465 5 65 8
Mac 878 6 860 6 9,382 1
Signature 504 7 516 7 864 4
KeyStore 278 8 268 9 153 5
PBEKeySpec 155 9 304 8 83 6
SecureRandom 131 10 180 11 0 12
PBEParameterSpec 123 11 212 10 0 12
AlgorithmParameters 47 12 22 12 2 11
KeyPairGenerator 14 13 20 13 0 12
GCMParameterSpec 13 14 13 14 0 12
SecretKeyFactory 1 15 3 15 17 10
KeyPair 0 16 0 16 0 12

Statistical data in Table VIII show that none of these three
update kinds happened with KeyPair as shown in the last line
of the table. This is likely due to its low misuse occurrences
(i.e., 19 according to Table V). Moreover, API SecureRandom,
PBEParameterSpec, KeyPairGenerator and GCMParameter-
Spec do not show any cases of MFI updates. Nevertheless,
we still cannot learn from their changes as they can either be
MF or more like MI updates.

Android app developers are generally unaware of crypto-
API misuses and hence will unlikely fix such issues. Un-
expectedly, usage updates are evenly distributed between
successful fixes and failures. The recurrence of misuses
further imply that most of the successful updates may have
not been made intentionally.

C. RQ3: Errors and methods impacted by misuse updates
We now investigate the types of errors that are concerned by

MF, MI and MFI updates. Table IX indicates that MF updates
are dominated by misuses cases of type RequiredPredicateEr-
ror (67%) followed by ConstraintError (29%). Consistently
with the previous finding on recurrence of misuses, we note
that MI updates follow a similar pattern. We recall that



both RequiredPredicateError and ConstraintError generally
concern the initialization or the selection of proper arguments
to API methods.

TABLE IX: Misuse Update Ranking by Types

API MF MI MFI
% Rank % Rank % Rank

RequiredPredicateError 66.78% 1 69.99% 1 3.86% 4
ConstraintError 29.10% 2 25.73% 2 7.08% 3
TypestateError 3.35% 3 3.38% 3 12.07% 2
IncompleteOperationError 0.71% 4 0.84% 4 76.67% 1
NeverTypeOfError 0.05% 5 0.05% 5 0.05% 6
ForbiddenMethodError 0.02% 6 0.01% 6 0.27% 5

MFI updates show a different pattern, where Incomplete-
OperationError becomes the major misuse type: in 77% of
cases, the update does not properly fix the errors. TypeState
misuses then account for 12% of misuses that are difficult to
fix. Both are about the sequence of API method invocations,
either about missing certain method calls or related to a wrong
order of invocation. For example, we note that in several
cases, developers invoke the method doFinal immediately after
getting an object instance of the Mac API class. However, they
are supposed to start with the invocation of method init and,
occasionally perform an update before calling doFinal: this
leads to a misuse of type TypestateError. During the updates,
it appears that most developers are trying to fix the problem
by adding invocations of method update. Nevertheless, they
generally still do not call init which leaves the issue im-
properly addressed. More strangely, we noted that in many
cases, instead of further completing the fix, developers simply
reverted back to the previous misuse version. IncompleteOp-
erationError is seen an opposite scenario: after generating the
instance of Mac, method doFinal is never called. Developers
update the usage by adding method calls such as init or update
but never add doFinal call, which again leaves this issue
unresolved.

TABLE X: The Most Common MFI Update Methods

API Missing Method # % Explanation
From To

Mac update init 4,182 28.87% before update, init was call but miss-
ing method call of update or doFinal.
However, update even removed method
call of init.

or doFinal

Mac init update 3,971 27.41% expected method call of init was added
during update but still require fur-
ther method call of update or doFinal
which is missing.

or doFinal

From the perspective of crypto-API methods, Table XI
exhibits details about the top API method invocations which
are involved in MF or MI updates. Note that the top 9 methods
for the two kinds of updates are exactly the same. The last
two lines of the table are the 10th methods for the two
update kinds. As the most commonly misused method (cf.,
Table V), getInstance of MessageDigest is also the most often
updated method for fixing but also for introducing misuses.
The recurrent misuse with this method is about the parameter
specifying the hashing algorithm. Weak algorithms such as
SHA1 and MD5 or sometimes even wrong values, like SHA,
are used.

Finally, MFI updates are generally related to IncompleteOp-
erationError and TypestateError types, which are all caused
by incorrect API method invocation sequences. Due to space
limitation, Table X only shows a couple of example cases of

how MFI updates occur. These examples show that misuses
can be bounced back and forth when API usages require
several steps in the invocation sequence.

TABLE XI: Top 10 MF & MI Update Methods

API Method MF MI
# % Rank # % Rank

MessageDigest.getInstance(java.lang.String) 19,183 25.13% 1 16,331 22.64% 1
Reason: parameter with value: MD5, SHA1, SHA

IvParameterSpec.<init>(byte[]) 14,070 18.43% 2 14,234 19.73% 2
Reason: parameter is not randomized

SecretKeySpec.<init>(byte[],java.
lang.String)

13,681 17.92% 3 13,636 18.90% 3

Reason: first parameter is not randomized

Cipher.init(int,java.security.Key,
java.security.spec.AlgorithmParameterSpec)

12,207 15.99% 4 12,097 16.77% 4

Reason: second parameter is not properly generated

Cipher.init(int,java.security.Key) 6,559 8.59% 6 6,274 8.70% 5
Reason: second parameter is not properly generated

KeyGenerator.init(int,java.security.
SecureRandom)

3,363 4.41% 6 3,285 4.55% 6

Reason: second parameter is not properly randomized (e.g., fixed seed)

Cipher.getInstance(java.lang.String) 2,553 3.34% 7 1,888 2.62% 7
Reason: parameter with not recommended algorithm (e.g., DES), unappropriated combi-
nation of algorithm and feedback mode (e.g., AES/EBC) or with without padding scheme

MessageDigest.reset() 604 0.79% 8 630 0.87% 8
Reason: missing method call of digest or update

SecretKeySpec.<init>(byte[],int,int,
java.lang.String)

445 0.58% 9 449 0.62% 9

Reason: first parameter is not randomized

Mac.doFinal() 366 0.48% 10
Reason: expected to call method init before.

Signature.initSign(java.security.PrivateKey) 391 0.54% 10
Reason: private key (first parameter) is not properly generated

Misuses caused by missing steps when using crypto-APIs
appear to be difficult to fix. In turn this difficulty is
manifested by recurrent failures in API usage updates.

D. Discussion
Initially, we planned to build on the assumption that app

developers are likely to fix crypto-API misuse issues during
app evolution. Hence, by mining lineages of a large set of
Android apps, one can summarise the crypto-API usage rules.
Unfortunately, and also surprisingly, our investigations reveal
that :
• crypto-API misues are very common in Android apps.
• app developers are not likely to fix misuses when they

update app code.
• For the cases where developers try to fix such misuses, they

are often not able to make correct fixes.
• some misuses are recurrently fixed and reintroduced, im-

plying that most of the successful updates might not be
performed intentionally to fix the relevant misuses.

• some APIs are more impacted by misuses than others.
Misuse updates are however likely to fail as much as to
succeed.
We showed that even reputable or sensitive apps are sub-

stantially suffering from crypto-API misuses, suggesting that
our community is still lacking reliable means to address this
problem. Therefore, immediate actions are needed. From app
developer side, the recurrence of misuses suggests a need to
provide better developer education on how to correctly use
crypto-APIs. Similarly, crypto-API providers also need to find
better ways to design crypto-APIs to reduce the error margins.
Finally, app markets must pay special attention to such apps



with misused crypto-APIs, which will create a momentum of
developers addressing them seriously.

More concretely, developers should pay extra attention when
using MessageDigest, PBEKeySpec and Mac, as they are the
widest misused, most misuse-prone and most difficult to be
corrected APIs respectively. Choosing algorithms like SHA-
256 instead of SHA-1 or MD5 can quickly avoid most of
the misuses in MessageDigest. While generating salt randomly
and remembering to call method clearPassword() at the end
can make usage of PBEKeySpec safe and sound. Finally, the
key to use Mac correctly is the order of method invocations.
Methods getInstances and init should be always used in the
first 2 steps. Method update could be invoked more than once
afterwards. And doFinal should always be called once at last.

VI. THREATS TO VALIDITY

For internal threats to validity, our results may be impacted
by the dataset selected, which might not be representative. We
attempt to mitigate this impact by considering a large set of
Android apps. Furthermore, the app versions in a lineage are
sequenced based on their version code, which however may
not be always true as the version code is configured by app
developers. We did not however find any false positives by
sampling lineages.

Regarding external threats to validity, our results may be
impacted by the false alarms of CogniCryptSAST . We have
actually benchmarked a set of apps to check the false positive
rates of CogniCryptSAST . Our manual verification confirms
that CogniCryptSAST is effective. We have only observed
one case where CogniCryptSAST may yield false positives,
which is related to the artificially created dummyMainMethod
method (because Android apps do not have a single main()
like traditional Java code). We have reported this issue to the
authors of CogniCryptSAST and excluded such cases from
consideration in this work.

Furthermore, negative result normally refers to a statistical
null hypothesis is accepted or an approach is not better than the
baseline. While, in this work, we use this term to emphasise
the difference between the assumption and the surprising
empirical results. Meanwhile, although we investigated our
assumption from serval different angles, we did not exhaust
all possible ways. Therefore, there are still chances for the
assumption to be ture for certain elaborate sub-datasets.

Finally, we have only conducted our experiments on APIs
and a few sub-datasets of apps. It might be still possible to
mine usage rules on other datasets or other crypto-APIs. More
sophisticated approaches may be successful for mining crypto-
API usage patterns from the evolution of Android apps.

VII. RELATED WORK

Crypto-APIs have become a major feature in modern
programming languages for encrypting/decrypting sensitive
messages, while the misuses of such APIs have also been
extensively studied in our community. In this section, we
briefly discuss the representative ones.

Misuses of crypto-APIs. CryptoLint is a tool that performs
lightweight syntactic analyses for pinpointing violations of

hard-coded crypto-API usage rules in Android apps [26].
Similar to CryptoLint, Crypto Misuse Analyzer (CMA) [27]
is also based on hard-coded rules to flag misuses of crypto-
APIs. In this work, we leverage CogniCryptSAST to detect
misuses of crypto-APIs in Android apps. To the best of our
knowledge, CogniCryptSAST is so far the most advanced
tool for detecting misuses of crypto-APIs. Indeed, the rules
hard-coded in CryptoLint and CMA are also contained in
the rules of CogniCryptSAST . Therefore, the misuses of
crypto-APIs leveraged in this work should be representative
and suitable for this study. Also, by manually exploring 49
Android apps, Chatzikonstantinou et al. [28] confirm that at
least 88% of the studied apps have misused at least one crypto-
API. The ratio obtained in this work is even slightly higher,
showing that misuses of crypto-APIs are indeed very common
in Android apps.

Mining Usage Patterns in Android Apps. Researchers
have reported various pattern mining approaches in the field
of Android analyses. For example, Linares-Vasquez et al. [29]
have conducted an empirical investigation to mine the energy-
greedy API usage patterns in Android apps as well as mine
the app usages for generating actionable GUI-based execution
scenarios [30]. Similarly, Karim et al. [31] mine Android apps
for recommending permissions while Moonsamy et al. [32]
aim at mining permission patterns for contrasting clean and
malicious Android apps.

Android App Evolution Analysis. In this work, we lever-
age app lineages to understand the evolution of Android apps
w.r.t. the usage of crypto-APIs. Android app evolution analysis
is not new. Researchers have presented various studies for
understanding the evolution of Android apps [33], [34], [35].
For example, Gao et al. [24] have presented an empirical
study aiming at understanding the evolution of Android app
vulnerabilities. Similarly, Taylor and Martinovic [36] also
investigate the evolution of security and privacy issues in
Android apps. These two approaches, although conducted
separately, have both shown that Android apps do not become
safer over several years of evolution, which is in line with the
major finding in this work, i.e., the misuses of crypto-APIs
are not likely to be fixed by app developers.

VIII. CONCLUSION
Crypto-API misuses are common in Android apps. Mining

usage rules is thus challenging given the noise in developer
code. We hypothesise in this paper that usage updates are
likely fixing misuses, and may thus be efficiently leveraged
for mining usage rules. We perform a large-scale investigation
of thousands of Android app lineages and fail to confirm
our initial hypothesis. We report these negative results to the
community and make available the artefacts of the study.

Availability: https://negative-crypto-api-mining.github.io/
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Traon. Androzoo: collecting millions of android apps for the research
community. In MSR ’16 Proc. of the 13th Intl. Conference on Mining
Software Repositories, pages 468–471, Austin, Texas, May 2016.

[18] Oracle. Java cryptography architecture (jca). https://docs.oracle.com/
javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html.

[19] Apache. Apache commons crypto. https://commons.apache.org/proper/
commons-crypto/index.html.

[20] CogniCrypt Developers. cognicryptSAST . https://github.com/
CROSSINGTUD/CryptoAnalysis.
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Klein. On vulnerability evolution in android apps. In The 40th
International Conference on Software Engineering, Poster Track (ICSE
2018), 2018.

[25] Anonymised for blind review. Anonymised for blind review. In
Anonymised for blind review, pages xx–yy. xxx, xxxx.

[26] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An empirical study of cryptographic misuse in android
applications. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 73–84. ACM, 2013.

[27] Shao Shuai, Dong Guowei, Guo Tao, Yang Tianchang, and Shi Chen-
jie. Modelling analysis and auto-detection of cryptographic misuse in
android applications. In Dependable, Autonomic and Secure Computing
(DASC), 2014 IEEE 12th International Conference on, pages 75–80.
IEEE, 2014.

[28] Alexia Chatzikonstantinou, Christoforos Ntantogian, Georgios Karopou-
los, and Christos Xenakis. Evaluation of cryptography usage in android
applications. In Proceedings of the 9th EAI International Conference on
Bio-inspired Information and Communications Technologies (formerly
BIONETICS), pages 83–90. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2016.

[29] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas,
Rocco Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. Mining
energy-greedy api usage patterns in android apps: an empirical study.
In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 2–11. ACM, 2014.

[30] Mario Linares-Vásquez, Martin White, Carlos Bernal-Cárdenas, Kevin
Moran, and Denys Poshyvanyk. Mining android app usages for gen-
erating actionable gui-based execution scenarios. In Mining Software
Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on,
pages 111–122. IEEE, 2015.

[31] Md Yasser Karim, Huzefa Kagdi, and Massimiliano Di Penta. Min-
ing android apps to recommend permissions. In Software Analysis,
Evolution, and Reengineering (SANER), 2016 IEEE 23rd International
Conference on, volume 1, pages 427–437. IEEE, 2016.

[32] Veelasha Moonsamy, Jia Rong, and Shaowu Liu. Mining permission
patterns for contrasting clean and malicious android applications. Future
Generation Computer Systems, 36:122–132, 2014.

[33] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study
of api stability and adoption in the android ecosystem. In Software
Maintenance (ICSM), 2013 29th IEEE International Conference on,
pages 70–79. IEEE, 2013.

[34] Paolo Calciati and Alessandra Gorla. How do apps evolve in their
permission requests?: a preliminary study. In Proceedings of the 14th
International Conference on Mining Software Repositories, pages 37–41.
IEEE Press, 2017.
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