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Abstract—There is a growing body of research on developing
testing techniques for Deep Neural Networks (DNN). We dis-
tinguish two general modes of testing for DNNs: Offline testing
where DNNs are tested as individual units based on test datasets
obtained independently from the DNNs under test, and online
testing where DNNs are embedded into a specific application and
tested in a close-loop mode in interaction with the application
environment. In addition, we identify two sources for generating
test datasets for DNNs: Datasets obtained from real-life and
datasets generated by simulators. While offline testing can be
used with datasets obtained from either sources, online testing is
largely confined to using simulators since online testing within
real-life applications can be time consuming, expensive and
dangerous. In this paper, we study the following two important
questions aiming to compare test datasets and testing modes for
DNNs: First, can we use simulator-generated data as a reliable
substitute to real-world data for the purpose of DNN testing?
Second, how do online and offline testing results differ and
complement each other? Though these questions are generally
relevant to all autonomous systems, we study them in the context
of automated driving systems where, as study subjects, we use
DNNs automating end-to-end control of cars’ steering actuators.
Our results show that simulator-generated datasets are able to
yield DNN prediction errors that are similar to those obtained
by testing DNNs with real-life datasets. Further, offline testing is
more optimistic than online testing as many safety violations
identified by online testing could not be identified by offline
testing, while large prediction errors generated by offline testing
always led to severe safety violations detectable by online testing.

Index Terms—DNN, ADS, testing, simulation

I. INTRODUCTION

Deep Neural Networks (DNN) [1]–[3] have made unprece-
dented progress largely fueled by increasing availability of
data and computing powers. DNNs have been able to automate
challenging real-world tasks such as image classification [4],
natural language processing [5] and speech recognition [6],
making them key enablers of smart and autonomous systems
such as automated-driving vehicles. As DNNs are increasingly
used in safety critical autonomous systems, the challenge of
ensuring safety and reliability of DNN-based systems emerges
as a difficult and fundamental software verification problem.

Many DNN testing approaches have been proposed re-
cently [7]–[11]. Among these, we distinguish two high-level,
distinct approaches to DNN testing: (1) Testing DNNs as

stand-alone components, and (2) testing DNNs embedded into
a specific application (e.g., an automated driving system) and
in interaction with the application environment. We refer to
the former as offline testing and to the latter as online testing.
Specifically, in offline testing, DNNs are tested as a unit in
an open-loop mode. They are fed with test inputs generated
independently from the DNN under test, either manually or
automatically (e.g., using image generative methods [9]). The
outputs of DNNs are then typically evaluated by assessing their
prediction error, which is the difference between the expected
test outputs (i.e., test oracles) and the outputs generated by the
DNN under test. In online testing, however, DNNs are tested
within an application environment in a closed-loop mode.
They receive test inputs generated by the environment, and
their outputs are, then, directly fed back into the environment.
Online testing evaluates DNNs by monitoring the requirements
violations they trigger, for example related to safety.

There have been several offline and online DNN testing ap-
proaches in the literature [12]. However, comparatively, offline
testing has been far more studied to date. This is partly because
offline testing does not require the DNN to be embedded
into an application environment and can be readily carried
out with either manually generated or automatically generated
test data. Given the increasing availability of open-source
data, a large part of offline testing research uses open-source,
manually-generated real-life test data. Online testing, on the
other hand, necessitates embedding a DNN into an application
environment, either real or simulated. Given the safety critical
nature of many systems relying on DNN (e.g., self-driving
cars), most online testing approaches rely on simulators, as
testing DNNs embedded into real and operational environment
is expensive, time consuming and often can be dangerous.

While both offline and online testing approaches have shown
to be promising, there is limited insight as to how these
two approaches compare with one another. While, at a high-
level, we expect offline testing to be faster and less expensive
than online testing, we do not know how they compare with
respect to their ability to reveal faults, for example leading
to safety violations. Further, we would like to know if large
prediction errors identified by offline testing always lead to
safety violations detectable by online testing? or if the safety
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violations identified by online testing translate into large
prediction errors? Answers to these questions enable us to
better know the relationships and the limitations of the two
testing approaches. We can then know which approach is to
be recommended in practice for testing autonomous systems,
or if the two are somehow complementary and should be best
combined.

In this paper, though the investigated questions are generally
relevant to all autonomous systems, we perform an empirical
study to compare DNN offline and online testing in the
context of Automated Driving Systems (ADS). In particular,
our study aims to ultimately answer the following research
question: RQ1: How do offline and online testing results differ
and complement each other? To answer this question, we
use open-source DNN models developed to automate steer-
ing functions of self-driving vehicles [13]. To enable online
testing of these DNNs, we integrate them into a powerful,
high-fidelity physics-based simulator of self-driving cars [14].
The simulator allows us to specify and execute scenarios
capturing various road traffic situations, different pedestrian-
to-vehicle and vehicle-to-vehicle interactions, and different
road-topologies, weather conditions and infrastructures. As a
result, in our study offline and online testing approaches are
compared with respect to the data generated automatically
using a simulator. To ensure that this aspect does not impact
the validity of our comparison, we investigate the following
research question as a pre-requisite of the above question:
RQ0: Can we use simulator-generated data as a reliable
substitute to real-world data for the purpose of DNN testing?

To summarize, the main contribution of this paper is that
we provide, for the first time, an empirical study comparing
offline and online testing of DNNs. Our study investigates
two research questions RQ0 and RQ1 (described above) in
the context of an automated-driving system. Specifically,

1) RQ0: Our results show that simulator-generated datasets
are able to yield DNN prediction errors that are similar
to those obtained by testing DNNs with real-life datasets.
Hence, simulator-generated data can be used in lieu of
real-life datasets for testing DNNs in our application
context.

2) RQ1: We found that offline testing is more optimistic
than online testing because the accumulation of predic-
tion errors over time is not observed in offline testing.
Specifically, many safety violations identified by online
testing could not be identified by offline testing as they
did not cause large prediction errors. However, all the
large prediction errors generated by offline testing led
to severe safety violations detectable by online testing.

To facilitate the replication of our study, we have made all
the experimental materials, including simulator-generated data,
publicly available [15].

The rest of the paper is organized as follows. Section II
provides background on DNNs for autonomous vehicles, in-
troduces offline and online testing, describes our proposed do-
main model that is used to configure simulation scenarios for
automated driving systems, and formalizes the main concepts
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Fig. 1. Overview of DNN-based ADS

in offline and online testing used in our experiments. Sec-
tion III reports the empirical evaluation. Section IV surveys the
existing research on online and offline testing for automated
driving system. Section V concludes the paper.

II. OFFLINE AND ONLINE TESTING FRAMEWORKS

This section provides the basic concepts that will be used
throughout the paper.

A. DNNs in ADS

Depending on the ADS design, DNNs may be used in two
ways to automate the driving task of a vehicle: One design
approach is to incorporate DNNs into the perception layer
of ADS primarily to do semantic segmentation [16], i.e., to
classify and label each and every pixel in a given image.
The software controller of ADS then decides what commands
should be issued to the vehicle’s actuators based on the classifi-
cation results produced by the DNN [17]. An alternative design
approach is to use DNNs to perform the end-to-end control
of a vehicle [13] (e.g., Figure 1). In this case, DNNs directly
generate the commands to be sent to the vehicles’ actuators
after processing images received from cameras. Our approach
to compare offline and online testing of DNNs for ADS is
applicable to both ADS designs. In the comparison provided in
this paper, however, we use DNN models automating the end-
to-end control of steering function of ADS since these models
are publicly available online and have been extensively used in
recent papers on DNN testing [8]–[10], [18]. In particular, we
use the DNN models from the Udacity self-driving challenge
as our study subjects [13]. We refer to this class of DNNs as
ADS-DNNs in the remainder of the paper. Specifically, ADS-
DNN receives inputs from a camera, and generates a steering
angle command.

B. Offline Testing

Figure 2 represents an overview of offline testing of DNN
in the context of ADS. In general, a dataset used to test a DNN
(or any ML model for that matter) is expected to be realistic
to be able to provide an unbiased evaluation of the DNN
under test. As shown in Figure 2, we identify two sources for
generating test data for the offline mode: (1) datasets captured
from real-life driving, and (2) datasets generated by simulators.
For our ADS-DNN models, a real-life dataset is a video or
a sequence of images captured by a camera mounted on a
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Fig. 2. Offline testing using (1) real-world and (2) simulator-generated data

(ego) vehicle’s dashboard while the vehicle is being driven by
a human driver. The steering angle of the vehicle applied by
the human driver is recorded for the duration of the video and
each image (frame) of the video in this sequence is labelled
by its corresponding steering angle. This yields a sequence of
manually labelled images to be used for testing DNNs. There
are, however, some drawbacks with test datasets captured
from real-life. Specifically, data generation is expensive, time
consuming and lacks diversity. The latter issue is particularly
critical since driving scenes, driving habits, as well as objects,
infrastructures and roads in driving scenes, can vary widely
across countries, continents, climates, seasons, day times, and
even drivers.

As shown in Figure 2, another source of test data generation
for DNN offline testing is to use simulators to automatically
generate videos capturing various driving scenarios. There are
increasingly more high-fidelity and advanced physics-based
simulators for self-driving vehicles fostered by the needs of the
automotive industry which increasingly relies on simulators
to improve their testing and verification practices. There are
several examples of commercial ADS simulators (e.g., PreS-
can [14] and Pro-SiVIC [19]) and a number of open source
ones (e.g., CARLA [20] and Apollo [21]). These simulators
incorporate dynamic models of vehicles (including vehicles’
actuators, sensors and cameras) and humans as well as various
environment aspects (e.g., weather conditions, different road
types, different infrastructures). The simulators are highly con-
figurable and can be used to generate desired driving scenarios.
In our work, we use the PreScan simulator to generate test
datas for ADS-DNNs. PreScan is a widely-used, high-fidelity
commercial ADS simulator in the automotive domain and has
been used by our industrial partner. In Section II-D, we present
the domain model we define to configure the simulator, and
describe how we automatically generate scenarios that can
be used to test ADS-DNNs. Similar to real-life videos, the
videos generated by our simulator are sequences of labelled
images such that each image is labelled by a steering angle.
In contrast to real-life videos, the steering angles generated by
the simulator are automatically computed based on the road
trajectory as opposed to being generated by a human driver.

The simulator-generated test datasets are cheaper and faster
to produce compared to real-life ones. In addition, depending
on how advanced and comprehensive the simulator is, we can
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Fig. 3. Online testing of ADS-DNNs using simulators

achieve a higher-level of diversity in the simulator-generated
datasets by controlling and varying the objects, roads, weather,
and other various features. However, it is not yet clear whether
simulator-generated images can be used in lieu of real images
since real images may have higher resolution, showing more
natural texture and look more realistic. In this paper, we
conduct an empirical study in Section III to investigate if we
can use simulator-generated images as a reliable alternative
to real images for testing ADS-DNNs.

C. Online Testing

Figure 3 provides an overview of online testing of DNNs
in the context of ADS. In contrast to offline testing, DNNs
are embedded into a simulator, they receive images generated
by the simulator, and their outputs are directly sent to the
(ego) vehicle models of the simulator. In this paper, we embed
the ADS-DNN into PreScan by providing the former with the
outputs from the camera model in input and connecting the
steering angle output of the ADS-DNN as input command
to the vehicle dynamic model. With online testing, we can
evaluate how predictions generated by an ADS-DNN for an
image generated at time t in a scenario impacts the images
to be generated at the time steps after t. Specifically, if the
ADS-DNN orders the ego vehicle to turn with an angle θ at
time t during a simulation, the camera’s field of view will be
shifted by θ within a small time duration td, and hence, the
image captured at time t + td will account for the modified
camera’s field of view. Note that td is the time required by
the vehicle to actually perform a command and is computed
by the dynamic model in the simulator. With online testing,
in addition to the steering angle outputs directly generated by
the ADS-DNN, we obtain the trajectory outputs of the ego
vehicle which enable us to determine whether the car is able
to stay in its lane.

Note that one could perform online testing with a real car
and collect real-life data. However, this is expensive, very
dangerous, in particular for end-to-end DNNs such as ADS-
DNN, and can only be done under very restricted conditions
on some specific public roads.

We conduct an empirical study in Section III to investigate
How offline and online testing results differ and complement
each other for ADS-DNNs.
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D. Domain Model

Figure 4 shows a fragment of the domain model capturing
the test input space of ADS-DNN. To develop the domain
model, we relied on the features that we observed in the real-
world test datasets for ADS-DNN (i.e., the Udacity testing
datasets [22]) as well as the configurable features of our
simulator. The domain model includes different types of road
topologies (e.g., straight, curved, with entry or exit lane),
different weather conditions (e.g., sunny, foggy, rainy, snowy),
infrastructure (e.g., buildings and overhead hangings), nature
elements (e.g., trees and mountains), an ego vehicle, secondary
vehicles and pedestrians. Each entity has multiple variables.
For example, an ego vehicle has the following variables: a
speed, a number (id) identifying the lane in which it is driving,
a Boolean variable indicating if its fog lights are on or off,
and many others. In addition to entities and variables, our
domain model includes some constraints describing valid value
assignments to the variables. These constraints mostly capture
the physical limitations and traffic rules. For example, the
vehicle speed cannot be higher than some limit on steep
curved roads. We have specified these constraints in the
Object Constraint Language (OCL) [23]. The complete domain
model, together with the OCL constraints, are available in the
supporting materials [15].

To produce a simulation scenario (or test scenario) for ADS-
DNN, we develop an initial configuration based on our domain
model. An initial configuration is a vector of values assigned
to the variables in the domain model and satisfying the OCL
constraints. The simulator generates for each of the mobile
objects defined in a scenario, namely the ego vehicle and
secondary vehicles and pedestrians, a vector of the trajectory

TABLE I
COMPARISON BETWEEN OFFLINE AND ONLINE TESTING

Criterion Offline testing Online testing

Definition Test DNNs using histor-
ical data already gener-
ated manually or auto-
matically

Test DNNs by embed-
ding them into an appli-
cation environment (vir-
tual or real)

Test mode Open-loop Closed-loop
Test input Sequences of images

from a camera (real-life)
or a camera model (in a
simulator)

An initial configuration
for a simulator to guide
the simulator into gener-
ating a specific driving
scenario

Test output Prediction error Safety violation
Execution time Low High

path of that object (i.e., a vector of values indicating the
positions and speeds of the mobile object). The length of
the vector is determined by the duration of the simulation.
The position values are computed based the characteristics of
the static objects, specified by the initial configuration such
as roads and sidewalks, as well as the speed of the mobile
objects.

E. Formalization

Table I summarizes the comparison between offline and
online testing as detailed in Sections II-B and II-C. Briefly,
offline testing verifies the DNN using historical data consisting
of sequences of images captured from real-life camera or based
on a camera model of a simulator. In either case, the images
are labelled with the steering angles. Offline testing measures
the prediction errors of the DNN to evaluate test results. In
contrast, online testing verifies the DNN embedded into an
application environment in a closed-loop mode. The test inputs
for online testing are initial configurations of the simulator,
generated based on our domain model (see Section II-D),
that guide the generation of specific scenarios. The output
of online testing is whether, or not, for a given simulation
scenario, a safety violation has happened. In our context, a
safety violation happens when the ego car strays out of its
lane such that it may risk an accident. Since offline testing
relies on historical data, it has a low execution time. However,
the time required to perform online testing is relatively high
because it encompasses the time required for the DNN-based
ADS to execute and interact with its environment. Note that
the execution time in Table I only refers to the time required
to perform testing and not the time or cost of generating test
inputs.

In the remainder of this section, we formalize inputs and
outputs for offline and online testing. We denote a real-life
test dataset by a sequence r = 〈(ir1, θr1), (ir2, θr2), . . . , (irn, θrn)〉
of tuples. For j = 1, . . . , n, each tuple (irj , θ

r
j ) of r consists

of an image irj and a steering angle θrj label. A DNN d,
when provided with a sequence 〈ir1, ir2, . . . , irn〉 of the images
of r, returns a sequence 〈θ̂r1, θ̂r2, . . . , θ̂rn〉 of predicted steering
angles. The prediction error of d for r is, then, computed using



two well-known metrics, Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE), defined below:

MAE (d, r) =

∑n
i=1 |θri − θ̂ri |

n

RMSE (d, r) =

√∑n
i=1(θ

r
i − θ̂ri )2
n

To generate a test dataset using a simulator, we provide the
simulator with an initial configuration of a scenario as defined
in Section II-D. We denote the test dataset generated by a
simulator for a scenario s for offline testing by sim(s) =
〈(is1, θs1), (is2, θs2), . . . , (isn, θsn)〉.

For online testing, we embed a DNN d into a simulator
and run the simulator. For each (initial configuration of a)
scenario, we execute the simulator for a time duration T . The
simulator generates outputs as well as images at regular time
steps tδ , generating outputs as vectors of size m = b Ttδ c. Each
simulator output and image takes an index between 1 to m.
We refer to the indices as simulation time steps. At each time
step j, the simulator generates an image isj to be sent to d as
input, and d generates a predicted steering angle θ̂sj which is
sent to the simulator. The status of the ego car is then updated
in the next time step j + 1 (i.e., the time duration it takes to
update the car is tδ) before the next image isj+1 is generated. In
addition to images, the simulator generates the position of the
ego car over time. Recall that the main function of our DNN is
automated lane keeping. This function is violated when the ego
car departs from its lane. To measure the lane departure degree,
we use the Maximum Distance from Center of Lane (MDCL)
metric for the ego car to determine if a safety violation has
occurred. The value of MDCL is computed at the end of the
simulation when we have the position vector of the ego car
over time steps, which was guided by our DNN. We cap the
value of MDCL at 1.5m, indicating that when MDCL is 1.5m
or larger, the ego car has already departed its lane and a safety
violation has occurred. In addition, we normalize the MDCL
values.

III. EXPERIMENTS

We aim to compare offline and online testing of DNNs
by answering the two research questions we have already
motivated in Sections I and II, which are re-stated below:

RQ0: Can we use simulator-generated data as a reliable
alternative source to real-world data? Recall that in Figure 2,
we described two sources for generating test data for offline
testing. As discussed there, simulator-generated test data is
cheaper and faster to produce and is more amenable to
input diversification compared to real-life test data. On the
other hand, the texture and resolution of real-life data look
more natural and realistic compared to the simulator-generated
data. With RQ0, we aim to investigate whether, or not, such
differences lead to significant inaccuracies in predictions of
the DNN under test. To do so, we configure the simulator
to generate a dataset (i.e., a sequence of labelled images)

that closely resembles the characteristics of a given real-life
dataset. We then compare the offline testing results for these
datasets. The answer to this question, which serves as a pre-
requisite of our next question, will determine if we can rely
on simulator-generated data for testing DNNs in either offline
or online testing modes.

RQ1: How do offline and online testing results differ and
complement each other? RQ1 is the main research question we
want to answer in this paper. It is important to know how the
results obtained by testing a DNN irrespective of a particular
application compare with test results obtained by embedding
a DNN into a specific application environment. The answer
will guide engineers and researchers to better understand the
applications and limitations of each testing mode.

A. Experimental Subjects

We use two publicly-available pre-trained DNN-based steer-
ing angle prediction models, i.e., Autumn [24] and Chauf-
feur [25], that have been widely used in previous work to
evaluate various DNN testing approaches [8], [9], [18].

Autumn consists of an image preprocessing module imple-
mented using OpenCV to compute the optical flow of raw
images, and a Convolutional Neural Network (CNN) imple-
mented using Tensorflow and Keras to predict steering angles.
Chauffeur consists of one CNN that extracts the features of raw
images and a Recurrent Neural Network (RNN) that predicts
steering angles from the previous 100 consecutive images
with the aid of a LSTM (Long Short-Term Memory) module.
Chauffeur is also implemented by Tensorflow and Keras.

The models are developed using the Udacity dataset [22],
which contains 33808 images for training and 5614 images for
testing. The images are sequences of frames of two separate
videos, one for training and one for testing, recorded by
a dashboard camera with 20 Frame-Per-Second (FPS). The
dataset also provides, for each image, the actual steering angle
produced by a human driver while the videos were recorded. A
positive (+) steering angle represents turning right, a negative
(-) steering angle represents turning left, and a zero angle
represents staying on a straight line. The steering angle values
are normalized (i.e., they are between −1 and +1) where a
+1 steering angle value indicates 25°, and a −1 steering angle
value indicates −25°1. Figure 5 shows the actual steering angle
values for the sequence of 5614 images in the test dataset. We
note that the order of images in the training and test datasets
matters and is accounted for when applying the DNN models.
As shown in the figure, the steering angles issued by the driver
vary considerably over time. The large steering angle values
(more than 3°) indicate actual road curves, while the smaller
fluctuations are due to the natural behavior of the human driver
even when the car drives on a straight road.

Table II shows the RMSE and MAE values of the two
models for the Udacity test dataset. Note that we were not

1This is how Tian et al. [8] have interpreted the steering angle values
provided along with the Udacity dataset, and we follow their interpretation.
We were not able to find any explicit information about the measurement unit
of these values anywhere else.
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Fig. 5. Actual steering angles for the 5614 real-world images for testing

TABLE II
DETAILS OF THE SUBJECT DNN-BASED MODELS

Model Reported RMSE Our RMSE Our MAE

Autumn 0.030 0.049 0.034
Chauffeur 0.058 0.092 0.055

able to exactly replicate the RMSE values reported on the
Udacity self-driving challenge website [13], as the values in
Table II are slightly different from those provided by Udacity.
Reproducibility is known to be a challenge for state-of-the-art
deep learning methods [26] since they involve many parame-
ters and details whose variations may lead to different results.
To enable replication of our work, we have made our detailed
configurations (e.g., python and auxiliary library versions),
together with supporting materials, available online [15].

While MAE and RMSE are two of the most common met-
rics used to measure prediction errors for learning models with
continuous variable outputs, we mainly use MAE throughout
this paper because, in contrast to RMSE, the MAE values can
be directly compared with individual steering angle values. For
example, MAE (d, r) = 1 means that the average prediction
error of d for the images in r is 1 (25°). Since MAE is a
more intuitive metric for our purpose, we will only report
MAE values in the remainder of our paper.

B. RQ0: Comparing Offline Testing Results for Real-life Data
and Simulator-generated Data

1) Setup: We aim to generate simulator-generated datasets
closely mimicking the Udacity real-life test dataset and verify
whether the prediction errors obtained by applying DNNs
to the simulator-generate datasets are comparable with those
obtained for their corresponding real-life ones. As explained
in Section III-A, our real-life test dataset is a sequence of 5614
images labelled by their corresponding actual steering angles.
If we could precisely extract the properties of the environment
and the dynamics of the ego vehicle from the real-life datasets
in terms of initial configuration parameters of the simulator, we
could perhaps generate simulated data resembling the real-life
videos with high accuracy. However, extracting information
from real-life video images in a way that the information can
be used as inputs of a simulator is not possible.

Instead, we propose a two-step heuristic approach to repli-
cate the real-life dataset using our simulator. Basically, we
steer the simulator to generate a sequence of images similar to
the images in the real-life dataset such that the steering angles
generated by the simulator are also close to the steering angle
labels in the real-life dataset.

In the first step, we observe the test dataset and manually
identify the information in the images that correspond to some
configurable parameter values in our domain model described
in Section II-D. We then create a restricted domain model
by fixing the parameters in our domain model to the values
we identified by observing the images in the Udacity test
dataset. This enables us to steer the simulator to resemble the
characteristics of the images in the test dataset to the extent
possible. Our restricted domain model includes the entities and
attributes that are neither gray-colored nor bold in Figure 4.
For example, the restricted domain model does not include
weather conditions other than sunny because the test dataset
has only sunny images. This guarantees that the simulator-
generated images based on the restricted domain model rep-
resent sunny scenes only. Using the restricted domain model,
we randomly generate a large number of scenarios yielding a
large number of simulator-generated datasets.

In the second step, we aim to ensure that the datasets
generated by the simulator have similar steering angle labels
as the labels in the real-life dataset. To ensure this, we match
the simulator-generated datasets with (sub)sequences of the
Udacity test dataset such that the similarities between their
steering angles are maximized. Note that steering angle is not
a configurable variable in our domain model, and hence, we
could not force the simulator to generate data with specific
steering angle values as those in the test dataset by restricting
our domain model. Hence, we minimize the differences by
selecting the closest simulator-generated datasets from a large
pool of randomly generated ones. To do this, we define, below,
the notion of “comparability” between a real-life dataset and
a simulator-generated dataset in terms of steering angles.

Let S be a set of randomly generated scenarios using the
restricted domain model, and let r = 〈(ir1, θr1), . . . , (irk, θrk)〉
be the Udacity test dataset where k = 5614. We denote
by r(x,l) = 〈(irx+1, θ

r
x+1), . . . , (i

r
x+l, θ

r
x+l)〉 a subsequence

of r with length l starting from index x + 1 where x ∈
{0, . . . , k}. For a given simulator-generated dataset sim(s) =
〈(is1, θs1), . . . , (isn, θsn)〉 corresponding to a scenario s ∈ S, we
compute r(x,l) using the following three conditions:

l = n (1)

x = argmin
x

l∑
j=1

|θsj − θrx+j | (2)

∑l
j=1 |θsj − θrx+j |

l
≤ ε (3)

where argminx f(x) returns2 x minimizing f(x), and ε is

2If f has multiple points of the minima, one of them is randomly returned.



a small threshold on the average steering angle difference
between sim(s) and r(x,l). We say datasets sim(s) and r(x,l)
are comparable if and only if r(x,l) satisfies the three above
conditions (i.e., 1, 2 and 3).

Given the above formalization, our approach to replicate the
real-life dataset r using our simulator can be summarized as
follows: In the first step, we randomly generate a set of many
scenarios S based on the reduced domain model. In the second
step, for every scenario s ∈ S, we identify a subsequence
r(x,l)|r such that sim(s) and r(x,l) are comparable.

If ε is too large, we may find r(x,l) whose steering angles
are too different from those in sim(s). On the other hand, if ε
is too small, we may not able to find r(x,l) that is comparable
to sim(s) for many randomly generated scenarios s ∈ S in
the first step. In our experiments, we select ε = 0.1 (2.5°)
since, based on our preliminary evaluations, we can achieve
an optimal balance with this threshold.

For each comparable pair sim(s) and r(x,l), we measure the
prediction errors, i.e., MAE (d, sim(s)) and MAE (d, r(x,l))
of a DNN d, and calculate the prediction error difference,
i.e., |MAE (d, sim(s)) − MAE (d, r(x,l))|, to compare them.
Recall that offline testing results for a given DNN d are
measured based on prediction errors in terms of MAE. If
|MAE (d, sim(s)) −MAE (d, r(x,l))| ≤ 0.1 (meaning 2.5° of
average prediction error across all images), we say that r(x,l)
and sim(s) yields consistent offline testing results for d.

2) Results: Among the 100 randomly generated scenarios
(i.e., |S| = 100), we identified 92 scenarios that could match
subsequences of the Udacity real-life test dataset. Figure 6a
shows the steering angles for an example comparable pair
sim(s) and r(x,l) in our experiment, and Figure 6b and 6c
show two example matching frames from r(x,l) (i.e., real
dataset) and sim(s) (i.e., simulator-generated dataset), respec-
tively. As shown in the steering angle graph in Figure 6a,
the simulator-generated dataset and its comparable real dataset
subsequence have very similar steering angles. Note that
the actual steering angles issued by a human driver have
natural fluctuations while the steering angles generated by the
simulator are very smooth. Also, the example matching images
in Figure 6b and 6c look quite similar.

Figure 7 shows, for each of our DNNs, Autumn and Chauf-
feur, the distributions of the prediction error differences for
the real datasets (subsequences) and the simulator-generated
datasets For Autumn, the average prediction error difference
for the real datasets and the simulator-generated datasets
is 0.027. Further, 96.7% of the comparable pairs show a
prediction error difference below 0.1 (2.5°). This means that
the (offline) testing results obtained for the simulator-generated
datasets are consistent with those obtained using the real-
world datasets for almost all comparable dataset pairs. On
the other hand, for Chauffeur, 68.5% of the comparable pairs
show a prediction error difference below 0.1. This means
that the testing results between the real datasets and the
simulator-generated datasets are inconsistent in 31.5% of the
92 comparable pairs. Specifically, for all of the inconsistent
case, we observed that the MAE value for the simulator-
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Fig. 7. Distributions of the differences between the prediction errors obtained
for the real datasets (subsequences) and the simulator-generated datasets

generated dataset is greater than the MAE value for the
real-world dataset. It is therefore clear that the prediction
error of Chauffeur tends to be larger for the simulator-
generated dataset than the real-world dataset. In other words,
the simulator-generated datasets tend to be conservative for
Chauffeur and report more false positives than for Autumn
in terms of prediction errors. We also found that, in several
cases, Chauffeur’s prediction errors are greater than 0.2 while
Autumn’s prediction errors are less than 0.1 for the same
simulator-generated dataset. One possible explanation is that
Chauffeur is over-fitted to the texture of real images, while
Autumn is not thanks to the image preprocessing module.
Nevertheless, the average prediction error differences between
the real datasets and the simulator-generated datasets is 0.079
for Chauffeur, which is still less than 0.1. This implies that,
although Chauffeur will lead to more false positives (incorrect
safety violations) than Autumn, the number of false positives
is still unlikely to be overwhelming.



We remark that the choice of simulator as well as the way
we generate data using our selected simulator, based on care-
fully designed experiments such as the ones presented here, are
of great importance. Selecting a suboptimal simulator may lead
to many false positives (i.e., incorrectly identified prediction
errors) rendering simulator-generated datasets ineffective.

The answer to RQ0 is that the prediction error differ-
ences between simulator-generated datasets and real-life
datasets is less than 0.1, on average, for both Autumn
and Chauffeur. We conclude that we can use simulator-
generated datasets as a reliable alternative to real-world
datasets for testing DNNs.

C. RQ1: Comparison between Offline and Online Testing
Results

1) Setup: We aim to compare offline and online testing
results in this research question. We randomly generate 50
scenarios and compare the offline and online testing results
for each of the simulator-generated datasets.

For the scenario generation, we use the extended domain
model (see Figure 4) to take advantage of all the feasible
features provided by the simulator. Specifically, in Figure 4,
the gray-colored entities and attributes in bold are additionally
included in the extended domain model compared to the
restricted domain model used for RQ0. For example, the (full)
domain model contains various weather conditions, such as
rain, snow, and fog, in addition to sunny.

Let S′ be the set of randomly generated scenarios based on
the (full) domain model. For each scenario s ∈ S′, we prepare
the simulator-generated dataset sim(s) for offline testing and
measure MAE (d, sim(s)). For online testing, we measure
MDCL(d, s).

Since MAE and MDCL are different metrics, we cannot
directly compare MAE and MDCL values. To determine
whether the offline and online testing results are consistent
or not, we set threshold values for MAE and MDCL. If
MAE (d, sim(s)) < 0.1 (meaning the average prediction error
is less than 2.5°) then we interpret the offline testing result of
d for s as acceptable. On the other hand, if MDCL(d, s) < 0.7
(meaning that the departure from the centre of the lane
observed during the simulation of s is less than around one
meter), then we interpret the online testing result of d for s
as acceptable. If both offline and online testing results of d
are consistently (un)acceptable, we say that offline and online
testing are in agreement regarding testing d for s.

2) Results: Figure 8 shows the comparison between offline
and online testing results in terms of MAE and MDCL values
for all the randomly generated scenarios in S′ where |S′| = 50.
The x-axis is MAE (offline testing) and the y-axis is MDCL
(online testing). The dashed lines represent the thresholds,
i.e., 0.1 for MAE and 0.7 for MDCL. Table III provides
the number of scenarios classified by the offline and online
testing results based on the thresholds. The results show
that offline testing and online testing are not in agreement
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TABLE III
NUMBER OF SCENARIOS CLASSIFIED BY
OFFLINE AND ONLINE TESTING RESULTS

(a) Autumn

MAE < 0.1 MAE ≥ 0.1 Total
MDCL < 0.7 4 0 4
MDCL ≥ 0.7 22 24 46

Total 26 24 50

(b) Chauffeur

MAE < 0.1 MAE ≥ 0.1 Total
MDCL < 0.7 9 0 9
MDCL ≥ 0.7 17 24 41

Total 26 24 50

for 44% and 34% of the 50 randomly generated scenarios
for Autumn and Chauffeur, respectively. Surprisingly, offline
testing is always more optimistic than online testing for the
disagreement scenarios. In other words, there is no case where
the online testing result is acceptable while the offline testing
result is not.

Figure 9 shows one of the scenarios on which offline and
online testing disagreed. As shown in Figure 9a, the prediction
error of the DNN for each image is always less than 1°. This
means that the DNN appears to be accurate enough according
to offline testing. However, based on the online testing result in
Figure 9b, the ego vehicle departs from the center of the lane
in a critical way (i.e., more that 1.5m). This is because, over
time, small prediction errors accumulate, eventually causing a
critical lane departure. Such accumulation of errors over time
is only observable in online testing, and this also explains why
there is no case where the online testing result is acceptable
while the offline testing result is not.

The experimental results imply that offline testing cannot
properly reveal safety violations in ADS-DNNs, because it
does not consider their closed-loop behavior. Having very ac-
ceptably small errors on single images does not guarantee that
there will be no safety violations in the driving environment.
Considering the fact that detecting safety violations in ADS
is the ultimate goal of ADS-DNN testing, we conclude that
online testing is preferable to offline testing for ADS-DNNs.
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The answer to RQ1 is that offline and online testing
results differ in many cases. Offline testing is more
optimistic than online testing because the accumulation
of errors is not observed in offline testing.

D. Threats to Validity

We propose a two-step approach that builds simulator-
generated datasets comparable to a given real-life dataset.
While it achieves its objective, as shown in Section III-B2,
the simulated images are still different from the real images.
However, we confirmed that the prediction errors obtained by
applying our subject DNNs to the simulator-generated datasets
are comparable with those obtained for their corresponding
real-life datasets. Thus, the results that offline and online
testing results often disagree with each other are valid.

We used a few thresholds that may change the experimental
results quantitatively. To reduce the chances of misinterpreting
the results, we selected intuitive and physically interpretable
metrics directly to evaluate both offline and online test re-
sults (i.e, prediction errors and safety violations), and defined
threshold values based on common sense and experience.
Further, adopting different threshold values, as long as they are
within a reasonable range, does not change our findings. For
example, if we use MAE (d , sim(s)) < 0.05 as a threshold
in offline testing results instead of MAE (d , sim(s)) < 0.1,
the numbers of scenarios in Table III change. However, it
does not change the fact that we have many scenarios for
which offline and online testing results disagree, nor does it
change the conclusion that offline testing is more optimistic
than online testing.

Though we focused, in our case study, on only two lane-
keeping DNNs (steering prediction)—which have rather sim-
ple structures and do not support braking or acceleration, our
findings are applicable to all DNNs in the context of ADS as
long as the closed-loop behavior of ADS matters.

IV. RELATED WORK

Table IV summarizes DNN testing approaches specifically
proposed in the context of autonomous driving systems. Ap-
proaches to the general problem of testing machine learning
systems are discussed in the recent survey by Zhang et al. [12].

In Table IV, online testing approaches are highlighted grey.
As Table I shows, offline testing approaches focus on DNNs
as individual units without accounting for the closed-loop
behavior of a DNN-based ADS. Most of them aim to generate
test data (either images or 3-dimensional point clouds) that
lead to DNN prediction errors. Dreossi et al. [27] synthesized
images for driving scenes by arranging basic objects (e.g., road
backgrounds and vehicles) and tuning image parameters (e.g.,
brightness, contrast, and saturation). Pei et al. [7] proposed
DEEPXPLORE, an approach that synthesizes images by solving
a joint optimization problem that maximizes both neuron
coverage (i.e., the rate of activated neurons) and differential
behaviors of multiple DNNs for the synthesized images. Tian
et al. [8] presented DEEPTEST, an approach that generates
label-preserving images from training data using greedy search
for combining simple image transformations (e.g., rotate,
scale, and for and rain effects) to increase neuron coverage.
Wicker et al. [29] generated adversarial examples, i.e., small
perturbations that are almost imperceptible by humans but
causing DNN misclassifications, using feature extraction from
images. Zhang et al. [9] presented DEEPROAD, an approach
that produces various driving scenes and weather conditions
by applying Generative Adversarial Networks (GANs) along
with corresponding real-world weather scenes. Zhou et al. [32]
combined Metamorphic Testing (MT) and Fuzzing for 3-
dimensional point cloud data generated by a LiDAR sensor
to reveal erroneous behaviors of an object detection DNN.
Zhou et al. [11] proposed DEEPBILLBOARD, an approach that
produces both digital and physical adversarial billboard images
to continuously mislead the DNN across dashboard camera
frames. While this work is different from the other offline
testing studies as it introduces adversarial attacks through
sequences of frames, its goal is still the generation of test
images to reveal DNN prediction errors. In contrast, Kim et
al. [18] defined a coverage criterion, called surprise adequacy,
based on the behavior of DNN-based systems with respect
to their training data. Images generated by DEEPTEST were
sampled to improve such coverage and used to increase the
accuracy of the DNN against adversarial examples.

Online testing studies exercise the ADS closed-loop be-
havior and generate test driving scenarios that cause safety
violations, such as unintended lane departure or collision with
pedestrians. Tuncali et al. [28] were the first to raise the
problem that previous works mostly focused on the DNNs,
without accounting for the closed-loop behavior of the system.
Gambi et al. [30] also pointed out that testing DNNs for ADS
using only single frames cannot be used to evaluate closed-
loop properties of ADS. They presented ASFAULT, a tool that
generates virtual roads which cause self-driving cars to depart
from their lane. Majumdar et al. [31] presented a language
for describing test driving scenarios in a parametric way
and provided PARACOSM, a simulation-based testing tool that
generates a set of test parameters in such a way as to achieve
diversity. We should note that all the online testing studies
rely on virtual (simulated) environments, since, as mentioned
before, testing DNNs for ADS in real traffic is dangerous



TABLE IV
SUMMARY OF DNN TESTING STUDIES IN THE CONTEXT OF AUTONOMOUS DRIVING

Author(s) Year Testing mode DNN’s role Summary

Dreossi et al. [27] 2017 Offline Object detection Test image generation by arranging basic objects using greedy search
Pei et al. [7] 2017 Offline Lane keeping Coverage-based label-preserving test image generation using joint

optimization with gradient ascent
Tian et al. [8] 2018 Offline Lane keeping Coverage-based label-preserving test image generation using greedy

search with simple image transformations
Tuncali et al. [28] 2018 Online Object detection Test scenario generation using the combination of covering arrays and

simulated annealing
Wicker et al. [29] 2018 Offline Traffic sign recognition Adversarial image generation using feature extraction
Zhang et al. [9] 2018 Offline Lane keeping Label-preserving test image generation using Generative Adversarial

Networks (GANs)
Zhou et al. [11] 2018 Offline Lane keeping Adversarial billboard-image generation for digital and physical adver-

sarial perturbation
Gambi et al. [30] 2019 Online Lane keeping Automatic virtual road network generation using search-based Proce-

dural Content Generation (PCG)
Kim et al. [18] 2019 Offline Lane keeping Improving the accuracy of DNNs against adversarial examples using

surprise adequacy
Majumdar et al. [31] 2019 Online Object detection,

lane keeping
Test scenario description language and simulation-based test scenario
generation to cover parameterized environments

Zhou et al. [32] 2019 Offline Object detection Combination of Metamorphic Testing (MT) and fuzzing for 3-
dimensional point cloud data

This paper 2019 Offline and online Lane keeping Comparison between offline and online testing results

and expensive. Further, there is a growing body of evidence
indicating that simulation-based testing is effective at finding
violations. For example, recent studies for robotic applications
show that simulation-based testing of robot function models
not only reveals most bugs identified during outdoor robot
testing, but that it can additionally reveal several bugs that
could not have been detected by outdoor testing [33].

In summary, even though online testing has received more
attention recently, most existing approaches to testing DNN in
the context of ADS focus on offline testing. We note that none
of the existing techniques compare offline and online testing
results, and neither do they demonstrate relative effectiveness
of test datasets obtained from simulators compared to those
captured from real-life.

V. CONCLUSION

In this paper, we distinguish two general modes of testing,
namely offline testing and online testing, for DNNs developed
in the context of Advanced Driving Systems (ADS). Offline
testing search for DNN prediction errors based on test datasets
obtained independently from the DNNs under test, while
online testing focuses on detecting safety violations of a DNN-
based ADS in a closed-loop mode by testing it in interaction
with its real or simulated application environment. Offline
testing is less expensive and faster than online testing but may
not be effective at finding significant errors in DNNs. Online
testing is more easily performed and safer with a simulator
but we have no guarantees that the results are representative
of real driving environments.

To address the above concerns, we conducted a case study
to compare the offline and online testing of DNNs for the

end-to-end control of a vehicle. We also investigated if we
can use simulator-generated datasets as a reliable substitute to
real-world datasets for DNN testing. The experimental results
show that simulator-generated datasets yield DNN prediction
errors that are similar to those obtained by testing DNNs
with real-world datasets. Also, offline testing appears to be
more optimistic than online testing as many safety violations
identified by online testing were not suggested by offline
testing prediction errors. Furthermore, large prediction errors
generated by offline testing always led to severe safety viola-
tions detectable by online testing. Such results have important
practical implications for DNN testing in the context of not
only ADS but also other CPS where the closed-loop behavior
of DNNs matters.

As part of future work, we plan to develop an approach
that effectively combines both offline and online testing to
automatically identify critical safety violations. We also plan
to investigate how to improve the performance of DNN-based
ADS using the identified prediction errors and safety violations
for further learning.
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